Neutrino Physics 2010: Assignment 3

(Given 14/04/2010, To be submitted 03/05/2010)

- 1. Consider a short baseline experiment, where only one Δm^2 is relevant (single mass-squared dominance approximation). Take the standard parameterization of U_{PMNS} , assume no CP violation.
 - (a) Calculate the survival probability $P_{\mu\mu} \equiv P_{\nu_{\mu} \to \nu_{\mu}}$. Comparing it with the standard two-neutrino oscillation form, determine the "effective disappearance mixing angle" $\theta_{\mu\mu}^{\text{eff}}$.
 - (b) Calculate the conversion probability $P_{\mu e} \equiv P_{\nu_{\mu} \to \nu_{e}}$. Comparing it with the standard two-neutrino oscillation form, determine the "effective appearance mixing angle" $\theta_{\mu e}^{\text{eff}}$.
 - (c) Show the equi-probability contours of $P_{\nu_{\mu} \to \nu_{e}}$ in the plane of $\log(\Delta m^{2}/\text{eV}^{2})$ vs. $\sin^{2} 2\theta_{eff}$, with $P_{\mu e} = 0, 0.2, 0.5$. Use L = 10 MeV, E = 1 km. Indicate the effects of decoherence at high Δm^{2} .
- 2. We want to calculate how Δ and θ change in the presence of matter with constant potential V_c , using the perturbation theory technique. This is a warm-up problem with two flavours.
 - (a) Calculate the effective Hamiltonian in the flavour basis, $H_f = UH_{vac}U^{\dagger} + V$, where

$$H_{vac} = \begin{pmatrix} 0 & 0 \\ 0 & 2\Delta \end{pmatrix} , \quad V = \begin{pmatrix} V_c & 0 \\ 0 & 0 \end{pmatrix}$$

and U is the neutrino mixing matrix.

- (b) Separate H_f as $H_0 + H_1$, where $H_0 = H_f(V_c = 0)$.
- (c) Find eigenvalues $\epsilon_i^{(0)}$ and corresponding eigenvectors $v_i^{(0)}$ of H_0 .
- (d) Using perturbation theory techniques, calculate the first order corrections to the eigenvalues and eigenvectors of H_0 , i.e. calculate $\epsilon_i^{(1)}$ and $v_i^{(1)}$.
- (e) Find the net eigenvalues $\epsilon_j = \epsilon_j^{(0)} + \epsilon_j^{(1)}$, hence determine Δ_m .
- (f) Find the net eigenvectors $v_j = v_j^{(0)} + v_j^{(1)}$. Normalize v_j (only keep terms to first order in the small parameter V_c) and determine the new mixing matrix U_m . Hence find the mixing angle θ_m .
- (g) Compare the expressions for Δ_m and θ_m with the known exact expressions.

- 3. We want to calculate the conversion probability $P_{\nu_e \to \nu_{\mu}}$ in three flavours in matter with constant potential V_c .
 - (a) Calculate the effective Hamiltonian in the flavour basis,

 $H_f = U H_{vac} U^{\dagger} + V$, where

$$H_{vac} = 2\Delta_{31} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} , \quad V = 2\Delta_{31} \begin{pmatrix} \widehat{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Here $\hat{A} \equiv V_c/(2\Delta_{31}), \alpha \equiv \Delta_{21}/\Delta_{31}$, and U is the neutrino mixing matrix.

- (b) Separate H_f as $H_0 + H_1$, where $H_0 = H_f(\theta_{13} = 0, \alpha = 0)$.
- (c) Find eigenvalues $\epsilon_j^{(0)}$ and corresponding eigenvectors $v_j^{(0)}$ of H_0 .
- (d) Using perturbation theory techniques, calculate the first order corrections to the eigenvalues and eigenvectors of H_0 , i.e. calculate $\epsilon_i^{(1)}$ and $v_i^{(1)}$.
- (e) Determine the net eigenvalues $\epsilon_j = \epsilon_j^{(0)} + \epsilon_j^{(1)}$ and the net eigenvectors $v_j = v_j^{(0)} + v_j^{(1)}$.
- (f) Normalize v_j (only keep terms to first order in the small parameters θ_{13} and α) and determine the new mixing matrix U_m .
- (g) Using the net conversion probability

$$P_{\alpha\beta} = \left| \sum_{j} (U_m)^*_{\beta j} (U_m)_{\alpha j} e^{-i\epsilon_j L} \right|^2 ,$$

calculate $P_{e\mu}$.

4. Let there be a sterile neutrino, which is heavier than all the active neutrinos, with $\Delta m^2 \approx 1 \text{ eV}^2$. The net 4×4 neutrino mixing matrix is given by

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

Calculate

- (a) $P_{\mu\mu}$ relevant for atmospheric neutrinos. Simplify to the extent possible by neglecting / averaging out appropriate terms.
- (b) $P_{\mu e}$ relevant for the LSND experiment. Simplify to the extent possible by neglecting / averaging out appropriate terms.
- (c) P_{ee} relevant for the KamLAND experiment. Simplify to the extent possible by neglecting / averaging out appropriate terms.