Neutrino Physics 2010: Assignment 3

(Given 14/04/2010, To be submitted 03/05/2010)

1. Consider a short baseline experiment, where only one Δm^{2} is relevant (single mass-squared dominance approximation). Take the standard parameterization of $U_{P M N S}$, assume no CP violation.
(a) Calculate the survival probability $P_{\mu \mu} \equiv P_{\nu_{\mu} \rightarrow \nu_{\mu}}$. Comparing it with the standard two-neutrino oscillation form, determine the "effective disappearance mixing angle" $\theta_{\mu \mu}^{\text {eff }}$.
(b) Calculate the conversion probability $P_{\mu e} \equiv P_{\nu_{\mu} \rightarrow \nu_{e}}$. Comparing it with the standard two-neutrino oscillation form, determine the "effective appearance mixing angle" $\theta_{\mu e}^{\text {eff }}$.
(c) Show the equi-probability contours of $P_{\nu_{\mu} \rightarrow \nu_{e}}$ in the plane of $\log \left(\Delta m^{2} / \mathrm{eV}^{2}\right)$ vs. $\sin ^{2} 2 \theta_{\text {eff }}$, with $P_{\mu e}=0,0.2,0.5$.
Use $L=10 \mathrm{MeV}, E=1 \mathrm{~km}$. Indicate the effects of decoherence at high Δm^{2}.
2. We want to calculate how Δ and θ change in the presence of matter with constant potential V_{c}, using the perturbation theory technique. This is a warm-up problem with two flavours.
(a) Calculate the effective Hamiltonian in the flavour basis, $H_{f}=U H_{v a c} U^{\dagger}+V$, where

$$
H_{v a c}=\left(\begin{array}{cc}
0 & 0 \\
0 & 2 \Delta
\end{array}\right), \quad V=\left(\begin{array}{cc}
V_{c} & 0 \\
0 & 0
\end{array}\right)
$$

and U is the neutrino mixing matrix.
(b) Separate H_{f} as $H_{0}+H_{1}$, where $H_{0}=H_{f}\left(V_{c}=0\right)$.
(c) Find eigenvalues $\epsilon_{j}^{(0)}$ and corresponding eigenvectors $v_{j}^{(0)}$ of H_{0}.
(d) Using perturbation theory techniques, calculate the first order corrections to the eigenvalues and eigenvectors of H_{0}, i.e. calculate $\epsilon_{j}^{(1)}$ and $v_{j}^{(1)}$.
(e) Find the net eigenvalues $\epsilon_{j}=\epsilon_{j}^{(0)}+\epsilon_{j}^{(1)}$, hence determine Δ_{m}.
(f) Find the net eigenvectors $v_{j}=v_{j}^{(0)}+v_{j}^{(1)}$. Normalize v_{j} (only keep terms to first order in the small parameter V_{c}) and determine the new mixing matrix U_{m}. Hence find the mixing angle θ_{m}.
(g) Compare the expressions for Δ_{m} and θ_{m} with the known exact expressions.
3. We want to calculate the conversion probability $P_{\nu_{e} \rightarrow \nu_{\mu}}$ in three flavours in matter with constant potential V_{c}.
(a) Calculate the effective Hamiltonian in the flavour basis, $H_{f}=U H_{v a c} U^{\dagger}+V$, where

$$
H_{v a c}=2 \Delta_{31}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 1
\end{array}\right), \quad V=2 \Delta_{31}\left(\begin{array}{ccc}
\widehat{A} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Here $\widehat{A} \equiv V_{c} /\left(2 \Delta_{31}\right), \alpha \equiv \Delta_{21} / \Delta_{31}$, and U is the neutrino mixing matrix.
(b) Separate H_{f} as $H_{0}+H_{1}$, where $H_{0}=H_{f}\left(\theta_{13}=0, \alpha=0\right)$.
(c) Find eigenvalues $\epsilon_{j}^{(0)}$ and corresponding eigenvectors $v_{j}^{(0)}$ of H_{0}.
(d) Using perturbation theory techniques, calculate the first order corrections to the eigenvalues and eigenvectors of H_{0}, i.e. calculate $\epsilon_{j}^{(1)}$ and $v_{j}^{(1)}$.
(e) Determine the net eigenvalues $\epsilon_{j}=\epsilon_{j}^{(0)}+\epsilon_{j}^{(1)}$ and the net eigenvectors $v_{j}=v_{j}^{(0)}+v_{j}^{(1)}$.
(f) Normalize v_{j} (only keep terms to first order in the small parameters θ_{13} and α) and determine the new mixing matrix U_{m}.
(g) Using the net conversion probability

$$
P_{\alpha \beta}=\left|\sum_{j}\left(U_{m}\right)_{\beta j}^{*}\left(U_{m}\right)_{\alpha j} e^{-i \epsilon_{j} L}\right|^{2},
$$

calculate $P_{e \mu}$.
4. Let there be a sterile neutrino, which is heavier than all the active neutrinos, with $\Delta m^{2} \approx 1 \mathrm{eV}^{2}$. The net 4×4 neutrino mixing matrix is given by

$$
U=\left(\begin{array}{cccc}
U_{e 1} & U_{e 2} & U_{e 3} & U_{e 4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s 1} & U_{s 2} & U_{s 3} & U_{s 4}
\end{array}\right)
$$

Calculate
(a) $P_{\mu \mu}$ relevant for atmospheric neutrinos. Simplify to the extent possible by neglecting / averaging out appropriate terms.
(b) $P_{\mu e}$ relevant for the LSND experiment. Simplify to the extent possible by neglecting / averaging out appropriate terms.
(c) $P_{e e}$ relevant for the KamLAND experiment. Simplify to the extent possible by neglecting / averaging out appropriate terms.

