
Neutrino Physics 2010: Assignment 3
(Given 14/04/2010, To be submitted 03/05/2010)

1. Consider a short baseline experiment, where only one ∆m2 is relevant
(single mass-squared dominance approximation). Take the standard
parameterization of UPMNS, assume no CP violation.

(a) Calculate the survival probability Pµµ ≡ Pνµ→νµ . Comparing it
with the standard two-neutrino oscillation form, determine the
“effective disappearance mixing angle” θeff

µµ.

(b) Calculate the conversion probability Pµe ≡ Pνµ→νe . Comparing
it with the standard two-neutrino oscillation form, determine the
“effective appearance mixing angle” θeff

µe .

(c) Show the equi-probability contours of Pνµ→νe in the plane of
log(∆m2/eV2) vs. sin2 2θeff , with Pµe = 0, 0.2, 0.5.
Use L = 10 MeV, E = 1 km. Indicate the effects of decoherence
at high ∆m2.

2. We want to calculate how ∆ and θ change in the presence of matter
with constant potential Vc, using the perturbation theory technique.
This is a warm-up problem with two flavours.

(a) Calculate the effective Hamiltonian in the flavour basis,
Hf = UHvacU

† + V , where

Hvac =

(
0 0
0 2∆

)
, V =

(
Vc 0
0 0

)

and U is the neutrino mixing matrix.

(b) Separate Hf as H0 +H1, where H0 = Hf (Vc = 0).

(c) Find eigenvalues ε
(0)
j and corresponding eigenvectors v

(0)
j of H0.

(d) Using perturbation theory techniques, calculate the first order cor-
rections to the eigenvalues and eigenvectors of H0, i.e. calculate
ε

(1)
j and v

(1)
j .

(e) Find the net eigenvalues εj = ε
(0)
j + ε

(1)
j , hence determine ∆m.

(f) Find the net eigenvectors vj = v
(0)
j +v

(1)
j . Normalize vj (only keep

terms to first order in the small parameter Vc) and determine the
new mixing matrix Um. Hence find the mixing angle θm.

(g) Compare the expressions for ∆m and θm with the known exact
expressions.
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3. We want to calculate the conversion probability Pνe→νµ in three flavours
in matter with constant potential Vc.

(a) Calculate the effective Hamiltonian in the flavour basis,
Hf = UHvacU

† + V , where

Hvac = 2∆31

 0 0 0
0 α 0
0 0 1

 , V = 2∆31

 Â 0 0
0 0 0
0 0 0


Here Â ≡ Vc/(2∆31), α ≡ ∆21/∆31, and U is the neutrino mixing
matrix.

(b) Separate Hf as H0 +H1, where H0 = Hf (θ13 = 0, α = 0).

(c) Find eigenvalues ε
(0)
j and corresponding eigenvectors v

(0)
j of H0.

(d) Using perturbation theory techniques, calculate the first order cor-
rections to the eigenvalues and eigenvectors of H0, i.e. calculate
ε

(1)
j and v

(1)
j .

(e) Determine the net eigenvalues εj = ε
(0)
j + ε

(1)
j and the net eigen-

vectors vj = v
(0)
j + v

(1)
j .

(f) Normalize vj (only keep terms to first order in the small parame-
ters θ13 and α) and determine the new mixing matrix Um.

(g) Using the net conversion probability

Pαβ =

∣∣∣∣∣∣
∑
j

(Um)∗βj(Um)αje
−iεjL

∣∣∣∣∣∣
2

,

calculate Peµ.

4. Let there be a sterile neutrino, which is heavier than all the active
neutrinos, with ∆m2 ≈ 1 eV2. The net 4 × 4 neutrino mixing matrix
is given by

U =


Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4


Calculate

(a) Pµµ relevant for atmospheric neutrinos. Simplify to the extent
possible by neglecting / averaging out appropriate terms.

(b) Pµe relevant for the LSND experiment. Simplify to the extent
possible by neglecting / averaging out appropriate terms.

(c) Pee relevant for the KamLAND experiment. Simplify to the extent
possible by neglecting / averaging out appropriate terms.
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