Neutrino Physics: Lecture 14

Neutrino masses: Dirac vs. Majorana

Amol Dighe

Department of Theoretical Physics
Tata Institute of Fundamental Research
Apr 20, 2010
$+26$

Outline

(1) Dirac and Majorana masses for neutrinos
(2) Neutrinoless double beta decay

Outline

(9) Dirac and Majorana masses for neutrinos
(2) Neutrinoless double beta decay

Adding a right-handed neutrino

Properties of ν_{R}

- Interaction $-\lambda_{\nu} \bar{L}_{L} \Phi^{C} \nu_{R}$
- After EWSB, $-\lambda_{\nu} v \overline{\nu_{L}} \nu_{R} / \sqrt{2}$
- $m_{\nu}=\lambda_{\nu} v / \sqrt{2}$
- Eigenvalues of $\nu_{R}:(1,0) \Rightarrow$ Singlet under $S U(2)_{L} \times U(1)_{Y}$

Why not add ν_{R} and be done with it?

- Yukama counlings ton small.
- $S U(2)_{L} \times U(1)_{Y}$ allows more mass terms with ν_{R}

Adding a right-handed neutrino

Properties of ν_{R}

- Interaction $-\lambda_{\nu} \bar{L}_{L} \phi^{C} \nu_{R}$
- After EWSB, $-\lambda_{\nu} v \overline{\nu_{L}} \nu_{R} / \sqrt{2}$
- $m_{\nu}=\lambda_{\nu} v / \sqrt{2}$
- Eigenvalues of $\nu_{R}:(1,0) \Rightarrow$ Singlet under $S U(2)_{L} \times U(1)_{Y}$

Why not add ν_{R} and be done with it ?

- Yukawa couplings too small: $\lambda_{\nu} \lesssim 10^{-11}$
- $S U(2)_{L} \times U(1)_{Y}$ allows more mass terms with ν_{R}

Equations of motion for a fermion

Fermion Lagrangian and equations of motion

- Lagrangian:

$$
\mathcal{L}=\bar{\psi} \dot{i} \gamma^{\mu}\left(\partial_{\mu} \psi\right)-g \bar{\psi} \gamma^{\mu} A_{\mu} \psi-m \bar{\psi} \psi
$$

- Equations of motion:

- Dirac equation: $\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right) \psi-m \psi=0$
- Conjugate equation:

Equations of motion for a fermion

Fermion Lagrangian and equations of motion

- Lagrangian:

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu} \psi\right)-g \bar{\psi} \gamma^{\mu} A_{\mu} \psi-m \bar{\psi} \psi
$$

- Equations of motion: $\partial_{\alpha}\left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi \mathcal{U}}\right)=\frac{\partial \mathcal{L}}{\partial \Psi}$

$$
\begin{aligned}
0 & =i \gamma^{\mu} \partial_{\mu} \psi-g \gamma^{\mu} A_{\mu} \psi-m \psi \\
\partial_{\mu}\left(\bar{\psi} i \gamma^{\mu}\right) & =-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi}
\end{aligned}
$$

- Dirac equation: $\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right) \psi-m \psi=0$
- Conjugate equation:

Equations of motion for a fermion

Fermion Lagrangian and equations of motion

- Lagrangian:

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu} \psi\right)-g \bar{\psi} \gamma^{\mu} A_{\mu} \psi-m \bar{\psi} \psi
$$

- Equations of motion: $\partial_{\alpha}\left(\frac{\partial \mathcal{L}}{\left(\partial_{\alpha} \Psi \mathcal{L}\right.}\right)=\frac{\partial \mathcal{L}}{\partial \Psi}$

$$
\begin{aligned}
0 & =i \gamma^{\mu} \partial_{\mu} \psi-g \gamma^{\mu} A_{\mu} \psi-m \psi \\
\partial_{\mu}\left(\bar{\psi} i \gamma^{\mu}\right) & =-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi}
\end{aligned}
$$

- Dirac equation: $\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right) \psi-m \psi=0$
- Conjugate equation:

Equations of motion for a fermion

Fermion Lagrangian and equations of motion

- Lagrangian:

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu} \psi\right)-g \bar{\psi} \gamma^{\mu} A_{\mu} \psi-m \bar{\psi} \psi
$$

- Equations of motion: $\partial_{\alpha}\left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi}\right)=\frac{\partial \mathcal{L}}{\partial \Psi}$

$$
\begin{aligned}
0 & =i \gamma^{\mu} \partial_{\mu} \psi-g \gamma^{\mu} A_{\mu} \psi-m \psi \\
\partial_{\mu}\left(\bar{\psi} i \gamma^{\mu}\right) & =-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi}
\end{aligned}
$$

- Dirac equation: $\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right) \psi-m \psi=0$
- Conjugate equation: $-\left(\partial_{\mu} \bar{\psi}\right)\left(i \gamma^{\mu}\right)-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi}=0$

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

- Conjugate equation:

$$
\begin{aligned}
-\left(\partial_{\mu} \bar{\psi}\right)\left(i \gamma^{\mu}\right)-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi} & =0 \\
-i \gamma^{\mu T}\left(\partial_{\mu} \bar{\psi}\right)^{T}-g \gamma^{\mu T} A_{\mu} \bar{\psi}^{T}-m \bar{\psi}^{T} & =0
\end{aligned}
$$

- Desired equation,

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

- Conjugate equation:

$$
\begin{aligned}
-\left(\partial_{\mu} \bar{\psi}\right)\left(i \gamma^{\mu}\right)-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi} & =0 \\
-i \gamma^{\mu T}\left(\partial_{\mu} \bar{\psi}\right)^{T}-g \gamma^{\mu T} A_{\mu} \bar{\psi}^{T}-m \bar{\psi}^{T} & =0 \leftarrow E O M
\end{aligned}
$$

- Desired equation, $\psi^{C}=C \bar{\psi}^{\top}$, with unitary C :

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \psi^{C}+g \gamma^{\mu} A_{\mu} \psi^{C}-m \psi^{C}=0 \\
& i \gamma^{\mu} \partial_{\mu} C \bar{\psi}^{\top}+g \gamma^{\mu} A_{\mu} C \bar{\psi}^{T}-m C \bar{\psi}^{T}=0 \leftarrow \text { cond }^{n} \psi^{c}=n
\end{aligned}
$$

- Matching condition:

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

- Conjugate equation:

$$
\begin{aligned}
-\left(\partial_{\mu} \bar{\psi}\right)\left(i \gamma^{\mu}\right)-g \bar{\psi} \gamma^{\mu} A_{\mu}-m \bar{\psi} & =0 \\
-i \gamma^{\mu T}\left(\partial_{\mu} \bar{\psi}\right)^{T}-g \gamma^{\mu T} A_{\mu} \bar{\psi}^{T}-m \bar{\psi}^{T} & =0
\end{aligned}
$$

- Desired equation, $\psi^{C}=C \bar{\psi}^{\top}$, with unitary C :

$$
\begin{aligned}
i \gamma^{\mu} \partial_{\mu} \psi^{C} \neq g \gamma^{\mu} A_{\mu} \psi^{C}-m \psi^{C} & =0 \\
i \gamma^{\mu} \partial_{\mu} C \bar{\psi}^{\top}+g \gamma^{\mu} A_{\mu} C \psi^{T}-m C \bar{\psi}^{T} & =0
\end{aligned}
$$

- Matching condition:

$$
\mathbf{C} \gamma^{\mu T}=-\gamma^{\mu} \mathbf{C}
$$

Antiparticle spinors

ψ^{C} and $\overline{\psi^{C}}$

$$
\begin{aligned}
\psi^{C} & =\boldsymbol{C} \bar{\psi}^{T}=\boldsymbol{C} \gamma^{0 T} \psi^{*}=-\gamma^{0} \boldsymbol{C} \psi^{*} \\
\psi^{C} & =-\psi^{T} \boldsymbol{C}^{\dagger}
\end{aligned}
$$

Useful properties of C

- Unitary: $C^{\dagger} C=1$
- Matching condition: $\boldsymbol{C} \gamma^{\mu T}=-\gamma^{\mu} C$
- $\psi=\left(\psi^{C}\right)^{C} \Rightarrow C^{*} C=-1$
- Antisymmetric: $C^{\dagger}=-C^{*} \Rightarrow C=-C^{\top}$

Antiparticle spinors

ψ^{C} and $\overline{\psi^{C}}$

$$
\begin{aligned}
\psi^{C} & =\boldsymbol{C} \bar{\psi}^{T}=\boldsymbol{C} \gamma^{0 T} \psi^{*}=-\gamma^{0} \boldsymbol{C} \psi^{*} \\
\psi^{C} & =-\psi^{T} \boldsymbol{C}^{\dagger}
\end{aligned}
$$

Useful properties of C

- Unitary: $C^{\dagger} C=I$
- Matching condition: $\boldsymbol{C} \gamma^{\mu T}=-\gamma^{\mu} C$
- $\psi=\left(\psi^{C}\right)^{C} \Rightarrow C^{*} C=-1$
- Antisymmetric: $C^{\dagger}=-C^{*} \Rightarrow C=-C^{\top}$
- C exists: In Dirac basis and chiral basis, $\boldsymbol{C}=i \gamma^{2} \gamma^{0}$

Can particle = antiparticle ?

Particles charged under a gauge symmetry

- Particle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right)-m\right] \psi=0$
- Antipaticle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}+g A_{\mu}\right)-m\right] \psi^{C}=0$
- Particle \neq Antiparticle unless $g=0$ for all gauge groups

Particles charged under a global symmetry

- Particle has charge $+q$, antiparticle has charge $-q$
- Particle \neq Antiparticle as long as symmetry is conserved

The special case of ν_{R}

- The only relevant symmetry is L (lepton number)

Can particle = antiparticle ?

Particles charged under a gauge symmetry

- Particle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right)-m\right] \psi=0$
- Antipaticle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}+g A_{\mu}\right)-m\right] \psi^{C}=0$
- Particle \neq Antiparticle unless $g=0$ for all gauge groups

Particles charged under a global symmetry

- Particle has charge $+q$, antiparticle has charge -q
- Particle \neq Antiparticle as long as symmetry is conserved
\square
- Not charged under
- The only relevant symmetry is L (lepton number)

Can particle = antiparticle ?

Particles charged under a gauge symmetry

- Particle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}-g A_{\mu}\right)-m\right] \psi=0$
- Antipaticle satisfies $\left[\gamma^{\mu}\left(i \partial_{\mu}+g A_{\mu}\right)-m\right] \psi^{C}=0$
- Particle \neq Antiparticle unless $g=0$ for all gauge groups

Particles charged under a global symmetry

- Particle has charge $+q$, antiparticle has charge $-q$
- Particle \neq Antiparticle as long as symmetry is conserved

The special case of ν_{R}

- Not charged under $S U(2)_{L}$ or $U(1)_{Y}$ (consequently $\left.U(1)_{Q}\right)$
- The only relevant symmetry is L (lepton number)

Lepton number conservation

- Accidental symmetry (no fundamental principle forbids it)
- A guiding principle of gauge theories: anything that is not forbidden by a symmetry should be allowed
- Lepton number can (has to) be violated

Lepton number conservation

- Accidental symmetry (no fundamental principle forbids it)
- A guiding principle of gauge theories: anything that is not forbidden by a symmetry should be allowed
- Lepton number can (has to) be violated

Not L, but $B-L$

- Perturbatively, no Feynman diagram that violates L
- Non-perturbatively, baryons \leftrightarrow antileptons process possible (sphaleron solution to electroweak field equations:
$B=L=\frac{1}{2}$
Klinkenhamer and Manton, PRD30 (1984) 2212) -
- Only B-L conserved in the Standard Model
- Arguments mentioning L violation should, strictly speaking, use $B-L$ violation.

Majorana mass term possible for ν_{R}

The term $-\frac{1}{2} m_{R}{\overline{\left(\nu_{R}\right)^{C}}}_{\nu_{R}}$

- Obeys $S U(2)_{L}$ and $U(1)_{Y}$
- Violates lepton $(B-L)$ number by 2, allowed
- Majorana mass for neutrinos
- $\mathcal{L}_{M}=-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{C}\right)=-\frac{1}{2} m_{R}\left(\nu_{R}^{C} \nu_{R}+\right.$ h.c. $)$
- $\nu \equiv \nu_{R}+\nu_{R}^{C}$ is its own antiparticle: Majorana particle
- Majorana mass term $\mathcal{L}_{M}=-\frac{1}{2} m_{R} \bar{\nu} \nu$

Majorana mass term possible for ν_{R}

The term $-\frac{1}{2} m_{R} \overline{\left(\nu_{R}\right)^{C}} \nu_{R}$

- Obeys $S U(2)_{L}$ and $U(1)_{Y}$
- Violates lepton $(B-L)$ number by 2, allowed
- Majorana mass for neutrinos !
- $\mathcal{L}_{M}=-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{C}\right)=-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\right.$ h.c. $)$
- $\nu \equiv \nu_{R}+\nu_{R}^{C}$ is its own antiparticle: Majorana particle
- Majorana mass term $\mathcal{L}_{M}=-\frac{1}{2} m_{R} \bar{\nu} \nu$

Majorana mass term possible for ν_{R}

The term $-\frac{1}{2} m_{R}{\overline{\left(\nu_{R}\right)^{C}}}_{\nu_{R}}$

- Obeys $S U(2)_{L}$ and $U(1)_{Y}$
- Violates lepton $(B-L)$ number by 2 , allowed
- Majorana mass for neutrinos !
- $\mathcal{L}_{M}=-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{C}\right)=-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\right.$ h.c. $)$
e $\nu \equiv \nu_{R}+\nu_{R}^{C}$ is its own antiparticle: Majorana particle
- Majorana mass term $\mathcal{L}_{M}=-\frac{1}{2} m_{R} \bar{\nu} \nu$

The Majorana Lagrangian

Factor of $1 / 2$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\overline{\nu_{R}} i \gamma^{\mu} \partial_{\mu} \nu_{R}+\overline{\nu_{R}^{C}} i \gamma^{\mu} \partial_{\mu} \nu_{R}^{C}\right)-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{C}} \nu_{R}+\text { h.c. }\right) \\
& =\frac{1}{2} \bar{\nu}\left(i \gamma^{\mu} \partial_{\mu}-m_{R}\right) \nu
\end{aligned}
$$

Another way of writing the mass term

The Majorana Lagrangian

Factor of $1 / 2$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\overline{\nu_{R}} i \gamma^{\mu} \partial_{\mu} \nu_{R}+\overline{\nu_{R}^{C}} i \gamma^{\mu} \partial_{\mu} \nu_{R}^{C}\right)-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{\bar{C}}} \nu_{R}+\text { h.c. }\right) \\
& =\frac{1}{2} \bar{\nu}\left(i \gamma^{\mu} \partial_{\mu}-m_{R}\right) \nu
\end{aligned}
$$

Another way of writing the mass term

$$
-m_{R} \overline{\nu_{R}^{C}} \nu_{R}=+m_{R} \nu_{R}^{\top} C^{\dagger} \nu_{R}
$$

$$
\overline{V_{R}^{C}} V_{R} \quad \overline{V_{R}} V_{R}^{c}
$$

Majorana mass term possible for ν_{L} ?

The term $-m_{L}{\overline{\left(\nu_{L}\right)^{C}}}_{\nu_{L}}$

- Violates lepton $(B-L)$ number by 2, allowed
- Does not obey $S U(2)_{L}$ and $U(1)_{Y}$, but obeys $U(1)_{Q}$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB - $\mathcal{L}_{M}=-\frac{1}{2} m_{L}\left(\nu_{L}^{C} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{C}\right)=-\frac{1}{2} m_{L}\left(\overline{\nu_{L}} \nu_{L}^{C}+\right.$ h.c. $)$
- $\nu \equiv \nu_{L}+\nu_{L}^{C}$ is its own antiparticle: Majorana neutrino
- Majorana mass term $\mathcal{L}_{M}=-\frac{1}{2} m_{L} \bar{\nu} \nu$

Majorana mass term possible for ν_{L} ?

The term $-m_{L}{\overline{\left(\nu_{L}\right)^{C}}}_{\nu_{L}}$

- Violates lepton $(B-L)$ number by 2, allowed
- Does not obey $S U(2)_{L}$ and $U(1)_{Y}$, but obeys $U(1)_{Q}$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB!
- $\mathcal{L}_{M}=-\frac{1}{2} m_{L}\left(\overline{\nu_{L}^{C}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{C}\right)=-\frac{1}{2} m_{L}\left(\overline{\nu_{L}} \nu_{L}^{C}+\right.$ h.c. $)$
- $\nu \equiv \nu_{L}+\nu_{L}^{C}$ is its own antiparticle: Majorana neutrino
- Majorana mass term $\mathcal{C}_{M}=-\frac{1}{2} m_{L} \bar{\nu}$

Majorana mass term possible for ν_{L} ?

The term $-m_{L}{\overline{\left(\nu_{L}\right)^{C}}}_{\nu_{L}}$

- Violates lepton $(B-L)$ number by 2, allowed
- Does not obey $S U(2)_{L}$ and $U(1)_{Y}$, but obeys $U(1)_{Q}$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB !
- $\mathcal{L}_{M}=-\frac{1}{2} m_{L}\left(\overline{\nu_{L}^{C}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{C}\right)=-\frac{1}{2} m_{L}\left(\overline{\nu_{L}} \nu_{L}^{C}+\right.$ h.c. $)$
- $\nu \equiv \nu_{L}+\nu_{L}^{C}$ is its own antiparticle: Majorana neutrino
- Majorana mass term $\mathcal{L}_{M}=-\frac{1}{2} m_{L} \bar{\nu} \nu$

Magnitudes of Dirac and Majorana masses

- $m_{D}=\frac{\lambda_{\nu} v}{\sqrt{z}} \lesssim v \leqslant 200 \mathrm{GCN}$
- m_{R} has no restriction: can be as heavy as $M_{\text {Planck }}$
- m_{L} depends on the theory, normally $m_{L} \ll v$
\qquad

Implications of Majorana mass

- Lepton number violating processs: as yet unobserved
- "Forbidden" processes like $\nu_{\mu} N \rightarrow \mu^{+} \ell^{+} \ell^{-} X$, $\mu^{-} e^{+} \rightarrow \mu^{+} e^{-}$possible at colliders
- New particles like the Majoron predicted for a class of models
- Heavy Majorana neutrinos may play an important role in Baryogenesis

Neutrinoless double beta decay

Implications of Majorana mass

- Lepton number violating processs: as yet unobserved
- "Forbidden" processes like $\nu_{\mu} N \rightarrow \mu^{+} \ell^{+} \ell^{-} X$, $\mu^{-} e^{+} \rightarrow \mu^{+} e^{-}$possible at colliders
- New particles like the Majoron predicted for a class of models
- Heavy Majorana neutrinos may play an important role in Baryogenesis

Neutrinoless double beta decay !

Outline

(1) Dirac and Majorana masses for neutrinos

(2) Neutrinoless double beta decay

The reaction

${ }_{Z}^{A} X \rightarrow{ }_{Z+2}^{A} Y+2 e^{-}+2 \bar{\nu}_{e}$,

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+2}^{A} Y+2 e^{-}
$$

$2 \nu \beta \beta$

The spectrum

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+2}^{A} Y+2 e^{-}
$$

The reaction rate

Amplitude:

$$
A \propto\langle Y| H|X\rangle \sum_{i=1}^{3} m_{i} U_{e i}^{2}
$$

Decay rate:

Sensitivity to Majorana phases

The only conceived experiment with sensitivity to ϕ_{i}

The reaction rate

Amplitude:

$$
A \propto\langle Y| H|X\rangle \sum_{i=1}^{3} m_{i} U_{e i}^{2}
$$

Decay rate:

$$
\Gamma \propto|\langle Y| H| X\rangle\left.\right|^{2} \stackrel{\left.m_{\beta \beta}\right|^{2}}{=} m_{\beta \beta}=\sum_{i=1}^{3} m_{i} U_{e i}^{2}
$$

Sensitivity to Majorana phases
$\longrightarrow\left|m_{\beta \beta}\right|^{2}=\left|m_{1} c_{12}^{2} c_{13}^{2} e^{2 i \phi_{1}}+m_{2} s_{12}^{2} c_{13}^{2} e^{2 i \phi_{2}}+s_{13}^{2} m_{3} e^{-2 i \delta}\right|^{2}$
The only conceived experiment with sensitivity to ϕ_{i}

Isotopes, bounds and Future experiments

Isotope	$\begin{gathered} \mathrm{T}_{1 / 2}^{2 \nu} \\ \left(10^{19} \mathrm{y}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{1 / 2}^{0 \nu} \\ \left(10^{24} \mathrm{y}\right) \end{gathered}$	Future Experiment	Mass (kg)	Lab
${ }^{48} \mathrm{Ca}$	(4.4 ${ }_{-0.5}^{+0.6}$)	> 0.0014	CANDLES		OTO
${ }^{76} \mathrm{Ge}$	(150 \pm 10)	>19	GERDA	18-40	LNGS
		$22.3{ }^{+3.4}$			
		>15.1	MAJORANA	60	SUSEL
${ }^{82} \mathrm{Se}$	(9.2 $\pm 0.7)$	>0.36	SuperNEMO	100	LSM
${ }^{96} \mathrm{Zr}$	(2.3 ± 0.2)	>0.0092			
${ }^{100} \mathrm{Mo}$	(0.71 $\pm 0.04)$	> 1.1	MOON		OTO
${ }^{116} \mathrm{Cd}$	(2.8 ± 0.2)	>0.17			
${ }^{130} \mathrm{Te}$	(68 ± 12)	> 2.94	CUORE	204	LNGS
${ }^{136} \mathrm{Xe}$	>81	>0.12	EXO	160	WIPP
			KAMLAND	200	KAMIOKA
${ }^{150} \mathrm{Nd}$	(0.82 ± 0.09)	> 0.0036	SNO+	56	SNOLAB

A signal ?

H.V. Klapdor-Kleingrothaus et al. Mod.Phys.Lett. A16 (2001) 2409-2420

Mod.Phys.Lett.A 21 (2006) 1547

- Analysis not accepted by the collaboration
- Observation not confirmed by other experiments.

Constraining neutrino mass spectrum

Implications of $0 \nu \beta \beta$ observation

- Confirm that neutrinos have Majorana mass
- Measurement of absolute neutrino mass
- Confirmation that $B-L$ is not conserved in nature

