Neutrino Physics: Lecture 14 Neutrino masses: Dirac vs. Majorana

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research

> Apr 20, 2010 + 26

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Dirac and Majorana masses for neutrinos

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Neutrinoless double beta decay

Properties of ν_R

- Interaction $-\lambda_{\nu}\overline{I_L}\Phi^C\nu_R$
- After EWSB, $-\lambda_{\nu} v \overline{\nu_{L}} \nu_{R} / 2$
- $m_{\nu} = \lambda_{\nu} v / \sqrt{2}$
- Eigenvalues of ν_R : (1,0) \Rightarrow Singlet under $SU(2)_L \times U(1)_Y$

(日) (日) (日) (日) (日) (日) (日)

Why not add u_R and be done with it ?

- Yukawa couplings too small: $\lambda_{\nu} \lesssim 10^{-11}$
- $SU(2)_L \times U(1)_Y$ allows more mass terms with ν_R

Properties of ν_R

- Interaction $-\lambda_{\nu}\overline{I_L}\Phi^C\nu_R$
- After EWSB, $-\lambda_{\nu} \sqrt{\nu_L} \nu_R / \sqrt{2}$
- $m_{\nu} = \lambda_{\nu} v / \sqrt{2}$
- Eigenvalues of ν_R : (1,0) \Rightarrow Singlet under $SU(2)_L \times U(1)_Y$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Why not add ν_R and be done with it ?

- Yukawa couplings too small: $\lambda_{\nu} \lesssim 10^{-11}$
- $SU(2)_L \times U(1)_Y$ allows more mass terms with ν_R

Fermion Lagrangian and equations of motion

• Lagrangian:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \psi) - g \overline{\psi} \gamma^{\mu} \mathcal{A}_{\mu} \psi - m \overline{\psi} \psi$$

• Equations of motion: $\left| \partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi} \right) = \frac{\partial \mathcal{L}}{\partial \Psi} \right|$

$$0 = i\gamma^{\mu}\partial_{\mu}\psi - g\gamma^{\mu}A_{\mu}\psi - m\psi$$
$$\partial_{\mu}(\overline{\psi}i\gamma^{\mu}) = -g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi}$$

・ロト・日本・日本・日本・日本

• Dirac equation: $\gamma^{\mu}(i\partial_{\mu} - gA_{\mu})\psi - m\psi = 0$

• Conjugate equation: $-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) - g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi} = 0$

Fermion Lagrangian and equations of motion

• Lagrangian:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \psi) - g \overline{\psi} \gamma^{\mu} A_{\mu} \psi - m \overline{\psi} \psi$$

• Equations of motion: $\partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi} \right) = \frac{\partial \mathcal{L}}{\partial \Psi}$

$$0 = i\gamma^{\mu}\partial_{\mu}\psi - g\gamma^{\mu}A_{\mu}\psi - m\psi$$
$$\partial_{\mu}(\overline{\psi}i\gamma^{\mu}) = -g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi}$$

• Dirac equation: $\gamma^{\mu}(i\partial_{\mu} - gA_{\mu})\psi - m\psi = 0$

• Conjugate equation: $-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) - g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi} = 0$

Fermion Lagrangian and equations of motion

• Lagrangian:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \psi) - g \overline{\psi} \gamma^{\mu} A_{\mu} \psi - m \overline{\psi} \psi$$

• Equations of motion: $\partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi} \right) = \frac{\partial \mathcal{L}}{\partial \Psi}$

$$0 = i\gamma^{\mu}\partial_{\mu}\psi - g\gamma^{\mu}A_{\mu}\psi - m\psi$$
$$\partial_{\mu}(\overline{\psi}i\gamma^{\mu}) = -g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi}$$

(日) (日) (日) (日) (日) (日) (日)

- Dirac equation: $\gamma^{\mu}(i\partial_{\mu} gA_{\mu})\psi m\psi = 0$
- Conjugate equation: $-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) g\overline{\psi}\gamma^{\mu}A_{\mu} m\overline{\psi} = 0$

Fermion Lagrangian and equations of motion

• Lagrangian:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \psi) - g \overline{\psi} \gamma^{\mu} A_{\mu} \psi - m \overline{\psi} \psi$$

• Equations of motion: $\partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \Psi} \right) = \frac{\partial \mathcal{L}}{\partial \Psi}$

$$0 = i\gamma^{\mu}\partial_{\mu}\psi - g\gamma^{\mu}A_{\mu}\psi - m\psi$$
$$\partial_{\mu}(\overline{\psi}i\gamma^{\mu}) = -g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi}$$

- Dirac equation: $\gamma^{\mu}(i\partial_{\mu} gA_{\mu})\psi m\psi = 0$
- Conjugate equation: $-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) g\overline{\psi}\gamma^{\mu}A_{\mu} m\overline{\psi} = 0$

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

• Conjugate equation:

$$-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) - g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi} = 0$$

$$-i\gamma^{\mu}{}^{T}(\partial_{\mu}\overline{\psi})^{T} - g\gamma^{\mu}{}^{T}A_{\mu}\overline{\psi}^{T} - m\overline{\psi}^{T} = 0$$

• Desired equation, $\psi^{C} = C\overline{\psi}^{T}$, with unitary *C*:

$$i\gamma^{\mu}\partial_{\mu}\psi^{C} - g\gamma^{\mu}A_{\mu}\psi^{C} - m\psi^{C} = 0$$
$$i\gamma^{\mu}\partial_{\mu}C\overline{\psi}^{T} - g\gamma^{\mu}A_{\mu}C\overline{\psi}^{T} - mC\overline{\psi}^{T} = 0$$

• Matching condition:

$$C\gamma^{\mu T} = -\gamma^{\mu} C$$

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

• Conjugate equation:

$$-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) - g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi} = 0$$

$$-i\gamma^{\mu}(\partial_{\mu}\overline{\psi})^{T} - g\gamma^{\mu}A_{\mu}\overline{\psi}^{T} - m\overline{\psi}^{T} = 0 \leftarrow EOM$$

• Desired equation, $\psi^{C} = C\overline{\psi}^{T}$, with unitary C:

$$i\gamma^{\mu}\partial_{\mu}\psi^{C} + g\gamma^{\mu}A_{\mu}\psi^{C} - m\psi^{C} = 0$$
$$i\gamma^{\mu}\partial_{\mu}C\overline{\psi}^{T} + g\gamma^{\mu}A_{\mu}C\overline{\psi}^{T} - mC\overline{\psi}^{T} = 0 \leftarrow \operatorname{cond}^{n}\psi^{C}$$

• Matching condition:

$$C\gamma^{\mu T} = -\gamma^{\mu}C$$

Defining the antiparticle (CP-conjugate particle)

Conjugate equation and desired antiparticle equation

• Conjugate equation:

$$-(\partial_{\mu}\overline{\psi})(i\gamma^{\mu}) - g\overline{\psi}\gamma^{\mu}A_{\mu} - m\overline{\psi} = 0$$

$$-i\gamma^{\mu}(\partial_{\mu}\overline{\psi})^{T} - g\gamma^{\mu}A_{\mu}\overline{\psi}^{T} - m\overline{\psi}^{T} = 0$$

• Desired equation, $\psi^{C} = C\overline{\psi}^{T}$, with unitary *C*:

$$i\gamma^{\mu}\partial_{\mu}\psi^{C} + g\gamma^{\mu}A_{\mu}\psi^{C} - m\psi^{C} = 0$$
$$i\gamma^{\mu}\partial_{\mu}C\overline{\psi}^{T} + g\gamma^{\mu}A_{\mu}C\overline{\psi}^{T} - mC\overline{\psi}^{T} = 0$$

Matching condition:

$$C\gamma^{\mu T} = -\gamma^{\mu}C$$

Antiparticle spinors

$\psi^{\mathcal{C}}$ and $\overline{\psi^{\mathcal{C}}}$

$$\begin{aligned} \psi^{\mathcal{C}} &= \mathcal{C}\overline{\psi}^{\mathcal{T}} = \mathcal{C}\gamma^{0\mathcal{T}}\psi^* = -\gamma^0 \mathcal{C}\psi^* \\ \overline{\psi^{\mathcal{C}}} &= -\psi^{\mathcal{T}}\mathcal{C}^{\dagger} \end{aligned}$$

Useful properties of C

- Unitary: $C^{\dagger}C = I$
- Matching condition: $C\gamma^{\mu}T = -\gamma^{\mu}C$
- $\psi = (\psi^{\mathcal{C}})^{\mathcal{C}} \Rightarrow \mathcal{C}^*\mathcal{C} = -I$
- Antisymmetric: $C^{\dagger} = -C^* \Rightarrow C = -C^{T}$
- C exists: In Dirac basis and chiral basis, $C = i\gamma^2\gamma^0$

・ロト・日本・日本・日本・日本

Antiparticle spinors

$\psi^{\mathcal{C}}$ and $\overline{\psi^{\mathcal{C}}}$

$$\begin{aligned} \psi^{\mathcal{C}} &= \mathcal{C}\overline{\psi}^{\mathcal{T}} = \mathcal{C}\gamma^{0\mathcal{T}}\psi^* = -\gamma^0 \mathcal{C}\psi^* \\ \overline{\psi^{\mathcal{C}}} &= -\psi^{\mathcal{T}}\mathcal{C}^{\dagger} \end{aligned}$$

Useful properties of C

- Unitary: $C^{\dagger}C = I$
- Matching condition: $C\gamma^{\mu T} = -\gamma^{\mu}C$
- $\psi = (\psi^{\mathcal{C}})^{\mathcal{C}} \Rightarrow \mathcal{C}^*\mathcal{C} = -I$
- Antisymmetric: $C^{\dagger} = -C^* \Rightarrow C = -C^{T}$
- C exists: In Dirac basis and chiral basis, $C = i\gamma^2\gamma^0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Particles charged under a gauge symmetry

- Particle satisfies $[\gamma^{\mu}(i\partial_{\mu} gA_{\mu}) m]\psi = 0$
- Antipaticle satisfies $[\gamma^{\mu}(i\partial_{\mu} + gA_{\mu}) m]\psi^{C} = 0$
- Particle \neq Antiparticle unless g = 0 for all gauge groups

Particles charged under a global symmetry

- Particle has charge +q, antiparticle has charge -q
- Particle \neq Antiparticle as long as symmetry is conserved

The special case of u_{R}

- Not charged under $SU(2)_L$ or $U(1)_Y$ (consequently $U(1)_Q$)
- The only relevant symmetry is L (lepton number)

Particles charged under a gauge symmetry

- Particle satisfies $[\gamma^{\mu}(i\partial_{\mu} gA_{\mu}) m]\psi = 0$
- Antipaticle satisfies $[\gamma^{\mu}(i\partial_{\mu} + gA_{\mu}) m]\psi^{C} = 0$
- Particle \neq Antiparticle unless g = 0 for all gauge groups

Particles charged under a global symmetry

- Particle has charge +q, antiparticle has charge -q
- Particle \neq Antiparticle as long as symmetry is conserved

The special case of u_{R}

- Not charged under $SU(2)_L$ or $U(1)_Y$ (consequently $U(1)_Q$)
- The only relevant symmetry is L (lepton number)

Particles charged under a gauge symmetry

- Particle satisfies $[\gamma^{\mu}(i\partial_{\mu} gA_{\mu}) m]\psi = 0$
- Antipaticle satisfies $[\gamma^{\mu}(i\partial_{\mu} + gA_{\mu}) m]\psi^{C} = 0$
- Particle \neq Antiparticle unless g = 0 for all gauge groups

Particles charged under a global symmetry

- Particle has charge +q, antiparticle has charge -q
- Particle \neq Antiparticle as long as symmetry is conserved

The special case of ν_R

- Not charged under $SU(2)_L$ or $U(1)_Y$ (consequently $U(1)_Q$)
- The only relevant symmetry is L (lepton number)

Lepton number conservation

- Accidental symmetry (no fundamental principle forbids it)
- A guiding principle of gauge theories: anything that is not forbidden by a symmetry should be allowed
- Lepton number can (has to) be violated

Not L, but B - I

- Perturbatively, no Feynman diagram that violates L
- Non-perturbatively, baryons ↔ antileptons process possible (sphaleron solution to electroweak field equations: B = L = ¹/₂ Klinkenhamer and Manton, PRD30 (1984) 2212)
- Only *B L* conserved in the Standard Model
- Arguments mentioning *L* violation should, strictly speaking, use *B L* violation.

Lepton number conservation

- Accidental symmetry (no fundamental principle forbids it)
- A guiding principle of gauge theories: anything that is not forbidden by a symmetry should be allowed
- Lepton number can (has to) be violated

Not L, but B - L

- Perturbatively, no Feynman diagram that violates L
- Non-perturbatively,

baryons \leftrightarrow antileptons process possible (sphaleron solution to electroweak field equations: $B = L = \frac{1}{2}$ Klinkenhamer and Manton, PRD30 (1984) 2212)

- Only *B L* conserved in the Standard Model
- Arguments mentioning *L* violation should, strictly speaking, use *B L* violation.

The term $-\frac{1}{2}m_R(\nu_R)^C\nu_R$

- Obeys $SU(2)_L$ and $U(1)_Y$
- Violates lepton (B L) number by 2, allowed

• Majorana mass for neutrinos !

• $\mathcal{L}_M = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + \overline{\nu_R}\nu_R^C) = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + h.c.)$

• $\nu \equiv \nu_R + \nu_R^C$ is its own antiparticle: Majorana particle

(日) (日) (日) (日) (日) (日) (日) (日)

• Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_R \,\overline{\nu} \,\nu$

The term $-\frac{1}{2}m_R(\nu_R)^C\nu_R$

- Obeys $SU(2)_L$ and $U(1)_Y$
- Violates lepton (B L) number by 2, allowed
- Majorana mass for neutrinos !

• $\mathcal{L}_M = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + \overline{\nu_R}\nu_R^C) = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + h.c.)$

• $\nu \equiv \nu_R + \nu_R^C$ is its own antiparticle: Majorana particle

(日) (日) (日) (日) (日) (日) (日) (日)

• Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_R \,\overline{\nu} \,\nu$

The term $-\frac{1}{2}m_R(\nu_R)^C\nu_R$

- Obeys $SU(2)_L$ and $U(1)_Y$
- Violates lepton (B L) number by 2, allowed
- Majorana mass for neutrinos !

 $\rightarrow N = \nu_R + \nu_R$

• $\mathcal{L}_M = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + \overline{\nu_R}\nu_R^C) = -\frac{1}{2}m_R(\overline{\nu_R^C}\nu_R + h.c.)$

• $\nu \equiv \nu_R + \nu_R^C$ is its own antiparticle: Majorana particle • Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_R \ \overline{\nu} \ \nu$

(日) (日) (日) (日) (日) (日) (日) (日)

Factor of 1/2

$$\mathcal{L} = \frac{1}{2} (\overline{\nu_R} i \gamma^{\mu} \partial_{\mu} \nu_R + \overline{\nu_R^C} i \gamma^{\mu} \partial_{\mu} \nu_R^C) - \frac{1}{2} m_R (\overline{\nu_R^C} \nu_R + h.c.)$$
$$= \frac{1}{2} \overline{\nu} (i \gamma^{\mu} \partial_{\mu} - m_R) \nu$$

Another way of writing the mass term

 $-m_R \ \overline{\nu_R^C} \
u_R = +m_R \
u_R^T \ C^\dagger \
u_R$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Factor of 1/2

$$\mathcal{L} = \frac{1}{2} (\overline{\nu_R} i \gamma^{\mu} \partial_{\mu} \nu_R + \overline{\nu_R^C} i \gamma^{\mu} \partial_{\mu} \nu_R^C) - \frac{1}{2} m_R (\overline{\nu_R^C} \nu_R + h.c.)$$
$$= \frac{1}{2} \overline{\nu} (i \gamma^{\mu} \partial_{\mu} - m_R) \nu$$

Another way of writing the mass term

・・

The term $-m_L(\overline{\nu_L})^C \nu_L$

- Violates lepton (B L) number by 2, allowed
- Does not obey $SU(2)_L$ and $U(1)_Y$, but obeys $U(1)_Q$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB !
- $\mathcal{L}_M = -\frac{1}{2}m_L(\overline{\nu_L^C}\nu_L + \overline{\nu_L}\nu_L^C) = -\frac{1}{2}m_L(\overline{\nu_L}\nu_L^C + h.c.)$
- $\nu \equiv \nu_L + \nu_L^C$ is its own antiparticle: Majorana neutrino

(日) (日) (日) (日) (日) (日) (日)

• Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_L \,\overline{\nu} \,\nu$

The term $-m_L(\overline{\nu_L})^C \nu_L$

- Violates lepton (B L) number by 2, allowed
- Does not obey $SU(2)_L$ and $U(1)_Y$, but obeys $U(1)_Q$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB !
- $\mathcal{L}_M = -\frac{1}{2}m_L(\overline{\nu_L^C}\nu_L + \overline{\nu_L}\nu_L^C) = -\frac{1}{2}m_L(\overline{\nu_L}\nu_L^C + h.c.)$
- $\nu \equiv \nu_L + \nu_L^C$ is its own antiparticle: Majorana neutrino

(日) (日) (日) (日) (日) (日) (日) (日)

• Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_L \,\overline{\nu} \,\nu$

The term $-m_L(\overline{\nu_L})^C \nu_L$

- Violates lepton (B L) number by 2, allowed
- Does not obey $SU(2)_L$ and $U(1)_Y$, but obeys $U(1)_Q$
- Allowed only after EWSB
- Effective Majorana mass for neutrinos after EWSB !
- $\mathcal{L}_M = -\frac{1}{2}m_L(\overline{\nu_L^C}\nu_L + \overline{\nu_L}\nu_L^C) = -\frac{1}{2}m_L(\overline{\nu_L}\nu_L^C + h.c.)$
- $\nu \equiv \nu_L + \nu_L^C$ is its own antiparticle: Majorana neutrino

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Majorana mass term $\mathcal{L}_M = -\frac{1}{2}m_L \overline{\nu} \nu$

- $m_D = \frac{\lambda_{\nu} v}{\sum} v \leq 200 \text{ GN}$
- m_R has no restriction: can be as heavy as M_{Planck}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• m_L depends on the theory, normally $m_L \ll v$

Implications of Majorana mass

- Lepton number violating processs: as yet unobserved
- "Forbidden" processes like $\nu_{\mu}N \rightarrow \mu^{+}\ell^{+}\ell^{-}X$, $\mu^{-}e^{+} \rightarrow \mu^{+}e^{-}$ possible at colliders
- New particles like the Majoron predicted for a class of models
- Heavy Majorana neutrinos may play an important role in Baryogenesis

Neutrinoless double beta decay !

(日) (日) (日) (日) (日) (日) (日)

Implications of Majorana mass

- Lepton number violating processs: as yet unobserved
- "Forbidden" processes like $\nu_{\mu}N \rightarrow \mu^{+}\ell^{+}\ell^{-}X$, $\mu^{-}e^{+} \rightarrow \mu^{+}e^{-}$ possible at colliders
- New particles like the Majoron predicted for a class of models
- Heavy Majorana neutrinos may play an important role in Baryogenesis

Neutrinoless double beta decay !

Dirac and Majorana masses for neutrinos

The reaction

$$\begin{array}{c} {}^{A}_{Z}X \rightarrow^{A}_{Z+2}Y + 2e^{-} + 2\bar{\nu}_{e}, \\ \hline \\ 2\nu\beta\beta \end{array} \qquad \qquad \begin{array}{c} {}^{A}_{Z}X \rightarrow^{A}_{Z+2}Y + 2e^{-} \\ \hline \\ 0\nu\beta\beta \end{array} \end{array}$$

・ロト・日本・日本・日本・日本・日本

The spectrum

 $^{A}_{Z}X \rightarrow^{A}_{Z+2}Y + 2e^{-}$

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

The reaction rate

Amplitude:

Decay rate:

 $\Gamma \propto |\langle Y|H|X
angle|^2|m_{etaeta}|^2$

 $m_{etaeta} = \sum_{i=1}^3 m_i U_{e_i}^2$

Sensitivity to Majorana phases

$$|m_{\beta\beta}|^{2} = \left| m_{1}c_{12}^{2}c_{13}^{2}e^{2i\phi_{1}} + m_{2}s_{12}^{2}c_{13}^{2}e^{2i\phi_{2}} + s_{13}^{2}m_{3}e^{-2i\delta} \right|$$

The only conceived experiment with sensitivity to ϕ_i

The reaction rate

Amplitude:

Decay rate:

 $\Gamma\propto |\langle Y|H|X
angle|^2|m_{etaeta}|^2$

$$m_{etaeta} = \sum_{i=1}^3 m_i U_{e_i}^2$$

Sensitivity to Majorana phases

$$\Rightarrow |m_{\beta\beta}|^2 = \left| m_1 c_{12}^2 c_{13}^2 e^{2i\phi_1} + m_2 s_{12}^2 c_{13}^2 e^{2i\phi_2} + s_{13}^2 m_3 e^{-2i\delta} \right|^2$$

The only conceived experiment with sensitivity to ϕ_i

Isotopes, bounds and Future experiments

$T_{1/2}^{2\nu}$	$T_{1/2}^{0\nu}$	Future	Mass	Lab
(10 ¹⁹ y)	(10 ²⁴ y)	Experiment	(kg)	
$(4.4^{+0.6}_{-0.5})$	> 0.0014	CANDLES		ОТО
(150 ± 10)	> 19	GERDA	18-40	LNGS
	$(22.3^{+4.4}_{-3.1})$			
	> 15.7	MAJORANA	60	SUSEL
(9.2 ± 0.7)	> 0.36	SuperNEMO	100	LSM
(2.3 ± 0.2)	> 0.0092			
(0.71 ± 0.04)	> 1.1	MOON		OTO
(2.8 ± 0.2)	> 0.17			
(68 ± 12)	> 2.94	CUORE	204	LNGS
> 81	> 0.12	EXO	160	WIPP
		KAMLAND	200	KAMIOKA
(0.82 ± 0.09)	> 0.0036	SNO+	56	SNOLAB
	$(10^{19}y) \\ (4.4^{+0.6}_{-0.5}) \\ (150 \pm 10) \\ (9.2 \pm 0.7) \\ (2.3 \pm 0.2) \\ (0.71 \pm 0.04) \\ (2.8 \pm 0.2) \\ (68 \pm 12) \\ > 81 \\ (810) \\ > 81 \\ (100) \\ $	$\begin{array}{c cccc} (10^{19} \text{y}) & (10^{24} \text{y}) \\ \hline (4.4^{+0.6}_{-0.5}) &> 0.0014 \\ (150 \pm 10) &> 19 \\ \hline 22.3^{+4.4}_{-3.1} \\ > 15.7 \\ (9.2 \pm 0.7) &> 0.36 \\ (2.3 \pm 0.2) &> 0.0092 \\ (0.71 \pm 0.04) &> 1.1 \\ (2.8 \pm 0.2) &> 0.17 \\ (68 \pm 12) &> 2.94 \\ > 81 &> 0.12 \end{array}$	$\begin{array}{c ccccc} (10^{19} \text{y}) & (10^{24} \text{y}) & \text{Experiment} \\ \hline (4.4^{+0.6}_{-0.5}) &> 0.0014 & \text{CANDLES} \\ (150 \pm 10) &> 19 & \text{GERDA} \\ \hline 22.3^{+4.4}_{-3.1} &> 15.7 & \text{MAJORANA} \\ \hline 9.2 \pm 0.7) &> 0.36 & \text{SuperNEMO} \\ (2.3 \pm 0.2) &> 0.0092 \\ (0.71 \pm 0.04) &> 1.1 & \text{MOON} \\ (2.8 \pm 0.2) &> 0.17 & \\ (68 \pm 12) &> 2.94 & \text{CUORE} \\ &> 81 &> 0.12 & \text{EXO} \\ && \text{KAMLAND} \end{array}$	$\begin{array}{c cccccc} (10^{19} \text{y}) & (10^{24} \text{y}) & \text{Experiment} & (\text{kg}) \\ \hline (4.4^{+0.6}_{-0.5}) &> 0.0014 & \text{CANDLES} \\ (150 \pm 10) &> 19 & \text{GERDA} & 18-40 \\ \hline 22.3^{+4.4}_{-3.1} &> 15.7 & \text{MAJORANA} & 60 \\ \hline 9.2 \pm 0.7) &> 0.36 & \text{SuperNEMO} & 100 \\ \hline (2.3 \pm 0.2) &> 0.0092 \\ \hline (0.71 \pm 0.04) &> 1.1 & \text{MOON} \\ \hline (2.8 \pm 0.2) &> 0.17 \\ \hline (68 \pm 12) &> 2.94 & \text{CUORE} & 204 \\ \hline > 81 &> 0.12 & \text{EXO} & 160 \\ \hline \text{KAMLAND} & 200 \end{array}$

Mod.Phys.Lett.A 21 (2006) 1547

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Analysis not accepted by the collaboration
- Observation not confirmed by other experiments.

Constraining neutrino mass spectrum

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Confirm that neutrinos have Majorana mass
- Measurement of absolute neutrino mass
- Confirmation that B L is not conserved in nature

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・