MINOS Atmospheric Neutrino Oscillation Parameters

0

Mohammed Salim

Outline

Introduction
MINOS Detector Overview
Data Analysis
Results

Introduction

- MINOS (Main Injector Neutrino Oscillation Search) is a long-baseline (735 km) neutrino oscillation experiment.
- MINOS Physics Goals include
- > Precise measurement of θ_{23} and Δm_{32}^2
- > Look for v_e appearance. $P(v_{\mu} \rightarrow v_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{31}^2 L/E)$
- > Compare v, v oscillations Test of CPT violation.

MINOS Experiment

NuMI beam line produced at the Fermilab uses
I20 GeV protons from the Main Injector .

0.9 kton Near detector (ND) of dimension $3.8 \times 4.8 \times 15$ m located 1.04 km from the NuMI target at Fermilab to measure the beam composition and energy spectrum.

5.4 kton Far Detector (FD) of dimension $8 \times 8 \times 30$ m located 735 km away from the target , in the Soudan Mine, Minnesota to search for evidence of oscillations

MINOS Detector

MINOS Near Detector

MINOS Far Detector

Analysis

v_µ Disappearance - Energy Spectrum

V_µ Disappearance Oscillations

The observed survival probability is given by,

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = \frac{FD_{oscillated}}{FD_{unoscillated}}$$

A ν_{μ} of energy E_{ν} (GeV) observed after travelling some distance L (km) from its production point has a probability of being detected as ν_{μ} is given by,

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{4E}\right)$$

Analysis (contd..)

 χ^2 is given by,

$$\chi^{2}\left(\mathcal{G},\Delta m^{2}\right) = \sum_{i} \frac{\left(P_{i}^{obs} - P^{\exp}\left(\mathcal{G},\Delta m^{2}\right)\right)^{2}}{\sigma^{2}_{i}}$$

Where P_i^{obs} is the observed probability and

 P^{exp} probability expected

Now we minimize the standard χ^2

Confidence region contours are calculated by the equation,

$$\chi^2(\mathcal{G},\Delta m^2) = \chi^2_{\min} + \Delta \chi^2$$

$\Delta \chi^2$ for m parameters

CL	m = 1	m = 2	m = 3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

Ref: Particle Data Book

$$\Delta \chi^2$$
 for 68% CL = 2.30 , m =2

$$\Delta \chi^2$$
 for 90% CL = 4.61, m =2

Results

Oscillation Parameters Contour

MINOS Result

Ref: <u>http://www-numi.fnal.gov</u>

 Δm^2 =(2.43±0.11)x10⁻³ and sin²(2 Θ)=1.00±0.05 which gives the best fit to the data, with a χ^2 /dof=90/97

THANKYOU