MINOS Atmospheric Neutrino Oscillation Parameters

Mohammed Salim

Outline

$>$ Introduction
$>$ MINOS Detector Overview
$>$ Data Analysis
$>$ Results

Introduction

- MINOS (Main Injector Neutrino Oscillation Search) is a long-baseline (735 km) neutrino oscillation experiment.
- MINOS Physics Goals include
$>$ Precise measurement of θ_{23} and $\Delta \mathrm{m}^{2}{ }_{32}$
$>$ Look for v_{e} appearance.

$$
\mathrm{P}\left(v_{\mu} \rightarrow v_{\mathrm{e}}\right) \approx \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.27 \Delta \mathrm{~m}_{31}^{2} \mathrm{~L} / \mathrm{E}\right)
$$

$>$ Compare v, \bar{v} oscillations - Test of CPT violation.

MINOS Experiment

\square NuMI beam line produced at the Fermilab uses 120 GeV protons from the Main Injector .
$\square 0.9$ kton Near detector (ND) of dimension $3.8 \times 4.8 \times 15 \mathrm{~m}$ located 1.04 km from the NuMI target at Fermilab to measure the beam composition and energy spectrum.
5.4 kton Far Detector (FD) of dimension $8 \times 8 \times 30 \mathrm{~m}$ located 735 km away from the target, in the Soudan Mine, Minnesota to search for evidence of oscillations

MINOS Detector

MINOS Near Detector

MINOS Far Detector

Analysis

v_{μ} Disappearance - Energy Spectrum

Reconstructed neutrino energy (GeV)

v_{μ} Disappearance Oscillations

The observed survival probability is given by,

$$
P\left(v_{\mu} \rightarrow v_{\mu}\right)=\frac{F D_{\text {oscillated }}}{F D_{\text {unoscillated }}}
$$

A v_{μ} of energy $E_{v}(\mathrm{GeV})$ observed after travelling some distance $L(\mathrm{~km})$ from its production point has a probability of being detected as v_{μ} is given by,

$$
P\left(v_{\mu} \rightarrow v_{\mu}\right) \approx 1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.27 \frac{\Delta m^{2} L}{4 E}\right)
$$

Analysis (contd..)

χ^{2} is given by,
$\chi^{2}\left(\vartheta, \Delta m^{2}\right)=\sum_{i} \frac{\left(P_{i}^{o b s}-P^{\exp }\left(\vartheta, \Delta m^{2}\right)\right)^{2}}{\sigma_{i}^{2}}$
Where $P_{i}^{o b s}$ is the observed probability and
$P^{\text {exp }}$ probability expected

Now we minimize the standard χ^{2}
Confidence region contours are calculated by the equation,

$$
\chi^{2}\left(\vartheta, \Delta m^{2}\right)=\chi_{\min }^{2}+\Delta \chi^{2}
$$

$\Delta \chi^{2}$ for m parameters

$\mathbf{C L}$		$m=1$	$m=2$	$m=3$
	68.27	1.00	2.30	3.53
	90.	2.71	4.61	6.25
	95.	3.84	5.99	7.82
	95.45	4.00	6.18	8.03
	99.	6.63	9.21	11.34
	99.73	9.00	11.83	14.16

Ref: Particle Data Book
$\Delta \chi^{2}$ for $68 \% \mathrm{CL}=2.30, \mathrm{~m}=2$
$\Delta \chi^{2}$ for $90 \% \mathrm{CL}=4.61, \mathrm{~m}=2$

Results

Oscillation Parameters Contour

MINOS Result

Ref: http://www-numi.fnal.gov
$\Delta m^{2}=(2.43 \pm 0.11) \times 10^{-3}$ and $\sin ^{2}(2 \Theta)=1.00 \pm 0.05$ which gives the best fit to the data, with a $x^{2} /$ dof $=90 / 97$

THANKYOU

