Spin Precession Description of Neutrino Oscillations

Maulik Nariya
DHEP (INO)

Outline

- Density matrix formalism
- Use density matrix to describe a neutrino beam
- 2 flavor case $\left(v_{e}-v_{\mu}\right)$
- Evolution of S: analogous to spin precession in magnetic field
- Understanding oscillations with spin precession analogy

Density Matrix Formalism

- Pure Ensemble: a collection of physical states characterized by the same ket $|\alpha\rangle$
- Mixed Ensemble: a fraction of the members with relative population w_{i} are characterized by ket $\left|\alpha^{(i)}\right\rangle$
- The density matrix formalism helps in quantitative description of physical situations with mixed ensembles.
- Populations are constrained by $\sum_{i} w_{i}=1$
- the kets $\left|\alpha^{(i)}\right\rangle$ need not be orthogonal.
- Measurement of some observable A gives the expectation value:

$$
\begin{aligned}
\langle A\rangle & =\sum_{i} w_{i}\left\langle\alpha^{(i)}\right| A\left|\alpha^{(i)}\right\rangle \\
& =\sum_{i} \sum_{m} w_{i}\left|\left\langle m \mid \alpha^{(i)}\right\rangle\right|^{2} m
\end{aligned}
$$

$m\rangle$: Eigen ket of A

- Probabilistic concepts enters twice
- quantum mechanical probability $\left.\left|\left\langle\alpha^{(i)}\right| A\right| \alpha^{(i)}\right\rangle\left.\right|^{2}$
- statistical w_{i} weight for finding $\left|\alpha^{(i)}\right\rangle$ in the ensemble
- We define a density operator as $\rho=\sum_{i} w_{i}\left|\alpha^{(i)}\right\rangle\left\langle\alpha^{(i)}\right|$

Some properties

- Matrix element looks like

$$
\langle m| \rho|n\rangle=\sum_{i} w_{i}\left\langle m \mid \alpha^{(i)}\right\rangle\left\langle\alpha^{(i)} \mid n\right\rangle
$$

- Expectation value of the observable A :

$$
\begin{aligned}
\langle A\rangle & =\sum_{m} \sum_{n}\langle m| \rho|n\rangle\langle n| A|m\rangle \\
& =\operatorname{tr}(\rho A)
\end{aligned}
$$

- ρ is Hermitian.

$$
\begin{aligned}
\operatorname{tr}(\rho) & =\sum_{i} \sum_{m} w_{i}\left\langle m \mid \alpha^{(i)}\right\rangle\left\langle\alpha^{(i)} \mid m\right\rangle \\
& =\sum_{i} w_{i}\left\langle\alpha^{(i)} \mid \alpha^{(i)}\right\rangle=1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{tr}\left(\rho^{2}\right) & =\sum_{i} \sum_{m} \sum_{n} w_{i}^{2}\left\langle m \mid \alpha^{(i)}\right\rangle\left\langle\alpha^{(i)} \mid n\right\rangle\left\langle n \mid \alpha^{(i)}\right\rangle\left\langle\alpha^{(i)} \mid m\right\rangle \\
& =\sum_{i} w_{i}^{2} \\
& =1 \text { for pure ensemble } \\
& <1 \text { for mixed ensemble }
\end{aligned}
$$

- The time evolution of the density matrix is given by

$$
i \hbar \frac{\partial \rho}{\partial t}=[H, \rho]
$$

Use density matrix to describe a v beam

- A neutrino beam can be described by this density matrix operator

$$
\rho(x)=\sum_{\alpha}\left|v_{\alpha}(x)\right\rangle w_{\alpha}\left\langle v_{\alpha}(x)\right|
$$

- Special case of one initial flavor β can be obtained by setting $w_{\alpha}=\delta_{\alpha \beta}$
- Probability of detecting a v_{β} at a distance x is give by

$$
P_{\beta}(x)=\left\langle v_{\beta} \rho(x) v_{\beta}\right\rangle=\rho_{\beta \beta}^{F}(x)
$$

where $\rho^{F}(x)$: density matrix in flavor basis

Evolution of ρ

- Evolution equation of $\rho^{F}(x)$ is given by

$$
i \frac{d \rho^{F}}{d x}=\left[H_{F}, \rho^{F}\right]
$$

- Recall $U_{M}^{+} H_{F} U_{M}=H_{M}=\left(\begin{array}{cc}-\Delta m_{M}^{2} & 0 \\ 0 & \Delta m_{M}^{2}\end{array}\right)$
U_{M} : the effective mixing matrix in matter
- The density matrix in effective mass basis in matter is

$$
\rho^{M}=U_{M}^{+} \rho^{F} U_{M}
$$

- The evolution equation of ρ^{M} is

$$
i \frac{d \rho^{M}}{d x}=\left[H_{M}, \rho^{M}\right]-i\left[U_{M}^{+} \frac{d U_{M}}{d x}, \rho^{M}\right]
$$

- For adiabatic case second term is negligible and can be ignored

$$
i \frac{d \rho_{k j}^{M}}{d x}=\left[\left(H_{M}\right)_{k k}-\left(H_{M}\right)_{j j}\right] \rho_{k j}^{M}
$$

- The diagonal elements of ρ^{M} remain constant and for $k \neq j$

$$
\rho_{k j}^{M}(x)=\rho_{k j}^{M}(0)\left(-i \int_{0}^{x}\left[\left(H\left(x^{\prime}\right)\right)_{k k}-\left(H\left(x^{\prime}\right)\right)_{j j}\right] d x^{\prime}\right)
$$

2 flavor case $\left(v_{e}-v_{\mu}\right)$

- A hermitian matrix X can be decomposed in terms of Pauli Spin matrices as

$$
X=\frac{I}{2}\left[\operatorname{Tr}(X)+\sum_{k} \operatorname{Tr}\left(X \sigma^{k}\right) \sigma^{k}\right]
$$

- Both H_{F} and ρ^{F} are Hermitian. $\operatorname{Tr}\left(\mathrm{H}_{\mathrm{F}}\right)=0, \operatorname{Tr}\left(\rho^{F}\right)=1$.

$$
\Rightarrow H_{F}=-\frac{1}{2} \bar{\sigma} \cdot \bar{B}, \quad \rho^{F}=\frac{1}{2}(I+\bar{\sigma} \cdot \bar{S})
$$

with the vectors,

$$
\begin{aligned}
& \bar{\sigma}=\sigma_{x} \hat{x}+\sigma_{y} \hat{y}+\sigma_{z} \hat{z} \\
& \bar{B}=B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z} \\
& \bar{S}=S_{x} \hat{x}+S_{y} \hat{y}+S_{z} \hat{z}
\end{aligned}
$$

- Components of \mathbf{B} and \mathbf{S} in flavor basis are:
- From the initial conditions for the density matrix, we have

$$
S_{x}(0)=0, \quad S_{y}(0)=0, \quad S_{z}(0)=w_{e}-w_{\mu}
$$

- The probabilities of detection of a v_{e} or a v_{μ} at a distance x is

$$
\begin{aligned}
& P_{e}(x)=\rho_{e e}^{F}(x)=\frac{1}{2}\left(1+S_{z}\right)=\frac{1}{2}(1+\bar{S} \cdot \hat{z}) \\
& P_{\mu}(x)=\rho_{\mu \mu}^{F}(x)=\frac{1}{2}\left(1-S_{z}\right)=\frac{1}{2}(1-\bar{S} \cdot \hat{z})
\end{aligned}
$$

Evolution of the vector \mathbf{S}

- The evolution equation of the vector S is

$$
\frac{d \bar{S}}{d x}=\bar{S} \times \bar{B}
$$

- Analogous to magnetic moment (with $g=1$), precessing around a magnetic field. The precession frequency is given by

$$
\omega=-\bar{B} \left\lvert\,=-\frac{\Delta m_{M}^{2}}{2 E}\right.
$$

- Angle between \mathbf{S} and \mathbf{B}

$$
\frac{\bar{S}(0) \cdot \bar{B}}{|\bar{S}(0)| \bar{B} \mid}=\cos 2 \vartheta_{M}
$$

- Precession becomes clear by rotating the reference frame by $2 \theta_{M}$ in 1-3 plane

$$
\begin{aligned}
& \hat{x}^{\prime}=\cos 2 \vartheta_{M} \hat{x}+\sin 2 \vartheta_{M} \hat{z} \\
& \hat{y}^{\prime}=\hat{y} \\
& \hat{z}^{\prime}=-\sin 2 \vartheta_{M} \hat{x}+\cos 2 \vartheta_{M} \hat{z}
\end{aligned}
$$

In this rotated frame \mathbf{B} lies along z^{\prime}

$$
\begin{aligned}
& B_{x}^{\prime}=\cos 2 \vartheta_{M} B_{x}+\sin 2 \vartheta_{M} B_{z}=0 \\
& B_{y}^{\prime}=B_{y}=0 \\
& B_{z}^{\prime}=-\sin 2 \vartheta_{M} B_{x}+\cos 2 \vartheta_{M} B_{z}=\Delta m_{M}^{2} / 2 E
\end{aligned}
$$

Fig(1):Precession of S around B with constant matter density $N e<N_{e}{ }^{R}$ in case of pure an intially pure v_{e} beam

- The evolution equation of \mathbf{S} thus becomes

$$
\begin{gathered}
\frac{d S_{x}^{\prime}}{d x}=-\omega S_{y}, \quad \frac{d S_{y}^{\prime}}{d x}=\omega S_{x} \quad, \quad \frac{d S_{z}^{\prime}}{d x}=0 \\
\frac{d^{2} S_{x, y}^{\prime}}{d x^{2}}=\omega^{2} S_{x, y}^{\prime}=0
\end{gathered}
$$

- Using the initial conditions on \mathbf{S}, the solution is

$$
\begin{aligned}
& S_{x}^{\prime}(x)=\sin 2 \vartheta_{M}\left(w_{e}-w_{\mu}\right) \cos (\omega x) \\
& S_{y}^{\prime}(x)=\sin 2 \vartheta_{M}\left(w_{e}-w_{\mu}\right) \sin (\omega x) \\
& S_{z}^{\prime}(x)=\cos 2 \vartheta_{M}\left(w_{e}-w_{\mu}\right)
\end{aligned}
$$

- The third component of the \mathbf{S} in flavor basis becomes

$$
S_{z}(x)=\sin 2 \vartheta_{M} S_{x}^{\prime}(x)+\cos 2 \vartheta_{M} S_{z}^{\prime}(x)=\left(w_{e}-w_{\mu}\right)\left[1-2 \sin ^{2} 2 \vartheta_{M} \sin ^{2}\left(\frac{\omega x}{2}\right)\right]
$$

- The probabilities of detecting v_{e} and v_{μ} are

$$
\begin{aligned}
& P_{e}(x)=\frac{1}{2}+\left(w_{e}-w_{\mu}\right)\left[\frac{1}{2}-\sin ^{2} 2 \vartheta_{M} \sin ^{2}\left(\frac{\omega x}{2}\right)\right] \\
& P_{\mu}(x)=\frac{1}{2}+\left(w_{\mu}-w_{e}\right)\left[\frac{1}{2}-\sin ^{2} 2 \vartheta_{M} \sin ^{2}\left(\frac{\omega x}{2}\right)\right]
\end{aligned}
$$

Solar case (variable matter density)

- Initially pure v_{e} beam
- Very large matter density $\left(N_{e} \gg N_{e}{ }^{R}\right)$
$\rightarrow \theta_{\mathrm{M}} \approx \pi / 2$
- v_{e} almost coincides with $v_{2}{ }^{M}$
- S describes the surface on a narrow cone around the negative z^{\prime} axis
- When the v passes through the resonance, B_{x} (and hence \mathbf{B}) changes its value.
- If the resonance region is crossed adiabatically, the speed of rotation of \mathbf{S} around \mathbf{B} is much faster than the change in B.
- The cone swept by \mathbf{S} is dragged by \mathbf{B} and is finally rotated upside-down.
- Thus for small θ, the probability of $v_{e} \rightarrow v_{\mu}$ conversion is large

References

- C. Giunti and C. W. Kim , Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, Oxford, 2007, pp.329-326
- C. W. Kim, J. Kim, and W. K. Sze, Geometrical interpretations of neutrino oscillations in vacuum and matter, Phys. Rev. D37 (1988)
- Basudeb Dasgupta and Amol Dighe, Collective three-flavor oscillation of supernova neutrinos, Phy. Rev. D77, 113002(2008)

Thank You

