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Outline

 Density matrix formalism

 Use density matrix to describe a neutrino beam

 2 flavor case (νe-νμ)

 Evolution of S: analogous  to spin precession in magnetic field

 Understanding oscillations with spin precession analogy
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Density Matrix Formalism
 Pure Ensemble: a collection of physical states characterized by 

the same ket

 Mixed Ensemble: a fraction of the members with relative 

population wi are characterized by ket 

 The density matrix formalism helps in quantitative description 

of physical situations with mixed ensembles.

 Populations are constrained by 

 the kets          need not be orthogonal.
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 Measurement of some observable A gives the expectation 

value:

 Probabilistic concepts enters twice

- quantum mechanical probability  

- statistical wi weight  for finding          in the ensemble

 We define a density operator as 
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Some properties
 Matrix element looks like

 Expectation value of the observable A:

 is Hermitian.
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 The time evolution of the density matrix is given by
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Use density matrix to describe a ν beam
 A neutrino beam can be described by this density matrix 

operator

 Special case of one initial flavor β can be obtained by 

setting wα=δαβ

 Probability of detecting a  νβ at a distance x is give by

where ρF(x): density matrix in  flavor basis
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Evolution of ρ
 Evolution equation of ρF(x) is given by

 Recall

UM: the effective mixing matrix in matter

 The density matrix in effective mass basis in matter is
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 The evolution equation of ρM is

 For adiabatic case second term is negligible and can be ignored

 The diagonal elements of ρM remain constant and for k≠j
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2 flavor case (νe-νμ)
 A hermitian matrix X can be decomposed in terms of Pauli Spin 

matrices as

 Both HF and ρF are Hermitian. Tr(HF )=0, Tr(ρF )=1.
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 Components of B and S in flavor basis are:

 From the initial conditions for the density matrix, we have

 The probabilities of detection of a νe or a νμ at a distance x is
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Evolution of the vector S

 The evolution equation of the vector S is

 Analogous to magnetic moment (with g=1), precessing around 

a magnetic field. The precession frequency is given by 
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 Angle between S and B

 Precession becomes clear  by rotating the reference frame by 2θM

in 1-3 plane
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In this rotated frame B lies along zʹ
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 The evolution equation of S thus becomes

 Using the initial conditions  on S, the solution is
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 The third component of the S in flavor basis becomes

 The probabilities of detecting   νe and  νμ are
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Solar case (variable matter density)
 Initially pure νe beam

 Very large matter density (Ne>>Ne
R)

θM ≈ π/2

 νe  almost coincides with ν2
M

 S describes the surface on a narrow

cone around the negative zʹ axis

 When the ν passes through the resonance, Bx (and hence B) 

changes its value.
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 If the resonance region is crossed adiabatically, the speed of 

rotation of S around B is much faster than the change in B.

 The cone swept by S is dragged by B and is finally rotated 

upside-down.

 Thus for small θ, the probability of νeνμ conversion is large 
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Thank You
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