Polarization analogy in two flavours

$2-v$ flavors : Formalism

- Expand all matrices in terms of Pauli matrices as

$$
X=\frac{I}{2}+\frac{1}{2} \sum_{i=1,2,3} \mathrm{X}_{i} \sigma_{i}
$$

- The following vectors result from the matrices

$$
\begin{aligned}
\rho_{\mathrm{p}} & \Leftrightarrow \mathbf{P}_{\omega} \\
H_{\mathrm{p}}^{0} & \Leftrightarrow \omega \mathbf{B} \\
V & \Leftrightarrow \sqrt{2} G_{F} N_{e} \mathbf{L} \equiv \lambda \mathbf{L} \\
H_{\mathrm{p}}^{\nu \nu} & \Leftrightarrow \sqrt{2} G_{F}(n+\bar{n}) \int d \omega f(\omega) \mathbf{P}_{\omega} \operatorname{sgn}(\omega) \equiv \mu \mathbf{D}
\end{aligned}
$$

- EOM resembles spin precession

$$
\frac{d}{d r} \mathbf{P}_{\omega}=(h \omega \mathbf{B}+\lambda \mathbf{L}+\mu \mathbf{D}) \times \mathbf{P}_{\omega} \equiv \mathbf{H}_{\omega} \times \mathbf{P}_{\omega}
$$

Precession of the polarization vector

- Density matrix $\rho=P_{0} / 2+\vec{P} \cdot \vec{\sigma}$
- Half-angle of precession $=\theta=$ mixing angle
- Different energies: same cone, different precession speeds

Precession picture of MSW resonance

