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India-based Neutrino Observatory: INO

A proposed underground facility at PUSHEP in the
Nilagiri Mountains in the Southern part of India, about
240 Km south of Bangalore.

A cavern of dimensions 150m × 22 m × 30m will be
constructed at the end of a 2.1 km long tunnel.

At least 1 km of rock overburden in all directions (similar
to Gran Sasso).

INO will house 50 kiloton Iron CALorimeter (ICAL)
capable of detecting atmospheric νµ/ν̄µ interactions.

May also host some smaller experiments (such as
neutrinoless double beta decay searches) which require
low cosmic ray background environments.
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Location of PUSHEP

⇐
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A view of PUSHEP

PUSHEP in the Nilagiris, near Ooty (Masinagudi)
Indian Institute of Astrophysics, July 11, 2006 – p. 15
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Underground CavernUnderground Cavern

Layout of the Underground Cavern

Size of the experimental hall
150 m X 22 m X 30 m

Access tunnel

Experimental Hall

Parking & Storage

Electronics

Experimental Hall
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Magnetized Iron Calorimeter: ICAL

Total mass of 50 kilotons.

6 cm thick iron plates interspersed with 2.5 cm gaps,
which house Glass Resistive Plate Chambers (RPCs).

140 layers of iron plates and RPCs.

Three modules, each of the size 16m × 16 m × 12m.

The cavern envisaged is big enough to accommodate
one more replica of the above detector so that, if
needed, a 100 Kton mass detector can be constructed.

Magnetic field (1.3 T) allows determination of muon
charge so that νµ and ν̄µ can be studied separately.

Similar to the earlier Monolith proposal.
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INO Detector ConceptINO Detector Concept
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Two possible magnet designs
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Resistive Plate Chamber: RPC

A pair of 2mm thick glass plates of area 2m × 2m
separated by 2mm spacer.

Operated at a high voltage of about 9.5 KV in streamer
mode.
Close to 90% efficiency, time resolution of 1 ns.

Pick-up strips, 3 cm wide, above and below each RPC
for the determination of x and y coordinates of the
passage of charged particle

The z coordinate is provided by the location of RPC
itself.
Good reconstruction of energy and direction of charged
particles.
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Construction of RPCConstruction of RPC

Pickup strips

Two 2 mm thick float Glass
Separated by 2 mm spacer2 mm thick spacer

Glass plates

Resistive coating on the outer surfaces of glass

Total number of RPC units: 27000
Number of electronic readout channels: 3.6 million
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Physics Motivations

Reconfirm the first oscillation dip as a function of L/E in
atmospheric neutrinos (to a greater significance level)

Measure |∆31| and sin2 2θ23 precisely

Determine neutrino mass hierarchy (normal/inverted)

Resolve the θ23 octant ambiguity

Distinguish between νµ ↔ ντ and νµ ↔ νs

Search for CPT violation

All results are generated assuming 15% resolution in L as
well as E, unless specified otherwise.
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L/E distribution of muon events
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Up/Down ratio of muon events
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Precision for |∆31| and sin
2 θ23

Experiment ∆31 sin2 θ23

Current data 88% 79%
MINOS + CNGS 26% 78%
T2K (SK, 0.75 MW, 5 years) 12% 46%
NOνA (30 Kton, 0.6 MW, 5 years) 25% 86%
ICAL (50 Kton, atm ν, 5 years) 20% 60%

Input values: |∆31| = 0.002 eV2 and θ23 = π/4.

Table adapted from P. Huber et al., hep-ph/0412133, with the
information of ICAL added.
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The relative error on |∆31| and sin
2 θ23
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Mass hierarchy (normal/inverted)

At resonance energies and long pathlengths, matter
effects modify νµ survival probability significantly.

R. Gandhi et al., PRL 94, 051801 (2005)

PRD 73, 053001 (2006)
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Up-down ratios for ν and ν̄

The difference in the up/down ratio for νµ and ν̄µ:
A ≡ U/D − Ū/D̄ as a function of L/E
is very sensitive to the sign of ∆31.

R: energy/time resolu-
tion included
blue: normal hierarchy
red: inverted hierarchy
D. Indumathi and M.V.N. Murthy,

PRD 71, 013001 (2005)

INO Project Report,

May 2006

Higher Emin ⇒ more asymmetry but less events
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∆A ≡ Anorm −Ainv

Exposure (kt-years) θ13 ∆A Significance

480 7◦ 0.167 ± 0.230 0.7σ, 51.6%

1120 7◦ 0.167 ± 0.151 1.1σ, 72.9%

480 11◦ 0.415 ± 0.230 1.8σ, 92.8%

1120 11◦ 0.415 ± 0.150 2.8σ, 99.6%

480 7◦ 0.232 ± 0.220 1.1σ, 72.9%

1120 7◦ 0.232 ± 0.144 1.6σ, 89.0%

480 11◦ 0.565 ± 0.220 2.6σ, 99.1%

1120 11◦ 0.565 ± 0.144 3.9σ, 99.99%

E and L resolutions of 15% (upper) and 10% (lower).

Exposure time 480 kt-year −→ 1120 kt-year
has the same effect as resolution 15% −→ 10%

Importance of L and E resolution highlighted in
S. Petcov and T. Schwetz, NPB 740, 1 (2006)
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Octant ambiguity of θ23

(Is θ23 greater or less than π/4 ?)

One of the matter dependent terms in Pµµ goes as

sin4 θ23 . By appropriate cuts on E and L this term can
be isolated and to determine if θ23 is greater or less
than π/4.

S. Choubey and P. Roy, PRD 73, 013006 (2006)

D. Indumathi et al., hep-ph/0603032

At present |D ≡ 0.5 − sin2 θ23| is constrained to be about
0.16 at 3σ. If sin2 θ13 = 0.02 then 1000 kt-year exposure
can:

measure a non-zero value for |D| > 0.09 at 3σ.
Determine the sign of D for |D| > 0.1 at 3σ
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Pµµ as a function of θ23
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Distinguishing νµ ↔ ντ from νµ ↔ νs

Muonless events are produced by DIS neutral current
(NC) interactions of all active neutrino flavours

ντ CC events (above 4 GeV) produce a τ , whose
decays are muonless 80% of the time

νµ → ντ oscillations produce an excess of upward going
muonless events.
νµ → νs oscillations produce a deficit of upward going
NC events
Possible to determine directly (rather than by global fits)
what fraction of νµ are oscillating into sterile neutrinos.

D. Choudhury and A. Datta, hep-ph/0606100

MINOS is also capable of doing this
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Up-down asymmetry for muonless events
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CPT violation

Charge determination ⇒
both Pµµ and Pµ̄µ̄ measurable independently.

Possibility of searching for CPT violation.

CPT violation Parametrized as: LCPT = ν̄α
Lbµ

αβγµνβ
L

V. Barger et al., PRL 85, 5055 (2000)

Energy operator becomes H = m2/2E + b0

Measurable CPT violating parameter: δb, the difference
in the eigenvalues of the b0 matrix

A. Datta et al, Phys. Lett. B 597, 356 (2004).
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Sensitivity to CPT violation
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Determination of δb
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Concluding Remarks

A detector with good L and E resolution can exploit the
wide L and E range of the atmospheric neutrinos

The basic design for a 50 kt magnetized Iron
Calorimeter (ICAL) is finalized.

A site (PUSHEP) to house the detector is identified

The INO Project Report finalized in May 2006 and is
under review currently

Feasibility studies and optimization in progress, lots of
things to be done

ICAL can be the end detector for neutrinos from muon
storage rings: distance from JPARC/CERN ∼ 7000 km
(magic baseline)

We welcome more International participation
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ICAL can be the end detector for neutrinos from muon
storage rings: distance from JPARC/CERN ∼ 7000 km
(magic baseline)

We welcome more International participation
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That’s all, folks !

http://www.imsc.res.in/∼ino
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Extra slides
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Pµµ in vacuum and matter

Muon neutrino survival probability in vacuum:

Pµµ(vac) = 1 − sin2 2θ23 cos2 θ13 sin2 (1.27∆31L/E)

−sin4 θ23 sin2 2θ13 sin2 (1.27∆31L/E)

Muon neutrino survival probability in matter:

Pµµ(mat) = 1 − sin2 2θ23 cos2 θm
13 sin2 [1.27(∆31 + A + ∆m

31)L/2E]

−sin2 2θ23 sin2 θm
13 sin2 [1.27(∆31 + A − ∆m

31)L/2E]

−sin4 θ23 sin2 2θm
13 sin2 (1.27∆m

31L/E)

A = 2
√

2GFNeE

⇐
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Pµµ for both hierarchies, L = 9700 km
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Pµµ vs. θ23 for L = 9700 km
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CPT violation: a comment

If we parametrize CPT violation as
∆ = ∆GUT + ∆CPT and ∆ = ∆GUT − ∆CPT,
INO is sensitive to ∆CPT/∆GUT ∼ 1%
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