CP violation and the third generation of quarks Nobel Prize in Physics, 2008

Amol Dighe Department of Theoretical Physics, TIFR

Makato Kobayashi

Toshihide Maskawa ... for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature

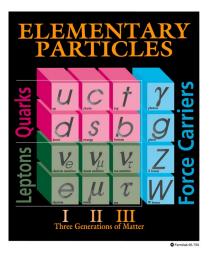
> TIFR Colloquium, Nov 20, 2008 (ロ・・(理・・(ヨ・・(ヨ・・)の)の)

Contents

Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)

2 The insight of Kobayashi and Maskawa


- Prog. Theo. Phys. 49, 652 (1973)
- In modern language: the CKM paradigm

3 Testing the Kobayashi-Maskawa predictions

- The third generation
- CP violation through the CKM mechanism

Standard model of particle physics: 2008

 Three families of quarks and leptons

 quarks: up charmed top down strange bottom

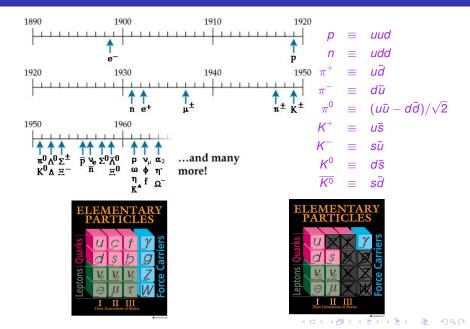
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Mixing between families

Outline

Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)


The insight of Kobayashi and Maskawa Prog. Theo. Phys. 49, 652 (1973) In modern language: the CKM paradigm

- Testing the Kobayashi-Maskawa predictions
 The third generation
 - CP violation through the CKM mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

4 Concluding remarks

Known particles in 1972

Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:

- (i) muon decay: $g_{e\mu}$ $\mu^- \rightarrow \nu_\mu e^- \bar{\nu}_e$
- (ii) neutron decay : g_{ud} $n \rightarrow pe^- \bar{\nu}_e (d \rightarrow ue^- \bar{\nu}_e)$
- (ii) kaon decay: g_{us} $K^- \rightarrow \pi^0 e^- \bar{\nu}_e (s \rightarrow u e^- \bar{\nu}_e)$

 $|g_{eu}|^2 = |g_{ud}|^2 + |g_{us}|^2$

Universality:

- There is only one coupling constant, $g = g_{e\mu}$
- *u* quark couples to only one combination of *d* and *s*: $d' \equiv \cos \theta_c \cdot d + \sin \theta_c \cdot s$
- Cabibbo angle θ_c : the first quark mixing angle

N. Cabibbo, "Unitary Symmetry and Leptonic Decays," Phys. Rev. Lett. **10**, 531 (1963)

Suppression of flavor-changing neutral currents

• Cabibbo angle unable to explain why

 $\Gamma(K_L o \mu^+ \mu^-) << \Gamma(K^+ o \mu^+
u_\mu)$

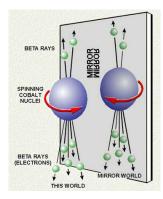
 Possible explanation via another "c" quark: charge +2/3, couples to

 $s' \equiv -\sin heta_c \cdot d + \cos heta_c \cdot s$

- The s → u → d and s → c → d contribution cancel, leading to the suppression of FCNC s → d
- GIM mechanism: existence of the "charmed" quark.

S. L. Glashow, J. Iliopoulos and L. Maiani, "Weak Interactions with Lepton-Hadron Symmetry," Phys. Rev. D **2**, 1285 (1970)

Outline

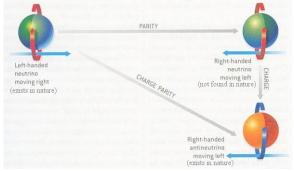

Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)
- The insight of Kobayashi and Maskawa
 Prog. Theo. Phys. 49, 652 (1973)
 In modern language: the CKM paradigm
- Testing the Kobayashi-Maskawa predictions
 The third generation
 - CP violation through the CKM mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

4 Concluding remarks

Discovery of parity violation: 1956-57



- Mirror world does not behave the same as the real world
- Theoretical possibility: T.D.Lee and C.N.Yang, Phys. Rev. **104**, 254 (1956)
- Experiments: 1957
 - Wu (⁶⁰Co)
 - Friedman-Telegdi $(\pi^+ \rightarrow \mu^+ \rightarrow e^+)$
- Nobel prize 1957: Lee-Yang

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Can Charge \oplus Parity may be conserved ?

Parity: left landed \leftrightarrow right handed

- Neutrinos violate parity: they are only left-handed
- But antineutrinos are right-handed !
- Does that mean C and P violations cancel each other to give CP conservation ?

(日) (字) (日) (日) (日)

Prediction of CP violation in K decay

$$K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{d}$$

• CP even decay channel: $\pi\pi$

• CP odd decay channel: $\pi\pi\pi$

• CP conservation \Rightarrow

 $egin{array}{l} K_1
ightarrow \pi\pi ext{ short-lived, } K_{ ext{Short}} \ K_2
ightarrow \pi\pi\pi ext{ long-lived, } K_{ ext{Long}} \end{array}$

• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

・ロト・日本・ キャー 中 うえぐ

Prediction of CP violation in K decay

$$K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{d}$$

• CP eigenstates: $K_1 \equiv (K^0 + \overline{K})/\sqrt{2}$ (CP even) $K_2 \equiv (K^0 - \overline{K})/\sqrt{2}$ (CP odd)

- CP even decay channel: $\pi\pi$
- CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi\pi$ short-lived, K_{Short} $K_2 \rightarrow \pi\pi\pi$ long-lived, K_{Long}

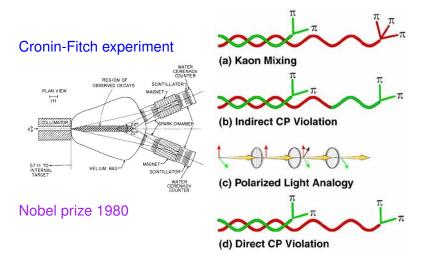
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

Prediction of CP violation in K decay

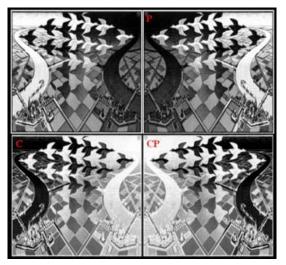
$$K^0 \equiv dar{s} \qquad \overline{K^0} \equiv sar{d}$$

• CP eigenstates: $K_1 \equiv (K^0 + \overline{K})/\sqrt{2}$ (CP even) $K_2 \equiv (K^0 - \overline{K})/\sqrt{2}$ (CP odd)


- CP even decay channel: $\pi\pi$
- CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi\pi$ short-lived, K_{Short} $K_2 \rightarrow \pi\pi\pi$ long-lived, K_{Long}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○


• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

Discovery of CP violation: 1964

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ ∽のへで

Charge-parity violated slightly

"Day and Night", M.C.Escher

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Questions raised by the discovery of CP violation

- Is it small or large ? Is CP an approximate symmetry ?
- Is the symmetry breaking spontaneous ?
- Where does it come from ? Are there extra interactions ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

1) Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)

The insight of Kobayashi and Maskawa Prog. Theo. Phys. 49, 652 (1973)

In modern language: the CKM paradigm

Testing the Kobayashi-Maskawa predictions The third generation

CP violation through the CKM mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

4 Concluding remarks

The paper and the authors

652

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- Consider various ways of putting (u_L, d_L, c_L, s_L) and (u_R, d_R, c_R, s_R) as doublets or singlets of $SU(2)_{weak}$ (4 = 2+2, 4=2+1+1 or 4 = 1+1+1+1 ?)
- Experimental data \Rightarrow
 - (u_L, d_L) have to form a doublet: isospin symmetry
 - (c_L, s_L) must also form a doublet: FCNC suppression

(日) (日) (日) (日) (日) (日) (日)

• Now, how can one get CP violation ?

CP violation and complex coupling

- CP violation: $A(X \rightarrow Y) \neq A(\overline{X} \rightarrow \overline{Y})$
- If all amplitudes are real, $|A(X \to Y)|^2 = |A(\overline{X} \to \overline{Y})|^2$
- CP violation possible if complex numbers involved in

$$\begin{aligned} |A(X \to Y)|^2 &= |A(X \to w \to Y) + A(X \to z \to Y)|^2 \\ |A(\overline{X} \to \overline{Y})|^2 &= |A(\overline{X} \to \overline{w} \to \overline{Y}) + A(\overline{X} \to \overline{z} \to \overline{Y})|^2 \end{aligned}$$

CP violation ⇒ Amplitudes complex ⇒ Couplings complex

Two generations of quarks are not enough

 The mixing matrix between up-type and down-type quarks has to be a 2 × 2 unitary matrix

 $\mathcal{L} \propto (\overline{u_L}, \overline{c_L}) \left(egin{array}{c} \cos heta e^{i\phi_1} & \sin heta e^{i\phi_2} \\ -\sin heta e^{i\phi_3} & \cos heta e^{i(\phi_2 + \phi_3 - \phi_1)} \end{array}
ight) \left(egin{array}{c} d_L \\ s_L \end{array}
ight)$

• Can change three relative phases of quarks to get rid of all three complex phases ϕ_1, ϕ_2, ϕ_3 $\mathcal{L} \propto (\overline{u_L}, \overline{c_L} e^{i(\phi_3 - \phi_1)}) \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} d_L e^{i\phi_1} \\ s_L e^{i\phi_2} \end{pmatrix}$

(日) (日) (日) (日) (日) (日) (日) (日)

• Mixing matrix real \Rightarrow no CP violation

Two generations of quarks are not enough

 The mixing matrix between up-type and down-type quarks has to be a 2 × 2 unitary matrix

 $\mathcal{L} \propto (\overline{u_L}, \overline{c_L}) \left(\begin{array}{c} \cos \theta e^{i\phi_1} & \sin \theta e^{i\phi_2} \\ -\sin \theta e^{i\phi_3} & \cos \theta e^{i(\phi_2 + \phi_3 - \phi_1)} \end{array} \right) \left(\begin{array}{c} d_L \\ s_L \end{array} \right)$

• Can change three relative phases of quarks to get rid of all three complex phases ϕ_1, ϕ_2, ϕ_3 $\mathcal{L} \propto (\overline{u_L}, \overline{c_L} e^{i(\phi_3 - \phi_1)}) \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} d_L e^{i\phi_1} \\ s_L e^{i\phi_2} \end{pmatrix}$

• Mixing matrix real \Rightarrow no CP violation

Paremeter counting for two generations

• 2×2 complex matrix \Rightarrow 4 real + 4 imaginary quantities

- Unitarity $U^{\dagger}U = I$: 3 real and 1 imaginary conditions
- 1 real and 3 imaginary parameters left
- Can choose the 3 relative phases between quarks to get rid of the 3 imaginary parameters

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The mixing matrix is completely real

Paremeter counting for two generations

- 2×2 complex matrix \Rightarrow 4 real + 4 imaginary quantities
- Unitarity $U^{\dagger}U = I$: 3 real and 1 imaginary conditions
- 1 real and 3 imaginary parameters left
- Can choose the 3 relative phases between quarks to get rid of the 3 imaginary parameters

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The mixing matrix is completely real

Paremeter counting for two generations

- 2×2 complex matrix \Rightarrow 4 real + 4 imaginary quantities
- Unitarity $U^{\dagger}U = I$: 3 real and 1 imaginary conditions
- 1 real and 3 imaginary parameters left
- Can choose the 3 relative phases between quarks to get rid of the 3 imaginary parameters

(日) (日) (日) (日) (日) (日) (日)

• The mixing matrix is completely real

• 3×3 matrix \Rightarrow 9 real + 9 imaginary quantities

- Unitarity $U^{\dagger}U = I$: 6 real and 3 imaginary conditions
- 3 real and 6 imaginary parameters left
- Can choose the 5 relative phases between quarks to get rid of 5 imaginary parameters
- In addition to 3 real parameters (Euler angles of rotation), one imaginary quantity is unavoidable
- Mixing matrix complex \Rightarrow CP violation may be present $\begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ c_1c_2s_3 + s_2c_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \end{pmatrix}$

- 3×3 matrix \Rightarrow 9 real + 9 imaginary quantities
- Unitarity $U^{\dagger}U = I$: 6 real and 3 imaginary conditions
- 3 real and 6 imaginary parameters left
- Can choose the 5 relative phases between quarks to get rid of 5 imaginary parameters
- In addition to 3 real parameters (Euler angles of rotation), one imaginary quantity is unavoidable
- Mixing matrix complex \Rightarrow CP violation may be present $\begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \end{pmatrix}$

- 3×3 matrix \Rightarrow 9 real + 9 imaginary quantities
- Unitarity $U^{\dagger}U = I$: 6 real and 3 imaginary conditions
- 3 real and 6 imaginary parameters left
- Can choose the 5 relative phases between quarks to get rid of 5 imaginary parameters
- In addition to 3 real parameters (Euler angles of rotation), one imaginary quantity is unavoidable
- Mixing matrix complex \Rightarrow CP violation may be present $\begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \end{pmatrix}$

- 3×3 matrix \Rightarrow 9 real + 9 imaginary quantities
- Unitarity $U^{\dagger}U = I$: 6 real and 3 imaginary conditions
- 3 real and 6 imaginary parameters left
- Can choose the 5 relative phases between quarks to get rid of 5 imaginary parameters
- In addition to 3 real parameters (Euler angles of rotation), one imaginary quantity is unavoidable
- Mixing matrix complex \Rightarrow CP violation may be present $\begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \end{pmatrix}$

Outline

1) Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)

The insight of Kobayashi and Maskawa Prog. Theo. Phys. 49, 652 (1973)

In modern language: the CKM paradigm

Testing the Kobayashi-Maskawa predictions The third generation

CP violation through the CKM mechanism

Flavor basis vs. mass basis

$$U' \equiv \left(egin{array}{c} u \ c \ t \end{array}
ight) \ , \ \ D' \equiv \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = rac{g}{\sqrt{2}} \overline{U_L} \gamma^\mu (V_{UL}^\dagger V_{DL}) D_L W_\mu^+ + H.c.$

 V_{UL} , V_{DL} : unitary matrices that change the basis

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$ V_{CKM} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

Flavor basis vs. mass basis

$$U' \equiv \left(egin{array}{c} u \ c \ t \end{array}
ight) \ , \ \ D' \equiv \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W_{\mu}^{+} + H.c.$

 V_{UL} , V_{DL} : unitary matrices that change the basis

(日) (日) (日) (日) (日) (日) (日) (日)

• Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$ V_{CKM} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

Flavor basis vs. mass basis

$$U' \equiv \left(egin{array}{c} u \ c \ t \end{array}
ight) \ , \ \ D' \equiv \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W_{\mu}^{+} + H.c.$

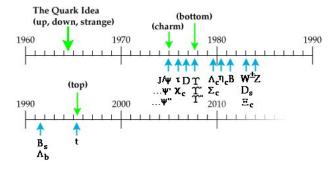
 V_{UL} , V_{DL} : unitary matrices that change the basis

• Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$ V_{CKM} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

- A third family of quarks exists (never suspected before)
- All CP violation can be described in terms of a single complex number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_\delta$

(日) (日) (日) (日) (日) (日) (日)


Outline

1) Before Kobayashi-Maskawa

- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)
- The insight of Kobayashi and Maskawa
 Prog. Theo. Phys. 49, 652 (1973)
 In modern language: the CKM paradigm
- Testing the Kobayashi-Maskawa predictions
 The third generation
 CP violation through the CKM mechanism

Experimental discovery of the third generation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

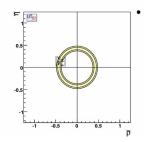
- Discovery of τ : 1976
- Υ , B, B_s , λ_b contain b quark
- Top quark: 1995
- The last element, ν_{τ} , discovered in 2000.

Outline

1) Before Kobayashi-Maskawa

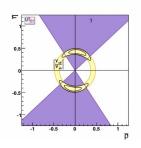
- The status of Particle Physics in 1972
- The broken symmetry: charge-parity (CP)
- The insight of Kobayashi and Maskawa
 Prog. Theo. Phys. 49, 652 (1973)
 In modern language: the CKM paradigm
- Testing the Kobayashi-Maskawa predictions
 The third generation
 - CP violation through the CKM mechanism

B factories: $B \equiv \bar{b}u, \bar{b}d, \bar{b}s, \bar{b}c, \quad \overline{B} \equiv \bar{u}b, \bar{d}b, \bar{s}b, \bar{c}b$

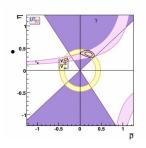

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Wolfenstein parametrization of the CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

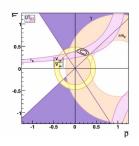

- λ : Cabibbo angle
- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate

More and more stringent tests of the CKM mechanism


• Semileptonic decay $B \rightarrow D \ell \nu$

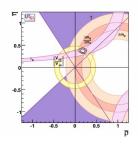
(日) (字) (日) (日) (日)

- Semileptonic decay $B \rightarrow D \ell \nu$
- "Charmed" decays $B \rightarrow DK$


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Semileptonic decay $B \rightarrow D \ell \nu$
- "Charmed" decays $B \rightarrow DK$

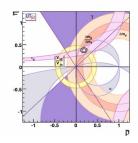
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆


CP violation in K mesons

- Semileptonic decay $B \rightarrow D \ell \nu$
- "Charmed" decays $B \rightarrow DK$

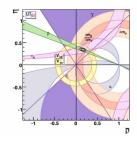
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system



• Semileptonic decay $B \rightarrow D \ell \nu$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○


- "Charmed" decays $B \rightarrow DK$
- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system

More and more stringent tests of the CKM mechanism

• Semileptonic decay $B \rightarrow D \ell \nu$

- "Charmed" decays $B \rightarrow DK$
- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K

- Semileptonic decay $B \rightarrow D \ell \nu$
- "Charmed" decays $B \rightarrow DK$
- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K
- CP asymmetry in $B \rightarrow J/\psi K_S$

(日) (日) (日) (日) (日) (日) (日)

- No deviation from the CKM predictions has been observed
- Constrains many new physics models
- Future expts: LHC (ATLAS, CMS, LHC-b), super-B factory
- CP violation required for baryon asymmetry, but the CKM is not enough, so there will be life beyond CKM
- The successful prediction of Kobayashi and Maskawa still inspiring theoretical as well as experimental research

(日) (日) (日) (日) (日) (日) (日)