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Standard model of particle physics: 2008

ELEMENTARY
PARTICLES
A\ \ @ Three families of
quarks and leptons

@ quarks:
up  charmed top
down strange bottom

@ Mixing between families




0 Before Kobayashi-Maskawa
@ The status of Particle Physics in 1972



Known particles in 1972
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Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:
l @ (i) muon decay: ge,
= Mi - V,ueiﬁe

@ (ii) neutron decay : guqg

Pz
n— pe e (d — ue g)
@ (ii) kaon decay: gus
- K- — 10 g (s — ue )
B
’geu|2 = |gud|2 + ’gus’2
Universality:

@ There is only one coupling constant, g = ge,

@ u quark couples to only one combination of d and s:
d =cosf,-d+sinf,-s

@ Cabibbo angle 6.: the first quark mixing angle

N. Cabibbo, “Unitary Symmetry and Leptonic Decays,”
Phys. Rev. Lett. 10, 531 (1963)



Suppression of flavor-changing neutral currents

@ Cabibbo angle unable to explain why
MK — p ) << (KT = phy)
@ Possible explanation via another “c” quark:
charge +2/3, couples to
s'=—-sinf,-d+cosf;-s
@ The s — u— dand s — ¢ — d contribution cancel,
leading to the suppression of FCNC s — d

@ GIM mechanism: existence of the “charmed” quark.
S. L. Glashow, J. lliopoulos and L. Maiani,

“Weak Interactions with Lepton-Hadron Symmetry,”
Phys. Rev. D 2, 1285 (1970)



0 Before Kobayashi-Maskawa

@ The broken symmetry: charge-parity (CP)



Discovery of parity violation: 1956-57

@ Mirror world does not behave
the same as the real world

@ Theoretical possibility:
T.D.Lee and C.N.Yang,
Phys. Rev. 104, 254 (1956)

@ Experiments: 1957

e Wu (5°Co)
e Friedman-Telegdi
(F —pt —eh)
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Can Charge @ Parity may be conserved ?

Parity: left landed < right handed

g left
(ex 1 nature)

@ Neutrinos violate parity: they are only left-handed
@ But antineutrinos are right-handed !

@ Does that mean C and P violations cancel each other to
give CP conservation ?



Prediction of CP violation in K decay

K% = ds KO = sd
@ CP eigenstates: B
Ki=(K°+K)/v2 (CP even)
Ko = (K° - K)/v2  (CP odd)



Prediction of CP violation in K decay

K° = ds KO = sd
@ CP eigenstates:

Ky = (K°+ K)/v2 (CP even)
Ko = (K° - K)/v2  (CP odd)

@ CP even decay channel: r
@ CP odd decay channel: 7

@ CP conservation =
Ki — mm short-lived, Ksport
Ko — mrm long-lived, Kiong



Prediction of CP violation in K decay

K% = ds KO = sd

@ CP eigenstates: B
Ki=(K°+K)/v2 (CPeven)
Ko = (K° - K)/v2  (CP odd)

@ CP even decay channel: r
@ CP odd decay channel: 7

@ CP conservation =
Ki — mm short-lived, Ksport
Ko — mrm long-lived, Kiong

o Original K® = (Ksyo + Kiong)/V2



Discovery of CP violation: 1964
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Charge-parity violated slightly




Questions raised by the discovery of CP violation

@ Is it small or large ? Is CP an approximate symmetry ?
@ Is the symmetry breaking spontaneous ?

@ Where does it come from ? Are there extra interactions ?



e The insight of Kobayashi and Maskawa
@ Prog. Theo. Phys. 49, 652 (1973)
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What the paper is about

@ Consider various ways of putting (v, d;, ¢, s;) and
(ug, dgr, Cr, Sg) as doublets or singlets of SU(2)weax
(4=2+2,4=2+1+1 0r4 = 1+1+1+1 ?)

@ Experimental data =

e (uL,d;) have to form a doublet: isospin symmetry
@ (ci,s.) must also form a doublet: FCNC suppression

@ Now, how can one get CP violation ?



CP violation and complex coupling

@ CP violation: A(X — Y) #AX —Y)

e If all amplitudes are real, |A(X — Y)]2 = |A(X — Y)|?
@ CP violation possible if complex numbers involved in

IAX =Y = JAX—=w—Y)+AX—z—Y)]
|A(7—>7)|2 = |A(7—>W—>V)+A(Y—>f—>7)|2

@ CP violation = Amplitudes complex = Couplings complex



Two generations of quarks are not enough

@ The mixing matrix between up-type and down-type quarks
has to be a 2 x 2 unitary matrix

o cos e sin fe'?2 a.
L ox (ULv CL) —sin 06i¢3 cos gei(¢2+¢3*¢1) S/



Two generations of quarks are not enough

@ The mixing matrix between up-type and down-type quarks
has to be a 2 x 2 unitary matrix

o cos e sin fe'?2 a.
L ox (ULv CL) —sin 06i¢3 cos gei(¢2+¢3*¢1) S/

@ Can change three relative phases of quarks to get rid of all
three complex phases ¢4, ¢», ¢3

o cosf sind d, e’
L o (ug, opet* <¢>1))< —sind cos? > ( ste"‘i>2 )

@ Mixing matrix real = no CP violation



Paremeter counting for two generations

@ 2 x 2 complex matrix = 4 real + 4 imaginary quantities



Paremeter counting for two generations

@ 2 x 2 complex matrix = 4 real + 4 imaginary quantities

@ Unitarity UTU = I: 3 real and 1 imaginary conditions
@ 1 real and 3 imaginary parameters left



Paremeter counting for two generations

@ 2 x 2 complex matrix = 4 real + 4 imaginary quantities

@ Unitarity UTU = I: 3 real and 1 imaginary conditions
@ 1 real and 3 imaginary parameters left

@ Can choose the 3 relative phases between quarks to get
rid of the 3 imaginary parameters

@ The mixing matrix is completely real



Three generations work

@ 3 x 3 matrix = 9 real + 9 imaginary quantities
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@ In addition to 3 real parameters (Euler angles of rotation),
one imaginary quantity is unavoidable



Three generations work

@ 3 x 3 matrix = 9 real + 9 imaginary quantities
@ Unitarity UTU = I: 6 real and 3 imaginary conditions
@ 3 real and 6 imaginary parameters left

@ Can choose the 5 relative phases between quarks to get
rid of 5 imaginary parameters

@ In addition to 3 real parameters (Euler angles of rotation),
one imaginary quantity is unavoidable

@ Mixing matrix complex = CP violation may be present
Gy —51C3 —5183
$1Co C1CoC3 — 5253€"°  €1Cr83 + Spcz€’d
$1S2 C1SpC3 + C283€"°  €18285 — Cpcz€”d



e The insight of Kobayashi and Maskawa

@ In modern language: the CKM paradigm



Flavor basis vs. mass basis
u d
U= c |, D=| s
t b

@ Charged current in the basis of flavor eigenstates:
Lcc = %q’y“DL W/j' + h.c.



Flavor basis vs. mass basis
u d
U= c |, D=| s
t b

@ Charged current in the basis of flavor eigenstates:
Leoc = %WWD’L Wi + h.c.
@ Charged current in the basis of mass eigenstates:
Lec = -FUN(Vfy Vo) DLW, + H.c.
Vur, Vpr: unitary matrices that change the basis



Flavor basis vs. mass basis
u d
U= c |, D=| s
t b

@ Charged current in the basis of flavor eigenstates:
Leoc = %WWD’L Wi + h.c.
@ Charged current in the basis of mass eigenstates:
Lee = FUN(V{y Vo) DLW + H.c.
Vui, Vpr: unitary matrices that change the basis

@ Coupling between U, and D;: (g/v2) Vekm

Vekm = VLT/L VL
Veku is the Cabibbo-Kobayashi-Maskawa (CKM) matrix



Predictive power of the CKM mechanism

@ A third family of quarks exists (never suspected before)

@ All CP violation can be described in terms of a single
complex number: Jarlskog invariant J = s 5253012020335



e Testing the Kobayashi-Maskawa predictions
@ The third generation



Experimental discovery of the third generation

The Quark Idea
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@ Discovery of 7: 1976

@ T, B, Bs, \p contain b quark

@ Top quark: 1995

@ The last element, v, discovered in 2000.



e Testing the Kobayashi-Maskawa predictions

@ CP violation through the CKM mechanism



B factories: B = bu, bd, bs,bc, B = ub,db,sb,cb

High Energy Ring

ete~ — BB — decayproducts




Wolfenstein parametrization of the CKM matrix

( Vud Vus Vub )
Vekm = Veo Ves Vo
Vierk Vis Vi
1-)2)2 A AX3(p — in)
= ( -\ 1-22/2 A)N? ) +0(0\h
AN(1 —p—in) —AN? 1
@ \: Cabibbo angle

@ 7: the imaginary component of Vi
@ n/p large = CP violation is large, not approximate



More and more stringent tests of the CKM mechanism

N @ Semileptonic decay B — D/v
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More and more stringent tests of the CKM mechanism

@ Semileptonic decay B — Dlv
@ “Charmed” decays B — DK
@ CP violation in K mesons

@ AMin By—By system

@ AM in Bs—Bs system

@ Decaysto 7w and K




More and more stringent tests of the CKM mechanism

@ Semileptonic decay B — Div
“Charmed” decays B — DK
CP violation in K mesons
AM in B4—By4 system

AM in Bs—Bs system

Decays to 7 and K

CP asymmetry in B — J/¢¥Kg




Concluding remarks

@ No deviation from the CKM predictions has been observed
@ Constrains many new physics models
@ Future expts: LHC (ATLAS, CMS, LHC-b), super-B factory

@ CP violation required for baryon asymmetry, but the CKM
is not enough, so there will be life beyond CKM

@ The successful prediction of Kobayashi and Maskawa still
inspiring theoretical as well as experimental research
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