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0 The experiment and its main purpose



Aim of OPERA: measuring neutrino oscillations

OPERA: first direct detection of neutrino oscillations in appearance mode

following the Super- Kamickande discovery of oscillations with atmospheric neutrinos and the
confirmation obtained with solar neutrinos and accelerator beams. Important, missing tile in
the oscillaticn picture.

The PMNS 3-flaver oscillation formalism predicts:

Reguirements:

1) leng baseline, 2) high neutrinc energy, 3} high beam intensity, 4} detect short lived t's
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The long baseline experiment




The source

CERN Accelerator Complex
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The detector

THE IMPLEMENTATION OF THE PRINCIPLE
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Targetarea  Muon spectrometer

THE PRINCIPLE OF THE EXPERIMENT: ECC + ELECTRONIC DETECTORS

electronics




e How the speed of neutrinos was measured



Speed of neutrinos: schematic
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Fig. 5: Schematic of the ime of flight measurement.



e How the speed of neutrinos was measured
@ Distance measurement



Accuracy of distance measurement

@ GPS + surveying inside tunnel
@ Claimed accuracy: 20 cm

Daily Goordinates, site: LNGS
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Fig. 7: Monitoring of the PolaRx2¢ GPS antenna position at LNGS, showing the slow earth crust drift and the fault
displacement due to the 2000 earthquake in the L’Aquila region. Units for the horizontal (vertical) axis are years



e How the speed of neutrinos was measured

@ Time measurement



Proton beam pulse shape at CERN
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Fig. 4: Example of a proton extrction waveform measured with the BCT detector BECTIA00344. The five-peak
structure reflects the continuous PS tm extraction mechanism. A zoom of the waveform (right plot) allows
resolving the 200 MHz SPS radiofrequency.
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Fig. 9: Summed proton
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eforms of the OPERA events corresponding 1o the two SPS extractions for the 2009,



Time delays at CERN
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Fig. 3: Schematic of the CERN SPS/CNGS uming system. Green boxes indicate detector time-respons
boxes refer to elements of the CNGS-OPERA synchronmsation system. Details on the vanous elements are given in

Section 6.



Time delays at Gran Sasso
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Schematic of the OPERA timing system at LNGS. Blue delays include elements of the time-stamp
; increasing delays decrease the value of dt. Green delays cate detector time-respons i
delays increase the value of 8t Orange boxes refer to elements of the CNGS-OPERA synchronisation system.




e How the speed of neutrinos was measured

@ The analysis



Blind analysis: add an unspecified delay
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The edge shapes
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Fig. 12: Zoom of the leading (left plots) and trailing edges (right plots) of the measured neutrino interaction time
distributions (data pomts) and the proton PDF (red line) for the two SPS extractions after correcting for &t (blind).




The final (maximum likelihood) fit

rst Extraction

- [
8 .7as26

8 [
=

£ asa|
oy L
g

-l 74530

74532

74534

7453605

L I
1000 1010 1020 1030 1040 1050 1060 1070 1080 1090
ns

Second Extraction

75304[
75306

75308

Log-likelihood

75310
75312~

75318

gl t .1 | I I | | |
1000 1010 1020 1030 1040 1050 1060 1070 1080 1090
ne

Fig. 8: Log-likelihood distributions for both ons as a fimction of dt, shown close to the maximum and fitted
with a parabolic shape for the determination of the central value and of its uncertainty.



Actual delay

Table 1: Summary of the tme delay values used in the blind analysis and those comresponding to the final analysis.
Blind 2006  Final analysis Correction {ns)

Baseline (ns) 24400796 2439280.9

Caorrection baseline -T98.7
CNGS DELAYS :

UTC callbration {ns) 10092.2 10085

Correction UTC 272
WFD {ns) 0 30

Correction WFD 30
BCT (ns) 0 580

Caorrection BCT =580
OPERA DELAYS :

TT response {ns) 0 59.6

FPGA (ns) 0 2.5

DAL clock {ns) -4245.2 -4262.9

Comection TT+FPGA+DAG 17.4
GPS syncronization {ns) -353 ")

Time-link {ns) 0 =23

Caorrection GPS 507

Tatal -987.8



Estimated sources of error

Table 2: Contribution to the overall systematic uncertainty on the measurement of t.

Systematic uncertainties ns
Baseline (20 cm) 0.67
Decay point 0.2
Interaction paint 2.0
UTC delay 20
LNGS fibras 1.0
DAQ clock transmission 1.0
FPGA calibration 1.0
FWD trigger delay 1
CHGS-OPERA GPS synchronisation 1.7
MC simulation for TT timing 3.0
TT time response 2.3
BCT calibration 5.0

Total sys. uncertainty {in quadrature) 7.4



e How the speed of neutrinos was measured

@ Some cross-checks



Stability across time
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Fig. 10: Resulis of the maximum likelihood analysis for t corresponding to the two SPS extractions for the 2009,
2010 and 2011 data samples,

@ Day-night: 17.1 + 155 ns
@ Spring vs Fall: 11.3+14.5ns



Stability across energies
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@ Testing the result



SN1987A: 23 Feb 1987
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@ Neutrino arrived only 3 hours earlier
(We know they left a few hours earlier, so OK).
@ |c—v|/c<2x107°

o |f OPERA measurement is true, they should have arrived 4
years earlier.



Other long baseline neutrino experiments

Fermilak Soudan
W W
735 km
12 kb
Datactor 1 Datactor 2 MINOS
Mear Detector: Far Detectar:
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Older measurements by MINOS

@ (v—c)/c=(5.1+29) x107° (at 3 GeV)
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FIG. 2: Time distribution of FD events relative to prediction
B after fitting the time-of-flight. The top plet shows events
3 in H-batch spills, the bottom G-batch spills. The normalized
expectation curves PF(t) and PF(t) are shown as the solid
lines.



Where can MINOS improve their errors?

Description Uncertainty (68% CL.)
A Distance between detectors 2 ns
B ND Antenna fiber length 27 ns
C ND electronics latencies 32 ns
D FD Antenna fiber length A6 n=
E FD eclectronics latencies 3ns=
F GPS and transceivers 12 ns
G Detector readout differences 9 ns

Total (Sum in quadrature) 4 n=

TABLE II: Sources of uncertainty in ¢ relative time measure-
ment.



The future

@ OPERA: Recheck for systematic errors.
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The future

@ OPERA: Recheck for systematic errors.

o Tidal effects due to the moon
e Beam profile: beam at CERN vs at Gran Sasso
e Maybe some more not yet thought of

@ MINOS: a new measurement

Maybe this has already happened in someone’s reference frame.
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