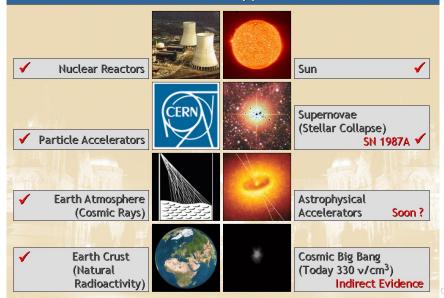
Particle Astrophysics of Neutrinos some selected aspects

Amol Dighe


Department of Theoretical Physics Tata Institute of Fundamental Research

IIT Guwahati, Feb 11, 2013

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Omnipresent neutrinos

Where do Neutrinos Appear in Nature?

Unique features of neutrinos

The second most abundant particles in the universe

- Cosmic microwave background photons: 400 / cm³
- Cosmic background neutrinos: 330 / cm³

The lightest massive particles

- A million times lighter than the electron
- No direct mass measurement yet

The most weakly interacting particles

- Do not interact with light \Rightarrow Dark matter
- Stopping radiation with lead shielding:
 - α, β, γ from radioactivity: 50 cm
 - Neutrinos from the Sun: hundreds of light years !

Unique features of neutrinos

The second most abundant particles in the universe

- Cosmic microwave background photons: 400 / cm³
- Cosmic background neutrinos: 330 / cm³

The lightest massive particles

- A million times lighter than the electron
- No direct mass measurement yet

The most weakly interacting particles

- Do not interact with light \Rightarrow Dark matter
- Stopping radiation with lead shielding:
 - α, β, γ from radioactivity: 50 cm
 - Neutrinos from the Sun: hundreds of light years !

・ロット (雪)・ (日)・ (日)・

Unique features of neutrinos

The second most abundant particles in the universe

- Cosmic microwave background photons: 400 / cm³
- Cosmic background neutrinos: 330 / cm³

The lightest massive particles

- A million times lighter than the electron
- No direct mass measurement yet

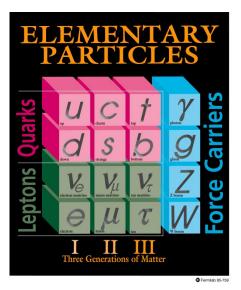
The most weakly interacting particles

- Do not interact with light ⇒ Dark matter
- Stopping radiation with lead shielding:
 - α, β, γ from radioactivity: 50 cm
 - Neutrinos from the Sun: hundreds of light years !

Neutrinos and the future of mankind

"Satnam has discovered that neutrinos from a massive solar flare are acting as microwaves, causing the temperature of the Earth's core to increase rapidly"

Statutory warning: Taking Hollywood films seriously may be injurious to sanity


Neutrinos and the future of mankind

"Satnam has discovered that neutrinos from a massive solar flare are acting as microwaves, causing the temperature of the Earth's core to increase rapidly"

Statutory warning: Taking Hollywood films seriously may be injurious to sanity

The Standard Model of Particle Physics

- 3 neutrinos:
 - $\nu_{\textit{e}}, \nu_{\mu}, \nu_{\tau}$
- chargeless
- spin 1/2
- almost massless

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

 Only weak interactions

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions

- Atmospheric neutrino problem
- The mystery of missing solar neutrinos
- 2 Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV

- Bigger and better detectors
- Theoretical challenges

1 Astrophysics puzzles, particle physics solutions

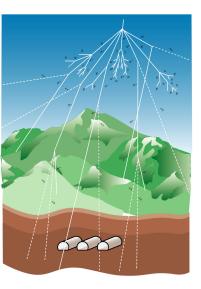
- Atmospheric neutrino problem
- The mystery of missing solar neutrinos
- Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV

- Bigger and better detectors
- Theoretical challenges

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions Atmospheric neutrino problem

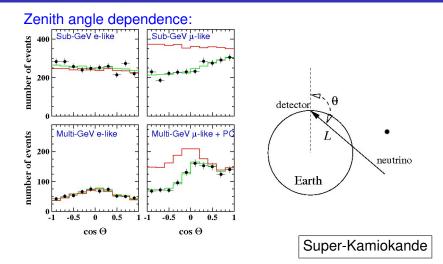
• The mystery of missing solar neutrinos


2 Physics and astrophysics of supernova neutrinos

- Supernova explosion and neutrino emission
- Neutrino flavour conversions
- Physics potential of a galactic SN detection

3 Astrophysical neutrino sources: 10⁻⁴ eV – 10²⁰ eV

- Bigger and better detectors
- Theoretical challenges

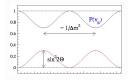

Neutrinos from cosmic rays (atmospheric neutrinos)

- $\pi^+ \to \mu^+ + \nu_\mu$
- $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$
- " ν_{μ} " flux = 2× " ν_{e} " flux
- "Down" flux = "Up" flux

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Atmospheric neutrino puzzle

Electron neutrinos match predictions


• Muon neutrinos lost while passing through the Earth !

Solution through "vacuum oscillations"

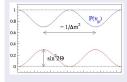
Prerequisites

- Neutrino flavours mix with each other
- Neutrinos have different masses
- v_e do not participate in the oscillations

Neutrino oscillations: ν_{μ} oscillate into ν_{τ}

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Mixing parameters


 $\Delta m_{\rm atm}^2 \approx (2.2-2.6) \times 10^{-3} \, {\rm eV}^2$ Mixing angle $\theta_{\rm atm} \approx 36^\circ -54^\circ$ Confirmed by "short baseline" experiments (K2K, MINOS)

Solution through "vacuum oscillations"

Prerequisites

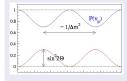
- Neutrino flavours mix with each other
- Neutrinos have different masses
- *v_e* do not participate in the oscillations

Neutrino oscillations: ν_{μ} oscillate into ν_{τ}

$$\mathcal{P}(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2}{\Delta E}
ight)$$

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Mixing parameters


 $\Delta m_{\rm atm}^2 \approx (2.2-2.6) \times 10^{-3} \, {\rm eV}^2$ Mixing angle $\theta_{\rm atm} \approx 36^\circ -54^\circ$ Confirmed by "short baseline" experiments (K2K, MINOS)

Solution through "vacuum oscillations"

Prerequisites

- Neutrino flavours mix with each other
- Neutrinos have different masses
- *v_e* do not participate in the oscillations

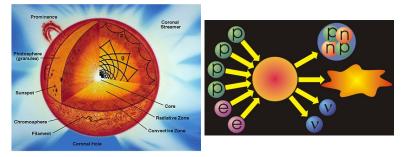
Neutrino oscillations: ν_{μ} oscillate into ν_{τ}

$${\cal P}(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2}{\Delta E}
ight)$$

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Mixing parameters

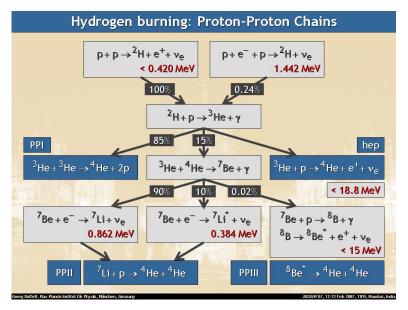
 $\begin{array}{l} \Delta m_{\rm atm}^2 \approx (2.2 - 2.6) \times 10^{-3} \ {\rm eV}^2 \\ {\rm Mixing \ angle} \ \theta_{\rm atm} \approx 36^\circ - 54^\circ \\ {\rm Confirmed \ by \ "short \ baseline" \ experiments \ (K2K, MINOS)} \end{array}$

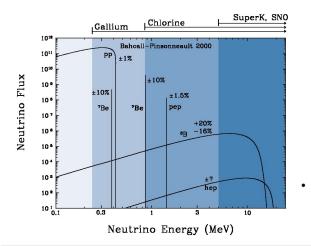

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions Atmospheric neutrino problem

- The mystery of missing solar neutrinos
- 2 Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV

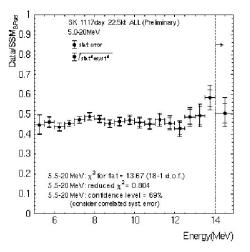
- Bigger and better detectors
- Theoretical challenges


Neutrinos from the Sun (Solar neutrinos)


- Nuclear fusion reactions: effectively $4 {}^{1}_{1}\text{H} + 2e^{-} \rightarrow {}^{4}_{2}\text{He} + 2\nu_{e} + \text{light}$
- Neutrinos an essential part of all the sub-reactions:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Nuclear reactions inside the Sun

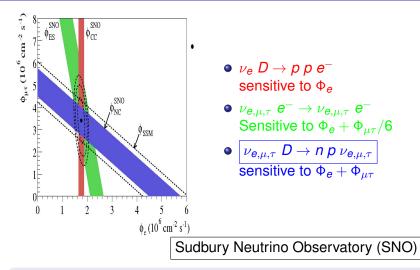


The solar neutrino spectra

- Magnitudes of fluxes depend on details of solar interior
- Spectral shapes robustly known

Mystery of missing solar neutrinos

Super-Kamiokande


Where did the missing neutrinos (ν_e) go ?

Problem with our understanding of the Sun ?

・ロット (雪) (日) (日)

Solar neutrino problem: unresolved for 40 years !

Solar neutrino puzzle: another jigsaw piece

• $\Phi_e + \Phi_{\mu\tau} = \text{constant}$, matches with Standard Solar Model • $\nu_e \text{ convert into } \nu_{\mu} \text{ and } \nu_{\tau}$

Solution through "MSW (matter) effect"

Prerequisites

- Neutrino flavours mix with each other
- Neutrinos have different masses
- Masses and mixing angles depend on matter density !

Survival probability of ν_e :

- $P(\nu_e \rightarrow \nu_{\theta}) \approx P_f \cos^2 \theta_{\odot} + (1 P_f) \sin^2 \theta_{\odot}$
- P_f depends on: Δm^2 , mixing angle θ_{\odot} , density profile
- No oscillations ! (Mass eigenstates have decohered)

Mixing parameters

 $\Delta m_{\odot}^2 \approx (7.0-8.2) \times 10^{-5} \text{ eV}^2$ Mixing angle $\theta_{\odot} \approx 28^{\circ}-36^{\circ}$ Confirmed by "short baseline" experiments (KamLAND)

Solution through "MSW (matter) effect"

Prerequisites

- Neutrino flavours mix with each other
- Neutrinos have different masses
- Masses and mixing angles depend on matter density !

Survival probability of ν_e :

- $P(\nu_e \rightarrow \nu_e) \approx P_f \cos^2 \theta_{\odot} + (1 P_f) \sin^2 \theta_{\odot}$
- P_f depends on: Δm^2 , mixing angle θ_{\odot} , density profile
- No oscillations ! (Mass eigenstates have decohered)

Mixing parameters

 $\begin{array}{l} \Delta m_\odot^2 \approx (7.0 - 8.2) \times 10^{-5} \ \mathrm{eV}^2 \\ & \mbox{Mixing angle } \theta_\odot \approx 28^\circ - 36^\circ \\ & \mbox{Confirmed by "short baseline" experiments (KamLAND)} \end{array}$

Solution through "MSW (matter) effect"

Prerequisites

- Neutrino flavours mix with each other
- Neutrinos have different masses
- Masses and mixing angles depend on matter density !

Survival probability of ν_e :

- $P(\nu_e \rightarrow \nu_e) \approx P_f \cos^2 \theta_{\odot} + (1 P_f) \sin^2 \theta_{\odot}$
- P_f depends on: Δm^2 , mixing angle θ_{\odot} , density profile
- No oscillations ! (Mass eigenstates have decohered)

Mixing parameters

 $\Delta m_{\odot}^2 \approx (7.0-8.2) \times 10^{-5} \text{ eV}^2$ Mixing angle $\theta_{\odot} \approx 28^{\circ}-36^{\circ}$ Confirmed by "short baseline" experiments (KamLAND)

Summary of neutrino mixing parameters

Solar neutrino puzzle: 1960s - 2002

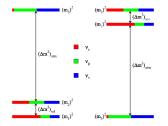
•
$$\Delta m_{\odot}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2, \, \theta_{\odot} \approx 32^\circ$$

• Mechanism: MSW (matter) effects

Atmospheric neutrino puzzle: 1980s - 1998

•
$$\Delta m_{\rm atm}^2 pprox 2.4 imes 10^{-3} \ {
m eV}^2, \, \theta_{\rm atm} pprox 45^\circ$$

• Mechanism: vacuum oscillations


Reactor neutrino experiments

• The "third" mixing angle $\theta_{\text{reactor}} \approx 9^{\circ}$

Neutrino masses and mixing: open questions

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (mass eigenstates)

- Mass ordering: Normal or Inverted ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Is some new physics hidden in the neutrino signals ?

< □ > < 同 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

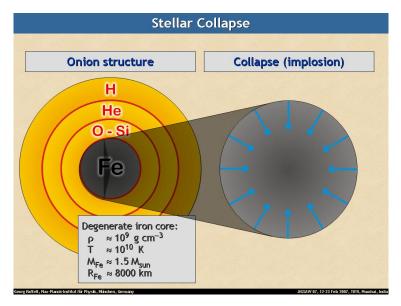
Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem

The mystery of missing solar neutrinos

Physics and astrophysics of supernova neutrinos

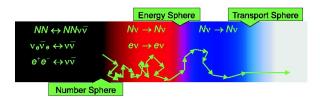
- Supernova explosion and neutrino emission
- Neutrino flavour conversions
- Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV
 - Bigger and better detectors
 - Theoretical challenges


Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem
 The mystery of missing solar neutrinos

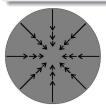
2 Physics and astrophysics of supernova neutrinos

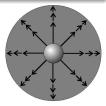
- Supernova explosion and neutrino emission
- Neutrino flavour conversions
- Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV
 - Bigger and better detectors
 - Theoretical challenges


The would-be supernova before the collapse

Trapped neutrinos before the collapse

• Neutrinos trapped inside "neutrinospheres" around $\rho \sim 10^{10} {\rm g/cc.}$

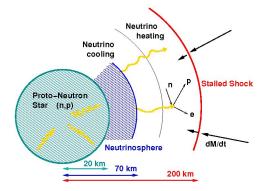



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

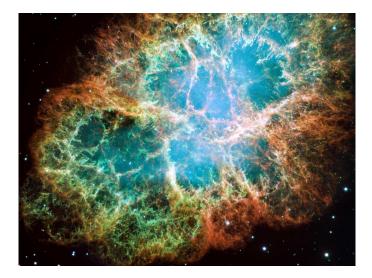
Core collapse and the shock wave

Gravitational core collapse \Rightarrow Shock Wave

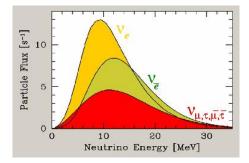

Neutronization burst: ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\sim 10^{58}$ neutrinos

 $\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau}$ Duration: About 10 sec Emission of 99% of the SN collapse energy in neutrinos


¿¿¿ Explosion ???

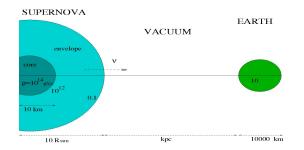
Role of neutrinos in explosion


- Neutrino heating needed for pushing the shock wave
- Large scale convection also needed
- The resultant hydrodynamic "SASI" instabilities explode the star (according to simuations)

The star after explosion

(Crab nebula, supernova seen in 1054)

Primary neutrino fluxes


- Almost blackbody spectra, slightly "pinched"
- Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$
- $E_0(\nu_e) \approx 10-12 \text{ MeV}$ $E_0(\bar{\nu}_e) \approx 13-16 \text{ MeV}$ $E_0(\nu_{\chi}) \approx 15-20 \text{ MeV}$

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem
 The mystery of missing solar neutrinos

- Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV
 - Bigger and better detectors
 - Theoretical challenges

Neutrino oscillations in matter of varying density

Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

u and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations even for extremely small θ_{13}

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Spectral split/swap:

 ν_e and ν_x ($\bar{\nu}_e$ and $\bar{\nu}_x$) spectra interchange completely, only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

Collective effects influencing supernova astrophysics

- Nucleosynthesis of heavy elements (r-process)
- Shock wave propagation

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

u and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

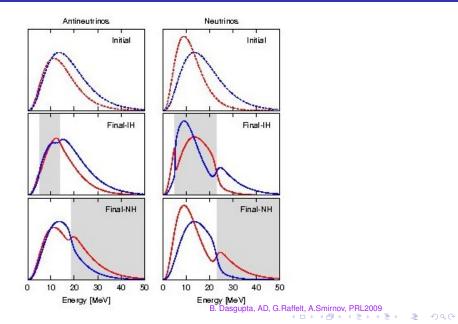
Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations even for extremely small θ_{13}

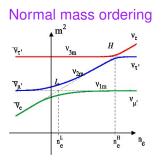
S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

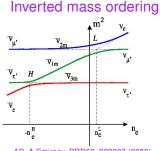
Spectral split/swap:

 ν_e and ν_x ($\bar{\nu}_e$ and $\bar{\nu}_x$) spectra interchange completely, only within certain energy ranges.


G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

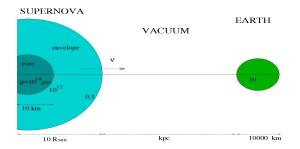

Collective effects influencing supernova astrophysics


- Nucleosynthesis of heavy elements (r-process)
- Shock wave propagation

Neutrino spectra exiting the collective region

Flavor conversions in MSW Resonance regions

AD, A.Smirnov, PRD62, 033007 (2000)


H resonance: ($\Delta m_{ m atm}^2$, $heta_{ m 13}$), $ho \sim 10^3$ – 10^4 g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Now that θ₁₃ is known to be large, adiabatic except during the passage of the shock wave

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim$ 10–100 g/cc

Always adiabatic, always in ν

Net neutrino flavour conversions

Inside the SN: flavour conversion

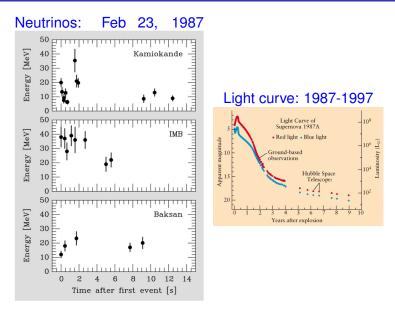
Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)


Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem
 The mystery of missing solar neutrinos

2) Physics and astrophysics of supernova neutrinos

- Supernova explosion and neutrino emission
- Neutrino flavour conversions
- Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV
 - Bigger and better detectors
 - Theoretical challenges

SN1987A: neutrinos and light

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

SN1987A: what did we learn ?

Hubble image: now

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorans, axions, extra dimensions, ...)

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector:

- $\bar{\nu}_e p \to n e^+$: $\approx 7000 12000^*$
- $\nu e^- \rightarrow \nu e^-$: $\approx 200 300^*$
- $\nu_e + {}^{16} O \rightarrow X + e^{-1} \approx 150 800^*$

* Events expected at Super-Kamiokande with a galactic SN at 10 kpc

Carbon-based scintillation detector: \sim 300 events / kt

•
$$ar{
u}_e p
ightarrow ne^+$$

• $\nu + {}^{12}C \rightarrow \nu + X + \gamma$ (15.11 MeV)

Liquid Argon detector: \sim 300 events /kt

•
$$\nu_{e}+~^{40}\textit{Ar}
ightarrow~^{40}\textit{K}^{*}+e^{-}$$

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation

・ロット (雪)・ (日)・ (日)・

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation

シック・ 明 - ・ 明 ・ ・ 明 ・ ・ 日 ・

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

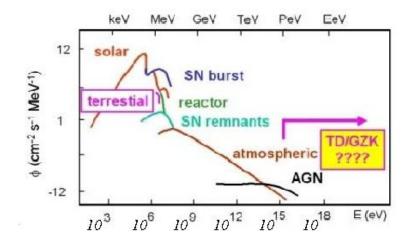
Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem

- Atmospheric neutrino problem
 The mystery of missing color pout
- The mystery of missing solar neutrinos

2 Physics and astrophysics of supernova neutrinos


- Supernova explosion and neutrino emission
- Neutrino flavour conversions
- Physics potential of a galactic SN detection

3 Astrophysical neutrino sources: 10⁻⁴ eV – 10²⁰ eV

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Bigger and better detectors
- Theoretical challenges

Spectra of astrophysical neutrinos

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ongoing activities in neutrino physics

keV-energy neutrinos

 Neutrinoless double beta decay experiments: to determine if neutrinos are their own antiparticles

MeV-energy neutrinos

- Measuring the energy of the sun in neutrinos
- Geoneutrinos: neutrinos from the Earth's radioactivity
- Reactor neutrino experiments for θ₁₃

GeV-energy neutrinos

- Atmospheric neutrino measurements for mass ordering
- Long baseline experiments: production-detection distance \sim 1000–10000 km

TeV-energy neutrinos

Astrophysical neutrinos: supernovae, GRBs, etc.

Neutrino physics – astrophysics interplay

Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem

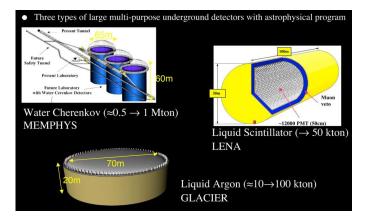
- The mystery of missing solar poutr
- The mystery of missing solar neutrinos
- 2 Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection

3 Astrophysical neutrino sources: 10⁻⁴ eV – 10²⁰ eV

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Bigger and better detectors
- Theoretical challenges

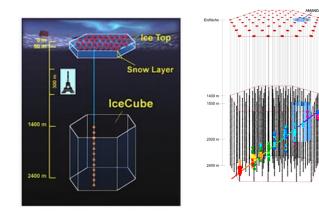
SuperKamiokande: 40 kiloton of water



With 40 000 000 litres of water

- Neutrinos passing through SK per day: 10²⁵
- Neutrino interactions in SK per day: 5-10

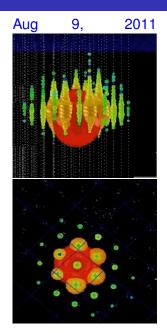
Need bigger and better detectors !

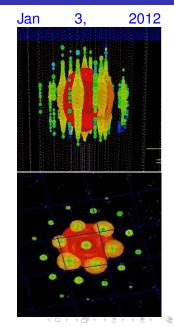

Directions of multi-purpose detector development

Sensitivity to MeV - 100 GeV neutrinos

- Measuring the energy of the sun in neutrinos
- Supernova neutrino detection

Below the antarctic ice: Gigaton IceCube

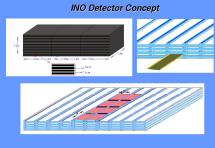

Sensitivity to $E \gtrsim 100 \text{ GeV}$


Neutrinos from Gamma Ray Bursts, late SN neutrinos

< 日 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < 白 > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O > < O >

Luminosity of SN neutrino burst

Two PeV neutrino events observed (IceCube)



900

Coming soon inside a mountain near you: INO

India-based Neutrino Observatory

- In a tunnel below a peak
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish neutrinos from antineutrinos
- Determining mass hierarchy from atmospheric neutrinos

Neutrino physics – astrophysics interplay

- Astrophysics puzzles, particle physics solutions
 Atmospheric neutrino problem
 - Attriospheric field into problem
 The mystery of missing color pout
 - The mystery of missing solar neutrinos
- 2 Physics and astrophysics of supernova neutrinos
 - Supernova explosion and neutrino emission
 - Neutrino flavour conversions
 - Physics potential of a galactic SN detection
- 3 Astrophysical neutrino sources: 10⁻⁴ eV 10²⁰ eV

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Bigger and better detectors
- Theoretical challenges

Some open issues in neutrino physics

Neutrino masses and mixing

- Determination of masses and mixing parameters from data
- Are neutrinos their own antiparticles (Majorana) ?
- Signals of physics beyond the Standard Model
- Models for small ν masses and the bi-large mixing pattern

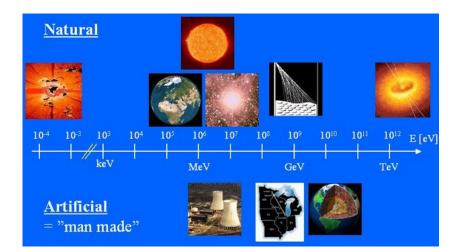
Astrophysics and cosmology

- Inverse supernova neutrino problem
- Effect of neutrino mixing on SN explosion mechanism

・ロット (雪) ・ (目) ・ (日)

- Nucleosynthesis of heavy elements
- Nature of astrophysical phenomena like GRBs
- Creation of the matter-antimatter asymmetry

Some open issues in neutrino physics


Neutrino masses and mixing

- Determination of masses and mixing parameters from data
- Are neutrinos their own antiparticles (Majorana) ?
- Signals of physics beyond the Standard Model
- Models for small ν masses and the bi-large mixing pattern

Astrophysics and cosmology

- Inverse supernova neutrino problem
- Effect of neutrino mixing on SN explosion mechanism
- Nucleosynthesis of heavy elements
- Nature of astrophysical phenomena like GRBs
- Creation of the matter-antimatter asymmetry

Neutrinos: providing windows for looking at the sky

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬ⊙