Neutrinos Invisible particles all around us

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Amol Dighe:

"Chai and Why ?", Ruia College, Jan 17, 2010

Neutrinos everywhere

Where do Neutrinos Appear in Nature?

How does the sun shine ?

- Nuclear fusion reactions: mainly $4 {}_{1}^{1}\text{H} + 2e^{-} \rightarrow {}_{2}^{4}\text{He} + 2\nu_{e} + \text{light}$
- Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine !!

ヘロト ヘ戸ト ヘヨト ヘヨト

About a trillion through the palm per second One trillion = 1 000 000 000 000

Even during night !

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Why do we not notice them ?

・ロト ・日下・ ・ ヨト・

About a trillion through the palm per second One trillion = 1 000 000 000 000

Even during night !

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Why do we not notice them ?

・ロト ・回ト ・ヨト ・

About a trillion through the palm per second One trillion = 1 000 000 000 000

Even during night !

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Why do we not notice them ?

ヘロト ヘアト ヘヨト ヘ

About a trillion through the palm per second One trillion = 1 000 000 000 000

Even during night !

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Why do we not notice them ?

ヘロト ヘアト ヘヨト

Three questions, the same answer

- Why did the *roti* char?
- Why did the fallen leaves rot ?
- Why could the horse not run ?

< ロ > < 同 > < 三 >

Because they were not moved !

Three questions, the same answer

- Why did the *roti* char?
- Why did the fallen leaves rot ?
- Why could the horse not run ?

Because they were not moved !

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos ?
- Why does the neutrino flow not change during night ?
- Why can we see "inside" the sun with neutrinos ?

Because neutrinos interact extremely weakly !

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos ?
- Why does the neutrino flow not change during night ?
- Why can we see "inside" the sun with neutrinos ?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Because neutrinos interact extremely weakly !

The most weakly interacting particles

Invisible particles

Do not interact with light

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: hundreds of light years !

Answers to the three questions

- Neutrinos pass through our bodies without interacting
- Neutrinos pass through the Earth without interacting
- Neutrinos pass through the Sun without interacting

How do we see the neutrinos then ?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The most weakly interacting particles

Invisible particles

Do not interact with light

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: hundreds of light years !

Answers to the three questions

- Neutrinos pass through our bodies without interacting
- Neutrinos pass through the Earth without interacting
- Neutrinos pass through the Sun without interacting

How do we see the neutrinos then ?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The most weakly interacting particles

Invisible particles

Do not interact with light

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: hundreds of light years !

Answers to the three questions

- Neutrinos pass through our bodies without interacting
- Neutrinos pass through the Earth without interacting
- Neutrinos pass through the Sun without interacting

How do we see the neutrinos then ?

イロト イポト イヨト イヨト

SuperKamiokande: 40 000 000 litres of water

Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

SuperKamiokande observes about 5-10 neutrinos per day

< 🗇 🕨

How does the Sun look in neutrinos ?

Sun in photons: a few million years ago

Angular size $\sim 1^\circ$

Sun in neutrinos: 8 minutes ago

Angular size \sim 20 $^\circ$

The second most abundant particles in the universe

- Cosmic microwave background: 400 photons/ cm³
- Cosmic neutrino background: 300 neutrinos / cm³

Even empty space between galaxies is full of neutrinos !

Supernova explosions

Crab nebula: SN in 1054

・ロト ・回ト ・ヨト ・

ъ

SN1987A

Neutrinos make supernovae explode

Neutrinos push the shock wave and blow up the star !

Early warning of supernova explosions

Neutrinos arrive \sim 10 hours before light !

Gamma ray bursts

- Extremely energetic events
- Exact nature still unknown
- Neutrinos may provide a clue
- Neutrinos not observed yet

The Standard Model of Particle Physics

3 neutrinos:

 $u_{e}, \nu_{\mu}, \nu_{\tau}$

- Zero charge
- spin 1/2
- almost massless: at least a million times lighter than electron

(日)

Fermilab 95-759

Recent excitement in neutrino physics

Solar neutrino puzzle: 1960s - 2002

- Only about half the expected ve observed!
- Possible solution: ν_e convert to $\nu_\mu/\nu_ au$

Atmospheric neutrino puzzle: 1980s – 1998

- Half the ν_{μ} lost in the Earth!
- But no ve are affected !
- Possible solution: ν_{μ} convert to ν_{τ}

Reactor neutrino experiments

No ve are lost

Three questions, the same answer

 ν conference participants

- Why did solar ν_e become ν_{μ}/ν_{τ} ?
- Why did atmospheric ν_{μ} become ν_{τ} ?
- Why did the $\bar{\nu}_e$ from the reactors not convert ?

Because neutrinos have different masses and they oscillate !

Three questions, the same answer

 ν conference participants

- Why did solar ν_e become ν_{μ}/ν_{τ} ?
- Why did atmospheric ν_{μ} become ν_{τ} ?
- Why did the $\bar{\nu}_e$ from the reactors not convert ?

Because neutrinos have different masses and they oscillate !

What more do we want to know about neutrinos ?

Are neutrinos their own antiparticles ?

Neutrino = Antineutrino ?

Where can we see with neutrinos ?

Neutrinos can reach where light cannot !

Did neutrinos create the matter-antimatter asymmetry ?

If yes, they are responsible for our existence !

ヘロト ヘアト ヘヨト ヘ

Ongoing activities in neutrino physics

Solar neutrinos

Measuring the energy of the sun in neutrinos

Long baseline experiments

- "Manufacture" a lot of neutrinos
- See how many of them survive after travelling the "long baseline" (~ 1000–10000 km)

Astrophysical observations

Keep an eye on supernovae, AGN etc.

Need bigger and better detectors !

ヘロト ヘアト ヘヨト ヘ

Bigger and better: Megaton detectors

Below the antarctic ice: Gigaton IceCube

1 gigaton water = 1 000 000 000 000 litres

イロン 不得 とくほ とくほとう

э

Coming soon inside a mountain near you: INO

India-based Neutrino Observatory

- Under a mountain, inside a tunnel
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- ullet \gtrsim 25 years: a lifelong project

イロト イポト イヨト イヨト

Neutrinos everywhere

Where do Neutrinos Appear in Nature?

