Did something ν just break the speed limit?

Amol Dighe
Department of Theoretical Physics
Tata Institute of Fundamental Research

Chai-and-Why, Prithvi Theatre, Nov 6, 2011

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles?

4 How was their speed measured?
(5) So what?
(6) What now?

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles?
4. How was their speed measured?
(5) So what?
(6) What now?

Travelling at the speed of light

Speed of light: 299792 km/s (about 3 lakh km/s) in vacuum

- Time to the sun: 8 minutes
- Time to the moon: 1 second
- Time to cross the earth: $\frac{1}{25}$ second
- Time to travel 1 foot: 1 nanosecond ($\frac{1}{1000000000}$ second)

Travelling at the speed of light

Speed of light: 299792 km/s (about 3 lakh km/s) in vacuum

- Time to the sun: 8 minutes
- Time to the moon: 1 second
- Time to cross the earth: $\frac{1}{25}$ second
- Time to travel 1 foot: 1 nanosecond ($\frac{1}{1000000000}$ second)

Nothing travels faster than the speed of light in vacuum !

Did something ν break the speed limit ?

(1) What is the speed limit?

(2) How was the speed of light measured?
(3) What are these ν particles?
4. How was their speed measured?
(5) So what?

6 What now ?

Eclipse of jupiter: Roemer 1676

Roemer's Drawing of lo's Jupiter Eclipse

- When earth is closer to jupiter, eclipses happen earlier
- When earth is away, eclipses happen later
- Light takes 22 minutes to cross the earth's orbit

Cogwheel method: Fizeau 1849

- Mirror 8 km away
- Keep increasing the speed of cogwheel till Light enters from one gap, returns from the next
- Speed of light = distance / time

Rotating mirror method: Foucault 1850

Foucault's Spinning Mirror Device

- Many reflections, so the apparatus can be shorter
- Time measurement was the most difficult part
- Still 1\% accuracy obtained!

Motion of earth and speed of light

Light on earth like a bullet fired on a train

- Speed of bullet on a train: faster when the bullet is fired in the same direction as the train
- We expect that the speed of light will be more when it is moving in the direction of the earth's motion

Speeds of the earth
 - Spinnina about its axis: $0.5 \mathrm{~km} / \mathrm{s}$
 - Revolution about the sun: $30 \mathrm{~km} / \mathrm{s}$
 - Solar system around the milky way: $250 \mathrm{~km} / \mathrm{s}$
 - Milky way around other nearby galaxies: 300 km/s

Motion of earth and speed of light

Light on earth like a bullet fired on a train

- Speed of bullet on a train: faster when the bullet is fired in the same direction as the train
- We expect that the speed of light will be more when it is moving in the direction of the earth's motion

Speeds of the earth

- Spinning about its axis: $0.5 \mathrm{~km} / \mathrm{s}$
- Revolution about the sun: 30 km/s
- Solar system around the milky way: 250 km/s
- Milky way around other nearby galaxies: 300 km/s
Need to measure speed of light to an accuracy of

Motion of earth and speed of light

Light on earth like a bullet fired on a train

- Speed of bullet on a train: faster when the bullet is fired in the same direction as the train
- We expect that the speed of light will be more when it is moving in the direction of the earth's motion

Speeds of the earth

- Spinning about its axis: $0.5 \mathrm{~km} / \mathrm{s}$
- Revolution about the sun: 30 km/s
- Solar system around the milky way: 250 km/s
- Milky way around other nearby galaxies: 300 km/s

Need to measure speed of light to an accuracy of $\sim 300 \mathrm{~km} / \mathrm{s}$ (i.e. 0.1%)

Michaelson-Morley experiment 1887

Shock of the century

- Speed of light along the earth's motion
= Speed of light perpendicular to earth's motion
- A counter-intuitive result that revolutionised physics

Michaelson-Morley experiment 1887

Shock of the century

- Speed of light along the earth's motion
= Speed of light perpendicular to earth's motion
- A counter-intuitive result that revolutionised physics !

Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- Nothing can travel faster than the speed of light in vacuum

Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- Nothing can travel faster than the speed of light in vacuum

Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- Nothing can travel faster than the speed of light in vacuum

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles?

4 How was their speed measured?
(5) So what?
(6) What now ?

ν for neutrinos

The amazing neutrinos

- The lightest particles apart from photons (more than million times lighter than electron)
- The most weakly interacting particles (when 1000000000000000 pass through an atom, only one interacts)
- Absorbed only rarely by matter: neutrinos from the sun will need lead shielding of the thickness of a light year to stop !
- Neutrino experiments need large detectors and a lot of patience...
- An accurate speed measurement was not possible yet.

The amazing neutrinos

- The lightest particles apart from photons (more than million times lighter than electron)
- The most weakly interacting particles (when 1000000000000000 pass through an atom, only one interacts)
- Absorbed only rarely by matter: neutrinos from the sun will need lead shielding of the thickness of a light year to stop!
- Neutrino experiments need large detectors and a lot of patience.
- An accurate speed measurement was not possible yet.

The amazing neutrinos

- The lightest particles apart from photons (more than million times lighter than electron)
- The most weakly interacting particles (when 1000000000000000 pass through an atom, only one interacts)
- Absorbed only rarely by matter: neutrinos from the sun will need lead shielding of the thickness of a light year to stop !
- Neutrino experiments need large detectors and a lot of patience.
- An accurate speed measurement was not possible yet.

The amazing neutrinos

- The lightest particles apart from photons (more than million times lighter than electron)
- The most weakly interacting particles (when 1000000000000000 pass through an atom, only one interacts)
- Absorbed only rarely by matter: neutrinos from the sun will need lead shielding of the thickness of a light year to stop !
- Neutrino experiments need large detectors and a lot of patience...
- An accurate speed measurement was not possible yet.

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles?
4. How was their speed measured?
(5) So what?
(6) What now?

The OPERA experiment

Not designed to measure the speed of neutrinos !

- Neutrinos expected to move with the speed of light

What was the experiment designed for?
 - Three kinds of neutrinos:
 electron neutrino, muon neutrino, tau neutrino
 - They can change their type while moving
 - OPERA wanted to observe muon neutrinos going into tau neutrinos

The OPERA experiment

Not designed to measure the speed of neutrinos !

- Neutrinos expected to move with the speed of light

What was the experiment designed for ?

- Three kinds of neutrinos: electron neutrino, muon neutrino, tau neutrino
- They can change their type while moving
- OPERA wanted to observe muon neutrinos going into tau neutrinos

The looo...ooong baseline experiment

- From

Geneva, Switzerland to
Gran Sasso, Italy

- Distance 730 km through the earth
- Neutrinos pass through the earth, not along its surface

The source at CERN, Geneva

CERN Accelerator Complex

- A part of the proton beam is diverted to Gran Sasso before sending to the LHC ring

Beam animation

The detector at Gran Sasso

THE IMPLEMENTATION OF THE PRINCIPLE

- Many layers of emulsion and scintillator detectors
- Neutrinos (rarely) interact and produce charged particles
- The detector can track the charged particles to identify neutrinos

Speed of neutrinos: schematic

Fig. 5: Schematic of the time of flight measurement.

Distance measurement

Fig. 7: Moritoring of the PobRxaz GPS antenna position at L NGS, showing the slow carth crust drift and the fault displacemene due to the 2009 carthquake in the L'Aquila region. Units for the horizonal (vetical) axis are years

- GPS system + surveying inside tunnel
- Accuracy of 20 cm (over 73000000 cm) and that too through the earth
- Even Gran Sasso earthquake detected by the GPS

Time measurement

- Universal Time Clock
- Special synchronization to take care of effects of time dilation by gravity and earth's motion
- Time difference between the average pulse at the source (red) and the average pulse at the detector (black data)

Speed of neutrinos: faster than light

- Speed of neutrinos: $v \approx 299800 \mathrm{~km} / \mathrm{s} \quad(\pm 1 \mathrm{~km} / \mathrm{s})$
- Speed of light: $c=299792$ km/s

Speed of neutrinos: faster than light

- Speed of neutrinos: $v \approx 299800 \mathrm{~km} / \mathrm{s} \quad(\pm 1 \mathrm{~km} / \mathrm{s})$
- Speed of light: $c=299792$ km/s
- $v-c \approx 8 \mathrm{~km} / \mathrm{s}(\pm 1 \mathrm{~km} / \mathrm{s})$
- $\frac{v-c}{c} \approx 2.5 \times 10^{-5}$

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles ?

4 How was their speed measured?
(5) So what?
(6) What now?

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Why is this a big deal?

- If true, this means that relativity is not entirely correct
- But relativity has been verified by numerous ways throughout the last 100 years
- A similar situation as after the Michaelson-Morley experiment
- Need to find a theory that will supersede Einstein's relativity, just like relativity superseded Newton's laws
- Exciting times ahead: years, maybe decades !
- Our whole understanding of physics may change

Did something ν break the speed limit?

(1) What is the speed limit?
(2) How was the speed of light measured?
(3) What are these ν particles?

4 How was their speed measured?
(5) So what?
(6) What now?

The scientific process begins

- Check and recheck all aspects of the experiment, try to find any source of error, even a tiny one
- Measure the speed of neutrinos at other independent experiments to confirm or rule out this result

- Start devising new theories to replace Einstein's :-)

