

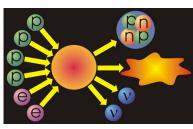
Invisible particles all around us

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

DTP Presentation, VSRP 2013, TIFR, May 29, 2013

Why care about invisible neutrinos?

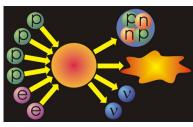

- (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- (Quizmaster:) They set up interesting puzzles
- (Adventurer:) Detecting them is a challenge!

Why care about invisible neutrinos?

- (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- (Quizmaster:) They set up interesting puzzles
- (Adventurer:) Detecting them is a challenge!

How does the sun shine?

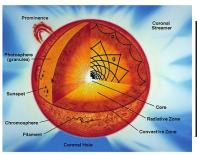

Nuclear fusion reactions: mainly

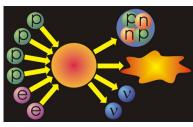

4
$$^{1}_{1}\text{H} + 2e^{-} \rightarrow ^{4}_{2}\text{He} + \text{light} + 2\nu_{e}$$

 Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine!!

How does the sun shine?


Nuclear fusion reactions: mainly


$$4 {}_{1}^{1}\text{H} + 2e^{-} \rightarrow {}_{2}^{4} \text{He} + \text{light} + 2\nu_{e}$$

 Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine !!

How does the sun shine?

Nuclear fusion reactions: mainly

4
$${}_{1}^{1}\text{H} + 2e^{-} \rightarrow {}_{2}^{4} \text{He} + \text{light} + 2\nu_{e}$$

 Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine !!

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun Light from the Sun's core cannot reach us directly

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Three questions, the same answer

- Why did the roti char?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run?

Because they were not moved

Three questions, the same answer

- Why did the roti char?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run?

Because they were not moved!

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night?
- Why can we see "inside" the sun with neutrinos?

Because neutrinos interact extremely weakly

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night?
- Why can we see "inside" the sun with neutrinos?

Because neutrinos interact extremely weakly!

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

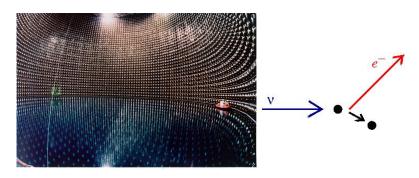
Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

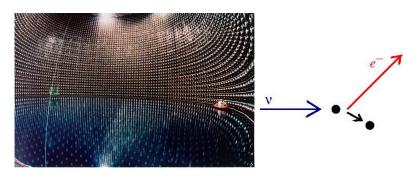
Stopping radiation with lead shielding


- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

SuperKamiokande: 50 000 000 litres of water



Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

SuperKamiokande observes about 5-10 neutrinos per day

SuperKamiokande: 50 000 000 litres of water

Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

SuperKamiokande observes about 5-10 neutrinos per day

Why care about invisible neutrinos?

- 1 (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- 4 (Quizmaster:) They set up interesting puzzles
- 5 (Adventurer:) Detecting them is a challenge

A view from the Hubble telescope

The world without neutrinos

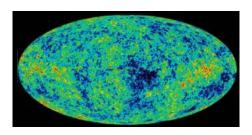
The world without neutrinos

Role of neutrinos in creating atoms

Neutrinos helped create the matter-antimatter asymmetry, without which, no atoms, no stars, no planets, no galaxies

Role of neutrinos in creating the Earth

 Earth has elements heavier than iron, which can be created only inside an exploding star (supernova)

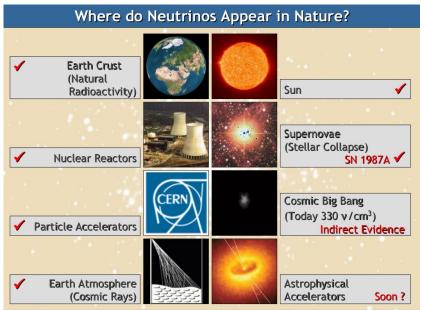

 A supernova must have exploded bilions of years ago whose fragments formed the solar system

Supernovae explode by neutrinos pushing the shock wave

Why care about invisible neutrinos?

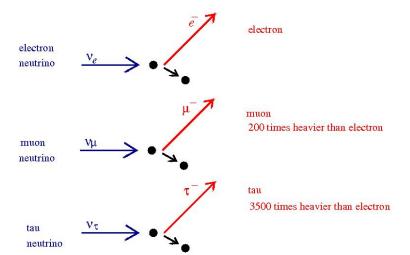
- (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- (Quizmaster:) They set up interesting puzzles
- (Adventurer:) Detecting them is a challenge!

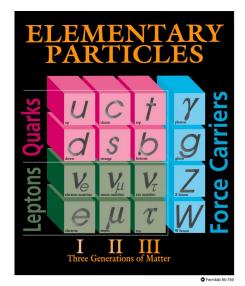
The second-most abundant particles in the universe



- Cosmic microwave background: 400 photons/ cm³
 Temperature: ∼ 3 K
- Cosmic neutrino background: 300 neutrinos / cm³
 Temperature: ~ 2 K

Even empty space between galaxies is full of neutrinos!


Neutrinos everywhere


Three kinds of neutrinos:

 $u_{ au}$

The Standard Model of Particle Physics

3 neutrinos:

$$u_{\mathsf{e}},
u_{\mu},
u_{ au}$$

- Zero charge
- spin 1/2
- almost massless: at least a million times lighter than electron

Why care about invisible neutrinos?

- (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- 4 (Quizmaster:) They set up interesting puzzles
- (Adventurer:) Detecting them is a challenge!

Neutrinos setting long-term puzzles

Solar neutrino puzzle: 1960s – 2002

- Only about half the expected ν_e observed!
- Possible solution: ν_e change to ν_μ/ν_τ

Atmospheric neutrino puzzle: 1980s - 1998

- Half the ν_{μ} lost in the Earth!
- ullet Possible solution: u_{μ} change to u_{τ}

Reactor neutrino experiments

- Breaking news of 2012: 10% of reactor $\bar{\nu}_e$ are lost!
- Possible solution: $\bar{\nu}_e$ change to $\bar{\nu}_{\tau}/\bar{\nu}_{\tau}$

Neutrinos setting long-term puzzles

Solar neutrino puzzle: 1960s – 2002

- Only about half the expected ν_e observed!
- \bullet Possible solution: $\nu_{\it e}$ change to ν_{μ}/ν_{τ}

Atmospheric neutrino puzzle: 1980s – 1998

- Half the ν_{μ} lost in the Earth!
- ullet Possible solution: u_{μ} change to u_{τ}

Reactor neutrino experiments

- Breaking news of 2012: 10% of reactor $\bar{\nu}_e$ are lost!
- Possible solution: $\bar{\nu}_e$ change to $\bar{\nu}_{\tau}/\bar{\nu}_{\tau}$

Three questions, the same answer

 ν conference participants

- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_{μ} from the atmosphere become ν_{τ} ?
- Why did 10% $\bar{\nu}_{\rm e}$ from the reactors become ν_{μ}/ν_{τ} ?

Because neutrinos have different masses and they mix

Three questions, the same answer

 ν conference participants

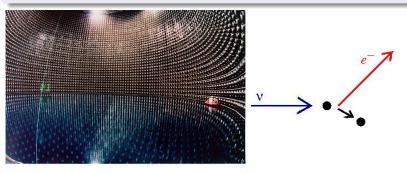
- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_{μ} from the atmosphere become ν_{τ} ?
- Why did 10% $\bar{\nu}_{\rm e}$ from the reactors become ν_{μ}/ν_{τ} ?

Because neutrinos have different masses and they mix!

A short-lived puzzle (2011-12)

Superluminal neutrinos?

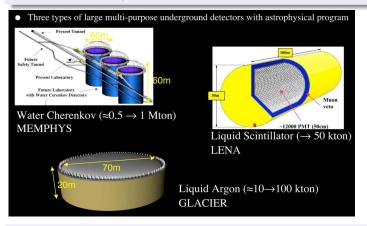
The neutrinos do not travel faster than light


Why care about invisible neutrinos?

- (Pragmatist:) They are needed for the Sun to shine
- (Philosopher:) They are responsible for our existence
- (Fatalist:) They are everywhere: we can't escape them
- 4 (Quizmaster:) They set up interesting puzzles
- (Adventurer:) Detecting them is a challenge!

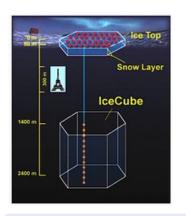
Bigger and better detectors needed

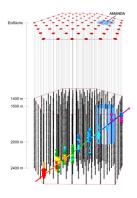
Superkamiokande: 50 kiloton


50 kiloton water = 50 000 000 litres

Observes about 5-10 neutrinos per day

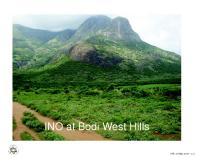
Bigger and better: Megaton detectors

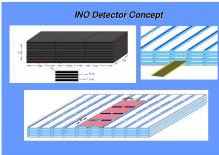

1 Megaton water = 1 000 000 000 litres



- R&D continues...
- Have to locate deep underground to remove cosmic ray background

Below the antarctic ice: Gigaton IceCube


1 gigaton water = 1 000 000 000 000 litres



Only look at "upward-going" neutrinos to remove cosmic ray background

Coming soon inside a mountain near you: INO

India-based Neutrino Observatory

- Under a mountain, inside a tunnel (Bodi Hills, TN)
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- ullet \gtrsim 25 years: a lifelong project

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?

Neutrinos are everywhere, a wide energy range

They are essential for our existence

They tend to pose interesting puzzles

Their detection needs LARGE detectors and a LOT of patience

They may provide clues to many fundamental questions: What are we made of? Where do we come from?