Supernova neutrinos Collective and matter effects at large detectors

Amol Dighe

Tata Institute of Fundamental Research Mumbai, India

NOW 2010 Otranto, Italy, Sept 9, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Changing paradigm of SN neutrino oscillations

Neutrino-electron forward scattering: MSW effects (1999 -)

- Flavour conversions mainly in MSW resonance regions : $(\rho \sim 10^{3-4} \text{ g/cc}, 1-10 \text{ g/cc})$
- Sensitivity to $\sin^2\theta_{13}\gtrsim 10^{-5}$ and mass hierarchy

Neutrino-neutrino forward scattering: Collective effects (2006 -)

- Significant flavour conversions near the neutrinosphere : $(\rho \sim 10^{6-10} \text{ g/cc})$
- Synchronized osc \rightarrow bipolar osc \rightarrow spectral split
- Single spectral split: In IH, $\bar{\nu}_e$ and $\bar{\nu}_\mu$ spectra swap completely ν_e and ν_μ spectra swap for $E > E_c$
- Sensitivity even to $\sin^2 \theta_{13} \sim 10^{-10}$

Multiple spectral splits (2009 –)

- "Single spectral split" valid only when $L_{
 u_e} pprox L_{ar
 u_e} \gtrsim L_{
 u_\mu}$
- In general, both ν_e ↔ ν_y and ν
 _e ↔ ν
 _y swaps take place, in sharply separated energy regions

 $\begin{pmatrix} \nu_{\chi} \\ \nu_{\nu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$

(日) (日) (日) (日) (日) (日) (日)

- Three flavour effects: even ν_e ↔ ν_x and ν
 _e ↔ ν
 _x swaps take place, in sharply separated energy regions
- The swapped / unswapped energy regions depend on primary fluxes and mass hierarchy

Primary neutrino fluxes: a lot of model dependence

solid: $\bar{\nu}_e$, dotted: $\bar{\nu}_x$

Totani et al., 1998, Raffelt et al., 2003 ・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Recent model preditions for fluxes

- Average energies slightly smaller
- ~ 20% differences in average energies and fluxes (especially during the accretion phase; more for neutrinos)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

ж

Typical features of the spectra

• Average energies:

Energy hierarchy:

 $\langle E_0(\nu_e) \rangle < \langle E_0(\bar{\nu}_e) \rangle < \langle E_0(\nu_x) \rangle = \langle E_0(\nu_y) \rangle$

Luminosities:

 $L_{
u_e} pprox L_{ar{
u}_e} \ L_{
u_\chi} pprox (0.5 - 2.0) \ L_{
u_e}$

Number and position of splits: is there a pattern ?

G.Fogli, E.Lisi, A.Marrone, I.Tamborra, JCAP 0910:002 (2009)

イロン 不得 とくほ とくほ とうほ

Split patterns with $\langle E_{\nu_{\mu}} \rangle$ and $L_{\nu_{\mu}}$: two "phases"

No swap, $e \leftrightarrow y$ swap, $e \leftrightarrow x$ swap

S. Choubey, B. Dasgupta, AD, A. Mirizzi, arXiv:1008.0308 [hep-ph]

イロト イポト イヨト イヨト

- $\langle E_{\nu_e} \rangle = 12$ MeV, $\langle E_{\bar{\nu}_e} \rangle = 15$ MeV • $L_{\nu_e} = L_{\bar{\nu}_e}$
- For lower $\langle E_{\nu_e} \rangle$, scale $\langle E_{\nu_{\mu}} \rangle$ appropriately

Multiple splits in different phases

Phase A

Phase C

Flavours: $\nu_e, \bar{\nu}_e, \nu_y, \bar{\nu}_y, \nu_x, \bar{\nu}_x$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MSW Resonances inside a SN

AD, A.Smirnov, PRD62, 033007 (2000)

H resonance: ($\Delta m_{\rm atm}^2$, θ_{13}), $\rho \sim 10^3$ –10⁴ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim 10-100$ g/cc

Always adiabatic, always in v

Fluxes arriving at the Earth

$$F_{
u_e} = p \; F^0_{
u_e} + (1-p) \; F^0_{
u_x} \;, \qquad F_{ar
u_e} = ar p \; F^0_{ar
u_e} + (1-ar p) \; F^0_{
u_x}$$

p at low, intermediate, high energies

		Phase A ($L_{ u_e} \gtrsim L_{ u_x}$)			Phase C ($L_{ u_e}\gtrsim L_{ u_x}$)			
NH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	0	0	0	0	0	s ²	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	s ²	s ²	<i>s</i> ²	s ²	s ²	0	
IH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	s ²	0	0	<i>s</i> ²	0	$C^{2}(s^{2})$	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	s ²	0	0	s ²	0	$c^{2}(s^{2})$	

\bar{p} at low, intermediate, high energies

		Phase A ($L_{\nu_e} \gtrsim L_{\nu_x}$)			Phase C ($L_{ u_e}\gtrsim L_{ u_x}$)			
NILL	$\sin^2 heta_{13}\gtrsim 10^{-3}$	<i>C</i> ²	C ²	C ²	<i>c</i> ²	C ²	0	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	<i>c</i> ²	c^2	c^2	<i>c</i> ²	c^2	0	
IH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	0	C ²	C ²	0	<i>c</i> ² [0]	<i>s</i> ² (0)	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	<i>c</i> ²	0	0	<i>c</i> ²	0 [<i>c</i> ²]	<i>s</i> ² (<i>c</i> ²)	

$$s^2 \equiv \sin^2 \theta_{12}, c^2 \equiv \cos^2 \theta_{12}$$

(C₃, C₄), [C₂, C₄]

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector: (events at SK)

•
$$\bar{\nu}_e p \rightarrow ne^+$$
: $\approx 7000 - 12000$
 $\Delta_{\rm WC}/{\rm MeV} = 0.47 \sqrt{E_e/{\rm MeV}}$

•
$$\nu e^- \rightarrow \nu e^-$$
: $\approx 200 - 300$

•
$$\nu_{e} + {}^{16}O \to X + e^{-}$$
: \approx 150–800

Carbon-based scintillation detector:

•
$$\bar{\nu}_e p \rightarrow ne^+$$
 (~ 300 per kt)
 $\Delta_{\rm SC}/{\rm MeV} = 0.075 \sqrt{E_e/{\rm MeV}}$

•
$$\nu + {}^{12}C \rightarrow \nu + X + \gamma$$
 (15.11 MeV)

Liquid Argon detector:

•
$$\nu_e$$
 + ⁴⁰ Ar \rightarrow ⁴⁰ K^* + e^- (\sim 300 per kt)
 $\Delta_{\text{LAr}}/\text{MeV} = 0.11\sqrt{E_e/\text{MeV}} + 0.02 E_e/\text{MeV}$

Earth matter effects

F

• If F_{ν_1} and F_{ν_2} reach the earth,

$$\begin{aligned} \overline{F}_{\nu_{\theta}}^{D}(L) - \overline{F}_{\nu_{\theta}}^{D}(0) &= (\overline{F}_{\nu_{2}} - \overline{F}_{\nu_{1}}) \times \\ & \sin 2\theta_{12}^{\oplus} \sin(2\theta_{12}^{\oplus} - 2\theta_{12}) \sin^{2}\left(\frac{\Delta m_{\oplus}^{2}L}{4E}\right) \end{aligned}$$

(Sign changes for antineutrinos)

- Nonzero Earth matter effects require
 - Neutrinos: $p \neq 0$
 - Antineutrinos: $\bar{p} \neq 0$
- Can distinguish scenarios depending on Earth effects in different energy regimes
- A more efficient way of detecting split positions

Spectra at detectors with Earth effects: phase A

- Spectral splits not visible
- Earth effects possibly visible in neutrinos

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Spectra at detectors with Earth effects: phase C

- Spectral split may be visible as "shoulders"
- Earth effects possibly visible, more prominent in ve

・ロット (雪) ・ (日) ・ (日)

ъ

Earth effects: oscillations at a single detector

Fourier power spectrum: $G_N(k) = \frac{1}{N} \left| \sum_{events} e^{iky} \right|^2$ ($y \equiv 25 \ MeV/E$)

Peak positions model independent, at known frequencies

AD, M. Kachelrieß, G. Raffelt, R. Tomàs, JCAP 0401:004 (2004)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Comparison between two detectors

 Ratio of luminosities at IceCube and a megaton water Cherenkov, as a function of time

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Comparing spectra at two 400 kt water Cherenkovs

S. Choubey et al., arXiv:1008.0308 [hep-ph]

Robust experimental signature

• Earth effects can distinguish hierarchies even for $\theta_{13} \lesssim 10^{-10}$

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic
- Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390

・ロット (雪) (日) (日)

G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

J.P.Kneller, G.C.Mclaughlin, J.Brockman, PRD77, 045023 (2008)

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in N_{ve}(E) are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock wave present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock wave present in $\bar{\nu}_e$ only for IH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in N_{ve}(E) are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock wave present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock wave present in $\bar{\nu}_e$ only for IH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$

Vanishing neutronization (ν_e) burst

 Time resolution of the detector crucial for separating ν_e burst from the accretion phase signal

Burst signal vanishes for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-3}$

Stepwise spectral split in O-Ne-Mg supernovae

MSW resonances deep inside collective regions

H. Duan, G. M. Fuller, J. Carlson, Y.Z.Qian, PRL100, 021101 (2008)

C. Lunardini, B. Mueller, H. T. Janka, arXiv:0712.3000

"MSW-prepared" spectral splits: two for IH, one for NH

H.Duan, G.Fuller, Y.Z.Qian, PRD77, 085016 (2008)

Positions of splits fixed by initial spectra

B.Dasgupta, AD, A. Mirizzi, G.G.Raffelt, PRD77, 1130007 (2008)

- v_e suppression more at low energy: Ar detector crucial
- Identification of O-Ne-Mg supernova ??

Multiple independent signals

	Ea	rth Mat	ter Effec	ts	Shock effects		ν_e burst
	$ u_{e}$		$\bar{ u}_{m{ heta}}$		$ u_{e}$	$\bar{ u}_{e}$	vanishing
	Peak	Tail	Peak	Tail			
NH, sin ² $\theta_{13} \gtrsim 10^{-3}$							
Phase A	X	Х				Х	\checkmark
Phase C	X			X		Х	
NH, sin ² $\theta_{13} \lesssim 10^{-5}$							
Phase A					Х	Х	Х
Phase C		X		X	Х	Х	Х
IH, sin ² $\theta_{13} \gtrsim 10^{-3}$							
Phase A	X	Х			Х		Х
Phase C	X				Х		Х
IH, sin ² $\theta_{13} \lesssim 10^{-5}$							
Phase A	X	Х	Х	Х	Х	Х	Х
Phase C	Х		Х		Х	Х	Х

Smoking gun signals and caveats

Earth matter effects

- Hierarchy identification even for extremely small θ_{13} values
- If primary fluxes are similar, identifying Earth effects is hard
- Multi-angle effects still to be understood (should not affect in accretion phase)
- Better results with ν_e spectrum \Rightarrow Ar detector crucial

S.Choubey et al., 2010

Shock wave effects

- Presence / absence independent of collective effects
- Stochastic density fluctuations: may partly erase the shock wave imprint
 G. Fogli et al, 2003
- Turbulent convections behind the shock wave: gradual depolarization effects
 A. Friedland et al., 2006; J. Kneller et al, 2008, 2010,

Neutronization burst signal

• Robust, but needs Ar detector with good time resolution