Supernova observations for neutrino mixing parameters

Amol Dighe

Tata Institute of Fundamental Research Mumbai, India

NuFact 2010 TIFR Mumbai, Oct 24, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Why bring supernova in a NuFact meeting ?

Sensitivity to θ_{13}

• $\sin^2 2\theta_{13} \lesssim 10^{-5}$ or $\gtrsim 10^{-3}$ give rise to very different flavor conversions \Leftarrow MSW mechanism

(日) (日) (日) (日) (日) (日) (日)

Sensitivity to mass hierarchy

 NH and IH lead to very different flavour conversions even for sin² 2θ₁₃ as low as 10⁻¹⁰ (and even lower) ⇐ collective effects

The same detectors, easy to piggyback on

- Reconstruction of ν_e and $\bar{\nu}_e$ spectra
- Identification of spectral modulations
- Time variation of the signal

Why bring supernova in a NuFact meeting ?

Sensitivity to θ_{13}

• $\sin^2 2\theta_{13} \lesssim 10^{-5}$ or $\gtrsim 10^{-3}$ give rise to very different flavor conversions \Leftarrow MSW mechanism

(日) (日) (日) (日) (日) (日) (日)

Sensitivity to mass hierarchy

 NH and IH lead to very different flavour conversions even for sin² 2θ₁₃ as low as 10⁻¹⁰ (and even lower)
 ⇐ collective effects

The same detectors, easy to piggyback on

- Reconstruction of ν_e and $\bar{\nu}_e$ spectra
- Identification of spectral modulations
- Time variation of the signal

Why bring supernova in a NuFact meeting ?

Sensitivity to θ_{13}

• $\sin^2 2\theta_{13} \lesssim 10^{-5}$ or $\gtrsim 10^{-3}$ give rise to very different flavor conversions \Leftarrow MSW mechanism

Sensitivity to mass hierarchy

 NH and IH lead to very different flavour conversions even for sin² 2θ₁₃ as low as 10⁻¹⁰ (and even lower)
 ⇐ collective effects

The same detectors, easy to piggyback on

- Reconstruction of ν_e and $\bar{\nu}_e$ spectra
- Identification of spectral modulations
- Time variation of the signal

Neutrino flavor conversions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

Neutrino flavor conversions

2 Observations at neutrino detectors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Earth matter effects
- Shock wave effects
- Neutronization burst

Neutrino flavor conversions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

Propagation through matter of varying density

Inside the SN: flavor conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavor conversion

Mass eigenstates travel independently

Inside the Earth: flavor oscillations

MSW matter effects (if detector is shadowed by the Earth)

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu - \nu$ potential $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lll} H_{vac}(\vec{p}) &=& M^2/(2p) \\ H_{MSW} &=& \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) &=& \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \big(\rho(\vec{q}) - \bar{\rho}(\vec{q})\big) \end{array}$$

• $d\rho/dt = i[H(\rho), \rho]$

 \Rightarrow Nonlinear effects !

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

 ν and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_y \bar{\nu}_y$ oscillations even for extremely small θ_{13}

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Spectral split/swap:

 ν_e and ν_y ($\bar{\nu}_e$ and $\bar{\nu}_y$) spectra interchange completely, only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

$$\begin{pmatrix} \nu_{X} \\ \nu_{y} \end{pmatrix} = \begin{pmatrix} \cos \theta_{23} & \sin \theta_{23} \\ -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

Spectral split/swap depending on hierarchy

cooling-phase Garching fluxes

B. Dasgupta, AD, G.Raffelt, A.Smirnov, arXiv:0904.3542 [hep-ph], PRL

Typical features of the spectra

• Average energies:

Energy hierarchy:

 $\langle E_0(\nu_e) \rangle < \langle E_0(\bar{\nu}_e) \rangle < \langle E_0(\nu_x) \rangle = \langle E_0(\nu_y) \rangle$

Luminosities:

 $L_{
u_e} pprox L_{ar{
u}_e} \ L_{
u_\chi} pprox (0.5 - 2.0) \ L_{
u_e}$

Sequential dominance of phenomena (Fe-core SN)

- $r \leq 200$ km: collective effects dominate
- $r \ge 200$ km: standard MSW matter effects dominate

G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

・ コット (雪) (小田) (コット 日)

After collective oscillations, before MSW oscillations

Electron flavour dominance: $L_{\nu_e} \approx L_{\bar{\nu}_e} \gtrsim \overline{L_{\nu_x}}$ (Phase A)

- No swaps for NH
- $\nu_e \leftrightarrow \nu_y$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_y$ swaps for IH

Non-electron flavour dominance: $L_{\nu_e} \approx L_{\bar{\nu}_e} \lesssim L_{\nu_x}$ (Phase C)

- $\nu_e \leftrightarrow \nu_\gamma$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_\gamma$ swaps for NH
- Additional $\nu_e \leftrightarrow \nu_x$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_x$ swaps for IH

NH vs. IH distinction possible even for $\sin^2 2\theta_{13}$ as low as 10^{-10} (and even lower) \Leftarrow Nonlinear instability

(日) (日) (日) (日) (日) (日) (日)

After collective oscillations, before MSW oscillations

Electron flavour dominance: $L_{\nu_e} \approx L_{\bar{\nu}_e} \gtrsim \overline{L_{\nu_x}}$ (Phase A)

- No swaps for NH
- $\nu_e \leftrightarrow \nu_y$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_y$ swaps for IH

Non-electron flavour dominance: $L_{\nu_e} \approx L_{\bar{\nu}_e} \lesssim L_{\nu_x}$ (Phase C)

- $\nu_e \leftrightarrow \nu_v$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_v$ swaps for NH
- Additional $\nu_e \leftrightarrow \nu_x$ and $\bar{\nu}_e \leftrightarrow \bar{\nu}_x$ swaps for IH

NH vs. IH distinction possible even for $\sin^2 2\theta_{13}$ as low as 10^{-10} (and even lower) \leftarrow Nonlinear instability

(日) (日) (日) (日) (日) (日) (日)

MSW Resonances inside a SN

AD, A.Smirnov, PRD62, 033007 (2000)

H resonance: ($\Delta m_{\rm atm}^2$, θ_{13}), $\rho \sim 10^3$ –10⁴ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim 10-100$ g/cc

Always adiabatic, always in v

Fluxes arriving at the Earth

$$F_{
u_e} = p \; F^0_{
u_e} + (1-p) \; F^0_{
u_x} \;, \qquad F_{ar
u_e} = ar p \; F^0_{ar
u_e} + (1-ar p) \; F^0_{
u_x}$$

p at low, intermediate, high energies

		Phase A ($L_{\nu_e} \gtrsim L_{\nu_x}$)			Phase C ($L_{ u_e}\gtrsim L_{ u_x}$)			
NH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	0	0	0	0	0	s ²	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	s ²	s ²	<i>s</i> ²	s ²	s ²	0	
IH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	s ²	0	0	<i>s</i> ²	0	$C^{2}(s^{2})$	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	s ²	0	0	s ²	0	$c^{2}(s^{2})$	

\bar{p} at low, intermediate, high energies

		Phase A ($L_{\nu_e} \gtrsim L_{\nu_x}$)			Phase C ($L_{ u_e} \gtrsim L_{ u_x}$)			
NH	$\sin^2 heta_{13}\gtrsim 10^{-3}$	<i>c</i> ²	C ²	C^2	<i>c</i> ²	C ²	0	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	<i>c</i> ²	c^2	c^2	<i>c</i> ²	c^2	0	
ш	$\sin^2 heta_{13}\gtrsim 10^{-3}$	0	C ²	C ²	0	<i>c</i> ² [0]	<i>s</i> ² (0)	
	$\sin^2 heta_{13}\lesssim 10^{-5}$	<i>c</i> ²	0	0	<i>c</i> ²	0 [<i>c</i> ²]	$s^{2}(c^{2})$	

$$s^2 \equiv \sin^2 \theta_{12}, c^2 \equiv \cos^2 \theta_{12}$$

(), []: non-adiabatic swaps

2 Observations at neutrino detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector: (events at SK)

•
$$\bar{\nu}_e p \rightarrow ne^+$$
: $\approx 7000 - 12000$
 $\Delta_{\rm WC}/{\rm MeV} = 0.47 \sqrt{E_e/{\rm MeV}}$

•
$$\nu e^- \rightarrow \nu e^-$$
: $\approx 200 - 300$

•
$$\nu_{e} + {}^{16}O \to X + e^{-}$$
: \approx 150–800

Carbon-based scintillation detector:

•
$$\bar{\nu}_e p \rightarrow ne^+$$
 (~ 300 per kt)
 $\Delta_{\rm SC}/{\rm MeV} = 0.075 \sqrt{E_e/{\rm MeV}}$

•
$$\nu + {}^{12}C \rightarrow \nu + X + \gamma$$
 (15.11 MeV)

Liquid Argon detector:

•
$$\nu_e$$
 + ⁴⁰ Ar \rightarrow ⁴⁰ K^* + e^- (\sim 300 per kt)
 $\Delta_{\text{LAr}}/\text{MeV} = 0.11\sqrt{E_e/\text{MeV}} + 0.02 E_e/\text{MeV}$

Observations at neutrino detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

Earth matter effects

F

• If F_{ν_1} and F_{ν_2} reach the earth,

$$\begin{aligned} \overline{F}_{\nu_{\theta}}^{D}(L) - \overline{F}_{\nu_{\theta}}^{D}(0) &= (\overline{F}_{\nu_{2}} - \overline{F}_{\nu_{1}}) \times \\ & \sin 2\theta_{12}^{\oplus} \sin(2\theta_{12}^{\oplus} - 2\theta_{12}) \sin^{2}\left(\frac{\Delta m_{\oplus}^{2}L}{4E}\right) \end{aligned}$$

(Sign changes for antineutrinos)

- Nonzero Earth matter effects require
 - Neutrinos: $p \neq 0$
 - Antineutrinos: $\bar{p} \neq 0$
- Can distinguish scenarios depending on Earth effects in different energy regimes
- A more efficient way of detecting split positions

Spectra at detectors with Earth effects: phase A

- Spectral splits not visible
- Earth effects possibly visible in neutrinos

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Spectra at detectors with Earth effects: phase C

- Spectral split may be visible as "shoulders"
- Earth effects possibly visible, more prominent in ve

・ロット (雪) ・ (日) ・ (日)

ъ

Earth effects: oscillations at a single detector

Fourier power spectrum: $G_N(k) = \frac{1}{N} \left| \sum_{events} e^{iky} \right|^2$ ($y \equiv 25 \ MeV/E$)

Peak positions model independent, at known frequencies

AD, M. Kachelrieß, G. Raffelt, R. Tomàs, JCAP 0401:004 (2004)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Earth effects: comparison between two detectors

 Ratio of luminosities at IceCube and a megaton water Cherenkov, as a function of time

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Comparing spectra at two 400 kt water Cherenkovs

S. Choubey et al., arXiv:1008.0308 [hep-ph]

Robust experimental signature

• Earth effects can distinguish hierarchies even for $\theta_{13} \lesssim 10^{-10}$

Observations at neutrino detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic
- Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390

・ロット (雪) (日) (日)

G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

J.P.Kneller, G.C.Mclaughlin, J.Brockman, PRD77, 045023 (2008)

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in N_{ve}(E) are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Identifying mixing scenario

- Shock wave present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock wave present in $\bar{\nu}_e$ only for IH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in N_{ve}(E) are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock wave present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock wave present in $\bar{\nu}_e$ only for IH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$

Observations at neutrino detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Earth matter effects
- Shock wave effects
- Neutronization burst

Vanishing neutronization (ν_e) burst

 Time resolution of the detector crucial for separating ν_e burst from the accretion phase signal

Burst signal vanishes for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-3}$

Multiple independent signals

	Earth Matter Effects				Shock effects		ν_e burst
	ν_{e}		$\bar{ u}_{m{ heta}}$		$ u_{e}$	$\bar{ u}_{e}$	vanishing
	Peak	Tail	Peak	Tail			
NH, sin ² $\theta_{13} \gtrsim 10^{-3}$							
Phase A	X	Х				Х	\checkmark
Phase C	X			X		Х	
NH, sin ² $\theta_{13} \lesssim 10^{-5}$							
Phase A					Х	Х	Х
Phase C		X		X	Х	Х	Х
IH, sin ² $\theta_{13} \gtrsim 10^{-3}$							
Phase A	X	Х			Х		Х
Phase C	X				Х		Х
IH, sin ² $\theta_{13} \lesssim 10^{-5}$							
Phase A	X	Х	Х	Х	Х	Х	Х
Phase C	Х		Х		Х	Х	Х

What should the detectors look for

Spectral splits

Sharp shoulders: difficult to identify

Earth matter effects

- Comparatively easy to identify (if shadowed detector)
- If primary fluxes are similar, identifying Earth effects is hard
- Better results with ν_e spectrum \Rightarrow Ar detector crucial
- Hierarchy identification even for extremely small θ_{13} values

Shock wave effects

- Easy to spot with time variation of signal
- Presence / absence independent of collective effects
- Hierarchy determination possible for $\theta_{13}\gtrsim 10^{-5}$

Neutronization burst signal

Robust, but needs Ar detector and good time resolution

Final comments

Open questions and caveats

- Better analytical understanding of collective effects
- Development of "pendular oscillations"
- Prediction of positions and widths of spectral swaps
- Multi-angle decoherence effects ??
- Effects of turbulence ??

Effect of ν oscillations on SN astrophysics

- Shock wave dynamics
- R-process nucleosynthesis

So what ?

If we gain some information on θ_{13} or mass ordering: Will it help us design experiments more optimally ? Will it bias us towards some of the experiments ?

Final comments

Open questions and caveats

- Better analytical understanding of collective effects
- Development of "pendular oscillations"
- Prediction of positions and widths of spectral swaps
- Multi-angle decoherence effects ??
- Effects of turbulence ??

Effect of ν oscillations on SN astrophysics

- Shock wave dynamics
- R-process nucleosynthesis

So what ?

If we gain some information on θ_{13} or mass ordering: Will it help us design experiments more optimally ? Will it bias us towards some of the experiments ?

Final comments

Open questions and caveats

- Better analytical understanding of collective effects
- Development of "pendular oscillations"
- Prediction of positions and widths of spectral swaps
- Multi-angle decoherence effects ??
- Effects of turbulence ??

Effect of ν oscillations on SN astrophysics

- Shock wave dynamics
- R-process nucleosynthesis

So what ?

If we gain some information on θ_{13} or mass ordering: Will it help us design experiments more optimally ? Will it bias us towards some of the experiments ?

Extra Slides

Trapped neutrinos before the collapse

- Neutrinos trapped inside "neutrinospheres" around $\rho \sim 10^{10} {\rm g/cc}$
- Free-streaming when $\rho \lesssim 10^{10} \text{g/cc}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Core collapse, shock wave, and explosion

Neutronization burst: ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\sim 10^{58}$ neutrinos

 $\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau}$ Duration: About 10 sec Emission of 99% of the SN collapse energy in neutrinos

¿¿¿ Explosion ???

Multi-angle vs. single-angle approximation

H.Duan, G.M.Fuller, J.Carlson

Y.-Z. Qian, PRD74, 105014 (2006)

• Multi-angle effects only smear the spectra to some extent

G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

 "Multi-angle decoherence" during collective oscillations suppressed by ν-ν̄ asymmetry

A.Esteban-Pretel, S.Pastor, R.Tomas, G.Raffelt, G.Sigl, PRD76, 125018 (2007)

If matter density is extremely high, multi-angle decoherence possible.

A.Esteban-Pretel, A.Mirizzi, S.Pastor, R.Tomas, G.G. Raffelt,

P.D.Serpico, G. Sigl, PRD78, 085012 (2008)

Single-angle approximation \Rightarrow

Changing paradigm of SN neutrino oscillations

Neutrino-electron forward scattering: MSW effects (1999 -)

- Flavour conversions mainly in MSW resonance regions : $(\rho \sim 10^{3-4} \text{ g/cc}, 1-10 \text{ g/cc})$
- Sensitivity to $\sin^2 \theta_{13} \gtrsim 10^{-5}$ and mass hierarchy

Neutrino-neutrino forward scattering: Collective effects (2006 -)

- Significant flavour conversions near the neutrinosphere : $(\rho \sim 10^{6-10} \text{ g/cc})$
- Synchronized osc \rightarrow bipolar osc \rightarrow spectral split
- Single spectral split: In IH, $\bar{\nu}_e$ and $\bar{\nu}_\mu$ spectra swap completely ν_e and ν_μ spectra swap for $E > E_c$
- Sensitivity even to $\sin^2 \theta_{13} \sim 10^{-10}$

Multiple spectral splits (2009 -)

- "Single spectral split" valid only when $L_{
 u_e} pprox L_{ar
 u_e} \gtrsim L_{
 u_\mu}$
- In general, both ν_e ↔ ν_y and ν
 _e ↔ ν
 _y swaps take place, in sharply separated energy regions

 $\begin{pmatrix} \nu_{\chi} \\ \nu_{\nu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$

(日) (日) (日) (日) (日) (日) (日)

- Three flavour effects: even ν_e ↔ ν_x and ν
 _e ↔ ν
 _x swaps take place, in sharply separated energy regions
- The swapped / unswapped energy regions depend on primary fluxes and mass hierarchy

Primary neutrino fluxes: a lot of model dependence

solid: $\bar{\nu}_e$, dotted: $\bar{\nu}_x$

Totani et al., 1998, Raffelt et al., 2003 ・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Recent model preditions for fluxes

- Average energies slightly smaller
- ~ 20% differences in average energies and fluxes (especially during the accretion phase; more for neutrinos)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

ж

Mass ordering, spectral crossings, swaps, and splits

- Neutrinos: $\omega \equiv 1/E$
- Antineutrinos: $\omega \equiv -1/E$
- Spectrum $g(|\omega|) = F_{\nu_{\theta}}(\omega) - F_{\nu_{x}}(\omega)$ $g(-|\omega|) = F_{\overline{\nu}_{x}}(\omega) - F_{\overline{\nu}_{\theta}}(\omega)$
- Swap $S(\omega) = \frac{g(\omega)_{\text{final}}}{g(\omega)_{\text{initial}}}$

Swap $S(\omega) = -1 \Rightarrow$

- Inverted Hierarchy: positive crossing
- Normal Hierarchy: negative crossing
- Nearby swaps may overlap to reduce number of splits

Stepwise spectral split in O-Ne-Mg supernovae

MSW resonances deep inside collective regions

H. Duan, G. M. Fuller, J. Carlson, Y.Z.Qian, PRL100, 021101 (2008)

C. Lunardini, B. Mueller, H. T. Janka, arXiv:0712.3000

"MSW-prepared" spectral splits: two for IH, one for NH

H.Duan, G.Fuller, Y.Z.Qian, PRD77, 085016 (2008)

Positions of splits fixed by initial spectra

B.Dasgupta, AD, A. Mirizzi, G.G.Raffelt, PRD77, 1130007 (2008)

- v_e suppression more at low energy: Ar detector crucial
- Identification of O-Ne-Mg supernova ??