Theoretical issues in heavy flavor physics A biased sampling

Amol Dighe

Tata Institute of Fundamental Research, Mumbai

Lepton-Photon 2011 Mumbai, Aug 27, 2011

Building up the Standard Model

- GIM mechanism ⇔ no FCNC
- CKM paradigm ⇔ three quark families
- Large $B \overline{B}$ mixing \Leftrightarrow heavy top quark

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: do new particles contribute through loop processes ?
- Asymmetries: are the predicted SM relations obeyed ?

Building up the Standard Model

- GIM mechanism ⇔ no FCNC
- CKM paradigm ⇔ three quark families
- Large $B \overline{B}$ mixing \Leftrightarrow heavy top quark

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: do new particles contribute through loop processes ?
- Asymmetries: are the predicted SM relations obeyed ?

Window to New Physics beyond the SM

Puzzles that may lead directly to NP

- The $K \pi$ puzzle: is it just matrix elements calculation ?
- Anomalous like-sign-dimuon anomaly
- $B \rightarrow \tau \nu_{\tau}$: loss of universality ?
- Lifetime difference and CP phase in B_s decay

Questions that may not have quick answers

• Why three generations ? (Only three, are we sure ?)

- Why the extreme hierarchy of masses ?
- What is the source of CP violation ?
- What about baryon asymmetry ?

Window to New Physics beyond the SM

Puzzles that may lead directly to NP

- The $K \pi$ puzzle: is it just matrix elements calculation ?
- Anomalous like-sign-dimuon anomaly
- $B \rightarrow \tau \nu_{\tau}$: loss of universality ?
- Lifetime difference and CP phase in B_s decay

Questions that may not have quick answers

• Why three generations ? (Only three, are we sure ?)

- Why the extreme hierarchy of masses ?
- What is the source of CP violation ?
- What about baryon asymmetry ?

- Mainly B decays, partly D decays, top had its own session
- Most of the data, but not all, updated till EPS 2011. Theoretical plots often use older data.
- Will focus on measurements at the border of SM and beyond, which could be a bit unfair to all those beautiful measurements that are consistent with the SM.
- Omit items that have been covered in earlier talks Tim Gershon, Rick van Kooten, Youngjoon Kwon, Gerhard Raven

(日) (日) (日) (日) (日) (日) (日)

Apologies for inadvertant omissions

Contents

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta\Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- Quantifying NP in a model-independent manner
 - Lorentz structure of new physics
 - New Wilson coefficients

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

A typical B-decay rate calculation ($b ightarrow s \mu \mu$)

The effective Hamiltonian: Operator Product Expansion

$$\mathcal{H}_{\text{eff}}^{SM} = -\frac{4G_F}{\sqrt{2}} V_{lb}^* \left\{ \sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + C_7 \frac{e}{16\pi^2} \left(\bar{s}\sigma_{\mu\nu} (m_s P_L + m_b P_R) b \right) F^{\mu\nu} + C_9 \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\mu + C_{10} \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\gamma_5 \mu \right\}$$

Decay rate:

$$\Gamma(B \rightarrow f) = [phase \ space)] |\langle f | H_{eff}^{SM} | B \rangle|^2$$

Quantities involved:

- masses,

 decay constants,
 bag factors,
- Wilson coefficients, Hadronic matrix elements (form factors),

・ コ マ ト ふ 見 マ ト 雪 マ ト ー マ

-27

CKM elements

Standard Model calculations

Masses, decay constants and bag parameters

- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Decay constants f_B and f_{B_s}

$$N_f = 2 + 1 \text{ results}$$
• $F_B = 205(12) \text{ MeV}$
 $\sim 6\%$

• $F_{B_s} = 250(12) \text{ MeV} \ \sim 5\%$

•
$$(F_{B_s}/F_B) = 1.215(19)$$

~ 1.5%

N. Tantalo, EPS 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bag parameters

 $B_B \& B_{B_s}$ averages

a single $N_f=2+1$ calculation, that combines with F_{B_R} to give

$$F_{B_S}\sqrt{\hat{B}_{B_S}}^{N_f=2+1} = 233(14) \ MeV \sim 6\% \qquad \qquad \xi_B^{N_f=2+1} = 1.237(32) \sim 2.5\%$$

again, are these reasonable estimates?

(ロトイロトイモトィモト モ のへの

. N. Tantalo, EPS 2011 √ 𝔍

1

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Global fits to CKM elements

CKMfitter:

UTfit:

Issues involved in CKM element determination

Measurements of individual elements

- V_{ub} : inclusive vs. exclusive vs. $B \rightarrow \tau \nu$
- V_{cs} : semileptonic K decays vs. hadronic τ decays
- V_{ts} and V_{td}: Form factors and Bag factors essential

Tests of unitarity

- The trivial unitarity relation (more a test of our calculations): $\alpha + \beta + \gamma = \pi$
- The nontrivial unitarity relation:

$$\sin \beta_{s} = \left| \frac{V_{us}}{V_{ud}} \right|^{2} \frac{\sin \beta \sin(\gamma + \beta_{s})}{\sin(\beta + \gamma)} \left[1 + \mathcal{O}(\lambda^{4}) \right]$$

Aleksan et al, 1994

We will soon be close to testing this

Measurements that may indicate NP

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Mass difference in neutral B systems

$$\begin{array}{lll} M_{12} & = & \displaystyle \frac{1}{2M_{B_s}} \langle \bar{B}_s | \mathcal{H}_{eff}^{\Delta B=2} \, | B_s \rangle \, \left[1 + O \left(m_b^2 / m_W^2 \right) \right] \, , \\ \mathcal{H}_{eff}^{\Delta B=2} & \sim & G_F^2 \, (V_{tb} V_{ts}^*)^2 C^Q(m_t, m_W, \mu) Q(\mu) + h.c. \\ Q & = & \displaystyle (\bar{b}_i s_i)_{V-A} (\bar{b}_j s_j)_{V-A}, \end{array}$$

ΔM Measurements

- $\Delta M_d/\Gamma_d = 0.771 \pm 0.008 \Rightarrow V_{td}$
- $\Delta M_s / \Gamma_s = 26.92 \pm 0.15 \pm 0.10 \Rightarrow V_{ts}$
- $\Delta M_D / \Gamma_D = 0.63 \pm 0.2$ (LD contributions significant)

Talk by Youngjoon Kwon

Width differences: theory and experiment

$\Delta \Gamma_s$ and $\Delta \Gamma_d$: theoretical predictions

- $\Delta\Gamma_s/\Gamma_s = 0.137 \pm 0.027$
- $\Delta\Gamma_d/\Gamma_d = (42 \pm 8) \times 10^{-4}$
- $\Delta \Gamma_d / \Delta \Gamma_s \approx |V_{td} / V_{ts}|^2 \approx 0.04$

Lenz et al, 2011

$\Delta \Gamma_d$ measurement: possible? worthwhile?

- $\Delta \Gamma_d / \Gamma_d = 0.009 \pm 0.037$ (BaBar + Delphi)
- $\Delta \Gamma_d / \Gamma_d = 0.017 \pm 0.018 \pm 0.11$ (Belle)
- May increase upto 2.5% with new physics
- ΔΓ_d neglected in theoretical calculations OK as long as the accuracy of experiments is below per cent level.

$\Delta \Gamma_D$

 Very small: not many common final states for D and D decay

$\Delta\Gamma_s$: Can new physics increase it ?

Measurement from $B_s \rightarrow J/\psi \phi$

- $\Delta\Gamma_s/\Gamma_s = 0.154^{+0.067}_{-0.065}$
- Values much larger than predictions are still allowed (This point will be useful soon)

NP contribution to $\Delta\Gamma_s$

• $\Delta\Gamma_q = 2\operatorname{Re}(\Gamma_{12}^*M_{12})/|M_{12}| = -2|\Gamma_{21}|_q\cos(\Theta_q - \Phi_q)$ $\Theta_q \equiv \operatorname{Arg}(\Gamma_{21})_q, \Phi_q \equiv \operatorname{Arg}(M_{21})_q$

•
$$[\Theta_s - \Phi_s](SM) \approx 0$$

- ΔΓ_s can only decrease by new physics effects !! Grossman 1996 Caveat: Flavor-dependent NP contributions to Γ₁₂ ?
 Third generation scalar leptoquark models AD, Kundu, Nandi,
- Left-right symmetric models

$\Delta\Gamma_s$: Can new physics increase it ?

Measurement from $B_s \rightarrow J/\psi \phi$

- $\Delta\Gamma_s/\Gamma_s = 0.154^{+0.067}_{-0.065}$
- Values much larger than predictions are still allowed (This point will be useful soon)

NP contribution to $\Delta\Gamma_s$

• $\Delta\Gamma_q = 2\operatorname{Re}(\Gamma_{12}^*M_{12})/|M_{12}| = -2|\Gamma_{21}|_q\cos(\Theta_q - \Phi_q)$ $\Theta_q \equiv \operatorname{Arg}(\Gamma_{21})_q, \Phi_q \equiv \operatorname{Arg}(M_{21})_q$

•
$$[\Theta_s - \Phi_s](SM) \approx 0$$

ΔΓ_s can only decrease by new physics effects !!

Grossman 1996

Caveat: Flavor-dependent NP contributions to Γ_{12} ?

Third generation scalar leptoquark models

AD, Kundu, Nandi, 2007

Left-right symmetric models

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta \Gamma_s$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Like-sign dimuon asymmetry and $B \rightarrow J/\psi\phi$: for B_d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ りへぐ

Like-sign dimuon asymmetry and $B \rightarrow J/\psi\phi$: for B_s

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Large $\Delta \Gamma_s$ and ϕ_s indicated ?

Like-sign Dimuon asymmetry:

- SM \Rightarrow $A_{sl}^{b} = (-0.023^{+0.005}_{-0.006})\%$
- $A_{sl}^{b} = (-0.787 \pm 0.172 \pm 0.093)\%$ $\Rightarrow 3.9\sigma$ deviation
- B_s sector: $a_{sl}^s = (-1.81 \pm 1.06)\%$

•
$$a_{sl}^s = (\Delta \Gamma_s / \Delta M_s) \tan \phi_s^{sl}$$

• Large $\Delta \Gamma_s$ and/or large ϕ_s

$B_s \rightarrow J/\psi \phi$ angular analysis:

- Results getting closer to SM
- Large $\Delta \Gamma_s$ and $\beta_s^{J/\psi\phi}$ still possible

The Tale of Two Betas

$$\beta$$
 from $B_s \rightarrow J/\psi \phi$

$$\beta_{s}^{J/\psi\phi} \approx \frac{1}{2} \operatorname{Arg}\left(-\frac{(V_{cb}V_{cs}^{*})^{2}}{M_{12s}}\right)$$

β from a_{sl}

•
$$a_{sl} = (\Delta \Gamma_s / \Delta M_s) \tan \phi_s^{sl}$$

•
$$\phi_s^{sl} = \operatorname{Arg}(-M_{12s}/\Gamma_{12s})$$

- Arg(Γ₁₂) ≠ Arg(V_{cb}V^{*}_{cs})² since the (c-u) and (u-u) intermediate states contribute to Γ₁₂.
- $\phi_s^{sl}(SM) = 0.0041 \pm 0.0007$
- $\beta_s^{sl}(SM) = -0.0020 \pm 0.0003$

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta\Gamma_s$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

$\Gamma_{12}^{NP} = 0$ highly disfavored

- B_s → J/ψφ and likesign dimuon asymmetry favor large φ_s values (especially the latter)
- Moreover, they favor different φ_s regions ⇒
 Tension that can be reduced only with larger ΔΓ_s
- If no NP contribution to Γ_{12s}, difficult to be consistent with data

Implications of nonzero Γ_{12}^{NP}

Scalar leptoquarks that couple only to $\boldsymbol{\tau}$

AD, Kundu, Nandi, 2010

(日) (日) (日) (日) (日) (日) (日)

Z', RPV SUSY

Deshpande, He, Valencia 2010

- $b \rightarrow s \tau \tau$ the only unconstrained operator Bauer et al, 2010
- Enhanced BR for $B_s \rightarrow \tau^+ \tau^-$ predicted
- $BR(B_s \rightarrow \tau \tau) \sim 5\%$ still allowed

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta \Gamma_s$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Electroweak constraints

Fourth generation still allowed with precision constraints

Electroweak constraints on fourth generation

- Masses cannot be too high, unitarity constraints
- Higgs mass and θ_{34} correlated

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Constraints from the flavor data

Observables that impact *CKM*₄ in a clean manner:

- R_{bb} and A_b from $Z o b \bar{b}$
- ϵ_K from $K_L \to \pi \pi$
- the branching ratio of $K^+
 ightarrow \pi^+
 u ar{
 u}$
- the mass differences in the B_d and B_s systems
- the time-dependent CP asymmetry in $B_d \rightarrow J/\psi K_S$
- γ from tree-level decays
- the branching ratios of $B o X_s \gamma$ and $B o X_c e ar{
 u}$
- the branching ratio of $B \to X_{s}\mu^+\mu^-$ in the high- q^2 and low- q^2 regions

Constraints and implications

- $|\tilde{V}_{ub'}| < 0.06, \, |\tilde{V}_{cb'}| < 0.027, \, |\tilde{V}_{tb'}| < 0.31$ at 3σ .
- NP signals for *B*, *D* and rare *K* decays are still possible.

Table of Constraints from flavor data

Magnitude	SM	$m_{t'} = 400 \text{GeV}$	$m_{t'} = 600 { m GeV}$
\tilde{V}_{ud}	0.9743 ± 0.0002	0.9743 ± 0.0002	0.9743 ± 0.0002
$ \tilde{V}_{US} $	0.227 ± 0.001	0.227 ± 0.001	0.227 ± 0.001
$ \tilde{V}_{ub} $	$(3.55 \pm 0.17) \times 10^{-3}$	$(3.90 \pm 0.38) \times 10^{-3}$	$(3.91 \pm 0.39) \times 10^{-3}$
<i>V_{ub'}</i>	-	0.017 ± 0.014	0.016 ± 0.018
V _{cd}	0.227 ± 0.001	0.227 ± 0.001	0.227 ± 0.001
V _{cs}	0.9743 ± 0.0002	0.9743 ± 0.0002	0.9743 ± 0.0002
V _{cb}	0.042 ± 0.001	0.041 ± 0.001	0.041 ± 0.001
$ \tilde{V}_{cb'} $	-	$(8.4 \pm 6.2) imes 10^{-3}$	$(6.0 \pm 3.8) \times 10^{-3}$
\tilde{V}_{td}	0.0086 ± 0.0003	0.009 ± 0.002	0.009 ± 0.001
$ \tilde{V}_{ts} $	0.041 ± 0.001	0.041 ± 0.001	0.040 ± 0.001
$ \tilde{V}_{tb} $	1	0.998 ± 0.006	0.999 ± 0.003
	_	0.07 ± 0.08	0.04 ± 0.06
$ \tilde{V}_{t'd} $	-	0.01 ± 0.01	0.01 ± 0.02
$ \tilde{V}_{t's} $	-	0.01 ± 0.01	0.004 ± 0.010
$ \tilde{V}_{t'b} $	-	0.07 ± 0.08	0.04 ± 0.06
$ \tilde{V}_{t'b'} $	-	0.998 ± 0.006	0.999 ± 0.003
Quantity	SM	$m_{t'} = 400 { m GeV}$	$m_{t'} = 600 { m GeV}$
$ \tilde{V}_{tb}^*\tilde{V}_{td} $	0.0086 ± 0.0003	0.009 ± 0.002	0.009 ± 0.001
$\operatorname{Arg}(\tilde{V}_{tb}^* \tilde{V}_{td})$) $(-21.5 \pm 1.0)^{\circ}$	$(-30.4 \pm 10.3)^{\circ}$	$(-27.9 \pm 8.0)^{\circ}$
$ \tilde{V}_{tb}^*\tilde{V}_{ts} $	0.041 ± 0.001	0.040 ± 0.001	0.040 ± 0.001
$\operatorname{Arg}(\tilde{V}_{tb}^*\tilde{V}_{ts})$) $(-178.86 \pm 0.06)^{\circ}$	$(-178.12 \pm 1.14)^{\circ}$	$(-178.12 \pm 0.57)^{\circ}$
$ \tilde{V}_{t'b}^*\tilde{V}_{t'd} $	-	0.0010 ± 0.0015	0.0006 ± 0.0011
Arg $(\tilde{V}_{t'b}^* \tilde{V}_{t'b})$	g) –	$(-107.1 \pm 106.5)^{\circ}$	$(-102.5 \pm 112.8)^{\circ}$
$ \tilde{V}_{t'b}^*\tilde{V}_{t's} $	-	0.0005 ± 0.0010	0.0002 ± 0.0005
$\operatorname{Arg}(\tilde{V}_{t'b}^*\tilde{V}_{t'})$	s) –	$(37.8 \pm 120.3)^{\circ}$	$(40.1 \pm 174.1)^{\circ}$

Alok et al, 2011

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta \Gamma_s$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Implications of the $B \rightarrow \tau \nu$ anomaly

- SM: BR $(B^+ o au^+
 u_ au)_{
 m SM} = (0.81 \pm 0.15) imes 10^{-4}$
- Measured: BR($B^+ o au^+
 u_ au$) = (1.68 ± 0.31) × 10⁻⁴
- More than 2σ enhancement: difficult to explain by f_{B_d}
- New physics ? large V_{ub} ?
- But $K^+ \rightarrow \mu\nu$ looks fine. Universality violation ?
- $B \rightarrow D\tau\nu$ and $B \rightarrow D^*\tau\nu$ show similar (1.8 σ) excess (See talk by Tim Gershon)

If $B \rightarrow \tau \nu$ is indeed enhanced:

$$BR(B^{+} \to \tau^{+} \nu_{\tau})_{NP} = \frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8\pi} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |\tilde{V}_{ub}|^{2} \tau_{B} \left(1 - \tan^{2} \beta \frac{m_{B}^{2}}{M_{+}^{2}}\right)^{2}$$

- Large M_{H^+} , small tan β to barely survive
- Small M_{H^+} , large tan β to explain the anomaly

Constraints on cMSSM

- cMSSM cannot explain the anomaly
- Only a small region in parameter space survives
- This "golden" region is still consistent with neutralino dark matter !

Bhattacharjee et al, 2011

Flavor physics is now encroaching on the territory of high-energy collider physics !

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta \Gamma_s$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

The $K\pi$ puzzle

The puzzle

$$\Delta_{K\pi} = A_{CP}(B^+
ightarrow K^+ \pi^0) - A_{CP}(B^0
ightarrow K^+ \pi^-)$$

= $0.121 \pm 0.022 \Rightarrow 5.5\sigma$ from SM(*P.Chang*, *EPS*2011)

Is it just matrix element calculation ?

- C and P_{EW} corrections may be high
- QCDF: large imaginary values for C and P_{EW} amplitudes
- Evidence for large P_{EW} should have been found from $B(B^+ \to \pi K)/B(B^0 \to \pi K)$ and $B(B^+ \to \rho K)/B(B^0 \to \rho K)$; not found
- Large C ⇒ breakdown of power-counting in SCET But SCET seems to hold for all other modes !
- pQCD claims that higher order corrections resolve the problem, but there is no consensus on this.

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?

3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

- Lorentz structure of new physics
- New Wilson coefficients
- 4 Concluding remarks

Lorentz structure of NP models

$$\mathcal{H}_{ ext{eff}}(b
ightarrow m{s} \mu^+ \mu^-) = \mathcal{H}_{ ext{eff}}^{SM} + \mathcal{H}_{ ext{eff}}^{VA} + \mathcal{H}_{ ext{eff}}^{SP} + \mathcal{H}_{ ext{eff}}^T \ ,$$

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{SM} &= -\frac{4G_F}{\sqrt{2}} \, V_{ts}^* \, V_{tb} \left\{ \sum_{i=1}^6 G_i(\mu) \mathcal{O}_i(\mu) + C_7 \, \frac{e}{16\pi^2} \left(\bar{s}\sigma_{\mu\nu}(m_s P_L + m_b P_R) b \right) F^{\mu\nu} \right. \\ &+ C_9 \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\mu + C_{10} \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} \\ \mathcal{H}_{\text{eff}}^{VA} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_V \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\mu + R_A \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right. \\ &+ R_V' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\mu + R_A' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^{SP} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_S \, \bar{s} P_R b \, \bar{\mu}\mu + R_P \, \bar{s} P_R b \, \bar{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^T &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ C_T \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma^{\mu\nu}\mu + i C_{TE} \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma_{\alpha\beta}\mu \, \epsilon^{\mu\nu\alpha\beta} \right\} \end{aligned}$$

$b ightarrow s \mu^+ \mu^-$ decay modes: inter-related observables

$B_s \rightarrow \mu^+ \mu^-$

Branching ratio

$B \rightarrow X_{s}\mu^{+}\mu^{-}, B \rightarrow \mu^{+}\mu^{-}\gamma, B \rightarrow K\mu^{+}\mu^{-}$

Branching ratio, Forward-backward asymmetry A_{FB}, CP asymmetry

$B ightarrow K^* \mu^+ \mu^-$

- Branching ratio, longitudinal polarization fraction f_L
- Many angular asymmetries: A_{FB} , $A_T^{(2)}$, A_{LT}
- Triple Product (TP) asymmetries: $A_T^{(im)}, A_{LT}^{(im)}$
- CP asymmetries for all of these

$B_s \rightarrow \mu^+ \mu^-$ branching ratio

- SM: BR = $(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: BR = $(1.8^{+1.1}_{-0.9}) \times 10^{-8}$
- CMS+LHCb limit: BR < 1.1×10^{-8}

$$\begin{split} B(\bar{B}_{s} \to \mu^{+} \, \mu^{-}) &= -\frac{G_{F}^{2} \alpha_{em}^{2} m_{B_{s}}^{5} f_{B_{s}}^{2} \tau_{B_{s}}}{64\pi^{3}} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \times \\ &\left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left| \frac{R_{s} - R_{s}'}{m_{b} + m_{s}} \right|^{2} + \left| \frac{R_{P} - R_{P}'}{m_{b} + m_{s}} + \frac{2m_{\mu}}{m_{B_{s}}^{2}} (C_{10} + R_{A} - R_{A}') \right|^{2} \right\}. \end{split}$$

 \Rightarrow Strong bounds on Scalar and pseudoscalar operators

Specific model (cMSSM):

Buchmueller et al

(日) (日) (日) (日) (日) (日) (日)

Angular variables in $B \rightarrow K^* \mu^+ \mu^-$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ □ ・ のへで

New VA operators: effect on $K^*\mu\mu$ observables

Forward-backward asymmetry

Longitudinal polarization fraction

-0.6

15 16

1

q2(Gev2)

19

20

18

q2(Gev2)

Poster by D. Ghosh

New SP and T operators

Limits (updated pre-EPS 2011):

- $|R_s R'_S|^2 + |R_P R'_P|^2 < 0.44$
- $|C_T|^2 + 4|C_{TE}|^2 < 1.0$

- Zero in the SM
- Enhancement at low q²: due to S, P operators
- Enhancement at high q²: due to T operators

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- Quantifying NP in a model-independent manner
 Lorentz structure of new physics

- New Wilson coefficients
- 4 Concluding remarks

Changes in Wilson coefficients due to NP

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
- 2 New physics: what does the data indicate ?
 - Enhanced contribution to $\Delta \Gamma_s$
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - What about the $K\pi$ puzzle ?
- 3 Quantifying NP in a model-independent manner

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Lorentz structure of new physics
- New Wilson coefficients

4 Concluding remarks

- Flavor physics: a window and a magnifying glass
- Flavor physics bounds already significant enough to constrain new physics at the energy frontier
- Hints of new physics in B_s sector: indications of NP that contribute to ΔΓ_s ? (Measure B_s → ττ)
- Model-independent combined analyses of multiple modes needed to get an handle on new physics

(日) (日) (日) (日) (日) (日) (日)

We are at the mercy of data

The End of Flavor Physics (talk)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

backup slides

▲ロト▲御ト▲ヨト▲ヨト ヨーのへで

Time evolution of a tagged B_q or \overline{B}_q decay

$$A_f \equiv \langle f | B_q \rangle, \ \overline{A}_f \equiv \langle f | \overline{B}_q \rangle, \quad \lambda_f \equiv \frac{q}{p} \frac{A_f}{A_f}$$

(λ_f independent of the unphysical phase φ)

$$\Gamma(B_q(t) \to f) = \mathcal{N}_f |A_f|^2 \frac{1 + |\lambda_f|^2}{2} e^{-\Gamma t} \times \\ \left[\cosh \frac{\Delta \Gamma_q t}{2} + \mathcal{A}_{CP}^{dir} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + \mathcal{A}_{CP}^{mix} \sin(\Delta m t) \right],$$

$$\begin{split} & \Gamma(\overline{B}_q(t) \to f) = \mathcal{N}_f |\overline{A}_f|^2 \, \frac{1 + |\lambda_f|^2}{2} \, e^{-\Gamma t} \times \\ & \left[\cosh \frac{\Delta \Gamma_q \, t}{2} - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \, \cos(\Delta m \, t) + \mathcal{A}_{\Delta \Gamma} \, \sinh \frac{\Delta \Gamma_q \, t}{2} - \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} \, \sin(\Delta m \, t) \right]. \end{split}$$

$$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} = \frac{1 - \left|\lambda_{f}\right|^{2}}{1 + \left|\lambda_{f}\right|^{2}}, \qquad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} = -\frac{2 \operatorname{Im} \lambda_{f}}{1 + \left|\lambda_{f}\right|^{2}}, \qquad \mathcal{A}_{\Delta\Gamma} = -\frac{2 \operatorname{Re} \lambda_{f}}{1 + \left|\frac{\lambda_{f}}{2}\right|^{2}}, \qquad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} = -\frac{2 \operatorname{Re}$$

The golden region and LHC reach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Calculation of Γ_{12}

Only internal *c* and *u* quarks contribute \Rightarrow $\Gamma_{12} = \frac{1}{2M_{B_{c}}} < \bar{B}_{d} | \mathcal{I}m \ i \int d^{4}x T \mathcal{H}_{eff}^{\Delta B=1}(x) \ \mathcal{H}_{eff}^{\Delta B=1}(0) | B_{d} >$ $\mathcal{H}_{eff}^{\Delta B=1} \sim G_F ~\left(V_{ub}^* V_{ud} \sum_{i=1.2} C_i Q_i^{uu} + V_{cb}^* V_{ud} \sum_{qi=1,2} C_i Q_i^{cu} +
ight)$ $+V_{ub}^{*}V_{cd}\sum_{i=1,2}C_{i}Q_{i}^{uc}+V_{cb}^{*}V_{cd}\sum_{i=1,2}C_{i}Q_{i}^{cc}-V_{tb}^{*}V_{td}\sum_{i=3}^{6}C_{i}Q_{i}^{penguins}\right).$

 $Q_1^{qq'} = (\overline{b}_i q_j)_{V-A} (\overline{q}'_j d_i)_{V-A}, \quad Q_2^{qq'} = (\overline{b}_i q_i)_{V-A} (\overline{q}'_j d_j)_{V-A},$

 $\Gamma_{12}(B_s) = -\mathcal{N} \times [(V_{cb}^* V_{cs})^2 f(z, z) \\ + (V_{cb}^* V_{cs})(V_{ub}^* V_{us})f(z, 0) + (V_{ub}^* V_{us})^2 f(0, 0)] = 0$