Theoretical issues in heavy flavor physics
 A biased sampling

Amol Dighe

Tata Institute of Fundamental Research, Mumbai

Lepton-Photon 2011
Mumbai, Aug 27, 2011

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- GIM mechanism \Leftrightarrow no FCNC
- CKM paradigm \Leftrightarrow three quark families
- Large $B-\bar{B}$ mixing \Leftrightarrow heavy top quark

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: do new particles contribute through loop processes ?
- Asymmetries: are the predicted SM relations obeyed ?

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- GIM mechanism \Leftrightarrow no FCNC
- CKM paradigm \Leftrightarrow three quark families
- Large $B-\bar{B}$ mixing \Leftrightarrow heavy top quark

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation?
- Rare decays: do new particles contribute through loop processes?
- Asymmetries: are the predicted SM relations obeyed?

Window to New Physics beyond the SM

Puzzles that may lead directly to NP

- The $K-\pi$ puzzle: is it just matrix elements calculation?
- Anomalous like-sign-dimuon anomaly
- $B \rightarrow \tau \nu_{\tau}$: loss of universality ?
- Lifetime difference and CP phase in B_{s} decay

Questions that may not have quick answers

- Why three generations ? (Only three, are we sure ?)
- Why the extreme hierarchy of masses ?
- What is the source of CP violation ?
- What about baryon asymmetry ?

Window to New Physics beyond the SM

Puzzles that may lead directly to NP

- The $K-\pi$ puzzle: is it just matrix elements calculation?
- Anomalous like-sign-dimuon anomaly
- $B \rightarrow \tau \nu_{\tau}$: loss of universality ?
- Lifetime difference and CP phase in B_{s} decay

Questions that may not have quick answers

- Why three generations ? (Only three, are we sure ?)
- Why the extreme hierarchy of masses ?
- What is the source of CP violation?
- What about baryon asymmetry ?

Caveats, excuses and apologies

- Mainly B decays, partly D decays, top had its own session
- Most of the data, but not all, updated till EPS 2011. Theoretical plots often use older data.
- Will focus on measurements at the border of SM and beyond, which could be a bit unfair to all those beautiful measurements that are consistent with the SM.
- Omit items that have been covered in earlier talks

Tim Gershon, Rick van Kooten, Youngjoon Kwon, Gerhard Raven

- Apologies for inadvertant omissions

Contents

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients

4 Concluding remarks

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

A typical B-decay rate calculation ($b \rightarrow s \mu \mu$)

The effective Hamiltonian: Operator Product Expansion

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{S M}= & -\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}\left\{\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{7} \frac{e}{16 \pi^{2}}\left(\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right) F^{\mu \nu}\right. \\
& \left.+C_{9} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \mu+C_{10} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right\}
\end{aligned}
$$

Decay rate:

$$
\left.\Gamma(B \rightarrow f)=[\text { phase space })]\left|\langle f| H_{\mathrm{eff}}^{S M}\right| B\right\rangle\left.\right|^{2}
$$

Quantities involved:

- masses, - decay constants, • bag factors,
- Wilson coefficients, • Hadronic matrix elements (form factors),
- CKM elements

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physies: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficientsConcluding remarks

Decay constants f_{B} and $f_{B_{s}}$

$$
\begin{aligned}
& \hline N_{f}=2+1 \text { results } \\
& \hline \text { - } F_{B}=205(12) \mathrm{MeV} \\
& \quad \sim 6 \% \\
& \text { - } F_{B_{s}}=250(12) \mathrm{MeV} \\
& \quad \sim 5 \% \\
& \text { - }\left(F_{B_{s}} / F_{B}\right)=1.215(19) \\
& \quad \sim 1.5 \%
\end{aligned}
$$

N. Tantalo, EPS 2011

Bag parameters

B_{B} \& $B_{B_{\mathrm{s}}}$ averages

a single $N_{f}=2+1$ calculation, that combines with $F_{B_{q}}$ to give

$$
F_{B_{S}} \sqrt{\hat{B}_{B_{S}}} N^{N_{f}=2+1}=233(14) \mathrm{MeV} \quad \sim 6 \% \quad \xi_{B}^{N_{f}=2+1}=1.237(32) \sim 2.5 \%
$$

again, are these reasonable estimates?

Outline

(9) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences

2 New physics: what does the data indicate ?

- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Global fits to CKM elements

CKMfitter:

EPS 2011

UTfit:

Issues involved in CKM element determination

Measurements of individual elements

- $V_{u b}$: inclusive vs. exclusive vs. $B \rightarrow \tau \nu$
- $V_{c s}$: semileptonic K decays vs. hadronic τ decays
- $V_{t s}$ and $V_{t d}$: Form factors and Bag factors essential

Tests of unitarity

- The trivial unitarity relation (more a test of our calculations):

$$
\alpha+\beta+\gamma=\pi
$$

- The nontrivial unitarity relation:

$$
\sin \beta_{s}=\left|\frac{V_{u s}}{V_{u d}}\right|^{2} \frac{\sin \beta \sin \left(\gamma+\beta_{s}\right)}{\sin (\beta+\gamma)}\left[1+\mathcal{O}\left(\lambda^{4}\right)\right]
$$

Aleksan et al, 1994

- We will soon be close to testing this

Measurements that may indicate NP

$B(B \rightarrow \tau \nu)$ and $\sin 2 \beta$

$\Delta \Gamma_{s}$ and $\beta_{s}^{J / \psi \phi}$ in $B_{s} \rightarrow J / \psi \phi$ CDF-D0 combined fit, 2010 Update + LHCb not included

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Mass difference in neutral B systems

$$
\begin{aligned}
M_{12} & =\frac{1}{2 M_{B_{s}}}\left\langle\bar{B}_{s}\right| \mathcal{H}_{\text {eff }}^{\Delta B=2}\left|B_{s}\right\rangle\left[1+O\left(m_{b}^{2} / m_{W}^{2}\right)\right], \\
\mathcal{H}_{\text {eff }}^{\Delta B=2} & \sim G_{F}^{2}\left(V_{t b} V_{t s}^{*}\right)^{2} C^{Q}\left(m_{t}, m_{W}, \mu\right) Q(\mu)+\text { h.c. } \\
Q & =\left(\bar{b}_{i} s_{i}\right)_{V-A}\left(\bar{b}_{j} s_{j}\right)_{V-A},
\end{aligned}
$$

$\triangle M$ Measurements

- $\Delta M_{d} / \Gamma_{d}=0.771 \pm 0.008 \Rightarrow V_{t d}$
- $\Delta M_{s} / \Gamma_{s}=26.92 \pm 0.15 \pm 0.10 \Rightarrow V_{t s}$
- $\Delta M_{D} / \Gamma_{D}=0.63 \pm 0.2$ (LD contributions significant)

Width differences: theory and experiment

$\Delta \Gamma_{s}$ and $\Delta \Gamma_{d}$: theoretical predictions

- $\Delta \Gamma_{s} / \Gamma_{s}=0.137 \pm 0.027$
- $\Delta \Gamma_{d} / \Gamma_{d}=(42 \pm 8) \times 10^{-4}$

Lenz et al, 2011

- $\Delta \Gamma_{d} / \Delta \Gamma_{s} \approx\left|V_{t d} / V_{t s}\right|^{2} \approx 0.04$
$\Delta \Gamma_{d}$ measurement: possible? worthwhile?
- $\Delta \Gamma_{d} / \Gamma_{d}=0.009 \pm 0.037$ (BaBar + Delphi)
- $\Delta \Gamma_{d} / \Gamma_{d}=0.017 \pm 0.018 \pm 0.11$ (Belle)
- May increase upto 2.5% with new physics
- $\Delta \Gamma_{d}$ neglected in theoretical calculations - OK as long as the accuracy of experiments is below per cent level.

$\Delta \Gamma_{D}$

- Very small: not many common final states for D and \bar{D} decay

$\Delta \Gamma_{s}:$ Can new physics increase it ?

Measurement from $B_{S} \rightarrow J / \psi \phi$

- $\Delta \Gamma_{s} / \Gamma_{s}=0.154_{-0.065}^{+0.067}$
- Values much larger than predictions are still allowed (This point will be useful soon)
NP contribution to $\Delta \Gamma_{s}$
- $\Delta \Gamma_{q}=2 \operatorname{Re}\left(\Gamma_{12}^{*} M_{12}\right) /\left|M_{12}\right|=-2\left|\Gamma_{21}\right| q \cos \left(\Theta_{q}-\Phi_{q}\right)$ $\Theta_{q} \equiv \operatorname{Arg}\left(\Gamma_{21}\right)_{q}, \Phi_{q} \equiv \operatorname{Arg}\left(M_{21}\right)_{q}$
- $\left[\Theta_{s}-\Phi_{s}\right](\mathrm{SM}) \approx 0$
- $\Delta \Gamma_{s}$ can only decrease by new physics effects !!

Grossman 1996

- Third generation scalar leptoquark models
- Left-right symmetric models

$\Delta \Gamma_{s}:$ Can new physics increase it ?

Measurement from $B_{S} \rightarrow J / \psi \phi$

- $\Delta \Gamma_{s} / \Gamma_{s}=0.154_{-0.065}^{+0.067}$
- Values much larger than predictions are still allowed (This point will be useful soon)
NP contribution to $\Delta \Gamma_{s}$
- $\Delta \Gamma_{q}=2 \operatorname{Re}\left(\Gamma_{12}^{*} M_{12}\right) /\left|M_{12}\right|=-2\left|\Gamma_{21}\right|_{q} \cos \left(\Theta_{q}-\Phi_{q}\right)$

$$
\Theta_{q} \equiv \operatorname{Arg}\left(\Gamma_{21}\right)_{q}, \Phi_{q} \equiv \operatorname{Arg}\left(M_{21}\right)_{q}
$$

- $\left[\Theta_{s}-\Phi_{s}\right](\mathrm{SM}) \approx 0$
- $\Delta \Gamma_{s}$ can only decrease by new physics effects !!

Grossman 1996
Caveat: Flavor-dependent NP contributions to Γ_{12} ?

- Third generation scalar leptoquark models

AD, Kundu, Nandi, 2007

- Left-right symmetric models

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients

4. Concluding remarks

Like-sign dimuon asymmetry and $B \rightarrow J / \psi \phi$: for B_{d}

Like-sign dimuon asymmetry and $B \rightarrow J / \psi \phi$: for B_{s}

Large $\Delta \Gamma_{s}$ and ϕ_{s} indicated?

Like-sign Dimuon asymmetry:

- $\mathrm{SM} \Rightarrow A_{s l}^{b}=\left(-0.023_{-0.006}^{+0.005}\right) \%$
- $A_{s l}^{b}=(-0.787 \pm 0.172 \pm 0.093) \%$ $\Rightarrow 3.9 \sigma$ deviation
- B_{s} sector: $a_{s l}^{s}=(-1.81 \pm 1.06) \%$
- $a_{s l}^{s}=\left(\Delta \Gamma_{s} / \Delta M_{s}\right) \tan \phi_{s}^{s l}$
- Large $\Delta \Gamma_{s}$ and/or large ϕ_{s}
$B_{s} \rightarrow J / \psi \phi$ angular analysis:

- Results getting closer to SM
- Large $\Delta \Gamma_{s}$ and $\beta_{s}^{J / \psi \phi}$ still possible

The Tale of Two Betas

β from $B_{S} \rightarrow J / \psi \phi$

- $\beta_{s}^{J / \psi \phi} \approx \frac{1}{2} \operatorname{Arg}\left(-\frac{\left(V_{c b} V_{c s}^{*}\right)^{2}}{M_{12 s}}\right)$
- $\beta_{s}(S M)=0.019 \pm 0.001$

β from $a_{s l}$

- $a_{s l}=\left(\Delta \Gamma_{s} / \Delta M_{s}\right) \tan \phi_{s}^{s l}$
- $\phi_{s}^{s l}=\operatorname{Arg}\left(-M_{12 s} / \Gamma_{12 s}\right)$
- $\operatorname{Arg}\left(\Gamma_{12}\right) \neq \operatorname{Arg}\left(V_{c b} V_{c S}^{*}\right)^{2}$ since the (c-u) and (u-u) intermediate states contribute to Γ_{12}.
- $\phi_{s}^{s l}(S M)=0.0041 \pm 0.0007$
- $\beta_{s}^{s l}(S M)=-0.0020 \pm 0.0003$

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

$\Gamma_{12}^{N P}=0$ highly disfavored

- $B_{s} \rightarrow J / \psi \phi$ and likesign dimuon asymmetry favor large ϕ_{s} values (especially the latter)
- Moreover, they favor different ϕ_{s} regions \Rightarrow Tension that can be reduced only with larger $\Delta \Gamma_{s}$
- If no NP contribution to $\Gamma_{12 s}$, difficult to be consistent with data

Implications of nonzero $\Gamma_{12}^{N P}$

Possible to go outside the "green band":

Scalar leptoquarks that couple only to τ
AD, Kundu, Nandi, 2010

Z', RPV SUSY

Deshpande, He, Valencia 2010

- $b \rightarrow \boldsymbol{S} \tau \tau$ the only unconstrained operator
- Enhanced BR for $B_{s} \rightarrow \tau^{+} \tau^{-}$predicted
- $B R\left(B_{s} \rightarrow \tau \tau\right) \sim 5 \%$ still allowed

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Electroweak constraints

Fourth generation still allowed with precision constraints

Electroweak constraints on fourth generation

- Masses cannot be too high, unitarity constraints
- Higgs mass and θ_{34} correlated

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al

Constraints from the flavor data

Observables that impact $C K M_{4}$ in a clean manner:

- $R_{b b}$ and A_{b} from $Z \rightarrow b \bar{b}$
- ϵ_{K} from $K_{L} \rightarrow \pi \pi$
- the branching ratio of $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$
- the mass differences in the B_{d} and B_{s} systems
- the time-dependent CP asymmetry in $B_{d} \rightarrow J / \psi K_{S}$
- γ from tree-level decays
- the branching ratios of $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{c} e \bar{\nu}$
- the branching ratio of $B \rightarrow X_{s} \mu^{+} \mu^{-}$in the high- q^{2} and low- q^{2} regions

Constraints and implications

- $\left|\tilde{V}_{u b^{\prime}}\right|<0.06,\left|\tilde{V}_{c b^{\prime}}\right|<0.027,\left|\tilde{V}_{t b^{\prime}}\right|<0.31$ at 3σ.
- NP signals for B, D and rare K decays are still possible.

Table of Constraints from flavor data

Magnitude	SM	$m_{t^{\prime}}=400 \mathrm{GeV}$	$m_{t^{\prime}}=600 \mathrm{GeV}$
$\left\|\tilde{V}_{u d}\right\|$	0.9743 ± 0.0002	0.9743 ± 0.0002	0.9743 ± 0.0002
$\left\|\tilde{V}_{u s}\right\|$	0.227 ± 0.001	0.227 ± 0.001	0.227 ± 0.001
$\left\|\tilde{V}_{u b}\right\|$	$(3.55 \pm 0.17) \times 10^{-3}$	$(3.90 \pm 0.38) \times 10^{-3}$	$(3.91 \pm 0.39) \times 10^{-3}$
$\left\|\tilde{V}_{u b^{\prime}}\right\|$	-	0.017 ± 0.014	0.016 ± 0.018
$\left\|\tilde{V}_{c d}\right\|$	0.227 ± 0.001	0.227 ± 0.001	0.227 ± 0.001
$\left\|\tilde{V}_{c s}\right\|$	0.9743 ± 0.0002	0.9743 ± 0.0002	0.9743 ± 0.0002
$\left\|\tilde{V}_{c b}\right\|$	0.042 ± 0.001	0.041 ± 0.001	0.041 ± 0.001
$\left\|\tilde{V}_{c b^{\prime}}\right\|$	-	$(8.4 \pm 6.2) \times 10^{-3}$	$(6.0 \pm 3.8) \times 10^{-3}$
$\left\|\tilde{V}_{t d}\right\|$	0.0086 ± 0.0003	0.009 ± 0.002	0.009 ± 0.001
$\left\|\tilde{V}_{t s}\right\|$	0.041 ± 0.001	0.041 ± 0.001	0.040 ± 0.001
$\left\|\tilde{V}_{t b}\right\|$	1	0.998 ± 0.006	0.999 ± 0.003
$\left\|\tilde{V}_{t b^{\prime}}\right\|$	-	0.07 ± 0.08	0.04 ± 0.06
$\left\|\tilde{V}_{t^{\prime}{ }^{\prime} d}\right\|$	-	0.01 ± 0.01	0.01 ± 0.02
$\left\|\tilde{V}_{t^{\prime}{ }^{\prime}}\right\|$	-	0.01 ± 0.01	0.004 ± 0.010
$\left\|\tilde{V}_{t^{\prime} b}\right\|$	-	0.07 ± 0.08	0.04 ± 0.06
$\left\|\tilde{V}_{t^{\prime} b^{\prime}}\right\|$	-	0.998 ± 0.006	0.999 ± 0.003

Quantity	SM	$m_{t^{\prime}}=400 \mathrm{GeV}$	$m_{t^{\prime}}=600 \mathrm{GeV}$
$\begin{gathered} \left\|\ddot{V}_{t b}^{*} \ddot{V}_{t d}\right\| \\ \operatorname{Arg}\left(\bar{V}_{t b}^{*} \tilde{V}_{t d}\right) \end{gathered}$	$\begin{aligned} & 0.0086 \pm 0.0003 \\ & (-21.5 \pm 1.0)^{\circ} \end{aligned}$	$\begin{gathered} 0.009 \pm 0.002 \\ (-30.4 \pm 10.3)^{\circ} \end{gathered}$	$\begin{gathered} 0.009 \pm 0.001 \\ (-27.9 \pm 8.0)^{\circ} \\ \hline \end{gathered}$
$\begin{gathered} \left\|\tilde{V}_{t b}^{*} \tilde{V}_{t s}\right\| \\ \operatorname{Arg}\left(\dot{V}_{t b}^{*} \tilde{V}_{t s}\right) \end{gathered}$	$\begin{gathered} 0.041 \pm 0.001 \\ (-178.86 \pm 0.06)^{\circ} \end{gathered}$	$\begin{gathered} 0.040 \pm 0.001 \\ (-178.12 \pm 1.14)^{\circ} \end{gathered}$	$\begin{gathered} 0.040 \pm 0.001 \\ (-178.12 \pm 0.57)^{\circ} \end{gathered}$
$\begin{gathered} \left\|\tilde{V}_{t^{\prime} b}^{*} \tilde{V}_{t^{\prime} d}\right\| \\ \operatorname{Arg}\left(\tilde{V}_{t^{\prime} b}^{*} \tilde{V}_{t^{\prime} d}\right) \end{gathered}$	- -	$\begin{gathered} 0.0010 \pm 0.0015 \\ (-107.1 \pm 106.5)^{\circ} \\ \hline \end{gathered}$	$\begin{gathered} 0.0006 \pm 0.0011 \\ (-102.5 \pm 112.8)^{\circ} \\ \hline \end{gathered}$
$\begin{gathered} \left\|\tilde{V}_{t^{\prime} b}^{*} V_{t^{\prime} s}\right\| \\ \operatorname{Arg}\left(\tilde{V}_{t^{\prime} b}^{*} \tilde{V}_{t^{\prime} s}\right) \end{gathered}$	-	$\begin{aligned} & \hline 0.0005 \pm 0.0010 \\ & (37.8 \pm 120.3)^{\circ} \end{aligned}$	$\begin{aligned} & 0.0002 \pm 0.0005 \\ & (40.1 \pm 174.1)^{\circ} \end{aligned}$

Alok et al, 2011

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Implications of the $B \rightarrow \tau \nu$ anomaly

- SM: $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{SM}}=(0.81 \pm 0.15) \times 10^{-4}$
- Measured: $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(1.68 \pm 0.31) \times 10^{-4}$
- More than 2σ enhancement: difficult to explain by $f_{B_{d}}$
- New physics ? large $V_{u b}$?
- But $K^{+} \rightarrow \mu \nu$ looks fine. Universality violation?
- $B \rightarrow D \tau \nu$ and $B \rightarrow D^{*} \tau \nu$ show similar (1.8 σ) excess (See talk by Tim Gershon)

If $B \rightarrow \tau \nu$ is indeed enhanced:

$$
\mathrm{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{NP}}=\frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|\widetilde{V}_{u b}\right|^{2} \tau_{B}\left(1-\tan ^{2} \beta \frac{m_{B}^{2}}{M_{+}^{2}}\right)^{2}
$$

- Large $M_{H^{+}}$, small $\tan \beta$ to barely survive
- Small $M_{H^{+}}$, large $\tan \beta$ to explain the anomaly

Constraints on cMSSM

- cMSSM cannot explain the anomaly
- Only a small region in parameter space survives
- This "golden" region is still consistent with neutralino dark matter!

Bhattacharjee et al, 2011

Flavor physics is now encroaching on the territory of high-energy collider physics !

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate ?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

The $K \pi$ puzzle

The puzzle

$$
\begin{aligned}
\Delta_{K \pi} & =A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)-A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \\
& =0.121 \pm 0.022 \Rightarrow 5.5 \sigma \text { from } \operatorname{SM}(P . \text { Chang, EPS2011) }
\end{aligned}
$$

Is it just matrix element calculation ?

- C and $P_{E W}$ corrections may be high
- QCDF: large imaginary values for C and $P_{E W}$ amplitudes
- Evidence for large $P_{E W}$ should have been found from $B\left(B^{+} \rightarrow \pi K\right) / B\left(B^{0} \rightarrow \pi K\right)$ and $B\left(B^{+} \rightarrow \rho K\right) / B\left(B^{0} \rightarrow \rho K\right)$; not found
- Large $C \Rightarrow$ breakdown of power-counting in SCET But SCET seems to hold for all other modes !
- pQCD claims that higher order corrections resolve the problem, but there is no consensus on this.

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physics: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(2) New physies: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Lorentz structure of NP models

$$
\mathcal{H}_{\mathrm{eff}}\left(b \rightarrow s \mu^{+} \mu^{-}\right)=\mathcal{H}_{\mathrm{eff}}^{S M}+\mathcal{H}_{\mathrm{eff}}^{V A}+\mathcal{H}_{\mathrm{eff}}^{S P}+\mathcal{H}_{\mathrm{eff}}^{T}
$$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{S M}= & -\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}\left\{\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{7} \frac{e}{16 \pi^{2}}\left(\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right) F^{\mu \nu}\right. \\
& \left.+C_{9} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \mu+C_{10} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right\} \\
\mathcal{H}_{\mathrm{eff}}^{V A}= & \frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b}^{*} V_{t s}\left\{R_{V} \bar{s} \gamma_{\mu} P_{L} b \bar{\mu} \gamma_{\mu} \mu+R_{A} \bar{s} \gamma_{\mu} P_{L} b \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right. \\
& \left.+R_{V}^{\prime} \bar{s} \gamma_{\mu} P_{R} b \bar{\mu} \gamma_{\mu} \mu+R_{A}^{\prime} \bar{s} \gamma_{\mu} P_{R} b \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right\} \\
\mathcal{H}_{\mathrm{eff}}^{S P}= & \frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b}^{*} V_{t s}\left\{R_{S} \bar{s} P_{R} b \bar{\mu} \mu+R_{P} \bar{s} P_{R} b \bar{\mu} \gamma_{5} \mu\right. \\
& \left.\quad+R_{S}^{\prime} \bar{s} P_{L} b \bar{\mu} \mu+R_{P}^{\prime} \bar{s} P_{L} b \bar{\mu} \gamma_{5} \mu\right\}
\end{aligned}
$$

$b \rightarrow s \mu^{+} \mu^{-}$decay modes: inter-related observables

$B_{S} \rightarrow \mu^{+} \mu^{-}$

- Branching ratio
$B \rightarrow X_{s} \mu^{+} \mu^{-}, B \rightarrow \mu^{+} \mu^{-} \gamma, B \rightarrow K \mu^{+} \mu^{-}$
- Branching ratio, Forward-backward asymmetry $A_{F B}, C P$ asymmetry
$B \rightarrow K^{*} \mu^{+} \mu^{-}$
- Branching ratio, longitudinal polarization fraction f_{L}
- Many angular asymmetries: $A_{F B}, A_{T}^{(2)}, A_{L T}$
- Triple Product (TP) asymmetries: $A_{T}^{(i m)}, A_{L T}^{(i m)}$
- CP asymmetries for all of these

$B_{S} \rightarrow \mu^{+} \mu^{-}$branching ratio

- $\mathrm{SM}: \mathrm{BR}=(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: $\mathrm{BR}=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}$
- CMS+LHCb limit: $\mathrm{BR}<1.1 \times 10^{-8}$

$$
\left.\left.\begin{array}{rl}
B\left(\bar{B}_{s} \rightarrow\right. & \left.\mu^{+} \mu^{-}\right)= \\
& \left\{\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left\lvert\, \frac{R_{S}^{2}-R_{s m}^{2} m_{S}^{5}}{64 \pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}}\right.\right. \\
m_{b}+m_{s}
\end{array}\right|^{2}+\left|\frac{R_{P}-R_{P}^{\prime}}{m_{b}+m_{s}}+\frac{2 m_{\mu}^{*}}{m_{B_{s}}^{2}}\left(C_{10}+R_{A}-R_{A}^{\prime}\right)\right|^{2}\right\} .
$$

\Rightarrow Strong bounds on Scalar and pseudoscalar operators

Specific model (cMSSM):

Angular variables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$

Angular fit results

CDF results:

Talk by Youngjoon Kwon

LHCb measurements:

New VA operators: effect on $K^{*} \mu \mu$ observables

Forward-backward asymmetry

Longitudinal polarization fraction

The angular observable $A_{T}^{(2)}$:

New SP and T operators

Limits (updated pre-EPS 2011):

- $\left|R_{S}-R_{S}^{\prime}\right|^{2}+\left|R_{P}-R_{P}^{\prime}\right|^{2}<0.44$
- $\left|C_{T}\right|^{2}+4\left|C_{T E}\right|^{2}<1.0$

Forward-backward asymmetry in $K \mu \mu$:

- Zero in the SM
- Enhancement at low q^{2} : due to S, P operators
- Enhancement at high q^{2} : due to T operators

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(a) New physics: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients
(4) Concluding remarks

Changes in Wilson coefficients due to NP

$$
C_{i} O_{i} \rightarrow\left(C_{i}+\delta C_{i}\right) O_{i}
$$

$A_{l}, S_{K^{*} \gamma}, B \rightarrow X_{s} \gamma$
$B \rightarrow X_{S} \mu^{+} \mu^{-}, A_{F B}, f_{L}$
Descotes-Genon et al, 2011

Outline

(1) Standard Model calculations

- Masses, decay constants and bag parameters
- CKM matrix elements
- Mass differences and width differences
(3) New physics: what does the data indicate?
- Enhanced contribution to $\Delta \Gamma_{s}$
- Fourth generation of quarks
- MFV models with charged Higgs
- What about the $K \pi$ puzzle ?
(3) Quantifying NP in a model-independent manner
- Lorentz structure of new physics
- New Wilson coefficients

4 Concluding remarks

Concluding remarks

- Flavor physics: a window and a magnifying glass
- Flavor physics bounds already significant enough to constrain new physics at the energy frontier
- Hints of new physics in B_{s} sector: indications of NP that contribute to $\Delta \Gamma_{s}$? (Measure $B_{s} \rightarrow \tau \tau$)
- Model-independent combined analyses of multiple modes needed to get an handle on new physics
- We are at the mercy of data

The End of Flavor Physics (talk)

backup slides

Time evolution of a tagged B_{q} or \bar{B}_{q} decay

$$
A_{f} \equiv\left\langle f \mid B_{q}\right\rangle, \bar{A}_{f} \equiv\left\langle f \mid \bar{B}_{q}\right\rangle, \quad \lambda_{f} \equiv \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

(λ_{f} independent of the unphysical phase φ)

$$
\Gamma\left(B_{q}(t) \rightarrow f\right)=\mathcal{N}_{f}\left|A_{f}\right|^{2} \frac{1+\left|\lambda_{f}\right|^{2}}{2} e^{-\Gamma t} \times
$$

$$
\left[\cosh \frac{\Delta \Gamma_{q} t}{2}+\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos (\Delta m t) \quad+\mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_{q} t}{2}+\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}} \sin (\Delta m t)\right],
$$

$$
\Gamma\left(\bar{B}_{q}(t) \rightarrow f\right)=\mathcal{N}_{f}\left|\bar{A}_{f}\right|^{2} \frac{1+\left|\lambda_{f}\right|^{2}}{2} e^{-\Gamma t} \times
$$

$$
\left[\cosh \frac{\Delta \Gamma_{q} t}{2}-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos (\Delta m t) \quad+\mathcal{A}_{\Delta \mathrm{r}} \sinh \frac{\Delta \bar{\Gamma}_{q} t}{2}-\mathcal{A}_{\mathrm{CP}}^{\text {mix }} \sin (\Delta m t)\right] .
$$

$$
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}, \quad \mathcal{A}_{\mathrm{CP}}^{\text {mix }}=-\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}} \quad \mathcal{A}_{\Delta \mathrm{r}}=-\frac{2 \operatorname{Re} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}},
$$

The golden region and LHC reach

Calculation of Γ_{12}

Only internal c and u quarks contribute \Rightarrow

$$
\begin{aligned}
& \Gamma_{12}=\frac{1}{2 M_{B_{d}}}<\bar{B}_{d}\left|\mathcal{I m} i \int d^{4} x T \mathcal{H}_{\text {eff }}^{\Delta B=1}(x) \mathcal{H}_{\text {eff }}^{\Delta B=1}(0)\right| B_{d}> \\
& \mathcal{H}_{\text {eff }}^{\Delta B=1} \sim G_{F} \quad\left(V_{u b}^{*} V_{u d} \sum_{i=1,2} C_{i} Q_{i}^{u u}+V_{c b}^{*} V_{u d} \sum_{q i=1,2} C_{i} Q_{i}^{c u}+\right. \\
& \left.+V_{u b}^{*} V_{c d} \sum_{i=1,2} C_{i} Q_{i}^{u c}+V_{c b}^{*} V_{c d} \sum_{i=1,2} C_{i} Q_{i}^{c c}-V_{t b}^{*} V_{t d} \sum_{i=3}^{6} C_{i} Q_{i}^{\text {penguins }}\right) . \\
& Q_{1}^{q q^{\prime}}=\left(\bar{b}_{i} q_{j}\right)_{V-A}\left(\bar{q}_{j}^{\prime} d_{i}\right)_{V-A}, \quad Q_{2}^{q q^{\prime}}=\left(\bar{b}_{i} q_{i}\right)_{V-A}\left(\bar{q}_{j}^{\prime} d_{j}\right)_{V-A}, \\
& \Gamma_{12}\left(B_{s}\right)=-\mathcal{N} \times\left[\left(V_{c b}^{*} V_{c s}\right)^{2} f(z, z)\right. \\
& \left.+\left(V_{c b}^{*} V_{c s}\right)\left(V_{u b}^{*} V_{u s}\right) f(z, 0)+\left(V_{u b}^{*} V_{u s}\right)^{2} f(0,0)\right]
\end{aligned}
$$

