B Physics: Standard Model and beyond

A biased sampling

Amol Dighe

Tata Institute of Fundamental Research, Mumbai

B Physics at the LHC Kolkata, Mar 2, 2012

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- $\tau-\theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle \Rightarrow weak coupling universality \oplus quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\bar{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative B decay \Rightarrow top quark mass

> Precision tests of the Standard Model
> - CKM elements: do they explain all CP violation ?
> - Rare decays: new particles contribute through loops ?
> - Asymmetries: are the predicted SM relations obeyed ?
> - What are the features of New Physics (if any) ?

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- $\tau-\theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle \Rightarrow weak coupling universality \oplus quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\bar{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative B decay \Rightarrow top quark mass

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: new particles contribute through loops ?
- Asymmetries: are the predicted SM relations obeyed ?
- What are the features of New Physics (if any) ?

Window to New Physics beyond the SM

Puzzles in B physics that may lead directly to NP

- Direct vs indirect measurements of $\sin 2 \beta$
- $B \rightarrow \tau \nu_{\tau}$: abnormally large branching ratio
- Anomalous like-sign-dimuon asymmetry
- Lifetime difference and CP phase in B_{s} mixing and decay
- Forward-backward asymmetry in $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- The $K-\pi$ isospin asymmetry puzzle

Contents

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
(3) New physics models: constraints and implications
- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operatorsConcluding remarks

A typical B-decay rate calculation

The effective Hamiltonian: Operator Product Expansion

$$
\mathcal{H}_{\mathrm{eff}}^{S M} \sim G_{F} \sum_{i} \lambda_{i}^{\text {CKM }} C_{i}(\mu) O_{i}(\mu)
$$

$\lambda_{i}^{C K M}$: some combination of CKM elements,
C_{i} : Wilson coefficients corresponding to effective operators O_{i}
Decay rate:

$$
\left.\Gamma(B \rightarrow f)=\int[\text { phase space }]\left|\langle f| H_{\text {eff }}^{S M}\right| B\right\rangle\left.\right|^{2}
$$

Quantities involved:

- Masses, • Decay constants, • Bag parameters,
- Wilson coefficients, • Hadronic matrix elements (form factors),
- CKM elements

Decay constants f_{B} and $f_{B_{s}}$ from lattice

$$
N_{f}=2+1 \text { results }
$$

- $f_{B}=196.9 \pm 8.9 \mathrm{MeV}$ (~5\%)
- $f_{B_{s}}=242.0 \pm 9.5 \mathrm{MeV}$ ($\sim 5 \%$)
- $f_{B_{s}} / f_{B}=1.229 \pm 0.026$ ($\sim 1.5 \%$)

Fermilab Lattice \oplus MILC, 2011
\oplus See Talk by Nilmani Mathur

Bag parameters from lattice

$N_{f}=2+1$ calculation, combined with $F_{B_{q}}$:

- $F_{B_{s}} \sqrt{B_{B_{s}}}=233(14) \mathrm{MeV} \quad(\sim 6 \%)$
- $\xi_{B}=\left(f_{B_{s}} \sqrt{B_{B_{s}}}\right) /\left(f_{B_{d}} \sqrt{B_{B_{d}}}\right)=1.237(32) \quad(\sim 2.5 \%)$
N. Tantalo, EPS 2011

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
(2) New physics models: constraints and implications
- Fourth generation of quarks
- Models contributing to Γ_{12}^{S}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Global fits to CKM elements

CKMfitter:

UTfit:

Constraints in the $\bar{\rho}-\bar{\eta}$ plane:

- the ratio $\left|V_{u b} / V_{c b}\right|$
- ϵ_{K} from $K \rightarrow \pi \pi$
- Mass differences ΔM_{d} and ΔM_{s}
- Angles α, β, γ (or $\phi_{2}, \phi_{1}, \phi_{3}$) of the unitarity triangle

KM paradigm mostly vindicated!

Details in the talk by Rahul Sinha

Not so fast: Devil in the details

$V_{u s}$: semileptonic K decays vs. hadronic τ decays

- Semileptonic K decays $\Rightarrow\left|V_{u s}\right|=0.2254 \pm 0.0013$
- Strange vs. non-strange hadronic τ decays $\Rightarrow\left|V_{u s}\right|=0.2166 \pm 0.0019 \pm 0.0005$
- More than 3σ discepancy !

$V_{u b}$: inclusive vs. exclusive

- $\left|V_{u b}\right|($ excl $)=(3.38 \pm 0.36) \times 10^{-3}$
- $\left|V_{u b}\right|(\mathrm{incl})=(4.27 \pm 0.38) \times 10^{-3}$

Tests of unitarity

With magnitudes of elements

- $\left|V_{u d}\right|=0.97425 \pm 00022,\left|V_{u s}\right|=0.2254 \pm 0.0013$
- Unitarity holds to one part in 10^{-3}

With unitarity angles

- The trivial unitarity relation (more a test of our calculations):

$$
\alpha+\beta+\gamma=\pi
$$

- The nontrivial unitarity relation:

$$
\sin \beta_{s}=\left|\frac{V_{u s}}{V_{u d}}\right|^{2} \frac{\sin \beta \sin \left(\gamma+\beta_{s}\right)}{\sin (\beta+\gamma)}\left[1+\mathcal{O}\left(\lambda^{4}\right)\right]
$$

Aleksan et al, 1994

- We will soon be close to testing this

$\sin 2 \beta$: direct measurement vs global fit

- $\sin 2 \beta($ direct $)=0.691 \pm 0.020$
- $\sin 2 \beta($ fit $)=0.830_{-0.033}^{+0.013}$
- More than 2σ deviation

$\sin 2 \beta, B \rightarrow \tau \nu$, and $V_{u b}$: correlations

- Branching ratio of $B^{+} \rightarrow \tau^{+} \nu$ too large
- Effective $V_{u b}$ needs to be larger
- Correlation with the best-fit value of the unitarity triangle vertex

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
(3) New physics mode's: constraints and implications
- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operatorsConcluding remarks

$B_{q}-\overline{B_{q}}$ mixing: parameterization

- Oscillation and decay of $a\left|B_{q}\right\rangle+b\left|\bar{B}_{q}\right\rangle$:

$$
\begin{gathered}
i \frac{d}{d t}\binom{a}{b}=\left(\mathbf{M}-\frac{i}{2} \Gamma\right)\binom{a}{b} \\
\mathbf{M} \equiv\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \quad, \quad \Gamma \equiv\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right) \\
\mathcal{C P}\left|B_{q}\right\rangle=e^{i \varphi}\left|\bar{B}_{q}\right\rangle, \mathcal{C P}\left|\bar{B}_{q}\right\rangle=e^{-i \varphi}\left|B_{q}\right\rangle
\end{gathered}
$$

- CPT invariance : $M_{11}=M_{22}, \quad \Gamma_{11}=\Gamma_{22}$
- Hermiticity : $M_{21}=M_{12}^{*}, \quad \Gamma_{21}=\Gamma_{12}^{*}$

Mass and width differences

Form of M_{12} and Γ_{12}

$$
\begin{aligned}
M_{12}^{q}= & \frac{G_{F}^{2} M_{W}^{2}}{12 \pi^{2}} m_{B_{q}} B_{B_{q}} f_{B_{q}}^{2} \eta_{Q C D}\left(V_{t q}^{*} V_{t b}\right)^{2} S\left(x_{t}\right) \\
\Gamma_{12}^{q}= & -\mathcal{N} \times\left[\left(V_{c b}^{*} V_{c q}\right)^{2} f(z, z)\right. \\
+ & \left.\left(V_{c b}^{*} V_{c q}\right)\left(V_{u b}^{*} V_{u q}\right) f(z, 0)+\left(V_{u b}^{*} V_{u q}\right)^{2} f(0,0)\right] \\
& \left(z=m_{q}^{2} / m_{t}^{2}\right)
\end{aligned}
$$

ΔM and $\Delta \Gamma$ in terms of M_{12} and Γ_{12}
If $\left|\Gamma_{12}^{q}\right| \ll\left|M_{12}^{q}\right|$ (valid for B_{d} and B_{s}),

$$
\begin{aligned}
\Delta M & =2\left|M_{12}\right|+O\left(m_{b}^{4} / m_{t}^{4}\right) \\
\Delta \Gamma & =-2 \operatorname{Re}\left(M_{12}^{*} \Gamma_{12}\right) /\left|M_{12}\right|+O\left(m_{b}^{4} / m_{t}^{4}\right)
\end{aligned}
$$

Mass and width differences: theory and experiment

$\triangle M$ Measurements

- $\Delta M_{d} / \Gamma_{d}=0.771 \pm 0.008 \Rightarrow\left|V_{t d}\right|$
- $\Delta M_{s} / \Gamma_{s}=26.92 \pm 0.15 \pm 0.10 \Rightarrow\left|V_{t s}\right|$ (only CDF. New LHCb measurement not included)
$\Delta \Gamma_{s}$ and $\Delta \Gamma_{d}$: theoretical predictions
- For Γ_{12}^{d}, the $\left(V_{c b} V_{c d}^{*}\right)^{2}$ term dominates, $\Gamma_{12}^{d} \propto\left(V_{c b} V_{c d}^{*}\right)^{2}$
- $\Delta \Gamma_{d} / \Gamma_{d}=(42 \pm 8) \times 10^{-4}$
- For Γ_{12}^{s}, the u-u and c-u intermediate states also contribute. $\operatorname{Arg}\left(\Gamma_{12}^{S}\right) \neq \operatorname{Arg}\left[\left(V_{c b} V_{c S}^{*}\right)^{2}\right]$
- $\Delta \Gamma_{s} / \Gamma_{s}=0.137 \pm 0.027$
- $\Delta \Gamma_{d} / \Delta \Gamma_{s} \approx\left|V_{t d} / V_{t s}\right|^{2} \approx 0.04$

$\Delta \Gamma_{s}:$ Can new physics increase it ?

Measurement from $B_{S} \rightarrow J / \psi \phi$

- $\Delta \Gamma_{s} / \Gamma_{s}=0.154_{-0.065}^{+0.067}$
- Values much larger than predictions are still allowed (This point will be useful soon)
$N P$ contribution to $\Delta \Gamma_{s}$
- $\Delta \Gamma_{s}$ can only decrease by new physics effects !!

Grossman 1996
Caveat: Flavor-dependent NP contributions to Γ_{12} ?

- Third generation scalar leptoquark models

AD, Kundu, Nandi, 2007

- Left-right symmetric models

Badin, Gabbiani, Petrov, 2007

Width difference in B_{d} system

$\Delta \Gamma_{d}$ measurement: possible? worthwhile?

- $\Delta \Gamma_{d} / \Gamma_{d}=0.009 \pm 0.037$ (BaBar + Delphi)
- $\Delta \Gamma_{d} / \Gamma_{d}=0.017 \pm 0.018 \pm 0.11$ (Belle)
- May increase upto 2% with new physics
- $\Delta \Gamma_{d}$ neglected in theoretical calculations - OK as long as the accuracy of experiments is below per cent level.

Angular analysis of $B_{s} \rightarrow J / \psi \phi:$ CDF and D0

- Results getting closer to SM
- Large $\Delta \Gamma_{s}$ and $\beta_{s}^{J / \psi \phi}$ still possible

Angular analysis of $B_{s} \rightarrow J / \psi \phi:$ LHCb

$B_{s} \rightarrow \mathrm{~J} / \psi \varphi: \Delta \Gamma_{\mathrm{s}}$ vs. ϕ_{s}

Standard Model (Lenz, Nierste: arXiv: | 02.4274)

- $\quad \phi_{\mathrm{s}}=0.13 \pm 0.18$ (stat) ± 0.07 (syst) rad
- Consistent with SM
4σ Evidence for $\Delta \Gamma_{s} \neq 0$:
- $\Delta \Gamma_{\mathrm{s}}=0.123 \pm 0.029$ (stat) ± 0.008 (syst) ps ${ }^{-1}$
- $\quad \Gamma_{s}=0.656 \pm 0.009$ (stat) $\pm 0.008(\mathrm{syst}) \mathrm{ps}^{-1}$

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operatorsConcluding remarks

Like-sign dimuon asymmetry

- $\mathrm{SM} \Rightarrow A_{s l}^{b}=\left(-0.023_{-0.006}^{+0.005}\right) \%$
- $A_{s l}^{b}=(-0.787 \pm 0.172 \pm 0.093) \%$ $\Rightarrow 3.9 \sigma$ deviation
- B_{s} sector:
$a_{s l}^{s}=(-1.81 \pm 1.06) \%$
- $a_{s l}^{s}=\frac{\Delta \Gamma_{s}}{\Delta M_{s}} \tan \phi_{s}^{s /}$
- Large $\Delta \Gamma_{s}$ and/or large ϕ_{s} !

Branching ratio of $B_{s} \rightarrow \mu^{+} \mu^{-}$

- $\mathrm{SM}: \mathrm{BR}=(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: $\mathrm{BR}=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}$
- CMS+LHCb limit: BR $<1.1 \times 10^{-8}$

A_{FB} in $B \rightarrow K^{*} \mu^{+} \mu^{-}$: Belle

- From the interference between γ - and Z-penguin
- Zero of $A_{\text {FB }}$ is a clean observable: the form factor dependence cancels at LO to give

$$
\operatorname{Re}\left[C_{9}^{\mathrm{eff}}\left(q_{0}^{2}\right)\right]=-\left(2 m_{B} m_{b} / q_{0}^{2}\right) C_{7}^{\mathrm{eff}}
$$

- At NLO, $q_{0}^{2}=3.90 \pm 0.12 \mathrm{GeV}^{2}$
- Zero crossing seems to have disappeared??

$A_{\text {FB }}$ in $B \rightarrow K^{*} \mu^{+} \mu^{-}:$CDF, LHCb

- Zero crossing seems to be present
- Maybe the Belle observation was just statistical fluctuation

CP asymmetry in $B \rightarrow K \pi$ decays

The puzzle

$$
\begin{aligned}
\Delta_{K \pi} & =A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)-A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \\
& =0.121 \pm 0.022 \Rightarrow 5.8 \sigma \text { from } \operatorname{SM}(P . \text { Chang, EPS2011) }
\end{aligned}
$$

Is it just matrix element calculation ?

- C and $P_{E W}$ corrections may be high
- QCDF: large imaginary values for C and $P_{E W}$ amplitudes
- Evidence for large $P_{E W}$ should have been found from $B\left(B^{+} \rightarrow K \pi / \rho\right) / B\left(B^{0} \rightarrow K \pi / \rho\right)$: not found
- Large $C \Rightarrow$ breakdown of power-counting in SCET But SCET seems to hold for all other modes !
- pQCD: higher order corrections? No consensus
- Recent claim using Pauli blocking: $\bar{b} \rightarrow \bar{s} u \bar{u}$ is Pauli-suppressed for a spectator u-quark in B^{+}, not for a spectator d-quark in B^{0}.

Outline

(9) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
(2) New physics models: constraints and implications
- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operatorsConcluding remarks

Like-sign dimuon asymmetry and $\sin 2 \beta$: for B_{d}

$J / \psi \phi$ and $A_{s l}$: tension, combined fit, and SM

- The two measurements prefer different values of $\left(\Delta \Gamma, \phi_{s}\right)$
- If forced to ve valid simultaneously, give a best fit far away from the SM

The Tale of Two Betas

β from $B_{S} \rightarrow J / \psi \phi$

- $\beta_{s}^{J / \psi \phi} \approx \frac{1}{2} \operatorname{Arg}\left(-\frac{\left(V_{c b} V_{c s}^{*}\right)^{2}}{M_{12 s}}\right)$
- $\beta_{s}^{J / \psi}(S M)=0.019 \pm 0.001$

β from $a_{s l}$

- $a_{s l}=\left(\Delta \Gamma_{s} / \Delta M_{s}\right) \tan \phi_{s}^{s l}$
- $\phi_{s}^{s l}=\operatorname{Arg}\left(-M_{12 s} / \Gamma_{12 s}\right)$
- $\operatorname{Arg}\left(\Gamma_{12}\right) \neq \operatorname{Arg}\left(V_{c b} V_{c S}^{*}\right)^{2}$ since the (c-u) and (u-u) intermediate states contribute to Γ_{12}.
- $\phi_{s}^{s \prime}(S M)=0.0041 \pm 0.0007$
- $\beta_{s}^{s l}(S M)=-0.0020 \pm 0.0003$

Like-sign dimuon asymmetry and $B \rightarrow J / \psi \phi$: for B_{s}

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
(2) New physics models: constraints and implications
- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Electroweak constraints

Fourth generation still allowed with precision constraints

Electroweak constraints on fourth generation

- Masses cannot be too high, unitarity constraints
- Higgs mass and θ_{34} correlated

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al

Unitarity quadrilaterals

- Deviations in both, β and β_{s} possible

Constraints from the flavor data

Observables that impact $C K M_{4}$ in a clean manner:

- $R_{b b}$ and A_{b} from $Z \rightarrow b \bar{b}$
- ϵ_{K} from $K_{L} \rightarrow \pi \pi$
- the branching ratio of $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$
- the mass differences in the B_{d} and B_{s} systems
- the time-dependent CP asymmetry in $B_{d} \rightarrow J / \psi K_{S}$
- γ from tree-level decays
- the branching ratios of $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{c} e \bar{\nu}$
- the branching ratio of $B \rightarrow X_{s} \mu^{+} \mu^{-}$in the high- q^{2} and low- q^{2} regions
Constraints and implications
- $\left|\tilde{V}_{u b^{\prime}}\right|<0.06,\left|\tilde{V}_{c b^{\prime}}\right|<0.027,\left|\tilde{V}_{t b^{\prime}}\right|<0.31$ at 3σ.
- NP signals for B, D and rare K decays are still possible.

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

$\Gamma_{12}^{N P}=0$ highly disfavored

- $B_{S} \rightarrow J / \psi \phi$ and likesign dimuon asymmetry favor different ϕ_{s} regions
- The tension can be reduced only with larger $\Delta \Gamma_{s}$
- If no NP contribution to $\Gamma_{12 s}$, difficult to be consistent with data

Implications of nonzero $\Gamma_{12}^{N P}$

Possible to go outside the "green band":

Scalar leptoquarks that couple only to τ
AD, Kundu, Nandi, 2010

Z', RPV SUSY

Deshpande, He, Valencia 2010

- $b \rightarrow \boldsymbol{S} \tau \tau$ the only unconstrained operator
- Enhanced BR for $B_{s} \rightarrow \tau^{+} \tau^{-}$predicted
- $B R\left(B_{s} \rightarrow \tau \tau\right) \sim 5 \%$ still allowed

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Implications of the $B \rightarrow \tau \nu$ anomaly

- SM: $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{SM}}=(0.81 \pm 0.15) \times 10^{-4}$
- Measured: $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(1.68 \pm 0.31) \times 10^{-4}$
- More than 2σ enhancement: difficult to explain by $f_{B_{d}}$
- New physics ? large $V_{u b}$?
- But $K^{+} \rightarrow \mu \nu$ looks fine. Universality violation?
- $B \rightarrow D \tau \nu$ and $B \rightarrow D^{*} \tau \nu$ show similar (1.8 σ) excess

If $B \rightarrow \tau \nu$ is indeed enhanced:

$$
\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{NP}}=\frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|\widetilde{V}_{u b}\right|^{2} \tau_{B}\left(1-\tan ^{2} \beta \frac{m_{B}^{2}}{M_{+}^{2}}\right)^{2}
$$

- Large $M_{H^{+}}$, small tan β to barely survive
- Small $M_{H^{+}}$, large tan β to explain the anomaly

Constraints on cMSSM

- cMSSM cannot explain the anomaly
- Only a small region in parameter space survives
- This "golden" region is still consistent with neutralino dark matter!

Bhattacharjee et al, 2011

Flavor physics is now encroaching on the territory of high-energy collider physics !

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Lorentz structure of NP models

$$
\mathcal{H}_{\mathrm{eff}}\left(b \rightarrow s \mu^{+} \mu^{-}\right)=\mathcal{H}_{\mathrm{eff}}^{S M}+\mathcal{H}_{\mathrm{eff}}^{V A}+\mathcal{H}_{\mathrm{eff}}^{S P}+\mathcal{H}_{\mathrm{eff}}^{T}
$$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{S M}= & -\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}\left\{\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{7} \frac{e}{16 \pi^{2}}\left(\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right) F^{\mu \nu}\right. \\
& \left.+C_{9} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \mu+C_{10} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right\} \\
\mathcal{H}_{\mathrm{eff}}^{V A}= & \frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b}^{*} V_{t s}\left\{R_{V} \bar{s} \gamma_{\mu} P_{L} b \bar{\mu} \gamma_{\mu} \mu+R_{A} \bar{s} \gamma_{\mu} P_{L} b \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right. \\
& \left.+R_{V}^{\prime} \bar{s} \gamma_{\mu} P_{R} b \bar{\mu} \gamma_{\mu} \mu+R_{A}^{\prime} \bar{s} \gamma_{\mu} P_{R} b \bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right\} \\
\mathcal{H}_{\mathrm{eff}}^{S P}= & \frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b}^{*} V_{t s}\left\{R_{S} \bar{s} P_{R} b \bar{\mu} \mu+R_{P} \bar{s} P_{R} b \bar{\mu} \gamma_{5} \mu\right. \\
& \left.\quad+R_{S}^{\prime} \bar{s} P_{L} b \bar{\mu} \mu+R_{P}^{\prime} \bar{s} P_{L} b \bar{\mu} \gamma_{5} \mu\right\}
\end{aligned}
$$

$b \rightarrow s \mu^{+} \mu^{-}$decay modes: inter-related observables

$B_{S} \rightarrow \mu^{+} \mu^{-}$

- Branching ratio
$B \rightarrow X_{s} \mu^{+} \mu^{-}, B \rightarrow \mu^{+} \mu^{-} \gamma, B \rightarrow K \mu^{+} \mu^{-}$
- Branching ratio, Forward-backward asymmetry $A_{F B}, C P$ asymmetry
$B \rightarrow K^{*} \mu^{+} \mu^{-}$
- Branching ratio, longitudinal polarization fraction f_{L}
- Many angular asymmetries: $A_{F B}, A_{T}^{(2)}, A_{L T}$
- Triple Product (TP) asymmetries: $A_{T}^{(i m)}, A_{L T}^{(i m)}$
- CP asymmetries for all of these

Angular variables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$

Angular fit results

New VA operators: effect on $K^{*} \mu \mu$ observables

Forward-backward asymmetry

Longitudinal polarization fraction

The angular observable $A_{T}^{(2)}$:

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

$B_{S} \rightarrow \mu^{+} \mu^{-}$branching ratio

- $\mathrm{SM}: \mathrm{BR}=(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: $\mathrm{BR}=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}$
- CMS+LHCb limit: $\mathrm{BR}<1.1 \times 10^{-8}$

$$
\left.\left.\begin{array}{rl}
B\left(\bar{B}_{s} \rightarrow\right. & \left.\mu^{+} \mu^{-}\right)= \\
& \left\{\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left\lvert\, \frac{R_{S}^{2}-R_{s m}^{2} m_{S}^{5}}{64 \pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}}\right.\right. \\
m_{b}+m_{s}
\end{array}\right|^{2}+\left|\frac{R_{P}-R_{P}^{\prime}}{m_{b}+m_{s}}+\frac{2 m_{\mu}^{*}}{m_{B_{s}}^{2}}\left(C_{10}+R_{A}-R_{A}^{\prime}\right)\right|^{2}\right\} .
$$

\Rightarrow Strong bounds on Scalar and pseudoscalar operators

Specific model (cMSSM):

New SP and T operators

Limits (updated pre-EPS 2011):

- $\left|R_{S}-R_{S}^{\prime}\right|^{2}+\left|R_{P}-R_{P}^{\prime}\right|^{2}<0.44$
- $\left|C_{T}\right|^{2}+4\left|C_{T E}\right|^{2}<1.0$

Forward-backward asymmetry in $K \mu \mu$:

- Zero everywhere in the SM, new VA operators do not help
- Enhancement at low q^{2} : due to S, P operators
- Enhancement at high q^{2} : due to T operators

Outline

(1) SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^{s}
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
(3) Concluding remarks

Concluding remarks

- B physics: a window and a magnifying glass (precision measurements)
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier
- Hints of NP in $A_{s l}^{b}, B \rightarrow \tau \nu, J / \psi \phi$:
- New universality-breaking $b \rightarrow d \tau \nu$ and $b \rightarrow \boldsymbol{S} \tau \tau$ operators?
- Indications of NP that contribute to $\Delta \Gamma_{s}$?
- $B_{s} \rightarrow \tau \tau$ may turn out to be crucial
- Data will tell.

Concluding remarks

- B physics: a window and a magnifying glass (precision measurements)
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier
- Hints of NP in $A_{s l}^{b}, B \rightarrow \tau \nu, J / \psi \phi$:
- New universality-breaking $b \rightarrow d \tau \nu$ and $b \rightarrow \boldsymbol{S} \tau \tau$ operators?
- Indications of NP that contribute to $\Delta \Gamma_{s}$?
- $B_{s} \rightarrow \tau \tau$ may turn out to be crucial
- Data will tell.

The End of B Physics (talk)

backup slides

