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Flavor physics: a wall of the SM edifice

Building up the Standard Model

@ 7 — 6 puzzle = Parity violation

@ Cabibbo angle =
weak coupling universality & quark mixing

@ GIM mechanism = no FCNC at tree level, charm

@ CKM paradigm = (at least) three quark families
@ Large B-B mixing = heavy top quark
@ Rate of radiative B decay = top quark mass
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Precision tests of the Standard Model

@ CKM elements: do they explain all CP violation ?

@ Rare decays: new particles contribute through loops ?
@ Asymmetries: are the predicted SM relations obeyed ?
@ What are the features of New Physics (if any) ?
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Window to New Physics beyond the SM

Puzzles in B physics that may lead directly to NP

@ Direct vs indirect measurements of sin243

@ B — tv,: abnormally large branching ratio

@ Anomalous like-sign-dimuon asymmetry

@ Lifetime difference and CP phase in Bs mixing and decay
@ Forward-backward asymmetry in B — K*utu~

@ The K — m isospin asymmetry puzzle




Q SM predictions and some interesting measurements
@ Decay constants and Bag parameters
@ CKM matrix elements
@ Mass differences and width differences
@ Other branching ratios and asymmetries
@ Combinations of measurements

9 New physics models: constraints and implications
Fourth generation of quarks

Models contributing to I'5,

MFV models with charged Higgs

NP with new vector / axial vector operators

NP with scalar / pseudoscalar / tensor operators

Q Concluding remarks



ﬂ SM predictions and some interesting measurements



ﬂ SM predictions and some interesting measurements
@ Decay constants and Bag parameters



A typical B-decay rate calculation

The effective Hamiltonian: Operator Product Expansion

HSY ~ Gr Y AMCi(1)Oi(p)
i

ACKM: some combination of CKM elements,
C;: Wilson coefficients corresponding to effective operators O;

<

NB—f)= /[phase space] )(f!ng”\B>’2

| A\

Quantities involved:

e Masses, e Decay constants, e Bag parameters,

e Wilson coefficients, ¢ Hadronic matrix elements (form factors),
e CKM elements




Decay constants fz and fg, from lattice

EEER

e |N; =2+ 1 results]

@ fg=196.9+8.9 MeV
wocow- | [ | (~ 5%)
- o fg, =242.0+£9.5 MeV

oo e bs (~ 5%)
o | | o fz,/fz =1.229+0.026

T (~1.5%)

Fermilab Lattice @ MILC, 2011
@ See Talk by Nilmani Mathur




Bag parameters from lattice
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N¢ = 2 + 1 calculation, combined with Fpg_:
(] FBSN/BBS = 233(14) MeV (N 6%)
® (g = (fg,\/Bs,)/(fs,\/Bg,) = 1.237(32)

(~ 2.5%)
N. Tantalo, EPS 2011



ﬂ SM predictions and some interesting measurements

@ CKM matrix elements



Global fits to CKM elements

CKMfitter:

EPS 2011
TR T

g | A © Constraints in the 57— plane:

P e f\ @ theratio | V,p/ Ve
sy |\ & / @ ¢« from K — r

F e @ Mass differences AMy and AMs

5 77 e Angles o, B,y (or ¢z, ¢1, ¢3) of
the unitarity triangle

KM paradigm mostly vindicated !

| Details in the talk by Rahul Sinha |




Not so fast: Devil in the details

V.s: semileptonic K decays vs. hadronic + decays

@ Semileptonic K decays = |V,s| = 0.2254 + 0.0013

@ Strange vs. non-strange hadronic ~ decays
= | Vus| = 0.2166 + 0.0019 + 0.0005

@ More than 3o discepancy !

Vp: inclusive vs. exclusive

@ |V,p|(excl) = (3.38 +0.36) x 1073
@ |V,pl(incl) = (4.27 £0.38) x 1073




Tests of unitarity

With magnitudes of elements

@ |V, 4| =0.97425 + 00022 , |V,s| = 0.2254 +0.0013
@ Unitarity holds to one part in 103

With unitarity angles

B—ct

@ The trivial unitarity relation (more a test of our calculations):
at+B+y=m
@ The nontrivial unitarity relation:
2 . .
sin fs = |2 | gy [+ O]
Aleksan et al, 1994

@ We will soon be close to testing this




sin 23 direct measurement vs global fit
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@ sin2j(direct) = 0.691 £+ 0.020
@ sin2(fit) = 0.830135%3
@ More than 20 deviation



sin23, B — 7v, and V: correlations

BR(B — )

- m

oop L+t L 1 T
0.5 06 0.7 08 09

sin 28

@ Branching ratio of B — 7" v too large
@ Effective V, needs to be larger

@ Correlation with the best-fit value of the unitarity triangle
vertex



ﬂ SM predictions and some interesting measurements

@ Mass differences and width differences



B,—Bg mixing: parameterization

Bj-—— B!
@ Oscillation and decay of a|Bg) + b|Byg) :
.d [ a i a
a(5)=(m-2r) (5)
_( M1 My > _ < M1 T2 >
M= CT=
( Moy Moo M1 Too
CP|By) = €%|By), CP|By) = e '¢|By)

@ CPTinvariance : Myy = Moy, T4 =T2
@ Hermiticity : Moy = Mj,, T2 =T7,



Mass and width differences

Form of Mjs and I

G2 M2
M, = WmBqBquBanCD(thth) S(xt) ,

M9, = N x [(VVeq)?f(2, 2)
+ (Vo Veq)(Vip Vug) (2, 0) + (Vi Viug)?£(0,0) ]

(2 = me/mf)

AM and AT in terms of My> and N1

If |F{,| < |M{,| (valid for By and Bs),

AM = 2|M12|+O(mg/m?)
AT = —2Re(M;,l12)/|Mia| + O(mp/mf)




Mass and width differences: theory and experiment

AM Measurements

(*] AMd/I'd =0.771 +0.008 = ‘Vfd‘

@ AM/Ts=26.92+0.15+0.10 = |V
(only CDF. New LHCb measurement not included)

4

@ For 'Y, the (Ve V;y)? term dominates, %, o (Ve V)2

@ Aly/Tg=(42+8)x 1074

@ For I'$,, the u-u and c-u intermediate states also
contribute. Arg(5,) # Arg[(Vep Vis)?]

@ Als/I's =0.137 +0.027

Lenz et al, 2011

® Aly/ATs ~ |Vig/ Vis|? ~ 0.04

\




Arl's: Can new physics increase it ?

Measurement from Bs — J/¢¢

® Alg/ls=0.15415%7
@ Values much larger than predictions are still allowed
(This point will be useful soon)

NP contribution to Al'g

@ ATl g can only decrease by new physics effects !!
Grossman 1996
Caveat: Flavor-dependent NP contributions to 15 ?

@ Third generation scalar leptoquark models
AD, Kundu, Nandi, 2007

@ Left-right symmetric models

Badin, Gabbiani, Petrov, 2007




Width difference in By system

AT gy measurement: possible? worthwhile?
@ Aly/Ty =0.009 +£0.037 (BaBar + Delphi)
@ Aly/T¢g=0.017+0.018+0.11 (Belle)
@ May increase upto 2% with new physics

@ Al 4 neglected in theoretical calculations — OK as long as
the accuracy of experiments is below per cent level.




Angular analysis of Bs — J/v¢: CDF and DO
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@ Results getting closer to SM
@ Large Als and B;j/ Y9 il possible



Angular analysis of B; — J/v¢: LHCb

_’J/LIJCP Ars VS. d) Standard Model

(Lenz, Nierste: arXiv:1 102.4274)

T gy === — 0.25
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® ¢ =0.13£0.18 (stat) + 0.07 (syst) rad

® Consistent with SM

Alog(L)

4 0 Evidence for Al #0 :

® Als=0.123 + 0.029 (stat) + 0.008 (syst) ps’'

= -1 05
. s =0.656 £ 0.009 (stat) + 0.008 (syst) ps &, [rad] 31



ﬂ SM predictions and some interesting measurements

@ Other branching ratios and asymmetries



Like-sign dimuon asymmetry

® SM = Ab = (-0.02375:9%%)9%,
o A = (-0.787+0.172+0.093)%

002 sl —
‘ = 3.9¢ deviation
ol iSM
|
+ Standard Modecl
02| = B Factory waa. ° Bs sector:
et ay = (-1.81+1.06)%
004 DO AL 95% C.L. . AT sl
DD, 9.0 1" ® asl - AMS tan d)S
004 002 0 0.02

@ Large Alg and/or large ¢ !



Branching ratio of Bs — "~

@ SM:BR = (0.32+0.02) x 1078
@ CDF measurement: BR = (1.87]1) x 108
@ CMS+LHCD limit: BR < 1.1 x 1078

T E
CMS +LHCb 7]
preliminary

cL,

08 |
3 = Observed

r W Expected t 1o ]

06 - (background +SM) ]

04 |

02 |

15
BR(BS — pp) [10°]
v

<1xI0° @95%CL



Agg in B — K*u 1 : Belle

1F

Belle: ~250 K*II- events

L

108121 (6002) €01 Tdd

L L L | PRI BRI M|
0 2 4 6 8 10 12 14 16 18 20
g%(GeV3ic?)

@ From the interference between ~- and Z-penguin

@ Zero of Agg is a clean observable: the form factor
dependence cancels at LO to give

Re[CST(gB)] = —(2mpmy/q8) CS"

@ AtNLO, g5 =3.90 +0.12 GeV?
@ Zero crossing seems to have disappeared ??



Ars in B — K*u™ i~ : CDF, LHCb

CDF Run Il Preliminary L=6.8fb-' Theory EMBinned theory
@ 2 = - —+-LHCb
< (a) B® — K% o T T T
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@ Zero crossing seems to be present
@ Maybe the Belle observation was just statistical fluctuation



CP asymmetry in B — K= decays

The puzzle

Akr = Acp(BY — KT1%) — Acp(B® — K77)
= 0.121 £ 0.022= 5.80 from SM(P.Chang, EPS2011)

4

Is it just matrix element calculation ?

@ C and Pgw corrections may be high
@ QCDF: large imaginary values for C and Pgy, amplitudes

@ Evidence for large Pgyy should have been found from
B(BT — Kn/p)/B(B° — Kn/p): not found

@ Large C = breakdown of power-counting in SCET
But SCET seems to hold for all other modes !

@ pQCD: higher order corrections? No consensus

@ Recent claim using Pauli blocking: b — sull is
Pauli-suppressed for a spectator u-quark in B+, not for a
spectator d-quark in BC.




ﬂ SM predictions and some interesting measurements

@ Combinations of measurements



Like-sign dimuon asymmetry and sin 25: for By

£ T T T T T T T | T T T T T T T T T |
| e s has oL > 068 | ]
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and Ag: tension, combined fit, and SM

m r
. osCDF 13517 +DO 2815 2] 0 COF 135/~ +D@ 28+ A% P0G 31
Ly —.
‘ [
£ o 9% 0L — B o4 95% 0L —
e - 99%CL  —
£y 99.7% CL — e
0.
4 q
o0 {
0.2
\‘«\ p-value = 0.031
« N 220 from SM pvalue = 0.007
4 ¥ 0.4 2.7c trom SM
0.5, e
3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3
3% = —26]/%? rad] $7/%% = 26717 [raq]

@ The two measurements prefer different values of (AT, ¢s)

@ If forced to ve valid simultaneously, give a best fit far away
from the SM



The Tale of Two Betas

g from Bs — J/¢¢

o BV ~ TArg (—7( Vj\%\g})j

e 3/Y(SM) = 0.019 = 0.001

® ag = (Als/AMs) tan¢g

® o5 = Arg(—Mizs/T125)

@ Arg(l12) # Arg(Vyp Vi)? since the (c-u) and (u-u)
intermediate states contribute to M1».

@ ¢ (SM) = 0.0041 + 0.0007
@ 3/(SM) = —0.0020 + 0.0003




Like-sign dimuon asymmetry and B — J/¢: for Bg

LA, L L LN L I N L
[ excluded area has CL > 0.68 | H

ImA,




e New physics models: constraints and implications



e New physics models: constraints and implications
@ Fourth generation of quarks



Electroweak constraints

Fourth generation still allowed with precision constraints

4th Generation
- 05[ T T T T J b}

04

0.3 [-68%, 95%, 99% CL it contours | M, < [114, 1000] GeV. =
E (M,=120 Gev, U=0) m=173.3+1.1 Gev
E 1 1 1

04 03 02 01 0 01 02 03 04 05

Electroweak constraints on fourth generation

@ Masses cannot be too high, unitarity constraints
@ Higgs mass and 634 correlated

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al



Unitarity quadrilaterals

Im
A
T
I
A N
R A
ViV, =
III S~ P
I~ Ve VsV ~ Va Vg
c LT 4 - Re
ViV ~ Vaal'3 B 9

VeV~ VeV

@ Deviations in both, 8 and s possible

‘ See talk by Amarjit Soni




Constraints from the flavor data

Observables that impact CKM, in a clean manner:

@ Ry, and A, from Z — bb

@ ek from K, — 7w

@ the branching ratio of K™ — 7 vy

@ the mass differences in the By and B systems

@ the time-dependent CP asymmetry in By — J/¢¥Ks
@ ~ from tree-level decays

@ the branching ratios of B — Xsy and B — X.ev

°

the branching ratio of B — Xsu ™~ in the high-g? and
low-g? regions

Constraints and implications
o |Vyy| <0.08, |Vy| < 0.027, | V| < 0.31 at 30.
@ NP signals for B, D and rare K decays are still possible.

<

AD Alok |'ondon 2011




e New physics models: constraints and implications

@ Models contributing to I'{,



NP = 0 highly disfavored

1Ty, ps ]

@ Bs — J/v¢ and likesign dimuon asymmetry favor different
¢s regions

@ The tension can be reduced only with larger ATl ¢

@ If no NP contribution to I'1o4, difficult to be consistent with
data

AD, Ghosh, Kundu, Patra, 2011



Implications of nonzero %

Possible to go outside the “green band”:

—  D06é1f l+CDF 168 !

706
0.6 COF Runi Prol. 2816+ DO 281! ‘m -
i B
Boaf N0 A )
Z5 <02
5 o2 Z T
) A 00
0.0 S
d! ), -02
0.2 \ A i ;
N 7 -4 v \ \‘
0.4 - \ )
I
=06 7 {‘ L - : \_
0P5 0 05 00 05 10 15 -Ls =10 =05 00 05 16 13

87/ [rad] B [rad]
Scalar leptoquarks that couple only to 7

AD, Kundu, Nandi, 2010
Z', RPV SUSY

Deshpande, He, Valencia 2010

@ b — s77 the only unconstrained operator ~ Bauer et al, 2010
@ Enhanced BR for Bs — 77~ predicted

@ BR(Bs — 17) ~ 5% still allowed



e New physics models: constraints and implications

@ MFV models with charged Higgs



Implications of the B — v anomaly

040 ————

1-CL

0.30 &
] I~ v ]
—~ 020 IR =
S ] (]
L 06 O o2 | | —
T E q ~ |
@ 015 — - 05 @ |
& £ ] fil 4
@ C E 04 0.20 - .
010 - 1 - t LocD 4
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005 — B F ]
- TR i ;
ok L . t5asad Clgp, fwbeisan pegs ETETTEL
07 08 ) 10 010 015 020 025 0.30
sin 28 fy % Squ[BB] (GeV)
! ’d

SM: BR(B* — 71, )sm = (0.81 £0.15) x 10~4
Measured: BR(B* — 771,) = (1.68 £ 0.31) x 1074
More than 20 enhancement: difficult to explain by fg,
New physics ? large V, ?

But K™ — uv looks fine. Universality violation ?

B — Drv and B — D*rv show similar (1.80) excess



If B— 7v is indeed enhanced:

2 o\ 2
GEmpm? m? 277 2 2 , Mz
BR(B" — 7 v ) = F Y
( 7’) 8 mZB B | u | ; i
4 T T ; B
EXS tan B=10 (a) A
o . E
3 He v | ?
27 |
: -
I |
0 allowed at 5% CL
0 b L1 il e

/ L L Il
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400
M, [GeV] M.[GeV]

@ Large My, small tan 3 to barely survive
@ Small My+, large tan /5 to explain the anomaly



Constraints on cMSSM

) asatowsdvy(g-210tmuon ][] destowodys v, [/} distonsaiy8yox ;1
1000

@ cMSSM cannot explain

" 7 the anomaly
o i | @ Only a small region in
- M R - parameter space
mo[GeV] mo[GeV] .
sctony -2t ] Sesonmtin8 2, e — survives

@ This “golden” region is
still consistent with
neutralino dark matter !

Bhattacharjee et al, 2011

s
m,, [GeV] tan

Flavor physics is now encroaching on the territory of
high-energy collider physics ! J




e New physics models: constraints and implications

@ NP with new vector / axial vector operators



Lorentz stru

ure of NP models

SM
Heff

VA
Heff

SP
7'Leff

T
H eff

Her(b — st p™) = HI' + Hat + HI + Hr

4Gr )
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+ Cg (Sw PLb) iy + C1o (Sw PLb) firyuyspe }
G _ _ _ _
2 Vi Vis {Hv 5YuPLb firyup 4+ RaSvuPLb fiyuysp
\/éﬂ'
+ Ry SuPab i+ Ry SuPabipcisi )
Gr .. o I
O\‘@Fr Vi Vis {Rs §Prb fiji + Rp SPrb fivsp

aGr
Vor

+ Rs 3P.b fix + Rp SPLb /_Wsu} )

Vi Vis {CT 80,wb fic™ 1+ iCre 8o ficasy e”"aﬁ}



b — sy~ decay modes: inter-related observables
@ Branching ratio \

B— Xsptp=,B— putu=v, B— Kutp™
@ Branching ratio, Forward-backward asymmetry Agg, CP
asymmetry

v

B— Kutu~

@ Branching ratio, longitudinal polarization fraction f,

@ Many angular asymmetries: AFB,A(TZ),ALT
@ Triple Product (TP) asymmetries: A(’m) A(’m)
@ CP asymmetries for all of these




Angular variables in B — K*u* i~

Angular fit results

CDF Run Il Preliminary L=6.5b"

02476 5 1013 1d 16718
¢ (GeViic)
CDF Run Il Preliminary L=6.6fb™
B Ky
#* Data

CDF results:

B 246 5'10'13 14 1618’
et
Simultaneous fit with K0 and k= ¥ V)
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o ] e
04l
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New VA operators: effect on K*uu observables

Forward-backward asymmetry

Only Ry, and Ry, present
v VARTes Only Ry,4 and R} present

o 2 e
Longltudlnal poIarlzatlon fractlon

"o 1 2 3 a % ) 7 14 15 16 17 13 19 20
FGer) F(Gev’)

The angular observable A(TZ):

Only Ry 4 and Ry, 4present Only Ry, and Ry, 4present

00

Alok et al 2011



e New physics models: constraints and implications

@ NP with scalar / pseudoscalar / tensor operators



Bs — ptu~ branching ratio

@ SM: BR = (0.32 +0.02) x 10-8
@ CDF measurement: BR = (1.87].1) x 108
@ CMS+LHCD limit: BR < 1.1 x 108

G,_—ozemmBS fBSTBS

B(BSHHJr#i) = 6473 |V{ths|
R R; 2 ?
P—Np | “Me o+ Ra—R
mb+msJr mBS( 10 Fia Ale

tanf}

50
a0

Specific model (cCMSSM):

30

20
Buchmueller et al

M, [GeV/c?]



New SP and T operators

Limits (updated pre-EPS 2011):
® |Rs — Rg? + |Rp — Rp|? < 0.44
® [Cr[?+4[Creff < 1.0

Forward-backward asymmetry in Kpu:

Only Rgp, R'g p and Cr ¢ present Only Rgp, R'g p and Cr g present

40l 40 [

. %

Arp(%)

Arp(%)
-

1 2 a 5 6 15 16 17 18 19 20 21 22

3
o (GeV?) o (GeV?)

@ Zero everywhere in the SM, new VA operators do not help
@ Enhancement at low g°: due to S, P operators
@ Enhancement at high g°: due to T operators

V.

Alok et al 201



Q Concluding remarks



Concluding remarks

@ B physics: a window and a magnifying glass (precision
measurements)

@ Bounds from low-energy data getting significant enough to
constrain new physics at the energy frontier
e Hints of NP in A%, B — v, J/¢¢:
e New universality-breaking b — drv and b — s71
operators?
o Indications of NP that contribute to Al'g ?
e B; — 77 may turn out to be crucial

@ Data will tell.
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The End of B Physics (talk)
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