B Physics: Standard Model and beyond A biased sampling

Amol Dighe

Tata Institute of Fundamental Research, Mumbai

B Physics at the LHC Kolkata, Mar 2, 2012

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B \overline{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative *B* decay ⇒ top quark mass

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: new particles contribute through loops ?
- Asymmetries: are the predicted SM relations obeyed ?
- What are the features of New Physics (if any) ?

Flavor physics: a wall of the SM edifice

Building up the Standard Model

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B \overline{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative B decay ⇒ top quark mass

Precision tests of the Standard Model

- CKM elements: do they explain all CP violation ?
- Rare decays: new particles contribute through loops ?
- Asymmetries: are the predicted SM relations obeyed ?
- What are the features of New Physics (if any) ?

Window to New Physics beyond the SM

Puzzles in B physics that may lead directly to NP

- Direct vs indirect measurements of sin 2β
- $B \rightarrow \tau \nu_{\tau}$: abnormally large branching ratio
- Anomalous like-sign-dimuon asymmetry
- Lifetime difference and CP phase in B_s mixing and decay

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Forward-backward asymmetry in $B \to K^* \mu^+ \mu^-$
- The $K \pi$ isospin asymmetry puzzle

Contents

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ^s₁₂
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
- 2 New physics models: constraints and implications
 - Fourth generation of quarks
 - Models contributing to Γ_{12}^s
 - MFV models with charged Higgs
 - NP with new vector / axial vector operators
 - NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
- 2 New physics models: constraints and implications
 - Fourth generation of quarks
 - Models contributing to Γ_{12}^s
 - MFV models with charged Higgs
 - NP with new vector / axial vector operators
 - NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

A typical B-decay rate calculation

The effective Hamiltonian: Operator Product Expansion

$$\mathcal{H}_{ ext{eff}}^{SM} ~\sim~ G_F \sum_i \lambda_i^{ ext{CKM}} \mathcal{C}_i(\mu) \mathcal{O}_i(\mu)$$

 λ_i^{CKM} : some combination of CKM elements, *C_i*: Wilson coefficients corresponding to effective operators *O_i*

Decay rate:

$$\Gamma(B \to f) = \int [\text{phase space}] \left| \langle f | H_{\text{eff}}^{SM} | B \rangle \right|^2$$

Quantities involved:

- Masses, Decay constants, Bag parameters,
- Wilson coefficients, Hadronic matrix elements (form factors),
- CKM elements

Decay constants f_B and f_{B_s} from lattice

- $N_f = 2 + 1$ results
 - *f_B* = 196.9 ± 8.9 MeV (~ 5%)
 - $f_{B_s} = 242.0 \pm 9.5 \text{ MeV}$ (~ 5%)
 - $f_{B_s}/f_B = 1.229 \pm 0.026$ (~ 1.5%)

Fermilab Lattice

MILC, 2011

See Talk by Nilmani Mathur

Bag parameters from lattice

 $N_f = 2 + 1$ calculation, combined with F_{B_q} :

• $F_{B_s}\sqrt{B_{B_s}} = 233(14) \text{ MeV}$ (~ 6%) • $\xi_B = (f_{B_s}\sqrt{B_{B_s}})/(f_{B_d}\sqrt{B_{B_d}}) = 1.237(32)$ (~ 2.5%) N. Tantalo, EPS 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

SM predictions and some interesting measurements Decay constants and Bag parameters CKM matrix elements • Mass differences and width differences Other branching ratios and asymmetries Combinations of measurements New physics models: constraints and implications Fourth generation of guarks • Models contributing to Γ_{12}^s

- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

Global fits to CKM elements

CKMfitter:

Constraints in the $\bar{\rho}$ - $\bar{\eta}$ plane:

- the ratio $|V_{ub}/V_{cb}|$
- ϵ_K from $K \to \pi \pi$
- Mass differences ΔM_d and ΔM_s
- Angles α, β, γ (or φ₂, φ₁, φ₃) of the unitarity triangle

UTfit:

KM paradigm mostly vindicated !

Details in the talk by Rahul Sinha

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Not so fast: Devil in the details

V_{us} : semileptonic K decays vs. hadronic τ decays

- Semileptonic K decays $\Rightarrow |V_{us}| = 0.2254 \pm 0.0013$
- Strange vs. non-strange hadronic τ decays $\Rightarrow |V_{us}| = 0.2166 \pm 0.0019 \pm 0.0005$
- More than 3σ discepancy !

V_{ub} : inclusive vs. exclusive

- $|V_{ub}|(excl) = (3.38 \pm 0.36) \times 10^{-3}$
- $|V_{ub}|(incl) = (4.27 \pm 0.38) \times 10^{-3}$

Tests of unitarity

With magnitudes of elements

- $|V_{ud}| = 0.97425 \pm 00022$, $|V_{us}| = 0.2254 \pm 0.0013$
- Unitarity holds to one part in 10⁻³

With unitarity angles

The trivial unitarity relation (more a test of our calculations):

 $\alpha + \beta + \gamma = \pi$

• The nontrivial unitarity relation:

 $\sin \beta_{s} = \left| \frac{V_{us}}{V_{ud}} \right|^{2} \frac{\sin \beta \, \sin(\gamma + \beta_{s})}{\sin(\beta + \gamma)} \, \left[1 + \mathcal{O}(\lambda^{4}) \right]$

Aleksan et al, 1994

We will soon be close to testing this

$\sin 2\beta$: direct measurement vs global fit

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- $\sin 2\beta$ (direct) = 0.691 ± 0.020
- $\sin 2\beta$ (fit) = 0.830^{+0.013}_{-0.033}
- More than 2σ deviation

sin 2 β , $B \rightarrow \tau \nu$, and V_{ub} : correlations

- Branching ratio of $B^+ \rightarrow \tau^+ \nu$ too large
- Effective V_{ub} needs to be larger
- Correlation with the best-fit value of the unitarity triangle vertex

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

$B_q - \overline{B_q}$ mixing: parameterization

• Oscillation and decay of $a|B_q
angle+b|\overline{B}_q
angle$:

$$i\frac{d}{dt} \begin{pmatrix} a \\ b \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\mathbf{M} \equiv \left(\begin{array}{cc} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array}\right) \quad , \quad \Gamma \equiv \left(\begin{array}{cc} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{array}\right)$$

 $\mathcal{CP}|B_q
angle=e^{iarphi}|ar{B}_q
angle,\ \mathcal{CP}|ar{B}_q
angle=e^{-iarphi}|B_q
angle$

(日) (日) (日) (日) (日) (日) (日)

- CPT invariance : $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$
- Hermiticity : $M_{21} = M_{12}^*$, $\Gamma_{21} = \Gamma_{12}^*$

Mass and width differences

Form of M_{12} and Γ_{12}

 ΔM and $\Delta \Gamma$ in terms of M_{12} and Γ_{12}

If $|\Gamma_{12}^q| \ll |M_{12}^q|$ (valid for B_d and B_s),

 $\Delta M = 2|M_{12}| + O(m_b^4/m_t^4)$ $\Delta \Gamma = -2\text{Re}(M_{12}^*\Gamma_{12})/|M_{12}| + O(m_b^4/m_t^4)$

ΔM Measurements

- $\Delta M_d/\Gamma_d = 0.771 \pm 0.008 \Rightarrow |V_{td}|$
- $\Delta M_s/\Gamma_s = 26.92 \pm 0.15 \pm 0.10 \Rightarrow |V_{ts}|$ (only CDF. New LHCb measurement not included)

$\Delta\Gamma_s$ and $\Delta\Gamma_d$: theoretical predictions

- For Γ^d_{12} , the $(V_{cb}V^*_{cd})^2$ term dominates, $\Gamma^d_{12} \propto (V_{cb}V^*_{cd})^2$
- $\Delta\Gamma_d/\Gamma_d = (42 \pm 8) \times 10^{-4}$
- For Γ^s₁₂, the u-u and c-u intermediate states also contribute. Arg(Γ^s₁₂) ≠ Arg[(V_{cb}V^{*}_{cs})²]
- $\Delta \Gamma_s / \Gamma_s = 0.137 \pm 0.027$

Lenz et al, 2011

•
$$\Delta \Gamma_d / \Delta \Gamma_s \approx |V_{td} / V_{ts}|^2 \approx 0.04$$

$\Delta\Gamma_s$: Can new physics increase it ?

Measurement from $B_s \rightarrow J/\psi \phi$

- $\Delta \Gamma_s / \Gamma_s = 0.154^{+0.067}_{-0.065}$
- Values much larger than predictions are still allowed (This point will be useful soon)

NP contribution to $\Delta\Gamma_s$

ΔΓ_s can only decrease by new physics effects !!

Grossman 1996

Caveat: Flavor-dependent NP contributions to Γ_{12} ?

Third generation scalar leptoquark models

AD, Kundu, Nandi, 2007

Left-right symmetric models

Badin, Gabbiani, Petrov, 2007

$\Delta \Gamma_d$ measurement: possible? worthwhile?

- $\Delta \Gamma_d / \Gamma_d = 0.009 \pm 0.037$ (BaBar + Delphi)
- $\Delta \Gamma_d / \Gamma_d = 0.017 \pm 0.018 \pm 0.11$ (Belle)
- May increase upto 2% with new physics
- $\Delta \Gamma_d$ neglected in theoretical calculations OK as long as the accuracy of experiments is below per cent level.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Angular analysis of $B_s \rightarrow J/\psi \phi$: CDF and D0

(日) (日) (日) (日) (日) (日) (日)

- Results getting closer to SM
- Large $\Delta \Gamma_s$ and $\beta_s^{J/\psi\phi}$ still possible

Angular analysis of $B_s \rightarrow J/\psi \phi$: LHCb

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
- 2 New physics models: constraints and implications
 - Fourth generation of quarks
 - Models contributing to Γ^s₁₂
 - MFV models with charged Higgs
 - NP with new vector / axial vector operators
 - NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

Like-sign dimuon asymmetry

- SM \Rightarrow $A_{sl}^b = (-0.023^{+0.005}_{-0.006})\%$
- $A_{sl}^{b} = (-0.787 \pm 0.172 \pm 0.093)\%$ $\Rightarrow 3.9\sigma$ deviation
- B_s sector: $a_{sl}^s = (-1.81 \pm 1.06)\%$

•
$$a_{sl}^s = \frac{\Delta I_s}{\Delta M_s} \tan \phi_s^{sl}$$

• Large $\Delta \Gamma_s$ and/or large ϕ_s !

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Branching ratio of $B_s \rightarrow \mu^+ \mu^-$

- SM: BR = $(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: BR = $(1.8^{+1.1}_{-0.9}) \times 10^{-8}$
- CMS+LHCb limit: BR $< 1.1 \times 10^{-8}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$A_{ m FB}$ in $B o K^* \mu^+ \mu^-$: Belle

- From the interference between γ- and Z-penguin
- Zero of A_{FB} is a clean observable: the form factor dependence cancels at LO to give

 ${
m Re}[C_9^{
m eff}(q_0^2)] = -(2m_Bm_b/q_0^2) C_7^{
m eff}$

- At NLO, $q_0^2 = 3.90 \pm 0.12 \text{ GeV}^2$
- Zero crossing seems to have disappeared ??

$A_{ m FB}$ in $B o K^* \mu^+ \mu^-$: CDF, LHCb

- Zero crossing seems to be present
- Maybe the Belle observation was just statistical fluctuation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

CP asymmetry in $B \rightarrow K\pi$ decays

The puzzle

$$\Delta_{K\pi} = A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^-)$$

= $0.121 \pm 0.022 \Rightarrow 5.8\sigma$ from SM(*P.Chang*, *EPS*2011)

Is it just matrix element calculation ?

- C and P_{EW} corrections may be high
- QCDF: large imaginary values for C and P_{EW} amplitudes
- Evidence for large P_{EW} should have been found from $B(B^+ \to K\pi/\rho)/B(B^0 \to K\pi/\rho)$: not found
- Large C ⇒ breakdown of power-counting in SCET But SCET seems to hold for all other modes !
- pQCD: higher order corrections? No consensus
- Recent claim using Pauli blocking: $\bar{b} \rightarrow \bar{s}u\bar{u}$ is Pauli-suppressed for a spectator *u*-quark in B^+ , not for a spectator *d*-quark in B^0 .

SM predictions and some interesting measurements

- Decay constants and Bag parameters
- CKM matrix elements
- Mass differences and width differences
- Other branching ratios and asymmetries
- Combinations of measurements
- 2 New physics models: constraints and implications
 - Fourth generation of quarks
 - Models contributing to Γ^s₁₂
 - MFV models with charged Higgs
 - NP with new vector / axial vector operators
 - NP with scalar / pseudoscalar / tensor operators

(日) (日) (日) (日) (日) (日) (日)

3 Concluding remarks

Like-sign dimuon asymmetry and $\sin 2\beta$: for B_d

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ◆ ◆

$J/\psi\phi$ and A_{sl} : tension, combined fit, and SM

- The two measurements prefer different values of $(\Delta\Gamma, \phi_s)$
- If forced to ve valid simultaneously, give a best fit far away from the SM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The Tale of Two Betas

$$\beta$$
 from $B_s \rightarrow J/\psi \phi$

•
$$\beta_s^{J/\psi\phi} \approx \frac{1}{2} \operatorname{Arg}\left(-\frac{(V_{cb}V_{cs}^*)^2}{M_{12s}}\right)$$

•
$$eta_{m{s}}^{J/\psi}(SM) = 0.019 \pm 0.001$$

β from a_{sl}

•
$$a_{sl} = (\Delta \Gamma_s / \Delta M_s) \tan \phi_s^{sl}$$

- $\phi_s^{sl} = \operatorname{Arg}(-M_{12s}/\Gamma_{12s})$
- Arg(Γ₁₂) ≠ Arg(V_{cb}V^{*}_{cs})² since the (c-u) and (u-u) intermediate states contribute to Γ₁₂.
- $\phi_s^{s\prime}(SM) = 0.0041 \pm 0.0007$
- $\beta_s^{sl}(SM) = -0.0020 \pm 0.0003$

Like-sign dimuon asymmetry and $B \rightarrow J/\psi\phi$: for B_s

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

Electroweak constraints

Fourth generation still allowed with precision constraints

Electroweak constraints on fourth generation

- Masses cannot be too high, unitarity constraints
- Higgs mass and θ_{34} correlated

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Unitarity quadrilaterals

• Deviations in both, β and β_s possible

See talk by Amarjit Soni

(日)

3

Constraints from the flavor data

Observables that impact *CKM*₄ in a clean manner:

- R_{bb} and A_b from $Z o b \bar{b}$
- ϵ_K from $K_L \to \pi\pi$
- the branching ratio of $K^+
 ightarrow \pi^+ \nu \bar{
 u}$
- the mass differences in the B_d and B_s systems
- the time-dependent CP asymmetry in $B_d \rightarrow J/\psi K_S$
- γ from tree-level decays
- the branching ratios of $B o X_s \gamma$ and $B o X_c e ar{
 u}$
- the branching ratio of $B \to X_{s}\mu^+\mu^-$ in the high- q^2 and low- q^2 regions

Constraints and implications

- $|\tilde{V}_{ub'}| < 0.06, |\tilde{V}_{cb'}| < 0.027, |\tilde{V}_{tb'}| < 0.31$ at 3σ .
- NP signals for *B*, *D* and rare *K* decays are still possible.

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ^s₁₂
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

$\Gamma_{12}^{NP} = 0$ highly disfavored

- $B_s \rightarrow J/\psi \phi$ and likesign dimuon asymmetry favor different ϕ_s regions
- The tension can be reduced only with larger $\Delta\Gamma_s$
- If no NP contribution to Γ_{12s}, difficult to be consistent with data

AD, Ghosh, Kundu, Patra, 2011

(日) (日) (日) (日) (日) (日) (日)

Implications of nonzero Γ_{12}^{NP}

Scalar leptoquarks that couple only to $\boldsymbol{\tau}$

AD, Kundu, Nandi, 2010

(日) (日) (日) (日) (日) (日) (日)

Z', RPV SUSY

Deshpande, He, Valencia 2010

- $b \rightarrow s \tau \tau$ the only unconstrained operator Bauer et al, 2010
- Enhanced BR for $B_s \rightarrow \tau^+ \tau^-$ predicted
- $BR(B_s \rightarrow \tau \tau) \sim 5\%$ still allowed

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators
- 3 Concluding remarks

Implications of the $B \rightarrow \tau \nu$ anomaly

- SM: BR $(B^+ \to \tau^+ \nu_\tau)_{\text{SM}} = (0.81 \pm 0.15) \times 10^{-4}$
- Measured: BR($B^+ \to \tau^+ \nu_{\tau}$) = (1.68 ± 0.31) × 10⁻⁴
- More than 2σ enhancement: difficult to explain by f_{B_d}
- New physics ? large V_{ub} ?
- But $K^+ \rightarrow \mu\nu$ looks fine. Universality violation ?
- $B \rightarrow D\tau\nu$ and $B \rightarrow D^*\tau\nu$ show similar (1.8 σ) excess

If $B \rightarrow \tau \nu$ is indeed enhanced:

$$BR(B^{+} \to \tau^{+}\nu_{\tau})_{NP} = \frac{G_{F}^{2}m_{B}m_{\tau}^{2}}{8\pi} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |\tilde{V}_{ub}|^{2} \tau_{B} \left(1 - \tan^{2}\beta \frac{m_{B}^{2}}{M_{+}^{2}}\right)^{2}$$

- Large M_{H^+} , small tan β to barely survive
- Small M_{H^+} , large tan β to explain the anomaly

Constraints on cMSSM

- cMSSM cannot explain the anomaly
- Only a small region in parameter space survives
- This "golden" region is still consistent with neutralino dark matter !

Bhattacharjee et al, 2011

Flavor physics is now encroaching on the territory of high-energy collider physics !

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators

(日) (日) (日) (日) (日) (日) (日)

3 Concluding remarks

Lorentz structure of NP models

$$\mathcal{H}_{ ext{eff}}(b
ightarrow m{s} \mu^+ \mu^-) = \mathcal{H}_{ ext{eff}}^{SM} + \mathcal{H}_{ ext{eff}}^{VA} + \mathcal{H}_{ ext{eff}}^{SP} + \mathcal{H}_{ ext{eff}}^T \ ,$$

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{SM} &= -\frac{4G_F}{\sqrt{2}} \, V_{ts}^* \, V_{tb} \left\{ \sum_{i=1}^6 G_i(\mu) \mathcal{O}_i(\mu) + C_7 \, \frac{e}{16\pi^2} \left(\bar{s}\sigma_{\mu\nu}(m_s P_L + m_b P_R) b \right) F^{\mu\nu} \right. \\ &+ C_9 \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\mu + C_{10} \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} \\ \mathcal{H}_{\text{eff}}^{VA} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_V \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\mu + R_A \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right. \\ &+ R_V' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\mu + R_A' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^{SP} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_S \, \bar{s} P_R b \, \bar{\mu}\mu + R_P \, \bar{s} P_R b \, \bar{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^T &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ C_T \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma^{\mu\nu}\mu + i C_{TE} \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma_{\alpha\beta}\mu \, \epsilon^{\mu\nu\alpha\beta} \right\} \end{aligned}$$

$b ightarrow s \mu^+ \mu^-$ decay modes: inter-related observables

$B_s \rightarrow \mu^+ \mu^-$

Branching ratio

$B \rightarrow X_{s}\mu^{+}\mu^{-}, B \rightarrow \mu^{+}\mu^{-}\gamma, B \rightarrow K\mu^{+}\mu^{-}$

Branching ratio, Forward-backward asymmetry A_{FB}, CP asymmetry

$B ightarrow K^* \mu^+ \mu^-$

- Branching ratio, longitudinal polarization fraction f_L
- Many angular asymmetries: A_{FB} , $A_T^{(2)}$, A_{LT}
- Triple Product (TP) asymmetries: $A_T^{(im)}, A_{LT}^{(im)}$
- CP asymmetries for all of these

Angular variables in $B \rightarrow K^* \mu^+ \mu^-$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

New VA operators: effect on $K^*\mu\mu$ observables

Forward-backward asymmetry

Longitudinal polarization fraction

< ロト () Alok et al 2011 のへで

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements

2 New physics models: constraints and implications

- Fourth generation of quarks
- Models contributing to Γ_{12}^s
- MFV models with charged Higgs
- NP with new vector / axial vector operators
- NP with scalar / pseudoscalar / tensor operators

$B_s \rightarrow \mu^+ \mu^-$ branching ratio

- SM: BR = $(0.32 \pm 0.02) \times 10^{-8}$
- CDF measurement: BR = $(1.8^{+1.1}_{-0.9}) \times 10^{-8}$
- CMS+LHCb limit: BR < 1.1×10^{-8}

$$\begin{split} B(\bar{B}_{s} \to \mu^{+} \, \mu^{-}) &= -\frac{G_{F}^{2} \alpha_{em}^{2} m_{B_{s}}^{5} f_{B_{s}}^{2} \tau_{B_{s}}}{64\pi^{3}} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \times \\ &\left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left| \frac{R_{s} - R_{s}'}{m_{b} + m_{s}} \right|^{2} + \left| \frac{R_{P} - R_{P}'}{m_{b} + m_{s}} + \frac{2m_{\mu}}{m_{B_{s}}^{2}} (C_{10} + R_{A} - R_{A}') \right|^{2} \right\}. \end{split}$$

 \Rightarrow Strong bounds on Scalar and pseudoscalar operators

Specific model (cMSSM):

Buchmueller et al

(日) (日) (日) (日) (日) (日) (日)

New SP and T operators

Limits (updated pre-EPS 2011):

- $|R_s R'_S|^2 + |R_P R'_P|^2 < 0.44$
- $|C_T|^2 + 4|C_{TE}|^2 < 1.0$

Forward-backward asymmetry in $K\mu\mu$:

- Zero everywhere in the SM, new VA operators do not help
- Enhancement at low q^2 : due to S, P operators
- Enhancement at high q²: due to T operators

- SM predictions and some interesting measurements
 - Decay constants and Bag parameters
 - CKM matrix elements
 - Mass differences and width differences
 - Other branching ratios and asymmetries
 - Combinations of measurements
- 2) New physics models: constraints and implications
 - Fourth generation of quarks
 - Models contributing to Γ_{12}^s
 - MFV models with charged Higgs
 - NP with new vector / axial vector operators
 - NP with scalar / pseudoscalar / tensor operators

(日) (日) (日) (日) (日) (日) (日)

Concluding remarks

- B physics: a window and a magnifying glass (precision measurements)
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier

(日) (日) (日) (日) (日) (日) (日)

- Hints of NP in A_{sl}^b , $B \to \tau \nu$, $J/\psi \phi$:
 - New universality-breaking $b \rightarrow d\tau \nu$ and $b \rightarrow s\tau \tau$ operators?
 - Indications of NP that contribute to $\Delta\Gamma_s$?
 - $B_s \rightarrow \tau \tau$ may turn out to be crucial
- Data will tell.

- B physics: a window and a magnifying glass (precision measurements)
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier

(日) (日) (日) (日) (日) (日) (日)

- Hints of NP in A_{sl}^b , $B \to \tau \nu$, $J/\psi \phi$:
 - New universality-breaking $b \rightarrow d\tau \nu$ and $b \rightarrow s\tau \tau$ operators?
 - Indications of NP that contribute to $\Delta\Gamma_s$?
 - $B_s \rightarrow \tau \tau$ may turn out to be crucial
- Data will tell.

The End of B Physics (talk)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

backup slides

▲ロト▲御ト▲ヨト▲ヨト ヨーのへで