India-based Neutrino Observatory (INO)

Amol Dighe TIFR, Mumbai (On behalf of the INO Collaboration) http://www.ino.tifr.res.in/ino/

> NuFact 2012 July 27, 2012

INO Collaboration

Ahmadabad: Physical Research Lab. **Aligarh:** Aligarh Muslim University **Allahabad:** HRI

Calicut : University of Calicut Chandigarh: Panjab University Chennai : IIT, Madras IMSc Delhi : University of Delhi Guwahati : IIT, Guwahati Hawaii (USA) : University of Hawaii Indore: IIT, Indore Jammu : University of Jammu Kalpakkam : IGCAR
Kolkata : Ramakrishna Mission Vivekananda University, SINP, VECC, University of Calcutta
Lucknow : Lucknow University
Madurai : American College
Mumbai : BARC
Mumbai : IIT, Bombay TIFR
Mysore : University of Mysore
Sambalpur : Sambalpur University;
Srinagar : University of Kashmir
Varanasi : Banaras Hindu University

INO: the physics

INO: The physics motivation

- Atmospheric neutrinos provide a wider range for E and L than any artificial neutrino source
- An ability to discriminate between neutrinos and antineutrinos enables efficient determination of neutrino mass ordering
- Magnetized iron calorimeter (ICAL): excellent muon energy measurement, muon direction reconstruction and charge identification
- Hadron shower reconstruction allows access to neutrino energy and high-energy cosmic rays

INO: the physics goals

- Accurate determination of the atmospheric parameters (theta23 octant, deviation of theta23 from maximality)
- Determination of neutrino mass hierarchy (large theta13 is good news !)
- Determination of CP violation in the lepton sector (with a future long baseline experiment with a neutrino factory)
- Non-standard interactions, CPT violation, long range forces, ultrahigh-energy muon fluxes, ...

INO phase II: with a neutrino factory?

• Charge-ID crucial for identification of wrongsign muons

INO: the location

The nearest major city: Madurai

• South India, 120 km from the temple city of Madurai (has airport)

The site: Bodi West Hills

- (9 58' N, 77 16'E)
- Pottipuram village
- Theni district
- Tamil Nadu state

The caverns

- Accessible through a 2km tunnel
- Cavern 1 will host 50kt ICAL (space for 100 kt)
- Other caverns available for multiple experiments (NDBD, dark matter, ...)

Geography of the site

• Cavern set in Charnockite rock under the 1589 m peak

• Vertical cover: 1289 m, all-round cover ~1000m

• Warm, low-rainfall area, low humidity throughout the year, unusual wind speed in some seasons

Organization at the site

• Flat terrain with good access to major roads

All major components to be located underground , Small surface lab on the outside (Pottipuram)

Tunnel and cavern under forest on the surface, but the portal outside the reserve forest boundary

• Surface facilities not on the forest land, so no forest clearing required.

Updates on the site front

• INO project approved by the Indian funding agencies

• Environmental and Forest Clearance for the site obtained. 26 hectars of land provided free by Tamil Nadu state government

• Site preparation works are being tendered

• Plans are being prepared for construction of approach roads, water and electricity connections to the INO site

• Construction of an INO Centre: National Centre for High Energy Physics (NCHEP) planned at Madurai, land available against payment

INO-ICAL: The detector

Magnetized Iron calorimeter (ICAL)

• Iron plates separated by resitive plate chambers (RPCs): 150 layers

Salient features of the detector

- Magnetized iron as target mass and glass RPCs as the active detector
- Modularity and ease of construction
- Good energy measurement through tracking of muons bending in the magnetic field
- Directionality through tracking and timing (~1ns resolution)
- Charge identification through bending of muons
- Complementarity to existing and future detectors

Detector factsheet

No. of modules	3
Module dimensions	16m×16m×14.5m
Detector dimensions	48.4m × 16m × 14.5m
No. of layers	150
Iron plate thickness	56mm
Gap for RPC trays	40mm
Magnetic field	1.3Tesla
RPC dimensions	1,950mm × 1,840mm × 24mm
Readout strip pitch	3 omm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	192
No. of RPC units	28,800 (97,505m2)
No. of readout strips	3,686,400

2 mm thick spacer

Construction of RPC

Two 2 mm thick float Glass Separated by 2 mm spacer

Pickup strips

Glass plates

Resistive coating on the outer surfaces of glass

Construction of the ICAL

19

ICAL Front End Electronics chip developed at BARC Electronics Division

ICAL Electronics: schematic

Testing the RPCs

RPC stack being used for cosmic ray measurements

Muon Pulse in RPC

RPC timing resolution

RPC Pulse ht. resolution

Cosmic ray tracks in the RPC stand

• Demonstrates tracking capability of the INO RPC system

<u>2</u>3

RPC performance with cosmic rays

Strip Multiplicity due to crossing muons

Track residue in mm

Strip noise rate vs time

Image of a RPC using muons

Fabricating 2mx2m glass RPC in the lab

2m x 2m glass RPC test stand

Bakelite RPC R&D

- SINP and VECC groups in Kolkata developing bakelite RPCs in streamer mode
- Inner surface of bakelite coated with PDMS (silicone) to make the surface smooth
- Efficiency plateau over 96% obtained with reduced noise rate and long term stability
- INO-ICAL being modular, can use both, glass and/or bakelite RPCs

Detector prototype (40 ton) in Kolkata

• Both, glass and bakelite **RPCs** tested in this magnetized ICAL prototype

Status of detector development

- **RPC** development for ICAL:
- → R&D almost complete
- \rightarrow Full size RPCs (2m X 2m) are being fabricated not just in the INO labs but also by the industry
- → Methods, machinery and production optzmisation for large scale production of RPCs are being developed with the help of an industry

• Electronics for ICAL

- Design and prototyping of electronics, trigger and data acquisition systems progressing well.
- First batch of ASIC front end designed by the INO electronics team & fabricated by Euro Practice IC Services being tested in the RPC lab
- → TDC ASIC developed at IIT Madras
- Magnet for ICAL
- → Prototype magnet running at VECC, Kolkata

8m x 8m x 20 layer engineering module (800 ton) being planned

Overview of simulation framework

Simulation Framework

The status of INO simulations

- Inhomogeneous magnetic field implemented
- Muon track reconstruction: good understanding of energy and direction resolution, but improvements still possible
- Hadron energy resolutions available (but not used in the results shown in this talk)
- Neutrino energy reconstruction using muon and hadron momenta possible
- Optimization of iron plate thickness in progress

Detector performance: efficiencies

CID Efficiency

Detector performance: resolutions

34

Atmospheric parameters with INO-ICAL

Priors used on |Delta32|, theta23, theta13 projected reach
Precision complementary to LBL experiments: better for theta23, but worse for |Delta32|.

Mass hierarchy with INO-ICAL

• Events generated using NUANCE and ICAL resolutions in

E and cos(theta_zenith)

 For sin²(theta23)=0.5, sin²(2 theta13)=0.1: In 5 years (2022), 2 sigma sensitivity to MH In 10 years (2027), 2.7 sigma sensitivity to MH

Impact of CP phase on MH sensitivity

- Data generated at deltaCP=0 and fitted to nonzero deltaCP
- MH sensitivity almost independent of the CP phase

INO: Timeline

INO-ICAL timeline

SN	Description of work	2011-12			2012-13				2013-14				2014-15				2015-16				2016-17				
	Civil work at Pottipuram																								
1	Land acquisition and pre-project work	┥	•	•																					
2	Architectural and Engineering consultancy		-																						
3	Tendering and award of contracts			◀	٠																				
4	Mining of access portal				•	←	►																		
5	Excavation of tunnel						-	•			_	-	►												
6	Excavation of caverns												-	<-					►						
7	Installation of services, cranes, lifts etc.																	╉	\square	►					
8	Civil work for magnet support bed																			\leftarrow	•				
9	Surface facilities					•					_	-	_	_	_	►									
	Magnet																								
10	Procurement of steel plates									•			_	►											
11	Machining job for steel plates													•					►						
12	Transportation of machined plates at site																		┥	►					
13	Procurement of copper coils																┥			►					
14	Assembly/erection of magnet (3 modules)																			ł	◀			►	
	RPC																								
15	Finalization of all design details, tendering	◀																							
16	Procurement of components			◀		•																			
17	Fabrication and assembly of 30000 pcs						◀		_		_		_		_				►						
18	Transportation to site and tests																•					►			
19	Procurement of electronics, gas handling								-			_	_			•									
20	Installation and commissioning																					•			►

Collaborators are welcome ! http://www.ino.tifr.res.in/ino/

40

40