Heavy flavour decays the mundane and the exotic

Amol Dighe

Tata Institute of Fundamental Research, Mumbai

National Meeting on Heavy Flavour (HFmeet 2013) IIT Bombay, Apr 29-May 1, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

The mundane vs the exotic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Contents

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- Model-independent new-physics search
 - Models contributing to Γ^s₁₂
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ_{12}^s
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The mundane: precision tests of the SM CKM matrix elements B_d − B_d and B_s − B_s mixing Rare FCNC decays b → sµµ Specific new physics models: constraints Fourth generation of quarks MFV models with charged Higgs

- Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ^s₁₂
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Global fits to CKM elements

CKMfitter:

Constraints in the $\bar{\rho}$ - $\bar{\eta}$ plane:

- the ratio $|V_{ub}/V_{cb}|$
- ϵ_K from $K \to \pi \pi$
- Mass differences ΔM_d and ΔM_s
- Angles α, β, γ (or φ₂, φ₁, φ₃) of the unitarity triangle

UTfit:

Pre-Moriond13 fits

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

KM paradigm mostly vindicated !

Global fits to CKM elements

CKMfitter:

Constraints in the $\bar{\rho}$ - $\bar{\eta}$ plane:

- the ratio $|V_{ub}/V_{cb}|$
- ϵ_K from $K \to \pi \pi$
- Mass differences ΔM_d and ΔM_s
- Angles α, β, γ (or φ₂, φ₁, φ₃) of the unitarity triangle

UTfit:

Pre-Moriond13 fits

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

KM paradigm mostly vindicated !

Precision measurements of $|V_{us}|$

Unitarity vs. semileptonic K decays vs. hadronic τ decays

- Semileptonic K decays $\Rightarrow |V_{us}| = 0.2254 \pm 0.0013$
- Strange vs. non-strange hadronic τ decays $\Rightarrow |V_{us}| = 0.2202 \pm 0.0015$
- $\sim 3\sigma$ discrepancy !

The tale of three $|V_{ub}|$'s

V_{ub} : inclusive vs. exclusive vs. leptonic

- $|V_{ub}|(excl) = (3.38 \pm 0.36) \times 10^{-3}$
- $|V_{ub}|(incl) = (4.27 \pm 0.38) \times 10^{-3}$
- $|V_{ub}|(\tau\nu) = ??$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Effective $|V_{ub}|$: correlation b/w sin 2 β and $B(B \rightarrow \tau \nu)$

Before new Belle results

- Branching ratio of $B^+ \rightarrow \tau^+ \nu$ too large \Rightarrow enhanced V_{ub} ?
- $K \rightarrow \mu \nu$ OK with the SM. lepton-universality violation ?

After new Belle results

Seems consistent with the SM for now...

Effective $|V_{cb}|$: semileptonic $B \rightarrow D \tau \nu$ and $B \rightarrow D^* \tau \nu$

Babar 2012

・ロト・(理ト・(ヨト・(ヨト・)の())

$\overline{R(D)} = \overline{B(B o D au u)} / \overline{B(B o D \ell u)}$

- SM Prediction: *R*(*D*) = 0.297 ± 0.017
- Measurement: $R(D) = 0.440 \pm 0.058 \pm 0.042$ $\Rightarrow 2.2\sigma$ enhancement

$R(D^*) = B(B ightarrow D^* au u) / B(B ightarrow D^* \ell u)$

- SM Prediction: $R(D) = 0.252 \pm 0.003$
- Measurement: $R(D) = 0.332 \pm 0.024 \pm 0.018$ $\Rightarrow 2.7\sigma$ enhancement

• Affect $b \rightarrow c \tau \nu$, indicate lepton-universality violation ?

Tests of unitarity

With magnitudes of elements

- $|V_{ud}| = 0.97425 \pm 00022$, $|V_{us}| = 0.2254 \pm 0.0013$
- Unitarity holds to one part in 10⁻³

With unitarity angles

The trivial unitarity relation (more a test of our calculations):

 $\alpha + \beta + \gamma = \pi$

• The nontrivial unitarity relation:

 $\sin \beta_{s} = \left| \frac{V_{us}}{V_{ud}} \right|^{2} \frac{\sin \beta \, \sin(\gamma + \beta_{s})}{\sin(\beta + \gamma)} \, \left[1 + \mathcal{O}(\lambda^{4}) \right]$

Aleksan et al, 1994

We will soon be close to testing this

The mundane: precision tests of the SM CKM matrix elements B_d - B _d and B_s - B _s mixing Rare FCNC decays b → sμμ Specific new physics models: constraints Fourth generation of quarks MFV models with charged Higgs Constrained MSSM

- 3 Model-independent new-physics search
 - Models contributing to Γ^s₁₂
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

ΔM Measurements

- $\Delta M_d/\Gamma_d = 0.770 \pm 0.008 \Rightarrow |V_{td}|$
- $\Delta M_s/\Gamma_s = 26.74 \pm 0.22 \Rightarrow |V_{ts}|$

$\Delta \Gamma_d$ and $\Delta \Gamma_s$: predictions and measurements

- In SM, $\Delta \Gamma_d / \Gamma_d = (42 \pm 8) \times 10^{-4}$
- Current limit: ΔΓ_d/Γ_d = 0.015 ± 0.018 (BaBar + Delphi + Belle)
- In SM, $\Delta \Gamma_s / \Gamma_s = 0.137 \pm 0.027$
- Measurement: $\Delta\Gamma_s/\Gamma_s = 0.159 \pm 0.023$ (mainly from $B_s \rightarrow J/\psi\phi$ at LHCb)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Lifetime difference in B_s decays

Slight tension among Γ , $\Delta\Gamma$ measured through

• *B_s* to flavor-specific modes

•
$$B_s \rightarrow K^+ K^-, J/\psi f_0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• $B_s \rightarrow J/\psi \phi$

The tale of two betas in B_s - \overline{B}_s mixing

$$\beta_{s}^{J/\psi\phi} \text{ from } B_{s} \to J/\psi\phi$$

$$\bullet \ \beta_{s}^{J/\psi\phi} \approx \frac{1}{2} \operatorname{Arg}\left(-\frac{(V_{cb}V_{cs}^{*})^{2}}{M_{12s}}\right)$$

•
$$p_s$$
 (314) = 0.019 ± 0.00

β_s^{sl} from a_{sl}

•
$$a_{s\prime} = (\Delta \Gamma_s / \Delta M_s) \, an \phi_s^{s}$$

- $\phi_s^{sl} = \operatorname{Arg}(-M_{12s}/\Gamma_{12s})$
- Arg(Γ₁₂) ≠ Arg(V_{cb}V^{*}_{cs})² since the (c-u) and (u-u) intermediate states contribute to Γ₁₂.
- $\phi_s^{s/}(SM) = 0.0041 \pm 0.0007$
- $\beta_s^{sl}(SM) = -0.0020 \pm 0.0003$

$\phi^{J/\psi\phi}_{m{s}}$: Angular analysis of $m{B}_{m{s}} o J/\psi\phi$

- Results close to SM now
- Discrete ambiguity in the sign of $\Delta\Gamma$ removed.
- Enhancement in $\Delta\Gamma_s$ possible only by a few tens of percent
- Enhancement in $\beta_s^{J/\psi\phi}$ also highly restricted, but due to its small and precisely predicted SM value, measurements of deviation possible.

β_s^{sl} : Like-sign dimuon asymmetry

• SM $\Rightarrow A_{sl}^b = (-0.023^{+0.005}_{-0.006})\%$ • $A_{sl}^b = (-0.787 \pm 0.172 \pm 0.093)\% \Rightarrow 3.9\sigma$ deviation

(日) (日) (日) (日) (日) (日) (日)

 A_{sl}^{s} and SM

• B_s sector: $a_{sl}^s = (-1.81 \pm 1.06)\%$

(日) (字) (日) (日) (日)

- $a_{sl}^s = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s^{sl}$
- Large $\Delta \Gamma_s$ and/or large ϕ_s !

Consolidated B_d and B_s results

•
$$\Delta_d = \frac{M_{12d}}{M_{12d}(SM)}, \Delta_s = \frac{M_{12s}}{M_{12s}(SM)},$$

• $\Gamma_{12d/s}(NP) = 0$ assumed (not true in general)

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ_{12}^s
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

<u>Branching</u> ratio of $B_s \rightarrow \mu^+ \mu^-$

- $= (3.2 \pm 0.2) \times 10^{-9}$
- Measurement: $\mathsf{BR} = 3.2^{+1.5}_{-1.2} \times 10^{-9}$
- Already constraining many NP models

Angular variables in $B \rightarrow K^* \mu^+ \mu^-$

$$\frac{1}{\Gamma} \frac{d^{4}\Gamma}{d\cos\theta_{\ell} d\cos\theta_{K} d\hat{\phi} dq^{2}} = \frac{9}{16\pi} \left[F_{L} \cos^{2}\theta_{K} + \frac{3}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K}) + F_{L} \cos^{2}\theta_{K}(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}A_{FB}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\cos2\hat{\phi} + \frac{4}{3}A_{FB}(1 - \cos^{2}\theta_{K})\cos\theta_{\ell} + \frac{4}{3}A_{FB}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\sin2\hat{\phi} \right]$$

Angular asymmetries in $B \rightarrow K^* \mu^+ \mu^-$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$A_{ m FB}$ in $B o K^* \mu^+ \mu^-$

- From the interference between γ- and Z-penguin
- Zero of A_{FB} is a clean observable: the form factor dependence cancels at LO to give

 $\mathrm{Re}[C_9^{\mathrm{eff}}(q_0^2)] = -(2m_Bm_b/q_0^2) C_7^{\mathrm{eff}}$

シック・ 川 ・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・

- At NLO, $q_0^2 = 3.90 \pm 0.12 \text{ GeV}^2$
- Observation: $q_0^2 = 4.9^{+1.1}_{-1.3} \text{ GeV}^2$

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$

2 Specific new physics models: constraints

- Fourth generation of quarks
- MFV models with charged Higgs
- Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ_{12}^s
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$

2 Specific new physics models: constraints

- Fourth generation of quarks
- MFV models with charged Higgs
- Constrained MSSM

3 Model-independent new-physics search

- Models contributing to Γ_{12}^s
- Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Desirability for flavor physics

Unitarity quadrilaterals: allow extra sources of CP violation

AD, CSKim, 2007; Alok, AD, Ray 2009

・ロト ・ 同ト ・ ヨト ・ ヨ

- Makes possible deviations in both, β and β_s (= χ in figure)
- May help in accounting for the $\sin 2\beta$ anomaly
- Predicts deviation of β_s from SM

Electroweak constraints

Chanowitz, Erler, Hou, Kribs, Langacker, Soni et al

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Constraints from the flavor data

Observables that impact *CKM*₄ in a clean manner:

- R_{bb} and A_b from $Z o b \bar{b}$
- ϵ_K from $K_L \to \pi \pi$
- the branching ratio of $K^+
 ightarrow \pi^+ \nu \bar{\nu}$
- the mass differences in the B_d and B_s systems
- the time-dependent CP asymmetry in $B_d \rightarrow J/\psi K_S$
- γ from tree-level decays
- the branching ratios of $B \to X_s \gamma$, $B \to X_c e \bar{\nu}$, and $B \to X_s \mu^+ \mu^-$

Constraints and implications

- $| ilde{V}_{ub'}| <$ 0.06, $| ilde{V}_{cb'}| <$ 0.027, $| ilde{V}_{tb'}| <$ 0.31 at 3 σ
- NP signals for B, D and rare K decays are still possible

AD, Alok, London 2011 See

Constraints from the Higgs data

(red numbers: decrease in χ^2 if channel is removed from the analysis)

- Data 5.3σ away from SM4
- Fourth generation in serious trouble, mainly from $H \rightarrow \gamma \gamma$

Eberhardt et al, arXiv:1209.1101

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$

Specific new physics models: constraints

- Fourth generation of quarks
- MFV models with charged Higgs
- Constrained MSSM

3 Model-independent new-physics search

- Models contributing to Γ_{12}^s
- Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

If $B \rightarrow \tau \nu$ is indeed enhanced

- Large $\tan \beta$ large M_{H^+} solution is the decoupling limit: not better than the SM.
- Only the sliver can actively account for the enhancement

(Note: above figure with older $B \rightarrow \tau \nu$ data)

- Type-II 2HDM cannot account for $B \rightarrow D\tau\nu$ and $B \rightarrow D^*\tau\nu$ simultaneously.
- Type-III HDM can account for $B \to D\tau\nu$ and $B \to D^*\tau\nu$ simultaneously, but not $B \to \tau\nu$ at the same time.
- With Type-III HDM, with MSSM-like Higgs potential and flavor violation in the up sector, all three measurements can be accounted for.

Crivellin, Greub, Kokulu, 2012

MFV constraints from Bd and Bs mixing

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$

Specific new physics models: constraints

- Fourth generation of quarks
- MFV models with charged Higgs
- Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ_{12}^s
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○
Flavour-physics limits in $m_0 - m_{1/2}$ plane

 At large tan β, constraints from flavor physics become more and more stringent

a _ , a Ghosh et al, 2012 σα α

Constraints in the M_h -tan β plane

- The analysis was done before the Higgs announcement
- The theoretical constraints assume $|A_0| < 1$ TeV
- With $A_0 < -5$ TeV, 125 GeV Higgs become allowed
- Flavor-physics data points towards large negative A₀

Ghosh et al, 2012

Flavor physics is now encroaching on the territory of high-energy collider physics !

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM

3 Model-independent new-physics search

- Models contributing to Γ_{12}^s
- Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- Model-independent new-physics search
 - Models contributing to Γ^s₁₂
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Desirability of $\Gamma_{12s}^{NP} = 0$

- $B_s \rightarrow J/\psi \phi$ and like-sign dimuon asymmetry favor different ϕ_s regions
- The tension can be reduced only with larger $\Delta\Gamma_s$
- If no NP contribution to Γ_{12s}, difficult to be consistent with data

AD, Ghosh, Kundu, Patra, 2011; AD, Ghosh, 2012

• NP contributing to $b \rightarrow s \tau \tau$ can enhance $\Delta \Gamma_s$

AD, A. Kundu, S, Nandi, 2007

• Such NP can also account for the dimuon anomaly, if it can make $B(B_s \rightarrow \tau^+ \tau^-) \sim 5 - 10\%$

AD, A. Kundu, S, Nandi, 2010

b → sττ the only unconstrained operator that can contribute significantly to Γ_{12s}

Bauer et al, 2010

B(B_s → τ⁺τ⁻) is not measured yet. Is that the missing link to NP ?

How much enhancement of $B_s \rightarrow \tau \tau$ possible ?

- Enhancement of $B_s \to \tau^+ \tau^-$ (but not of $B_d \to \tau^+ \tau^-$) would contribute to the difference in B_s and B_d lifetimes.
- SM predicts $|\tau_{B_s}/\tau_{B_d} 1| \leq 1\%$
- Measured lifetime ratio: $\tau_{B_s}/\tau_{B_d} = 1.002 \pm 0.014 \pm 0.012$
- $B(B_s \rightarrow \tau^+ \tau^-)$ up to 3.5% possible even without considering effect on other decays
- But b → sττ also enhances B_d → X_sττ, which allows a cancellation, so that B(B_s → τ⁺τ⁻) ≤ 15% possible
- Limit from direct limit on $B^+ \rightarrow K^+ \tau^+ \tau^-$ easily evaded

AD, Ghosh, 2012

(日) (日) (日) (日) (日) (日) (日) (日)

How well do specific models work ?

- Leptoquarks cannot enhance the BR to percent level.
- With flavor-dependent Z' model, enhancement upto 5% allowed (limits from τ_{B_s}/τ_{B_d} and $B(B^+ \to K^+ \tau \tau)$)
- Perhaps NP in B_d system is also needed ? Where can it come from ?

Constraints with NP both in B_d and B_s sectors

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Defined earlier: $\Delta_d = \frac{M_{12d}}{M_{12d}(SM)}, \Delta_s = \frac{M_{12s}}{M_{12s}(SM)}$
- $\delta_q = \frac{(\Gamma_{12}^q/M_{12}^q)}{\text{Re}[(\Gamma_{12}^q/M_{12}^q)]_{\text{SM}}}$
- 8-dim fit: $\Delta_d, \Delta_s, \delta_d, \delta_s$
- SM disfavoured at 2.6σ

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- Model-independent new-physics search
 Models contributing to Γ^s₁₂
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Lorentz structure of NP models

$$\mathcal{H}_{ ext{eff}}(b
ightarrow m{s} \mu^+ \mu^-) = \mathcal{H}_{ ext{eff}}^{SM} + \mathcal{H}_{ ext{eff}}^{VA} + \mathcal{H}_{ ext{eff}}^{SP} + \mathcal{H}_{ ext{eff}}^T \ ,$$

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{SM} &= -\frac{4G_F}{\sqrt{2}} \, V_{ts}^* \, V_{tb} \left\{ \sum_{i=1}^6 G_i(\mu) \mathcal{O}_i(\mu) + C_7 \, \frac{e}{16\pi^2} \left(\bar{s}\sigma_{\mu\nu}(m_s P_L + m_b P_R) b \right) F^{\mu\nu} \right. \\ &+ C_9 \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\mu + C_{10} \, \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma_{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} \\ \mathcal{H}_{\text{eff}}^{VA} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_V \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\mu + R_A \, \bar{s}\gamma_{\mu} P_L b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right. \\ &+ R_V' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\mu + R_A' \, \bar{s}\gamma_{\mu} P_R b \, \bar{\mu}\gamma_{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^{SP} &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ R_S \, \bar{s} P_R b \, \bar{\mu}\mu + R_P \, \bar{s} P_R b \, \bar{\mu}\gamma_{5}\mu \right\} , \\ \mathcal{H}_{\text{eff}}^T &= \frac{\alpha_{eff}}{\sqrt{2\pi}} \, V_{tb}^* V_{ts} \left\{ C_T \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma^{\mu\nu}\mu + i C_{TE} \, \bar{s}\sigma_{\mu\nu} b \, \bar{\mu}\sigma_{\alpha\beta}\mu \, \epsilon^{\mu\nu\alpha\beta} \right\} \end{aligned}$$

$b ightarrow s \mu^+ \mu^-$ decay modes: inter-related observables

$B_s \rightarrow \mu^+ \mu^-$

Branching ratio

$B \rightarrow X_{s}\mu^{+}\mu^{-}, B \rightarrow \mu^{+}\mu^{-}\gamma, B \rightarrow K\mu^{+}\mu^{-}$

Branching ratio, Forward-backward asymmetry A_{FB}, CP asymmetry

$B ightarrow K^* \mu^+ \mu^-$

- Branching ratio, longitudinal polarization fraction f_L
- Many angular asymmetries: A_{FB} , $A_{T}^{(2)}$, A_{LT}
- Triple Product (TP) asymmetries: $A_T^{(im)}, A_{LT}^{(im)}$
- CP asymmetries for all of these

New VA operators: effect on $K^*\mu\mu$ observables

Forward-backward asymmetry

Longitudinal polarization fraction

< ロト () Alok et al 2011 のへで

• SM: BR =
$$(3.2 \pm 0.2) \times 10^{-9}$$

• LHCb: BR= $3.2^{+1.5}_{-1.2} \times 10^{-9}$

$$\begin{split} B(\bar{B}_{s} \to \mu^{+} \, \mu^{-}) &= -\frac{G_{F}^{2} \alpha_{em}^{2} m_{B_{s}}^{5} f_{B_{s}}^{2} \tau_{B_{s}}}{64\pi^{3}} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \times \\ &\left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left| \frac{R_{s} - R_{s}'}{m_{b} + m_{s}} \right|^{2} + \left| \frac{R_{P} - R_{P}'}{m_{b} + m_{s}} + \frac{2m_{\mu}}{m_{B_{s}}^{2}} (C_{10} + R_{A} - R_{A}') \right|^{2} \right\}. \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

 \Rightarrow Strong bounds on Scalar and pseudoscalar operators $|R_s - R'_s|^2 + |R_P - R'_P|^2 < 0.05$

New T operators: A_{FB} in $B \rightarrow K \mu \mu$

- Zero everywhere in the SM, new VA operators do not help
- SP operators are severely bounded
- T operators can cause enhancement at high q²
- From $B \to X_s \mu \mu$: $|C_T|^2 + 4|C_{TE}|^2 < 1.0$.
- Can enhance $A_{FB}(q^2)$ to \sim 20% for large q^2

Alok et al 2011

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

The mundane: precision tests of the SM

- CKM matrix elements
- $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing
- Rare FCNC decays $b \rightarrow s \mu \mu$
- 2 Specific new physics models: constraints
 - Fourth generation of quarks
 - MFV models with charged Higgs
 - Constrained MSSM
- 3 Model-independent new-physics search
 - Models contributing to Γ_{12}^s
 - Lorentz structure of new physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Concluding remarks

- B physics: a magnifying glass for testing SM
- Rare decays and precision measurements constrain specific NP models as well as indicate what classes of NP may be present
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier
- Hints of NP in A_{sl}^b , $B \to \tau \nu$, $B \to D^{(*)} \tau \nu$:
 - Universality-breaking $b \rightarrow u\tau\nu / b \rightarrow c\tau\nu / b \rightarrow s\tau\tau$?

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Indications of NP that contribute to $\Delta \Gamma_s$?
- $B_s \rightarrow \tau \tau$ may turn out to be crucial
- Only data will tell.

Concluding remarks

- B physics: a magnifying glass for testing SM
- Rare decays and precision measurements constrain specific NP models as well as indicate what classes of NP may be present
- Bounds from low-energy data getting significant enough to constrain new physics at the energy frontier
- Hints of NP in A_{sl}^b , $B \to \tau \nu$, $B \to D^{(*)} \tau \nu$:
 - Universality-breaking $b \rightarrow u\tau\nu / b \rightarrow c\tau\nu / b \rightarrow s\tau\tau$?

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Indications of NP that contribute to $\Delta \Gamma_s$?
- $B_s \rightarrow \tau \tau$ may turn out to be crucial
- Only data will tell.