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ﬂ The mundane: precision tests of the SM
@ CKM matrix elements



Global fits to CKM elements

CKMfitter:
i Constraints in the p—7 plane:
e theratio | Vi V|
@ cx fromK — o
@ Mass differences AMy and AM;s

@ Angles a, 3,7 (or ¢2, ¢1, ¢3) Of
the unitarity triangle

Pre-Moriond13 fits

KM paradigm
mostly vindicated !
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***** Devil may be in the details | *****




Precision measurements of |V

Unitarity vs. semileptonic K decays vs. hadronic 7 decays
@ Semileptonic K decays = | V5| = 0.2254 + 0.0013

@ Strange vs. non-strange hadronic = decays
= | Vys| = 0.2202 + 0.0015

@ ~ 3o discrepancy !
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The tale of three | Vp|’s

Vub: inclusive vs. exclusive vs. leptonic
@ |Vyp|(excl) = (3.38 +0.36) x 1073
@ |Vyp|(incl) = (4.27 +0.38) x 1073
@ |Viyp|(Tv) =77
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pre-Moriond13 Y. Yook, ICHEP12




Effective | Vip|: correlation b/w sin24 and B(B — 7v)
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Before new Belle results

@ Branching ratio of BT — 7 v too large = enhanced V;, ?
@ K — uv OK with the SM. lepton-universality violation ?

After new Belle results
Seems consistent with the SM for now...




Effective |Vy|: semileptonic B — Drv and B — D*tv

Babar 2012
R(D) = B(B — Drv)/B(B — Dtv)
@ SM Prediction: R(D) = 0.297 + 0.017

@ Measurement: R(D) = 0.440 + 0.058 + 0.042
= 2.20 enhancement

R(D*) = B(B — D*rv)/B(B — D*(v)

@ SM Prediction: R(D) = 0.252 + 0.003

@ Measurement: R(D) = 0.332 + 0.024 + 0.018
= 2.70 enhancement

@ Affect b — crv, indicate lepton-universality violation ?



Tests of unitarity

With magnitudes of elements

@ |V, 4| =0.97425 + 00022 , |V,s| = 0.2254 +0.0013
@ Unitarity holds to one part in 103

With unitarity angles

B—ct

@ The trivial unitarity relation (more a test of our calculations):
at+B+y=m
@ The nontrivial unitarity relation:
2 . .
sin fs = |2 | gy [+ O]
Aleksan et al, 1994

@ We will soon be close to testing this




ﬂ The mundane: precision tests of the SM

® By — By and Bs — Bs mixing



Mass and width differences: theory and experiment

AM Measurements

® AMy/T4=0.770 £ 0.008 = | V|
® AM;/Is =26.74+£0.22 = |V

ATl 4 and AT : predictions and measurements

@ INSM, Aly/Ty = (424+8) x 1074

@ Current limit: Al'y/Ty =0.015+0.018
(BaBar + Delphi + Belle)

@ InSM, Al's/T's = 0.137 £ 0.027

@ Measurement: Al'g/T's = 0.159 + 0.023
(mainly from Bs — J/v¢ at LHCb)




Lifetime difference in Bs decays

Contours of A(logL) = 0.5
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The tale of two betas in Bs-Bs mixing

8Y/%9 trom Bs — J R0
Y BJ/QV‘J) 1Arg< (VCchs) )

125

o BJ/Y(SM) = 0.019 + 0.001

Bs! from ag

@ ay = (Als/AM;) tan ¢F

° (255/ = Arg(—My25/T125)

@ Arg(T12) # Arg(Vyp Vi )? since the (c-u) and (u-u)
intermediate states contribute to I'».

@ ¢¢(SM) = 0.0041 + 0.0007

@ 3§/(SM) = —0.0020 + 0.0003
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Angular analysis of Bs — J/4¢
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@ Results close to SM now
@ Discrete ambiguity in the sign of Al' removed.
@ Enhancementin Al ¢ possible only by a few tens of percent

@ Enhancementin B;’/W also highly restricted, but due to its
small and precisely predicted SM value, measurements of
deviation possible.



$': Like-sign dimuon asymmetry
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° A‘s’, = (—0.787 £0.172 £ 0.093)% = 3.90 deviation

@ SM = A% = (—0.0237335)%
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@ B sector: a; = (—1.81 £1.06)%
0 a5 = Ayt tangd
@ Large ATl g and/or large ¢g !




Consolidated By and B results

SM point

_ My _ M
® Ag= Mi2q(SM)? As = M125(SSM)’

® [24/5(NP) = 0 assumed (not true in general)



ﬂ The mundane: precision tests of the SM

@ Rare FCNC decays b — suu
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Branching ratio of Bs — "~
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many NP models
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Angular variables in B — K*u* i~
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Angular asymmetries in B — K*u™ i~
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AFB in B — K*/L+ILL_
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@ From the interference between ~- and Z-penguin
@ Zero of Agp is a clean observable: the form factor

dependence cancels at LO to give
Re[C§"(a8)] = —(2mpmy/q5) G5

@ AtNLO, g3 =3.90 £0.12 GeV?

@ Observation: g2 = 4.97]-1 GeV?2



e Specific new physics models: constraints



e Specific new physics models: constraints
@ Fourth generation of quarks



Desirability for flavor physics

@ Unitarity quadrilaterals: allow extra sources of CP violation

Im

A ViV B
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AD, CSKim, 2007; Alok, AD, Ray 2009
@ Makes possible deviations in both, 5 and 85 (= x in figure)
@ May help in accounting for the sin 25 anomaly

@ Predicts deviation of 55 from SM



Electroweak constraints

i w0 Higes dato
Fhad with Higgs data . .
Agy @ Three generatlons give a
i good fit to precision data
A @ Fourth generation still

A,

A allowed
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Constraints from the flavor data

Observables that impact CKM, in a clean manner:

@ Ry and A, from Z — bb

@ ek from K| —

@ the branching ratio of K™ — 7 v

@ the mass differences in the By and Bs systems

@ the time-dependent CP asymmetry in By — J/¢¥Ks
@ ~ from tree-level decays

°

the branching ratios of B — Xsv, B — Xc.ev, and
B — Xsputp~

4

Constraints and implications
@ | V| <0.08, | Vop| < 0.027, | Vyy| < 0.31 at 30
@ NP signals for B, D and rare K decays are still possible

v

AD, Alok, London 2011



Constraints from the Higgs data

o H 4y fittar

41h Gen

m—= H—= WH

mp—=H—= ZZ

pp— H — bb

pp— H — bb

p—=H—=77

(red numbers: decrease in x?
if channel is removed from the
analysis)

@ Data 5.30 away from
SM4

@ Fourth generation in
serious trouble, mainly
from H — vy

Eberhardt et al, arXiv:1209.1101



e Specific new physics models: constraints

@ MFV models with charged Higgs



If B— 7v is indeed enhanced

2

e B ’ 2
2HDM (type IT) 1 B(Bt = 7Hv) = Bgy x (1 - ";B tan? ,B)
My
W. Hou, PRD 48, 2342 (1993)

g
et

] for this plot, we use
d B, (B*-t1"v)=(1.20£0.25)x10""
] using f; (HPQCD), |V,;| (HFAG)

:

W Mass (GeVic®)
g
T

Note:
Bey = 0.83 + 0.08 (UTfit)

Bsm = 0.73370-32 (CKMifitter)

]
T

] 20 40 o0

tan § lmi?:c’m;‘rpi‘)im't},r to H* is complementary to LHC direct searches

Y. Yook, ICHEP12

@ Large tan s — large My~ solution is the decoupling limit: not
better than the SM.
@ Only the sliver can actively account for the enhancement

(Note: above figure with older B — 7v data)



If B— Drv and B — D*rv are also enhanced

@ Type-ll 2HDM cannot account for B — Drv and B — D*rv
simultaneously.

@ Type-lll HDM can account for B — Drv and B — D*rv
simultaneously, but not B — 7 at the same time.

@ With Type-Ill HDM, with MSSM-like Higgs potential and
flavor violation in the up sector, all three measurements
can be accounted for.

Crivellin, Greub, Kokulu, 2012



MFV constraints from Bd and Bs mixing
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e Specific new physics models: constraints

@ Constrained MSSM



Flavour-physics limits in my—m; > plane
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@ At large tan 3, constraints from flavor physics become
more and more stringent

Ghosh et.al, 2012



Constraints in the My-tan g plane

% 90 100 110 120
M, [GeV]

&

theory

1 = Lep-2

B+Xey
Bg+ ufu~

dark matter

@ The analysis was done before the Higgs announcement
@ The theoretical constraints assume |Ap| < 1 TeV

@ With Ay < —5TeV, 125 GeV Higgs become allowed

@ Flavor-physics data points towards large negative Ag

Ghosh et al, 2012

Flavor physics is now encroaching on the territory of

high-energy collider physics !

J




e Model-independent new-physics search



e Model-independent new-physics search
@ Models contributing to 'Y,



Desirability of I, = 0

M aps7)

s

0.0 0.1

1M ™ |(psy

@ Bs — J/1¢ and like-sign dimuon asymmetry favor different
¢s regions

@ The tension can be reduced only with larger ATl ¢
@ If no NP contribution to I'1o4, difficult to be consistent with
data

AD, Ghosh, Kundu, Patra, 2011; AD, Ghosh, 2012



M and b — srr

@ NP contributing to b — s77 can enhance Al g
AD, A. Kundu, S, Nandi, 2007
@ Such NP can also account for the dimuon anomaly, if it can
make B(Bs — 7777) ~5—-10%
AD, A. Kundu, S, Nandi, 2010
@ b — s77 the only unconstrained operator that can
contribute significantly to M1
Bauer et al, 2010
® B(Bs — 7777) is not measured yet. Is that the missing link
to NP ?



How much enhancement of Bs — 77 possible ?

@ Enhancement of Bs — 77~ (but not of By — 7" 7~) would
contribute to the difference in Bs and By lifetimes.

@ SM predicts |75, /78, — 1| < 1%
@ Measured lifetime ratio: 75, /75, = 1.002 + 0.014 +0.012

@ B(Bs — 7"77) up to 3.5% possible even without
considering effect on other decays

@ But b — s77 also enhances By — Xs77, which allows a
cancellation, so that B(Bs — 777 ) < 15% possible

@ Limit from direct limit on B* — K777~ easily evaded

AD, Ghosh, 2012



How well do specific models work ?

/
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@ Leptoquarks cannot enhance the BR to percent level.

@ With flavor-dependent Z’ model, enhancement upto 5%
allowed (limits from 7, /75, and B(B* — K*771))

@ Perhaps NP in By system is also needed ? Where can it
come from ?



Constraints with NP both in By and Bs sectors
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@ SM disfavoured at 2.60



e Model-independent new-physics search

@ Lorentz structure of new physics



Lorentz stru

ure of NP models
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b — sy~ decay modes: inter-related observables
@ Branching ratio \

B— Xsptp=,B— putu=v, B— Kutp™
@ Branching ratio, Forward-backward asymmetry Agg, CP
asymmetry

v

B— Kutu~

@ Branching ratio, longitudinal polarization fraction f,

@ Many angular asymmetries: Agg, A(TZ),ALT
@ Triple Product (TP) asymmetries: A(’m) A(’m)
@ CP asymmetries for all of these




New VA operators: effect on K*uu observables

Forward-backward asymmetry

Only Ry, and Ry 4present.

Only Ry 4 and R}, jpresent.

T2 3 4 5 o
7(Gev?)

Longitudinal polarization fraction

Only Ry4 and R}, spresent

Only Ry 4 and Ry present

..............

T 2 3 4 § 6 e T N T
F(Ger)

The angular observable A(TQ):

Only Ry, and Ry 4present

o4 04
02, 02/
os) 0]
02 -0z
o4 R
1 2 3 4 5 6 I B C I U U CR T
FGev) F(Gev)

Alok et al 201



New SP operators: Bs — p*p~ branching ratio

@ SM:BR=(3.2+0.2) x 107°
@ LHCb: BR=3.2"]3 x 10°°

_ G2a2,m3 fo T am?
+ - F&em!!Bs1BsTBs * |2
B(Bs —p pu") = TW&;VM 1- mg: X

RP — R,/D 2mu

2
mp + Ms ma,

(Cio+ Ra— Ra)

\

= Strong bounds on Scalar and pseudoscalar operators
|Rs — Rg|? + |Rp — Rp|? < 0.05



New T operators: Argin B — Kpup

Only Cy ¢ present Only Gy 1 present
a0 an
a0 a0
20 20
F 1w F 10
% of 5 0
< 40 < 10
20 -20
a0 -30
a0 -40
1 2 a 4 5 [ 15 16 17 18 13 = 2 22
Fraavd) q%iGaV®)

@ Zero everywhere in the SM, new VA operators do not help
@ SP operators are severely bounded

@ T operators can cause enhancement at high g?

@ From B — Xsuu: |Cr|? + 4|Crel? < 1.0.

@ Can enhance Arg(g?) to ~ 20% for large ¢°

Alok et al 2011



0 Concluding remarks



Concluding remarks

@ B physics: a magnifying glass for testing SM

@ Rare decays and precision measurements constrain
specific NP models as well as indicate what classes of NP
may be present

@ Bounds from low-energy data getting significant enough to
constrain new physics at the energy frontier

@ Hints of NP in A,

e Universality-breaking b — urv /b — crv/ b — st ?

o Indications of NP that contribute to Al's ?

e Bs — 77 may turn out to be crucial

B— v, B— D®ry:

@ Only data will tell.
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