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Neutrinos and SN astrophysics

“ Supernova explosion and neutrino fluxes
@ Effects of collective flavor conversions
e Effects of MSW flavor conversions

e What we learnt from SN1987A

e Expectations from future observations



Neutrinos and SN astrophysics

“ Supernova explosion and neutrino fluxes



The would-be supernova before the collapse

Stellar Collapse

‘ Onion structure ‘ ‘ Collapse (implosion) ‘

Degenerate iron core:
p = 109 g cem3
T =10"?K

Meg = 1.5 Mgy,
Re, « 8000 km

[Georg Raielt, Max-PlancicInstitut fiir Physik, Hinchen, Germany JIGSA 07, 12-23 Feb 2007, TIFR, Humbai, India|




Trapped neutrinos before the collapse

@ Neutrinos trapped inside “neutrinospheres” around
p ~ 10"%/cc.

Neutrino Sphere
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@ Escaping neutrinos: (E,,) < (Eg,) < (E,,)



Core collapse, shock wave, neutrino emission: 10 sec

Gravitational core collapse = Shock Wave )

Neutrino emission: ~ 10%8 neutrinos

@ Neutronization burst: v, emitted for ~ 10 ms
@ Accretion phase: Larger ve/ve luminosity

@ Cooling through neutrino emission:
all ve, ve, vy, Uy, v7, > With similar luminosities

@ Energy ~ 10° erg emitted within ~ 10 sec.




The explosion: the next ~ 10 hours

Neutrino
heating

Neutrino
cooling \

200 km

@ Neutrino heating needed for pushing the shock wave
@ Large scale convection also needed

@ Resulting hydrodynamic “SASI” instabilities cause
explosions (according to simulations)




The star, a millennium after explosion

(Crab nebula, supernova seen in 1054)



Neutrino fluxes: luminosities

Three Phases of Neutrino Emission
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® Shock breakout ¢ Shock stalls ~ 150 km . .
- ) Cooling on neutrino
¢ De-leptonization of ¢ Neutrinos powered by e o
. . diffusion time scale
outer core layers infalling matter

e Spherically symmetric model (10.8 M) with Boltzmann neutrino transport
¢ Explosion manually triggered by enhanced CC interaction rate
Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012



Neutrino fluxes: energy spectra
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Fischer et al, arXiv:0908.1871
@ Approximately thermal spectra
©® (Ev.) < (Eve) < (Evyr i)



Oscillations of SN neutrinos

SUPERNOVA
EARTTI

10 Rsun - kpe "7 10000 km

VACUUM

Inside the SN: flavor conversion
Collective effects and MSW matter effects

Between the SN and Earth: no flavor conversion
Mass eigenstates travel independently

Inside the Earth: flavor oscillations

MSW matter effects (if detector is shadowed by the Earth)




Changing paradigm of supernova neutrino oscillations

MSW-dominated flavor conversions (pre-2006)

@ Flavor conversions mainly in MSW resonance regions :
(p ~ 10%3% g/ce, 1-10 g/ce)

@ Non-adiabaticity, shock effects, earth matter effects

@ Sensitivity to sin? 613 > 10~5 and mass hierarchy
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Collective effects on neutrino conversions (post-2006)

@ Significant flavor conversions due to v—v forward scaterring
Near the neutrinosphere : (p ~ 105-19 g/cc)

@ Synchronized osc — bipolar osc — spectral split
@ Sensitivity to much smaller sin? 615 than MSW effects

\
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Now that 643 is known to be large,
strong sensitivity to mass hierarchy due to both effects

v




Neutrinos and SN astrophysics

@ Effects of collective flavor conversions



Non-linearity from neutrino-neutrino interactions

e Effective Hamiltonian: H = Hyac + Hysw + Hoo

Hvac(B) = M?/(2p)
Husw = V2Ggn,-diag(1,0,0)

. d®q L
HalB) = V2Gr [ 555(1 — c0s ) (o(d) - 7(d)
S
N(;L::ron \:F; /[ | 5 ﬁ_\L(\)Vz

Duan, Fuller, Carlson, Qian, PRD 2006
@ Equation of motion:

d .
= =1 [H(p).p]

Note. p is.a 3 x 3 matrix



“Collective” effects: qualitatively new phenomena

Synchronized oscillations:
v and 7 of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

<

Bipolar/pendular oscillations:

Coherent veie <+ vx7x OScillations even for extremely small 613

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

v

Spectral split/swap:

ve and vy (7e and ) spectra interchange completely,
but only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)
”




Multiple spectral splits
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B. Dasgupta, AD, G.Raffelt, A.Smirnov, arXiv:0904.3542 [hep-ph], PRL

]

@ Spectral splits as
boundaries of
swap regions

@ Splits possible
both for v¢ and 7g

@ Split positions
depend on NH/IH



Problems and open questions in collective effects

@ New non-linear effects: how to understand/model in terms
of other known phenomena ?

@ Many answers known only with the single-angle
approximation (all neutrinos at a point face the same
average vv potential [effective averaging of (1 — cos pq)]).
How good is this approximation ?

@ Multi-angle effects seem to suppress collective effects, or
make them appear earlier / later, or smoothen out their
effects on the spectra.

@ Normal matter at high densities also seems to give rise to
additional suppression. What will be the net effect ?

@ Work in progress....



Different phenomena occuring sequentially
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@ Regions of synchronized oscillations, bipolar oscillations,
spectral split and MSW effects are well-separated.
Fogli, Lisi, Marrone, Mirizzi, JCAP 0712, 010 (2007), B.Dasgupta and AD, PRD77, 113002 (2008)
@ The post-collective fluxes may be taken as “primary” ones
on which the MSW-dominance analysis may be applied.
@ In particular, shock-effect and earth-effect analyses remain
unchanged.



Neutrinos and SN astrophysics

e Effects of MSW flavor conversions



MSW Resonances inside a SN

Normal mass ordering
2

m

Inverted mass ordering

AD, A.Smirnov, PRD62, 033007 (2000)
H resonance: l” , 91 , P~ 1031 04 /cc
atm 3)s F

@ In v(7) for normal (inverted) hierarchy
@ Now that 643 is known to be large,
adiabatic except during the passage of the shock wave

L resonance: (Am?

o), p ~ 10—100 g/cc
@ Always adiabatic, always in v




Survival probabiities p and p

FVe:pFI93+(1_p)FY9X7 FD@Znge+(1_E)F’9X

@ Approx constant with energy
(except during the passage of the shock wave)

@ Unless the primary fluxes have widely different energies, it
is virtually impossible to determine p or p given a final
spectrum

@ Zero / nonzero values of p or p can be determined through
indirect means (earth matter effects)



Earth matter effects

@ If F,, and F,, reach the earth,
FlZ(L)_FIZ(O) = (Flfz_Fw)X

Am3L
sin 20, sin(26{, — 26,) sin® ( & )

4E

(Sign changes for antineutrinos)
Op:0:>Fy1:FV2, [_3:0:>F;1:F172
@ Nonzero Earth matter effects require

e Neutrinos: p # 0
e Antineutrinos: p # 0

@ Possible to detect Earth effects since they involve
oscillatory modulation of the spectra

@ An indirect way of determining nonzero p or p



Shock wave imprint on neutrino spectra

gl Ty @ When shock wave passes
2908) il oy through a resonance region,
RN, T 5 see adiabaticity may be momentarily
107k N - 18 E
107 < lost
107 F E
1o » @ Sharp, time-dependent changes
ol oA S in the neutrino spectra
101‘ i‘o “I‘Os = ”1“‘09‘ “‘13,0 : Schirato and Fuller, astro-ph/0205390, Fogli et al., PRD 68, 033005 (2003)
R (cm)

@ With time, resonant
energies increase

@ Possible in principle to

R . T track the shock wave to

f | some extent
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Kneller et al., PRD 77, 045023 (2008)
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Turbulence

@ Turbulent convections behind the shock wave =
gradual depolarization effects

@ 3-flavor depolarization would imply equal fluxes for all
flavors = No oscillations observable
Friedland, Gruzinov, astro-ph/0607244; Choubey, Harries, Ross, PRD76, 073013 (2007)
@ For “small” amplitude, turbulence effectively two-flavor
@ For large 643, shock effects likely to survive
@ Jury still out

Kneller and Volpe, PRD 82, 123004 (2010)



Neutrinos and SN astrophysics

e What we learnt from SN1987A



SN1987A: neutrinos and light

Neutrinos:
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SN1987A: what did we learn ?

Hubble image: now

@ Confirmed the SN cooling
mechanism through neutrinos

@ Number of events too small to
say anything concrete about
neutrino mixing

@ Some constraints on
SN parameters obtained

@ Strong constraints on new
physics models obtained
(neutrino decay, Majorans,
axions, extra dimensions, ...)



Neutrinos and SN astrophysics

e Expectations from future observations



Major reactions at the large detectors (SN at 10 kpc)

Water Cherenkov detector: (events at SK)
@ 7ep — net: (~ 7000 — 12000)
@ ve- —ve .~ 200-300
@ 1o +'0 — X + e : ~ 150-800

Carbon-based scintillation detector: ~ 300 events/kt
@ Uep — net (~ 300 per kt)
@ v+ 2C - v+ X+v(15.11 MeV)

@ vp —vp

Liquid Argon detector: ~ 300 events /kt

@ ve+ 0Ar — “0K* 4 e~ (~ 300 per kt)




Vanishing neutronization (ve) burst

events per bin
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@ Flux during the

neutronization burst
well-predicted (“standard
candle”)

M. Kachelriess, R. Tomas, R. Buras,

H. T. Janka, A. Marek and M. Rampp

PRD 71, 063003 (2005)

Mass hierarchy identification (now that 83 is large)

@ Burst in CC suppressed by ~ sin? 63 ~ 0.025 for NH,

only by ~ sin? 4, ~ 0.3 for IH

@ Time resolution of the detector crucial for separating ve
burst from the accretion phase signal




Earth matter effects

Antineutrinos at lig, Scintilator
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@ Spectral split may be visible as “shoulders”

@ Earth effects possibly visible, more prominent in v,

@ Detection through spectral modulation, or comparison
between time-dependent luminosities at large detectors.

@ Only identify nonzero p/p. Connecting to mass hierarchy
requires better understanding of collective effects.



Shock wave effects

2D simulation
Positron spectrum
(inverse beta reaction)

Kneller et al., PRD77, 045023 (2008)

(8]

Observable shock signals

Time-dependent dip/peak features in N, 5. (E), (Evs ) ---

R.Tomas et al., JCAP 0409, 015 (2004), Gava, et al., PRL 103, 071101 (2009)

V.

Identifying mixing scenario: independent of collective effects

@ Shock effects present in v only for NH
@ Shock effects present in 7, only for IH

@ Absence of shock effects gives no concrete signal.
primary spectra too close ? turbulence ?




NC events at a scintillator
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R-process nucleosynthesis

—4 inverted hierarchy

@ Significant suppression
E effect in IH

no osc —— Lyx1.1 oo v

-8f Lux1 0 — Lx07 - @ NH effects highly
dependent on flux ratios

@ Magnitude of effect
dependent on
astrophysical conditions

_gf Lyx1.0 — L,x0.7 ——- 33

120 140 160 180 200
A

Duan, Friedland, McLaughlin, Surman, J. Phys. G: Nucl Part Phys, 38 , 035201 (2011)



QCD phase transition

@ Sudden compactification of the progenitor core during the
QCD phase transition

@ Prominent burst of 7, visible at IceCube and SK
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Dasgupta et al, PRD 81, 103005 (2010)



Diffused SN neutrino background

@ Collective effects affect predictions of the predicted fluxes
by up to ~ 50%

Number Flusfem “sec MeV ']
Number Flusfem *sec eV ']

a 10

20 i
Antinenting Energy [MeV]

20
Antinemring Energy [MeV]
Chakraborty, Choubey, Dasgupta, Kar, JCAP 0809, 013 (2009)

@ Shock wave effects can further change predictions by
10 — 20%

Galais, Kneller, Volpe, Gava, PRD 81, 053002 (2010)



SN neutrinos for particle physics and astrophysics

With large 613, mass hierarchy easier to identify!

@ Neutronization burst suppression / non-suppression (if we
have an argon detector) is a sureshot signal.

@ Shock wave effects, if positively identified (this may need a
bit of luck in addition), will be a direct indication of MH.

@ Collective effects would not affect these analyses.
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SN astrophysics through neutrinos

@ Primary fluxes, density profiles, shock wave propagation,
QCD phase transition, nucleosynthesis... a plethora of
astrophysical information in the neutrino signal

@ For extracting this information from the neutrino signal, a
better understanding of collective effects is essential !

@ A lot more work needed before we solve the “inverse SN
neutrino problem”.
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