Pauli's messengers: Looking at the sky in neutrinos

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research

Multi-messenger Astronomy session, ASI meeting, Srinagar, May 13th, 2016

Omnipresent neutrinos

Where do Neutrinos Appear in Nature?

Energy spectra of neutrino sources

The Standard Model of Particle Physics

- 3 neutrinos: $\nu_{\rm e}, \nu_{\mu}, \nu_{\tau}$
- chargeless fermions
- almost massless $(m_{\nu} \lesssim 0.5 \text{ eV})$
- only weak interactions
- Second-most abundant particles next to photons: cosmic neutrino background of 330 ν/cc with $T \sim 2K$

The three-neutrino mixing picture

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (mass eigenstates)

- \bullet $\Delta m^2_{
 m atm} pprox 2.4 imes 10^{-3} \ eV^2$
- $\bullet \ \Delta \textit{m}_{\odot}^{2} \approx 8 \times 10^{-5} \ eV^{2}$
- \bullet $\theta_{atm} \approx 45^{\circ}$
- ullet $heta_\odot pprox 32^\circ$
- $\theta_{\rm reactor} \approx 9^{\circ}$

Mass ordering: Normal (N) or Inverted (I)?

- From particle physics: oscillation experiments (e.g. INO)
- From cosmology: $\sum m_{\nu}$
- From astrophysics: neutrinos from core-collapse supernova

Looking at the sky in neutrinos

- Neutrinos from the sun (1-10 MeV)
- Neutrinos from a core collapse supernova (5-50 MeV)
- 3 High energy astrophysical neutrinos ($\gtrsim \,$ TeV)
- 4 Big-bang relic neutrinos: ($E \sim \text{meV}$)
- 5 Looking at the sky in neutrinos

Looking at the sky in Neutrinos

- Neutrinos from the sun (1-10 MeV)
- 2 Neutrinos from a core collapse supernova (5-50 MeV)
- $exttt{3}$ High energy astrophysical neutrinos ($\gtrsim exttt{ TeV}$)
- 4 Big-bang relic neutrinos: ($E \sim \text{meV}$)
- 5 Looking at the sky in neutrinos

Neutrino production inside the Sun

Spectrum of solar neutrinos (at production)

Sun in light and neutrinos

Scale: \sim 1° Exposure: \sim 1/100 s

 $\sim 30^{\circ}$ \sim 10 years at a 50 kt detector

Neutrino physics ↔ solar astrophysics

- Standard Solar Model (SSM) predicts neutrino fluxes
- Solar neutrino experiments find a deficit in the number of neutrinos
- Neutrino theorists propose neutrino masses and oscillations
- Solar and reactor experiments confirm neutrino oscillation picture
- Accurate measurements of neutrino fluxes and mixing parameters help fine-tune the Standard Solar Model

Looking at the sky in Neutrinos

- Neutrinos from the sun (1-10 MeV)
- 2 Neutrinos from a core collapse supernova (5-50 MeV)
- $ext{ } ext{ } ext$
- 4 Big-bang relic neutrinos: ($E \sim \text{meV}$)
- 5 Looking at the sky in neutrinos

The death of a star: role of different forces

Nuclear forces ⇒

Neutrino fluxes: $\sim 10^{58}$ neutrinos in 10 sec

- Spherically symmetric model (10.8 M_{\odot}) with Boltzmann neutrino transport
- Explosion manually triggered by enhanced CC interaction rate
 Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Georg Raffelt, MPI Physics, Munich

ITN Invisibles, Training Lectures, GGI Florence, June 2012

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

Neutrino oscillations in matter of varying density

Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Neutrino mass eigenstates travel independently

Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)

Non-linearity from neutrino-neutrino interactions

• Effective Hamiltonian: $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lcl} H_{vac}(\vec{p}) & = & M^2/(2p) \\ H_{MSW} & = & \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) & = & \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1-\cos\theta_{pq}) (\rho(\vec{q})-\bar{\rho}(\vec{q})) \end{array}$$

Duan, Fuller, Carlson, Qian, PRD 2006

• Equation of motion:

$$\frac{d\rho}{dt} = i \left[H(\rho), \rho \right]$$

Further MSW flavor convensions inside the star

MSW resonances

- *H* resonance: $\rho \sim 10^3 10^4$ g/cc
 - In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- L resonance: $\rho \sim$ 10–100 g/cc
 - ullet Always in u

Shock effects

 During shock wave propagation, adiabaticity momentarily lost ⇒ fluctuations in spectra.

Schirato, Fuller 2002

 Large amplitude turbulence in outer layers of the star may obscure usual signatures, but give rise to some new ones...

Kneller, Lund 2013

Further MSW flavor convensions inside the star

MSW resonances

- *H* resonance: $\rho \sim 10^3 10^4$ g/cc
 - In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- *L* resonance: $\rho \sim$ 10–100 g/cc
 - ullet Always in u

Shock effects

 During shock wave propagation, adiabaticity momentarily lost ⇒ fluctuations in spectra.

Schirato, Fuller 2002

 Large amplitude turbulence in outer layers of the star may obscure usual signatures, but give rise to some new ones...

Kneller, Lund 2013

Earth matter effects

 If the detector is shadowed by the Earth, matter-induced flavor oscillations inside the earth produce spectral modulations.

AD, Smirnov 2000, Lunardini et al, 2001, Tomas et al 2004

SN1987A: neutrinos and light

Neutrinos: Feb 23, 1987

Light curve: 1987-1997

SN1987A: what did we learn?

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorans, axions, extra dimensions, ...)

Preparing for future SN neutrino detection

- Water Cherenkov / liquid scintillator / liquid Ar detectors for tracking individual neutrinos
- Large-volume ice Cherenkov for determining luminosity to a high accuracy (integrated Cherenkov glow)

What a galactic SN can tell us

On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: disappears if I
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities.
- Identification of O-Ne-Mg supernovae
- Hints on heavy element nucleosynthesis (r-process)

What a galactic SN can tell us

On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: disappears if I
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities.
- Identification of O-Ne-Mg supernovae
- Hints on heavy element nucleosynthesis (r-process)

Looking at the sky in Neutrinos

- Neutrinos from the sun (1-10 MeV)
- Neutrinos from a core collapse supernova (5-50 MeV)
- 4 Big-bang relic neutrinos: ($E \sim \text{meV}$)
- 5 Looking at the sky in neutrinos

Sources of HE/UHE neutrinos

Secondaries of cosmic rays

- Primary protons interacting within the source or with CMB photons $\Rightarrow \pi^{\pm} \Rightarrow$ Decay to ν
- At GZK energies, secondary neutrino flux comparable to the primary cosmic ray flux (Waxman-Bahcall bound) $E^2 dN/dE \lesssim (10-50) \ {\rm eV} \ {\rm cm}^{-2} \ {\rm sr}^{-1} \ {\rm s}^{-1}$
- π^{\pm} produced $\Rightarrow \pi^{0}$ produced $\Rightarrow \gamma$ that shower. Observation of gamma rays near \sim 100 GeV \Rightarrow $E^{2}dN/dE \lesssim 100 \text{ eV cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$

AGNs and GRBs

- Neutrinos produced by particle decays / nuclear reactions / pair production in extreme environments
- AGNs can give measurable diffused flux in near future
- Flux possible during the precursor phase, the emission phase as well as the afterglow phase of GRBs

Detection of HE neutrinos: water/ice Cherenkov

- Thresholds of ~ 100 GeV, controlled by the distance between optical modules
- Track for ν_{μ}
- Cascade for ν_e , hadrons, ν_τ
- Double-bang for ν_{τ} ?

Detection estimates

- $E \lesssim 10^{16}$ eV: only up-going ν useful since prohibitive background from atmospheric muons
- $E \gtrsim 10^{16-17}$ eV: only down-going neutrinos available since more energetic neutrinos get absorbed in the Earth
- Diffused flux sensitivity to $E^2 dN/dE \sim 2 \text{ eV cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$ after 3 years of full Icecube
- AGNs emitting at $E \sim 10^{16}$ eV detectable if $E^2 dN/dE \gtrsim 10^2$ eV cm⁻² sr⁻¹ s⁻¹

The three PeV events at Icecube

- Three events at ~ 1,1.1,2.2 PeV energies found
- Cosmogenic ? X
 Glashow
 resonance? X
 atmospheric ?

Roulet et al 2013 ++ many

- IceCube analyzing 54 events from 30 TeV to 10 PeV
- Constraints on Lorentz violation: $\delta(v^2-1) \leq \mathcal{O}(10^{-18})$

Borriello, Chakraborty, Mirizzi, 2013

Detection of UHE neutrinos: cosmic ray showers

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_{τ} interacting in the mountains
- Up-going Earth-skimming ν_{τ} shower

Detection through radio waves: ANITA

- Charged particle shower ⇒
 Radio Askaryan: charged clouds
 emit coherent radio waves
 through interactions with B_{Earth}
 or Cherenkov
- Detectable for E ≥ 10¹⁷ eV at balloon experiments like ANITA

Limits on UHE neutrino fluxes

Waxman-Bahcall, AMANDA, Antares, RICE, Auger, IceCube Also expect complementary info from: ANITA, NEMO, NESTOR, KM3NET ...

Flavor information from UHE neutrinos

Flavor ratios ν_e : ν_μ : ν_τ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

Flavor ratios at detectors

- Neutron source: $\approx 5:2:2$
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : \approx 4 : 7 : 7

New physics effects

- Decaying neutrinos can skew the flavor ratio even further:
 as extreme as 6:1:1 or 0:1:1
 - Ratio measurement \Rightarrow improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

Flavor ratios $\nu_{e}: \nu_{\mu}: \nu_{\tau}$ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

Flavor ratios at detectors

- Neutron source: $\approx 5:2:2$
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : ≈ 4 : 7 : 7

New physics effects

- Decaying neutrinos can skew the flavor ratio even further:
 as extreme as 6: 1: 1 or 0: 1: 1
 - Ratio measurement ⇒ improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

Flavor ratios ν_e : $\overline{\nu_{\mu}}$: ν_{τ} at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

Flavor ratios at detectors

- Neutron source: $\approx 5:2:2$
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : ≈ 4 : 7 : 7

New physics effects

Decaying neutrinos can skew the flavor ratio even further:
 as extreme as 6:1:1 or 0:1:1

Ratio measurement ⇒ improved limits on neutrino lifetimes

Looking at the sky in Neutrinos

- Neutrinos from the sun (1-10 MeV)
- 2 Neutrinos from a core collapse supernova (5-50 MeV)
- $ext{ } ext{ } ext$
- 4 Big-bang relic neutrinos: ($E \sim \text{meV}$)
- 5 Looking at the sky in neutrinos

Source: abundance and temperature

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 16.7 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{
u}/\Omega_{
m baryon}=0.5\left(\sum m_{
u}/{
m eV}\right)$$

Looking really far back:

	Time	Temp	Z
Relic neutrinos	0.18 s	\sim 2 MeV	$\sim 10^{10}$
CMB photons	$\sim 4 \times 10^5 \text{ years}$	0.26 eV	1100

Lazauskas, Vogel, Volpe, 2008

The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

$$u_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^-$$

End-point region ($E > M_{N_1} - M_{N_2}$) background-free. Energy resolution crucial.

Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

- Possible at ³H experiments with 100 g of pure tritium but atomic tritium is neeed to avoid molecular energy levels
- ¹⁸⁷Re at MARE also suggested, but a lot more material will be needed....

Looking at the sky in Neutrinos

- Neutrinos from the sun (1-10 MeV)
- Neutrinos from a core collapse supernova (5-50 MeV)
- $ext{ } ext{ } ext$
- 4 Big-bang relic neutrinos: $(E \sim \text{meV})$
- 5 Looking at the sky in neutrinos

Neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot reach us.

Supernova neutrinos

- Early warning of a galactic SN (SNEWS network)
- Instant identification of mass hierarchy possible
- Signals of shock propagation, QCD phase transition, SASI instabilities, BH formation...
- Gravitational waves ?? hidden supernovae ??

High-energy astrophysical neutrinos

- Simultaneous detection with EM-observed events
- Flavor identification for sources and ν properties

Cosmological ultra-low energy neutrinos

Neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot reach us.

Supernova neutrinos

- Early warning of a galactic SN (SNEWS network)
- Instant identification of mass hierarchy possible
- Signals of shock propagation, QCD phase transition, SASI instabilities, BH formation...
- Gravitational waves ?? hidden supernovae ??

High-energy astrophysical neutrinos

- Simultaneous detection with EM-observed events
- Flavor identification for sources and ν properties

Cosmological ultra-low energy neutrinos

Neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot reach us.

Supernova neutrinos

- Early warning of a galactic SN (SNEWS network)
- Instant identification of mass hierarchy possible
- Signals of shock propagation, QCD phase transition, SASI instabilities, BH formation...
- Gravitational waves ?? hidden supernovae ??

High-energy astrophysical neutrinos

- Simultaneous detection with EM-observed events
- Flavor identification for sources and ν properties

Cosmological ultra-low energy neutrinos

Neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot reach us.

Supernova neutrinos

- Early warning of a galactic SN (SNEWS network)
- Instant identification of mass hierarchy possible
- Signals of shock propagation, QCD phase transition, SASI instabilities, BH formation...
- Gravitational waves ?? hidden supernovae ??

High-energy astrophysical neutrinos

- Simultaneous detection with EM-observed events
- Flavor identification for sources and ν properties

Cosmological ultra-low energy neutrinos

The dawn of neutrino astronomy

Neutrinos are entering this domain, slowly but surely...

... and should be adding more colors to the universe...

Backup slides

Coming soon inside a mountain near you: INO

India-based Neutrino Observatory

- In a tunnel below a peak (Bodi West Hills, near Madurai)
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish neutrinos from antineutrinos
- Determining mass hierarchy from atmospheric neutrinos

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

 ν and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_{\scriptscriptstyle X} \bar{\nu}_{\scriptscriptstyle X}$ oscillations

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Multiple spectral split/swap:

 ν_{e} and ν_{x} ($\bar{\nu}_{e}$ and $\bar{\nu}_{x}$) spectra interchange completely, but only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

Pointing to the SN in advance

- Neutrinos reach 6-24 hours before the light from SN explosion (SNEWS network)
- $\bar{\nu}_e p \rightarrow ne^+$: nearly isotropic background
- $\nu e^- \rightarrow \nu e^-$: forward-peaked "signal"
- Background-to-signal ratio: $N_B/N_S \approx 30-50$
- \bullet SN at 10 kpc may be detected within a cone of $\sim 5^{\circ}$ at SK
- Adding Gd may make the pointing much better...

QCD phase transition (if it takes place)

- Sudden compactification of the progenitor core during the QCD phase transition
- Prominent burst of $\bar{\nu}_e$, visible at IceCube and SK

Dasgupta et al, PRD 2010

Detection of SASI instabilities

- Standing Accretion Shock Instability: global dipolar and quadrupolar deformations at the shock front
- Imprints even on top of the turbulent motion of matter
- Observable in Icecube event rate, as a high-frequency signal

Tamborra et al, PRL 2013

Diffused SN neutrino background

- Energy window: 17 MeV ≤ E ≤ 50 MeV
- 90% C.L. limits on $\bar{\nu}$ flux: 2.9 cm⁻² s⁻¹ for E > 17.3 MeV

SK Collaboration, 2012

Predictions have a factor of 2-3 uncertainty. Collective effects and shock effects can affect predictions of the predicted fluxes by up to $\sim 50\%$

Detection of relic neutrinos: the torsion balance idea

- De Brogli wavelength of relic neutrinos: $\lambda \approx h/p \approx 1.5$ mm.
- ν can interact coherently with a sphere of this size
- Measure force on such "spheres" due to the relic neutrino wind
- For iron spheres and 100 times local overdensity for ν , acceleration $a \le 10^{-26}$ cm/s²

Shvartsman et al 1982

- \ge 10 orders of magnitude smaller than the sensitivity of current torsion balance technology
- If neutrinos are Majorana, a further suppression by $v/c \approx 10^3$ (polarized target), $(v/c)^2 \approx 10^{-6}$ (unpolarized)

Hagmann, astro-ph/9901102

The idea is essentially impractical.

