Those invisible neutrinos and their astroparticle physics

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Amol Diahe

Bhoutics, IITM, March 31st, 2017

1 Neutrinos from the Sun

2 Neutrinos in astrophysics, cosmology, and particle physics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3 Neutrino mysteries that took decades to figure out
- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

Those invisible neutrinos...

1 Neutrinos from the Sun

2 Neutrinos in astrophysics, cosmology, and particle physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 3 Neutrino mysteries that took decades to figure out
- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

How does the Sun shine ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Nuclear fusion reactions: effectively $4 \frac{1}{1}H + 2e^{-} \rightarrow \frac{4}{2}He + light$

How does the Sun shine ?

- Nuclear fusion reactions: effectively 4 $_1^1\text{H} + 2e^- \rightarrow_2^4 \text{He} + \text{light} + 2\nu_e$
- Neutrinos needed to conserve energy, momentum, angular momentum

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How does the Sun shine ?

- Nuclear fusion reactions: effectively 4 $_1^1\text{H} + 2e^- \rightarrow_2^4 \text{He} + \text{light} + 2\nu_e$
- Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine !!

Davis-Koshiba Nobel prize 2002

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Why do we not notice them ?

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Why do we not notice them ?

Even during night !

If sunlight cannot reach, how do neutrinos ?

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Why do we not notice them ?

Even during night !

If sunlight cannot reach, how do neutrinos ?

Seem to come directly from the core of the Sun

Sunlight comes from the surface...

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Why do we not notice them ?

Even during night !

If sunlight cannot reach, how do neutrinos ?

Seem to come directly from the core of the Sun

Sunlight comes from the surface...

What are the reasons for these confusing facts ?

Three questions, the same answer

- Why did the *roti* char ?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Three questions, the same answer

- Why did the *roti* char ?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run ?

(日)

Because they were not moved !

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night ?
- Why can we see "inside" the sun with neutrinos ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night ?
- Why can we see "inside" the sun with neutrinos ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Because neutrinos interact extremely weakly !

Stopping radiation with lead shielding

• Stopping α, β, γ radiation: 50 cm

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

Answers to the three questions

 Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

Answers to the three questions

- Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night ? Neutrinos pass through the Earth without interacting

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

Answers to the three questions

- Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night ? Neutrinos pass through the Earth without interacting

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Why can we see "inside" the sun with neutrinos ? Neutrinos pass through the Sun without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

Answers to the three questions

- Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night ? Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos ? Neutrinos pass through the Sun without interacting

How do we see the neutrinos then ?

SuperKamiokande: 50 000 000 litres of water

SuperKamiokande: 50 000 000 litres of water

A very rare observation

About 10²⁵ neutrinos pass through SK every day.

・ロン ・雪と ・ヨン・

About 5–10 neutrinos interact in SK every day.

SuperKamiokande: 50 000 000 litres of water

A very rare observation

- About 10²⁵ neutrinos pass through SK every day.
- About 5–10 neutrinos interact in SK every day.

Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

Neutrinos from the Sun

Neutrinos in astrophysics, cosmology, and particle physics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 3 Neutrino mysteries that took decades to figure out
- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

A view from the Hubble telescope

The world without neutrinos

▲□▶▲@▶▲≧▶▲≧▶ ≧ ∽੧<♡

The world without neutrinos

Role of neutrinos in creating atoms

Neutrinos helped create the matter-antimatter asymmetry, without which, no atoms, no stars, no planets, no galaxies

▲ 🗇 🕨 ◀

• Earth has elements heavier than iron, which can be created only inside an exploding star (supernova)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Earth has elements heavier than iron, which can be created only inside an exploding star (supernova)

 A supernova must have exploded bilions of years ago whose fragments formed the solar system

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Earth has elements heavier than iron, which can be created only inside an exploding star (supernova)

 A supernova must have exploded bilions of years ago whose fragments formed the solar system

 Supernovae explode because neutrinos push the shock wave from inside

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The second-most abundant particles in the universe

- Cosmic microwave background: 400 photons/ cm 3 Temperature: \sim 3 K
- Cosmic neutrino background: 300 neutrinos / cm 3 Temperature: \sim 2 K

Even empty space between galaxies is full of neutrinos !

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Neutrinos everywhere

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Three kinds of neutrinos:

 ν_{e} $\overline{\nu}_{\mu}$

 $\nu_{ au}$

◆□ → ◆□ → ◆三 → ◆三 → ●● ◆○ ◆

The Standard Model of Particle Physics

• 3 neutrinos:

 $\nu_{\rm e}, \nu_{\mu}, \nu_{\tau}$

- chargeless
- spin 1/2
- almost massless (at least a million times lighter than electrons)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 only weak interactions
Neutrinos from the Sun

2 Neutrinos in astrophysics, cosmology, and particle physics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3 Neutrino mysteries that took decades to figure out

- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

The beta decay mystery: 1932

- Nuclear beta decay: $X \rightarrow Y + e^-$
- Conservation of energy and momentum ⇒ Electrons have a fixed energy.
- But:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Energy-momentum conservation in grave danger !!

The beta decay mystery: 1932

- Nuclear beta decay: $X \rightarrow Y + e^-$
- Conservation of energy and momentum ⇒ Electrons have a fixed energy.
- But:

Energy-momentum conservation in grave danger !!

A reluctant solution (Pauli): postulate a new particle

Does this new particle really exist?

"But don't you see,Wolfgang- if the particle is too weakly interacting to detect, we can't just take it on faith that you've discovered it."

http://www.sciencecartoonsplus.com/pages/gallery.php

(日)

Discovery of electron neutrino: 1956

The million-dollar particle

- Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
- $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
- $n + {}^{108}\text{Cd} \rightarrow {}^{109}\text{Cd}^* \rightarrow {}^{109}\text{Cd} + \gamma$ (delayed)

Reines-Cowan: Nobel prize 1995

The "Who ordered muon neutrino ?" mystery: 1962

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Based on a drawing in Scientific American, March 1963.

Muon neutrino: an unexpected discovery

- Neutrinos from pion decay: $\pi^- \rightarrow \mu^- + \bar{\nu}$
- Expected: $\bar{\nu} + N \rightarrow N' + e^+$??

The "Who ordered muon neutrino ?" mystery: 1962

Muon neutrino: an unexpected discovery

- Neutrinos from pion decay: $\pi^- \rightarrow \mu^- + \bar{\nu}$
- Expected: $\bar{\nu} + N \rightarrow N' + e^+$??
- Observed: always a muon, never an electron/positron
- This must be a new neutrino, not $\bar{\nu}_e$, but $\bar{\nu}_\mu$

Steinberger-Schwartz-Lederman Nobel prize 1988

The long-term mysteries \Rightarrow neutrino oscillations

Solar neutrino mystery: 1960s - 2002

Only about half the expected ve observed!

Atmospheric neutrino mystery: 1980s – 1998

• Half the ν_{μ} lost in the Earth!

Reactor neutrino experiments: 2012 +

• About 10% of reactor $\bar{\nu}_e$ are lost !

The long-term mysteries \Rightarrow neutrino oscillations

Solar neutrino mystery: 1960s - 2002

- Only about half the expected ve observed!
- Possible solution: ν_e change to ν_μ/ν_τ

Atmospheric neutrino mystery: 1980s - 1998

- Half the ν_{μ} lost in the Earth!
- Possible solution: ν_{μ} change to ν_{τ}

Reactor neutrino experiments: 2012 +

- About 10% of reactor $\bar{\nu}_e$ are lost !
- Possible solution: $\bar{\nu}_e$ change to $\bar{\nu}_\mu/\bar{\nu}_\tau$

The long-term mysteries \Rightarrow neutrino oscillations

Solar neutrino mystery: 1960s - 2002

- Only about half the expected ve observed!
- Possible solution: ν_e change to ν_μ/ν_τ
- Nobel Prize 2015 (McDonald)

Atmospheric neutrino mystery: 1980s - 1998

- Half the ν_{μ} lost in the Earth!
- Possible solution: ν_{μ} change to ν_{τ}
- Nobel Prize 2015 (Kajita)

Reactor neutrino experiments: 2012 +

- About 10% of reactor $\bar{\nu}_e$ are lost !
- Possible solution: $\bar{\nu}_e$ change to $\bar{\nu}_\mu/\bar{\nu}_\tau$

Three questions, the same answer

 ν conference participants

- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_μ from the atmosphere become ν_τ ?

・ロト ・四ト ・ヨト ・ヨト

Why did 10% ν
_e from the reactors become ν
_μ/ν
_τ ?

Three questions, the same answer

 ν conference participants

- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_μ from the atmosphere become ν_τ ?

(日) (日) (日) (日) (日) (日) (日)

Why did 10% ν
_e from the reactors become ν
_μ/ν
_τ ?

Because neutrinos have different masses and they mix !

↑ Quantum Mechanics

ν_e, ν_μ, ν_τ do not have fixed masses !!

For example, $\nu_e - \nu_\mu$ mixing:

$$v_{2} = -v_{e} \sin \theta + v_{\mu} \cos \theta$$
$$v_{I} = v_{e} \cos \theta + v_{\mu} \sin \theta$$
$$\cos^{2} \theta \qquad \sin^{2} \theta$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Still open mysteries about neutrino masses

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (mass eigenstates)

Still open mysteries about neutrino masses

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1$, ν_2 , ν_3 (mass eigenstates)

- Mass ordering: Normal or Inverted ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Do neutrinos behave differently than antineutrinos ?
- Can neutrinos be their own antiparticles ?

A short-lived mystery (2011-12)

Superluminal neutrinos ?

The neutrinos do not travel faster than light

↑ Relativity

・ コット (雪) (小田) (コット 日)

Neutrinos from the Sun

2 Neutrinos in astrophysics, cosmology, and particle physics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 3 Neutrino mysteries that took decades to figure out
- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

- No bending in magnetic fields \Rightarrow point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Supernova: the death of a star

Gravity \Rightarrow

Strong nuclear force \Rightarrow

Weak nuclear force (Neutrino push) \Rightarrow

Electromagnetism (Hydrodynamics) \Rightarrow

(Crab nebula, SN seen in 1054)

What supernova neutrinos can tell us

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What supernova neutrinos can tell us

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- How a neutron star is formed (Is there a QCD phase transition ?)

(日) (日) (日) (日) (日) (日) (日)

Copyright @ 2009 Pearson Education, Inc., publishing as Pearson Addisor-Wesley

- The most powerful, long-lived objects in the universe
- Study of neutrinos will allow us to probe them deeper inside
- We might have seen the first neutrinos from AGNs in the last few years !!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Astrophysical neutrinos at all energies

The cosmological neutrinos (big-bang relics)

Empty space between galaxies is full of light and neutrinos

- Cosmic microwave background: 400 photons/ cm 3 Temperature: \sim 3 K
- Tell us about the universe when it was *only* 400,000 years old (Now it is \sim 14 000 000 000 years old.)

(日) (日) (日) (日) (日) (日) (日)

The cosmological neutrinos (big-bang relics)

Empty space between galaxies is full of light and neutrinos

- $\bullet\,$ Cosmic microwave background: 400 photons/ cm^3 Temperature: \sim 3 K
- $\bullet\,$ Tell us about the universe when it was *only* 400,000 years old (Now it is $\sim\,$ 14 000 000 000 years old.)
- Cosmic neutrino background: 300 neutrinos / cm 3 Temperature: \sim 2 K
- Can tell us about the universe when it was 0.18 sec old !

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Neutrinos from the Sun

2 Neutrinos in astrophysics, cosmology, and particle physics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 3 Neutrino mysteries that took decades to figure out
- 4 Neutrinos as messengers from the universe
- 5 The future of neutrino astronomy

SuperKamiokande: 50 kiloton of water

With 50 000 000 litres of water

- Neutrinos passing through SK per day: 10²⁵
- Neutrino interactions in SK per day: 5-10

Need bigger and better detectors !

Directions of multi-purpose detector development

Sensitivity to MeV - 100 GeV neutrinos

- Measuring the energy of the sun in neutrinos
- Supernova neutrino detection

Below the antarctic ice: Gigaton IceCube

Sensitivity to $E \gtrsim 100 \text{ GeV}$

- Neutrinos from Gamma Ray Bursts, late SN neutrinos
- Luminosity of SN neutrino burst

The three PeV (10¹⁵ eV) events at Icecube

Bert

Ernie

- Three events at \sim 1, 1.1, 2.2 PeV energies found
- Cosmogenic ? X Glashow resonance? X atmospheric?

Roulet et al 2013 ++ many

- IceCube analyzing 54 events from 30 TeV to 10 PeV
- Constraints on Lorentz violation: $\delta(v^2-1) \leq \mathcal{O}(10^{-18})$

Borriello, Chakraborty, Mirizzi, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Detection of UHE neutrinos: cosmic ray showers

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_{τ} interacting in the mountains
- Up-going Earth-skimming ν_{τ} shower

Detection through radio waves: ANITA

- Charged particle shower ⇒ Radio Askaryan: charged clouds emit coherent radio waves through interactions with B_{Earth} or Cherenkov
- Detectable for $E \gtrsim 10^{17}$ eV at balloon experiments like ANITA

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Coming soon(?) inside a mountain near you: INO

India-based Neutrino Observatory

- In a tunnel below a peak (Bodi West Hills, near Madurai)
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish neutrinos from antineutrinos
- Determining mass hierarchy from atmospheric neutrinos

Mapping the universe with EM waves

Gamma ray

Near infrared

X-ray

Infrared

Visible

Radio waves

Mapping the universe with neutrinos

Neutrinos are entering this domain, slowly but surely...

Mapping the universe with neutrinos

Neutrinos are entering this domain, slowly but surely...

... and should be adding more colours to the universe...