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Abstract. The systematics of photon absorption cross sections in nuclei and small metal
particles are examined as a function of the number of constituent fermions A. It is pointed
out that the shell-structure-linked oscillations in the full width at half maximum (FWHM) of
the photoneutron cross section in nuclei, earlier recognized for A > 63, in fact persist down to
the lightest nuclei. Averaging over the oscillations or focusing on the lower envelope of the
oscillating curve (magic nuclei), the FWHM is seen to generally decrease with increasing A,
consistent with A~ '/, a dependence which was earlier known to hold in metal particle systems.
If the FWHMSs are scaled by the respective Fermi energies and the inverse radii by the Fermi
wave vectors, the two data sets become comparable in magnitude. A schematic theoretical
description of the systematics is presented.
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1. Introduction

It is becoming increasingly clear that there are certain points of strong resemblance
between the electronic properties of metal particles or clusters, and the properties of
atomic nuclei [1]. Electrons in metal particles and nucleons in nuclei both constitute
finite Fermi systems with temperatures much less than the respective Fermi energies—
a fact which cuts across the very different scales of length, mass and energy in the
two systems. Metal particles, like nuclei (and unlike atoms), exhibit saturation, or
constancy of particle density, with increasing size. Also, shell structure in energy
levels —long familiar in nuclear physics—manifests itself in the relative abundances,
polarizabilities and ionization potentials of metal particles as well [2].

Here we focus on another aspect of the analogy, namely, the response of metal
particles and nuclei to electromagnetic radiation. In both systems, the field resonantly
excites a collective dipolar mode, and the wavelength of the radiation at resonance
far exceeds the size of the system. In nuclei, it is the giant dipole resonance (GDR),
in which protons are displaced with respect to neutrons and strong interactions
provide the restoring force (see, e.g. [3, 4]). In metal particles, the Mie resonance
involves displacing the conduction electron cloud with respect to the background of
positive ions, and there are electromagnetic restoring forces (see, [5-7]). In this paper,
we explore the systematics of these two sets of data with varying numbers of fermions.

In §2, we discuss the available data for both nuclei and metal particles, and draw
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some empirical conclusions regarding systematic trends, with an emphasis on the
FWHMs. This is our main result. In § 3, we present a schematic theoretical description

for the size dependence of the width. A brief account of this work has already
appeared [8].

2. Cross-section systematics
2.1 Nuclei

Photo-neutron cross-sections have been measured in a large number of nuclei, and
plots of the measured cross sections as a function of incident photon energy, a{E),
have been compiled by Dietrich and Berman [9]. For spherical nuclei, the cross
section for the photoexcitation of GDR has a single maximum, while for deformed
nuclei there is more than one maximum (see, [3]). In the former case, the peak
frequency w, is known to exhibit a systematic empirical dependence on the mass
number A:

wo=3124712 + 2064~ V¥ MeV. (1)

We shall discuss this dependence (vis-a-vis the A independence of o, in metal particles)
in §3-1. The FWHM provides a simple, single characterization of the resonance
spectrum, and has been used earlier to extract global trends with varying A, for
heavier nuclei. For instance, Bergére [10] and Snover [11] have shown plots of the
FWHM in the regions 4 > 90 and 166 > A > 63, respectively. These plots show that
the FWHM exhibits systematic oscillations in the ranges studied, with local minima
near spherical, near-magic nuclei.

Instead of FWHM, an alternative characterization of the data is to fit one or two
Lorentzians to oE), and thus extract the values of the resonance energies w,, and
@y, the widths T, and I',, and cross sections o, and ,, for the lower and higher
energy resonances respectively. This procedure is usually applied to A > 50, and the
values of I', and I'; are given by Dietrich and Berman [9]. We have observed that
if the width corresponding to the larger cross section is plotted versus A, then the
result shows trends similar to those exhibited by the FWHM. However, the FWHM
has the added advantage that it can be used across the periodic table.

We wanted to see whether the systematics observed earlier for the FWHM of
heavier nuclei [10, 11] persisted in lighter nuclei as well. We examined the FWHM
in about 120 nuclei ranging from *He to ?*°Pu, using primarily the cross-section
data compiled by Dietrich and Berman [9]. (We re-examined the heavier nuclei in
order to have a uniform procedure for all A.) For those cases where the data follow
a curve with a single peak, it was straightforward to determine the FWHM. For
cases with two or more (closely overlapping) peaks, we found the FWHM by drawing
a smooth curve with a single maximum through the data points, trying to ensure
that the areas under the smooth curve and the experimental data were nearly equal.
Those nuclei where the data seem incomplete (*H, '*F) or have too much structure
(**C, '*0, **25Mg) were ignored. Results are displayed in figure 1. For light nuclei
(see inset in figure 1), we also estimated the errors in the FWHMs, arising from (a)
the existence of more than one data set in some cases, and (b) the inherent uncertainty
in extracting the FWHM by our procedure. In the range 4 > 90, our values agree
well with those of Bergére [10]. A determination of the FWHM using least-square
fits to a smooth single-peaked curve would be more rigorous, but we do not expect
it to change our estimated values enough to affect our conclusions.
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Figure 1. T is the full width at half maximum of the total photoneutron cross
section on a nucleus when plotted as a function of the incident photon energy.
Compilation of the cross-section data by Dietrich and Berman [9] was used to
determine I". Note the systematic modulations in the I" vs 4 curve, with minima at
the proton (£) or neutron (¥) magic numbers. The minimum at 4 = 28 corresponds
to ¥8i, see [12]. The curve is drawn as a guide to the eye. Dashed lines indicate
regions of sparse or nonexistent data. The inset shows the region 4 < 45 in greater
detail. (I for Me, Cl and K is obtained from data on natural samples.) The statistical
significance of the oscillations of the curve is discussed in the text.

Examination of the results in figure 1 for light nuclei (A4 < 50) (see the inset) shows
that the FWHM continues to display local minima at, by and large, the magic
numbers. The rapid oscillations of the FWHM versus 4 are due to the relative
crowding in of magic numbers for small 4. With the sole exception of 2855, all the
minima occur at or near the magic numbers [12]. Conversely, each magic number
has a corresponding minimum, with the possible exception of N = 40 (4 = 72), where
there is a hint of a local minimum, but the data do not allow us to draw a firm
conclusion. In any case, 40 is known to be a weak magic number.

The systematic oscillations in the region A < 50 in figure 1 are statistically significant.
As is evident from the inset, the error in the FWHM is less than 1 MeV in almost
all cases, and is generally much smaller. The amplitude of oscillations, on the other
hand, is at least 5-6 MeV (e.g., *He to *He, or *°Ca to **Sc), and is sometimes as
large as 14 MeV (e.g., *Be to '*N). The oscillations are as systematic and as pronounced
as those for large A, the only difference being that there are fewer points per oscillation.

That the photo-response of a nucleus even as light as He can be thought of in
the same terms as that of heavier nuclei may seem suprising, but the very fact that
the widths for light nuclei fit in well with the systematics across the periodic table
provides an a posteriori justification for the use of the FWHM even for 4 < 50.

An interesting feature of figure 1 is the overall downward trend of the oscillatory
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curve, evident if, for instance, we focus on points in the lower envelope of the curve.
These points correspond mostly to spherical, magic nuclei. The manner in which the
width decreases as a function of size is discussed below, in connection with figure 2.

2.2 Metal particles

In metal particles, the Mie resonance corresponds to the excitation of a surface
plasmon. For a spherical particle, within the free electron approximation, the

resonance frequency w, is o, \.l"-j, where w,, is the plasma frequency [5]. Sinece @,
depends primarily only on the electron density, @, does not vary very strongly with
size—less than 10% as the size is decreased from ~ 1004 to ~ 104 [14].

For optical absorption experiments on small metal particles, it is important to
distinguish between two types of samples: (i) free metal clusters in which size separation
is achieved by mass spectroscopy, and (ii) metal clusters embedded in various matrices,
such as glass or solid argon. Particles are isolated from each other, but some spread
In size cannot be avoided. A typical spread in radius is ~ 20%.

Experiments on samples of type (i) have been performed on small metal clusters
with between 2 and 40 conduction electrons [15-17]. The data indicate that, as with
nuclei, there is a strong response over a relatively narrow frequency interval in the
case of magic numbers, and over a much broader frequency range in cases which fall
between magic numbers. In the latter case, the line shows splittings, which can be
interpreted in terms of shape deformations.

A larger range of sizes (~ 10 A to ~ 100 A) has been investigated [14] in experiments
on samples of type (ii). No noticeable oscillations in I" versus radius R have been
observed with such samples, but this is probably because (a) unlike for nuclei, oscillations
are averaged out due to the distribution of sizes, and (b) the amplitude of shell-structure-
linked oscillations is expected to decrease with increasing size, and thus be small for
the above range of sizes. However, these experiments do reveal a systematic
dependence of the averaged FWHM I'_ on R:

1‘,,=K%+ S 2)

where vy is the Fermi velocity, K is a constant of order unity and T', is the width
in the bulk medium. Equation (2) describes the variation of the linewidth of Ag
particles in a variety of host matrices. The constant K depends on the matrix [14],

it goes down by a factor ~ 3 as the matrix is changed from glass to an inert element
solid like Ar and Ne, presumably due to surface effects.

2.3 Similarities and differences between nuclei and metal particles

We wanted to see if (2), which holds for metal particles with a spread in sizes, also
describes the downward trend of I in nuclei with increasing A, evident in figure 1.
A similar 1/R dependence has been discussed earlier [18] for nuclei in the range
A > 50. On dividing across by the Fermi energy ¢, we see that (2) predicts that I', /ep
is a linear function of (kg R)™*, where k; is the Fermi wave vector. Interestingly, on
using these dimensionless scaled variables, we can directly compare the Ag-particle
and nuclear data (figure 2) which in absolute terms differ by six orders of magnitude
in energy and five orders of magnitude in length. We used the values e = 38 MeV
and ky=1-36fm™" for nuclei, and &y =549¢V and k;=120A"* for Ag particles.
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Figure 2. Tz vs. (keR)™! for metal particles and nuclei. T is the same as in
figure 1. The dashed and dotted lines are best fits for Ag/Ar (+, [14, 19]) and
Ag/Ne [14]. The nuclei shown here are singly (@) or doubly (®) magic nuclei
from the lower envelope of the oscillating curve in figure 1. The solid straight line
is the best fit to this data set. The dot-dashed line indicates the ‘average’ trend of
the oscillatory curve in figure 1, Note the similarities between the scaled nuclear
and particle data despite the fact that the two data sets differ by six orders of
magnitude in energy and five orders of magnitude in length. For A4 = 90, not all
error bars are shown; nuclei in the same cluster have roughly similar error bars.

We have chosen to plot data for Ag particles in argon and neon matrices as interactions
with surrounding inert gas atoms are likely to be minimal, and a large range of sizes
has been studied for Ag/Ar [19]. We have used RMS radii R, as these are well

determined for nuclei; for Ag particles, we too R to be given by /3/5 times the quoted
radii. Since I' oscillates as a function of size in nuclei, and we are interested in
displaying the overall downward trend, we have replotted points corresponding to
singly or doubly magic nuclei from the lower envelope of the curve in figure 1; the
line marked ‘magic’ is the best fit line through these points. Thus these points are
consistent with a linear dependence on (kyR)™%, though other monotonic variations
with R cannot be ruled out. We also examined the average downward trend of the
oscillatory curve in figure 1, and found that it could also be fit to a linear dependence.
The slope of the average line (marked ‘average’ in figure 2) is larger than that of the
solid line, and is comparable to the slopes of the dashed and dotted lines. Thus (2)
holds to a good approximation for nuclei also. In particular, it is interesting to see
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how well the doubly magic nuclei *He, *#0, *°Ca, *°Zr and *°®Pb follow a straight
line.

Of course, there are also some differences between nuclei and metal particles. We
have already pointed out a difference as regards the A dependence of @,. The magic
numbers in the two cases are also not the same for large 4, because of the difference
in the strengths of the spin-orbit force in the two systems. Finally, the intercepts on

the I'/ep axis, for the two sets of data in figure 2, are quite different. The significance
of this will be discussed in the following section.

3. Discussion

In this section, we will give a schematic theoretical description of the expected
systematics of the resonance with size, and see how it accords with the trends seen
in experiments.

Let us begin by recalling the principal conclusions of the comparison between
nuclei and metal particles. First, the resonance peak frequency w, exhibits a systematic
variation with 4 for nuclei (see {1)), whereas it is roughly size independent for metal
particles. Second, the FWHM exhibits a general downward trend with increasing A,
consistent with an A ™'/ dependence (figure 2). A similar dependence is also seen in
metal particle systems with a spread in sizes but with smaller intercepts on the I'/eg
axis. Third, the FWHM exhibits strong shell effects in nuclei, and similar tendencies

in separated metal clusters. In metal particle samples with a spread in sizes, shell
effects are not seen.

3.1 Resonance frequency

The size dependence of the natural frequency of vibration w, can be deduced by
using a simple classical picture of the collective mode. In the metal particle, the
restoring force arises from the electric field produced by layers of opposite charges
on the two sides [20] and acts on each of the A conduction electrons in the particle.
The oscillator frequency w, is given by the square root of the ratio of the total
restoring force per unit displacement to the mass involved. Since both force and mass
are proportional to A, the frequency w, is roughly size independent. In the nucleus,
on the other hand, the restoring force arises from short-range strong interactions
amongst nucleons. In a hydrodynamic description, it is modelled by the surface or
volume symmetry energy terms in the semiempirical mass formulas. In the Goldhaber—
Teller model [21], the collective state corresponds to the motion of the proton cloud
through the neutron cloud without mutual distortion. The restoring force is pro-
portional to 4%* and the mass parameter is proportional to 4. Hence, wy ~ A~ /5,
In the Steinwedel-Jensen model [22], on the other hand, the relative proton-neutron
density changes in such a way as to maintain constant overall density throughout.
The restoring force per unit mass is proportional to R~2, and hence wy ~ A~ 12

3.2 Resonance widths: overall trend

Turning to the FWHM in nuclei, one may distinguish between two types of
contributions. Firstly, there is intrinsic width of the resonance which comes from the
finite lifetime of the collective mode, and which is present in all cases. The intrinsic
width itsell receives contributions from a variety of physical mechanisms to be
discussed below. This is the only contribution to the FWHM in spherical nuclei.
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Secondly, in nonspherical nuclei, static deformations in shape can lead to two distinct
resonance frequencies, corresponding to a splitting of the line. In such cases, the
FWHM receives additional contributions,

The intrinsic width I'; can be written as the sum of three terms [4]

I;=AT+TT+T", (3)

reflecting contributions from distinct physical effects. The fragmentation width A
corresponds to the fact that the collective (1p — Lh) state which is the doorway state
for the GDR, is not a single state, but is in most cases already appreciably fragmented.
This effect (mean-field damping or one-body friction) is the finite nucleus analogue
of Landau damping in a bulk medium. It occurs due to the scattering of the nucleons
from the ‘wall’ or ‘surface’ of the self-consistent mean field potential. The second term
I'" is the escape or decay width corresponding to the direct coupling of the (1p — 1k)
doorway state to the continuum, giving rise to its decay into a free nucleon and an
(A — 1) nucleus. Finally, the spreading width I'* is due to the coupling of the (1p — 1h)
doorway state to more complicated (2p — 2h) states of the nucleus, the transition
occurring on account of genuine two-body effects (collisional damping or two-body
friction).

Let us see how each contribution to (3) is expected to vary with radius R. Our
arguments are schematic, and aimed at establishing the general, systematic trend with
size.

The R-dependence of the first two terms may be estimated using a simple argument
based on estimating the frequency of collisions with the surface. Such an argument
has been used successfully [23] to estimate AI” in metal particles; the estimate agrees
with the result of a quantum calculation [24-26] of the fragmentation width, within
a square-well model. The idea is that individual fermions moving with Fermi velocity
vp hit the wall with mean time ~ R/vg; the inverse time ~ vp/R then determines the
contribution to the width arising from wall effects—both for AT and I'". The subject
of one-body dissipation has also been discussed extensively in the nuclear physics
literature [27-297. The width '}, on the other hand, arises from two-particle collisions.
We expect I'* to vary smoothly with energy and nuclear size for magic cases, since
the collisional mean free path A shows similar smooth variations [30]. The average
time between two collisions is ~ A/v; and hence I' is expected to be ~ vg/d. This is
the only contribution in the R — co limit.

The total intrinsic width is thus expected to be

I, =T% + chog/R, (4)

where I'}, is the spreading width in the bulk limit, and ¢ is a constant. This is in
agreement with (2) and the data presented in figure 2 for spherical, magic nuclei.

It is interesting to consider the limit R — oo, corresponding to nuclear matter or
the bulk metal. From figure 2, we see that if the straight lines are extrapolated towards
(kgR)~! =0, the resulting intercept on the I'/g; axis is much larger for nuclei than
for metal particles. This is not too surprising, as kg4 is much smaller in nuclear-matter
[30] than in bulk metals at room temperature [20], reflecting the greater effect of
collisions in the former case. The limiting contribution I's, constitutes a substantial
fraction of the total width for spherical nuclei; for 2*Pb it is about 50% [31]. On
the other hand, for metal particles of comparable A, the contribution I';, constitutes a
much smaller fraction of T,.
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3.3 Resonance widths: shell effects

So far we have discussed only the monotonic variation of the FWHM that obtains
for spherical nuclei. As we see from figure 1, when we consider all nuclei, superimposed
on this monotonic variation, there are striking and strong shell-structure linked
oscillations in the FWHM. (As mentioned in §2.2, the FWHM in metal clusters also
seems to show similar tendencies.) We discuss the origin of these oscillations in two
broad representative regions, namely 150 < 4 < 190 and 80 < 4 < 150.

In the range 150 < A < 190, Dietrich and Berman [9] have fitted two-component
Lorentz curves to the photoneutron cross section data. This indicates a splitting of
the line, due to deformation of the nucleus. As in §2-1, we denote the two resonance
energies by w,, and @,,, with w,, <w,,, and the corresponding widths by I'; and
I';. For a spheroidal deformation, (1) leads us to expect that w,, and w, correspond
to oscillations along the semimajor and semiminor axes respectively. Equation (4)
then implies that I', <T';. This is indeed found to be true, for 150 < 4 < 190, for the
values of the widths tabulated by Dietrich and Berman [9]. In fact, with the exceptions
of **Mn and %*Cu, this is true for all the nuclei listed there. This provides additional
evidence for the overall decrease of the intrinsic width with increasing radius. The
corresponding cross sections ¢, and ¢, also generally satisfy ¢, < ¢,. The increase
of the FWHM away from the spherical cases can be ascribed, at least partially, to
the fact that deformations produce a splitting of the ling, and alsocause [, > T'(> 1),
where I" would be the width if the nucleus were undeformed. Since deformations of
the shape follow shell-structure systematics, with smallest deformations close to the
magic numbers, so does the FWHM [32].

In the region 80 < A < 150, Dietrich and Berman [9] have fitted one-component
Lorentz curves to the photoneutron cross section data (with the exceptions of **7I
and '*®Nd). As is clear from figure 1, oscillations of the FWHM versus A in this
region ‘are as prominent as those for 150 < 4 < 190. Thus, even when the line is
unsplit, the width of the best-fit Lorentzian oscillates as a function of 4, with minima
at the magic numbers. This indicates that the intrinsic width I'; can itself show
shell-structure linked oscillations. [33] Bergére [10] has correlated the FWHM in
this region with the ratio E(47)/E(2%), which characterizes the ‘softness’ of nuclei.
Here E(J7) is the energy of the first J* state in the nuclear spectrum.

The theoretical considerations we have presented in this section are schematic, and
aimed at understanding the empirical systematics observed—in contrast to more
detailed theoretical studies of the width for individual nuclei.

4, Conclusion

We conclude by recapitulating the main points of this paper. The FWHM of the
total photoneutron cross section shows shell-structure-linked oscillations as a function
of A even for 3 < A < 50. Disregarding oscillations, for instance by focusing on magic
nuclei, the FWHM generally decreases with increasing 4 approximately as A~/
(see (4)). Striking similarities are seen when the FWHMSs for nuclei are compared
with photoabsorption FWHM:s in small metal particles, after proper rescaling of the
energies and lengths.

The systematics which have been pointed out and discussed in this paper bring
the task of a theory into better focus. While a complete theory has not been presented
here, we have given a schematic theoretical description which allows one to understand
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at least the principal trends, However, it is the empirical observations which constitute
the main result of this paper.
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