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Used as a tool in many other areas of science, e.g.:

d d hCondensed  matter theory
Nuclear physics
Plasma physicsPlasma physics
String theory
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There is no general description for stationary non-equilibrium 
systems, comparable to the Gibbs-ensembles in equilibrium.

For this reason there is great interest in simple stochastic modelsFor this reason there is great interest in simple stochastic models 
of  non-equilibrium behavior, for which exact results can be 
obtained.
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An example of this is the Asymmetric Simple Exclusion Process 
(ASEP) for which many results have been obtained in recent years.

p=q → SSEP:   Collective dynamics on average identical to those of p q y g
set of independent random walkers. Tagged particle dynamics are
non-trivial  (e.g. < [x(t)- x(0)]2 ~ t1/2 for large t) but well understood.
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ASEP has non-trival collective dynamics with KPZ (Kardar ParisiASEP has non trival collective dynamics with KPZ (Kardar, Parisi, 
Zhang) behavior.

Of interest as very simplified model for traffic flows. 
Other applications include:

Transport of ions or molecules through pores in membranes.
Dynamics of interfaces in 2d.Dynamics of interfaces in 2d.
Reptation dynamics of polymers in a gel.
Dynamics of motor proteins moving along microtubules.

Good reviews are given in:

B. Derrida, Physics Reports 301 (1998) 65-83
R.A. Blythe and M.R. Evans J. Phys. A 40 (2007) R333-R441R.A. Blythe and M.R. Evans J. Phys. A 40 (2007) R333 R441
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Stationary state on a ring

For n particles on a ring of length N the stationary state gives equal 
weight to all configurationsweight to all configurations.

With cluster number n l bothWith cluster number ncl both
gain and loss rate equal ncl (p+q)

As a consequence the occupations of different sites are completely 
uncorrelated (apart from small finite size effects). In other words: 
mean-field approximations are exact.



With open boundaries and given rates α,β,γ,δ for extracting or inserting 
particles at the ends the situation becomes much more complicatedparticles at the ends the situation becomes much more complicated.

The most elegant and simplest way of attacking this problem is with
the Matrix Product Ansatz (MPA) of Derrida and Evans.the Matrix Product Ansatz (MPA) of Derrida and Evans.
They assume one can find matrices D and E, satisfying

pDE – qED = D + EpDE qED  D  E
< W | (αE – γD ) = < W | 
( βD – δE ) |V> = | V >( βD – δE ) |V> = | V > 

Then the stationary distribution is given by

pst (0,0,1,0 ... 1,1,0 ... 0,1) = Z-1 < W | EEDE ...DDE ... ED | V > 



pst(0,0,1,0 ... 1,1,0 ... 0,1) = ZN
-1 <W| EEDE ...DDE ... ED |V> 

with

ZN= < W | (E + D)N | V > 



From the partition function ZN several quantities can be calculatedFrom the partition function  ZN  several quantities can be calculated
immediately. 

The average current is obtained as

J J Z 1 < W | (E + D)n 1 ( DE ED) (E + D)N n 1 | V >J = Jn,n+1 = ZN
-1 < W | (E + D)n-1 (pDE – qED) (E + D)N-n-1 | V >

= ZN
-1 < W | (E + D)N-1 | V >

= ZN 1/ZN ZN-1/ZN

Average densities follow from a slight generalization:

ZN (λ,μ)= < W | (λ E + μ D)N | V > 

as 

ρ = N-1 [∂ log ZN (λ,μ) /∂ μ] λ=μ=1



Strong simplifications occur for q=0 (TASEP)Strong simplifications occur for q=0 (TASEP).
Commutation relation reduces to

pDE = D + E  ( here one may set p=1)

plus one may set γ = δ =0, so < W | αE = < W |;  βD | V > = | V >



Strong simplifications occur for q=0 (TASEP)Strong simplifications occur for q=0 (TASEP).
Commutation relation reduces to

pDE = D + E  ( here one may set p=1)

plus one may set γ = δ =0, so < W | αE = < W |;  βD |V > = | V >

Most practical is going to a Grand ensemble representationMost practical is going to a Grand ensemble representation
(known in the field as generating  function method ). 
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Expression for density remains as before.        
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Now use: (1 – cD)(1 – cE) = 1 – c(D + E) + c2 DENow use: (1 cD)(1 cE)  1 c(D + E) + c DE
= 1 – c( 1 – c)(D+E)
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we see there are three ways this can be obtained:

( ) ( )
2 2

β
⎣ ⎦

1) z = α(1 – α) (with α < β and α < 1/2)  Low density phase
2) z = β (1 – β) (with β < α and β < 1/2) High density phase2) z  β (1 – β) (with β < α and β < 1/2) High density phase
3) z =1/4                                                   Maximal current phase



Leads to phase diagram below:



Special case for α= β < ½ In this case low-density and high-densitySpecial case for α β < ½.  In this case low density and high density
phase compete and one obtains solutions showing a shock profile.
Interpretable as solutions with coexisting phases. 
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n species represented by matrices D Exchange rates p betweenn species represented by matrices Di. Exchange rates pij between 
neighboring particles  with  pij ≠ 0 only if i < j.
Require that these matrices satisfy the relationsRequire that these matrices satisfy the relations

pij Di Dj =ci Dj - cj Di

They have to obey the associative property Di [Dj Dk ] = [Di Dj ]Dk
This imposes the conditions

pij =vi – vj,  so  v1 > v2 > ... > vn

Passing rates are proportional to velocity differencesPassing rates are proportional to velocity differences.



Choose one of the species, say m+1 as the empties and set vm+1 = 0.p , y p m+1

Then species 1…m are right movers. Can be inserted on left with
f f if fi i i i d b d drates  f1…fm if first site is occupied by an empty; and extracted 

(= exchanged for an empty) with rates g1…gm if they occupy the 
last site Species m+2 n are left movers with similar input andlast site. Species m+2, … n are left movers, with similar input and 
exit rates.



Choose one of the species, say m+1 as the empties and set vm+1 = 0.p , y p m+1

Then species 1…m are right movers. Can be inserted on left with
f f if fi i i i d b d drates  f1…fm if first site is occupied by an empty; and extracted 

(= exchanged for an empty) with rates g1…gm if they occupy the 
last site Species m+2 n are left movers with similar input andlast site. Species m+2, … n are left movers, with similar input and 
exit rates (on opposite sides).

Introduce again vectors < W | and | V > and require: 
1. | V >  is right eigenvector of D1… Dm+1 , with all eigenvalues 1.
2 W | i l f i f D D l i h i l 12. < W | is left eigenvector of Dm+1… Dn , also with eigenvalues 1.

The relations (v - v )D D =c D - c D then impose severeThe relations  (vi - vj )Di Dj ci Dj - cj Di   then impose severe 
conditions on the allowed values of the ci , namely

ci = vi - v0

The stationarity condition fixes the entrance and exit rates:



The stationarity condition fixes the entrance and exit rates:

If we require that the stationary distribution is of the form
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In addition ze depends on the other zj. So the fugacities are fixed by the
entrance rates plus v0, up to a multiplicative constant that determines 
th l th < N >the average length < N >.



Grand partition function:
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Simple to express zi in terms of bj. The inverse problem requires 
solving polynomial equations of order nsolving polynomial equations of order n.
In terms of b’s the partition function simply satisfies
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The large-system limit again can be obtained either by having bi → 1
(i d i d h ) D (∂ / ∂ b ) 0 ( i l h )(i-dominated phase) or Det (∂ zi / ∂ bj ) = 0 (maximal current phase).
Phase transitions happen whenever as function of external parameters
one jumps from one condition to anotherone jumps from one condition to another.

By and large one finds the same phenomena as in the single species 
case. Some remarks can be made, however:



1.   Because there are many more parameters  there are more y p
options for phase transitions. The nature of these apparently 
does not change.
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one kind of left (right) mover the matrices can be reduced toone kind of left (right) mover, the matrices can be reduced to 
constants and solutions basically reduce to product measures. 
All densities become uniform,  with values                         .   /  i i j jz zρ = Σ
This can be cured by considering models with only right and 
left movers and no empties.

i i j jρ
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3. Except in shock states, where both a right and a left mover have 
a b ≈ 1 the occupations in the bulk are uncorrelated in the large-a bi ≈ 1 the occupations in the bulk are uncorrelated in the large-
system limit.



4. It is  nice having a model that can describe multi-speed and 
l ffi H i i i h l bili di itwo-lane traffic. However, it is a pity that solvability conditions

restrict the passing rates to single values.



Remark: There are several other solution methods which can be usedRemark: There are several other solution methods, which can be used 
e.g. to treat the Partially Asymmetric Simple Exclusion Process 
(PASEP). See e.g. Blythe and Evans.

O blOpen problems:

1. Systems with disorder. Both by having different hopping rates of1. Systems with disorder. Both by having different hopping rates of 
particles and by having hopping rates that vary between sites.
Especially the latter problem is hard.

2. PASEP with two types of empty sites with interchanged p’s and 
’s This models DNA electrophoresisq s. This models DNA electrophoresis.

3. Higher dimensional systems.3.   Higher dimensional systems.


