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Motivation

The four-fermi theory that we will discuss is an example of
a theory at a fixed point characterized by anisotropic
scaling symmetry, i.e. space and time directions scale
differently:

x → λx , t → λz t

− a Lifshitz-like fixed point, labeled by the exponent z

Example: Free scalar field theory at z = 2:
∫

dt ddx
(

1
2
(∂tφ)2 − 1

2
(∂2

xφ)2
)

Such theories violate Lorentz invariance
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Motivation

Field Theory − High Energy Physics

New examples of ultraviolet complete field theories;
Present 4-fermi model provides an UV completion of the
familiar Lorentz-invariant (low-energy effective) 4-fermi
field theories, like the Nambu−Jona-Lasinio model.

In this model, fermion mass is generated dynamically and
a composite scalar field arises as a collective excitation of
fermions around the broken symmetry vacuum. Such a
scenario raises the possibility of eliminating the Higgs field
and the associated hierarchy problem.

Of course, the main issue then is to ensure that Lorentz
invariance, consistent with observational constraints,
emerges at low energies.......
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Motivation

String Theory

2-dim string theory has a nonperturbative formulation in
terms of a z = 2 system of fermions!

In recent studies, examples of flows between fixed-points
with different values of z have been constructed in string
theory:

Kachru, Liu and Mulligan, arXiv:0808.1725 − example of
z = 2 theory at the boundary flowing to z = 1 theory (in the
dual geometry) in the IR bulk.

Azeyanagi, Li and Takayanagi, arXiv:0905.0688 − example
of a z = 1 theory at the UV boundary flowing to an
anisotropic scale invariant theory in the IR bulk. These are
constructions in Type IIB theory.
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Motivation

Condensed Matter Physics

Many strongly correlated fermion systems exhibit Lifshitz type
multi-critical points.

Examples:

space-like anisotropic fixed points appear in realistic
magnetic substances, e.g. MnP. These substances are
modeled by an axial next-to-nearest-neighbour Ising
model. A competition between the ferromagnetic
nearest-neighbour and antiferromagnetic
next-to-nearest-neighbour interactions ( along a single
lattice axis) produces a modulated phase, in addition to the
usual ferromagnetic and paramagnetic ones.
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Motivation

quantum dimer models, e.g. Rokhsar-Kivelson model,
which is believed to be in the universality class of the z = 2
scalar field theory near the so-called RK critical point. A
(euclidean) Lagrangian that reproduces properties of a
class of quantum dimer models is

L =
1
2

(∂τ h)2 +
1
2
ρ2(∇h)2 +

1
2
ρ4(∇2h)2 + λ cos(2πh)

These models may explain some features of many
systems of interest, like high Tc superconductivity, polymer
physics, ferro-electric liquid crystals, etc.
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OUTLINE

Lorentz violations − observational constraints

4-fermi model at z=3; relevant and marginal deformations

exact solution in the limit of a large number of species

relevant deformation and Lorentz-invariant low-energy
theory

anomalies

application to Standard Model
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Lorentz Violations

A general framework to discuss Lorentz violations (LV) and
explore their potentially observable ramifications exists

Colladay and Kostelecky, hep-ph/9809521
Coleman and Glashow, hep-ph/9812418

Use Standard Model as the underlying field theory
framework. Assume that in the preferred frame laws of
physics have exact translation and rotation invariance and
that CMB is isotropic in this frame − “the rest frame of the
universe”

Assuming exact gauge invariance and renormalizability,
there are 46 CPT-even independent LV parameters which
preserve anomaly cancellation
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Lorentz Violations

Most of the parameters can be subsumed in a changed
dispersion relation involving a separate “maximum
attainable velocity” (MAV) for each paticle:

E2
a = ~pa

2c2
a + m2

ac4
a

ca is the MAV for particle ‘a’

Having a different MAV for different particles can have
dramatic consequences − some effects abruptly turn on or
off. In such a scenario, high accuracy is obtained from high
energy rather than high precision.
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Lorentz Violations

Example 1: Suppose cγ > ce. In this case, e+e− pair
creation is kinematically allowed for an isolated photon if

Eγ > 2me/
√

δγe, δγe = c2
γ − c2

e

Such photons rapidly pair create (mean free path ∼ few
cms). Primary cosmic ray photons with energy upto 20 TeV
have been detected =⇒ δγe < 2 × 10−15

Example 2: Suppose cγ > cπ0 . Then, the decay π0 → 2γ
of pions with energy Eπ > mπ/

√

δγπ0 is kinematically
forbidden! Suppose δγπ0 ∼ 10−22. Then, primary cosmic
rays with pions of energy greater than 1019 eV are stable
and should be seen.
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Lorentz Violations

Evading the Greisen-Zatsepin-Kuzmin cut-off? Ultra high
energy cosmic ray protons lose energy by inelastic
scattering off the CMB photons:

p + γ(CMB) → ∆(1232) → p + π, Ep >
m2

∆ − m2
p

2ω

For 2.73◦ K photons, ω ≈ 2.35 × 10−4 eV =⇒ a proton
threshold energy of about 1020 eV.

If cπ > cp, the threshold condition gets altered. In fact,
photopion production is impossible unless δπp 6 ω2/m2

π.
Using recent HiRes and Auger data, this implies (Scully
and Stecker, arXiv:0811.2230) the limit δπp < 6 × 10−23
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Lorentz Violations

Going beyond renormalizable LV terms − higher
dimensional operators in an effective low energy theory
approach − main effect is to change dispersion relations
with terms that are higher than second power in
momentum. This gives an effective MAV that changes with
energy:

ca(E) = ca

(

1 + η1(
E
M

) + η2(
E
M

)2 + · · ·
)

H.E.S.S. collaboration has measured the scale M for
photons using the linear form. They report the bound
M > 7 × 1017 Gev
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The 4-Fermi Model

We will assume invariance under space-time translations
and spatial rotations. The basic dof are then space-time
fields which transform as rpns. of the rotation group. In
particular, fermions are 2-component SU(2) spinors.

The dof of our model are:

2N species of fermions ψai(t , ~x), a = 1,2; i = 1, ...,N,

which belong to the fundamental representation of SU(N)
and transform under the flavour group U(1)1 × U(1)2:

ψai → eiαaψai , a = 1,2
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The Model

An action which is consistent with the above symmetries is:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t + i~∂.~σ ∂2
)

ψ1i + ψ†
2i

(

i∂t − i~∂.~σ ∂2
)

ψ2i

+g2 ψ†
1iψ2iψ

†
2jψ1j

]

Note the sign flip of the spatial derivative term between the
two flavours a = 1 and a = 2; this ensures that the
Lagrangian is invariant under the parity operation
ψ1i(t , ~x) → ψ2i(t ,−~x).

We will study the dynamics of this action in the large N
limit, holding the ’tHooft coupling λ = g2N fixed.



Refs Motivation Outline Lorentz Violations The Model Large-N Soln. Deformations RG flow to IR HEP Summary

The Model

According to z = 3 scaling dimensions, [x ] = −1, [t] = −3.
It follows that [ψ] = 3/2. In this case, all the three terms
appearing in the above action are of dimension 6 and
hence marginal.

Recall that in the usual context of a 3 + 1 dimensional
Lorentz invariant theory, any interaction involving four
fermions represents an irrelevant operator and so must be
understood as a low energy effective interaction.

Here the marginality of the interaction leads one to hope
that the theory is perhaps uv-complete. This is indeed the
case since the four-fermi coupling turns out to be
asymptotically free.



Refs Motivation Outline Lorentz Violations The Model Large-N Soln. Deformations RG flow to IR HEP Summary

The Model

A more general z = 3 action with all relevant and marginal
couplings, which is consistent with all the symmetries, is:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t − i~∂.~σ
(

(−i∂)2 + g1

)

+ g2(−i∂)2
)

ψ1i

+ψ†
2i

(

i∂t + i~∂.~σ
(

(−i∂)2 + g1

)

+ g2(−i∂)2
)

ψ2i

+g3

(

ψ†
1iψ1i + ψ†

2iψ2i

)

+ g2
4

(

(

ψ†
1iψ1i

)2
+

(

ψ†
2iψ2i

)2
)

+g2
5

(

ψ†
1iψ1iψ

†
2jψ2j

)

+ g2
6

(

ψ†
1iψ2iψ

†
2jψ1j

)]

,

The earlier action corresponds to putting all the couplings
g1, ...,g5 = 0 and setting g6 = g.
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Large- N Solution

One can eliminate the 4-fermi interaction using a standard
Gaussian trick. This introduces a complex scalar field and
gives the following action, which is equivalent to the 4-fermi
action:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t + i~∂.~σ∂2
)

ψ1i + ψ†
2i

(

i∂t − i~∂.~σ∂2
)

ψ2i

+ φ∗ψ†
1iψ2i + φψ†

2iψ1i −
1
g2 |φ|

2
]

The scalar field φ is an SU(N)-singlet and is charged
under the axial U(1) parametrized by exp[i(α1 − α2)].
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Large- N Solution

Action is now quadratic in fermions =⇒ one can integrate
them out =⇒ Effective action for the boson:

Seff[φ] = −iNTr ln D̃ − 1
g2

∫

|φ|2

Vacuum solutions minimize the effective potential
(assuming φ to be real and space-time independent in the
vacuum)

Veff(φ) =
1
g2

∫

|φ|2 − 2N
∫

dk0d3~k
(2π)4 ln(k2

0 + |~k |6 + |φ|2)
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Large- N Solution

With a cut-off Λ in place, we get

Veff(φ) = N|φ|2
(

1
λ
− 1

12π2 ln(
Λ6

|φ|2 ) − 1
12π2

)

+ constant
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At the minimum, |φ| = m3 = Λ3 exp[−6π2/λ]

The treatment of the effective potential and the RG flow
presented above is exact in the strict N = ∞ limit.



Refs Motivation Outline Lorentz Violations The Model Large-N Soln. Deformations RG flow to IR HEP Summary

Large- N Solution

Veff(φ) should be cut-off independent. Define a (cut-off
independent) running coupling:

1
λ(µ)

=
1

λ(Λ)
− 1

2π2 ln(
Λ

µ
),

with beta-function

β(λ(µ)) = µ
dλ(µ)

dµ
= −λ(µ)2

2π2

Here µ is an arbitrary scale. Then,

Veff(φ) = N|φ|2
(

1
λ(µ)

− 1
12π2 ln(

µ6

|φ|2 ) − 1
12π2

)
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Deformations

Action with all possible terms consistent with symmetries:

S =

∫

d4x
[

ψ†
1i

(

i∂t − i~∂.~σ (−i∂)2 − g1i~∂.~σ + g2(−i∂)2
)

ψ1i

+ψ†
2i

(

i∂t + i~∂.~σ (−i∂)2 − g1i~∂.~σ + g2(−i∂)2
)

ψ2i

+g3

(

ψ†
1iψ1i + ψ†

2iψ2i

)

+ g2
4

(

(

ψ†
1iψ1i

)2
+

(

ψ†
2iψ2i

)2
)

+g2
5

(

ψ†
1iψ1iψ

†
2jψ2j

)

+ g2
6

(

ψ†
1iψ2iψ

†
2jψ1j

)]

,

Marginal couplings =⇒ g4, g5, g6

Relevant couplings =⇒ g1, g2, g3
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Deformations

In the treatment so far we have set g1 = · · · = g5 = 0,
g6 = g, but the full system can also be analysed exactly in
the large-N limit.

g1 = 0 − new fermion condensates appear,
< ψ†

aiψai > 6= 0, but all the new marginal couplings remain
exactly marginal =⇒ vacuum solution remains unchanged.

g1 6= 0 − this relevant deformation is

g1

(

ψ†
1i(−i~∂.~σ)ψ1i + ψ†

2i(i~∂.~σ)ψ2i

)

The operator multiplying g1 is the usual spatial derivative
term of the Dirac action. At z = 3, g1 is a relevant coupling
with dimension 2. This deformation causes flow to the
Lorentz invariant z = 1 fixed point.
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Restoration of Lorentz invariance

A quick way of seeing this is the following. Assume
g1 = M2 > 0. (g1 can be negative − different phases for
different signs in other examples.) Now look at the fermion
dispersion relation, which is exact in large N:

k2
0 − k2(k2 + M2)2 − |φ|2 = 0

For k << M, this is approximately k2
0 − k2M4 − |φ|2 = 0

Now, rescale energy k0 = k ′
0M2 (equivalently rescale time,

k0/M2 = i
M2

∂
∂t = i ∂

∂t ′ = k ′
0). The new dispersion relation is

the standard Lorentz-invariant mass-shell condition:

(k ′
0)

2 = (k2 + m∗
2), m∗ = |φ|/M2
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RG flow to low energies

An appropriate framework for systematically deriving the
low energy theory is Wilson’s RG.

In our case, the natural cut-off scale for the low energy
theory is the scale M that determines the lorentz violations.
Thus, we will integrate out the modes of ψia and φ fields
with energies above M.

In the large N limit this program can be explicitly carried
out exactly
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Low energy theory

Step 1: Parametrize φ as

φ(t , ~x) =

(

φ0 +
σ(t , ~x)√

N

)

eiπ(t,~x)/
√

N

The Nambu-Goldstone mode is the phase π(t , ~x). It can be
absorbed into fermions by an axial U(1) rotation and
disappers from the Yukawa coupling. But then it reappears
through the fermion kinetic terms.

The action is

S=

∫

d4x
[

Ψ̄i

(

iγ0∂t + i(~γ.~∂)((i~∂)2 + M2) + φ0 +
σ(t , ~x)√

N

+γ0γ5∂tπ(t , ~x)

2
√

N
+ · · ·

)

Ψi −
1
g2

(

φ0 +
σ(t , ~x)√

N

)2
]
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Low energy theory

Step 2: The leading contributions in 1/N arise from

1-point function of σ:

p

k

k

2-point functions of σ and π:

k−p

pp

k
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Low energy theory

Step 3 In the effective low energy action (the action with M
as the cut-off) make the following rescalings

t → t/M2, σ(t , ~x) → M2σ(t , ~x).

Then, the effective action takes the schematic form

S =

∫

d4x
[

Ψ̄i (iγ
µ∂µ + m∗) Ψi + Yukawa terms

+c∂µσ(t , ~x)∂µσ(t , ~x) − V (σ(t , ~x)) + pion kinetic term

+Lorentz violating terms∼ (E2/M2,m2
∗/M

2)
]
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Low energy theory

To leading order in 1/N, the scale M does not get
renormalized. Renormalization of M involves small 1/N
corrections. A related point is that the renormalizations are
differnt for ψ and σ fields.

There are Lorentz violating terms present in the low-energy
theory, given by dimension ≥ 4 operators. These lead to
different and scale-dependent MAVs for ψ and σ fields.
Thus, the structure of Lorentz violations that emerges is
exactly like that described in the general scheme earlier.

The Lorentz violations can be computed precisely and
subjected to observational constraints (Iengo, Russo and
Serone, arXiv:0906.3477)
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Low energy theory

Observational constraints require the Lorentz-invariant mass
scale m∗ to be much smaller than M. This implies
|φ0| = m3 << M3. This results in the hierarchy of scales

m
*

|k|
0

z=1 (Lorentz) z=3 (Lifshitz)

Mm
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Application to particle physics

Anomalies

Minimal coupling of fermions to a U(1) gauge field

S =

∫

d3x dt
(

Ψ̄i iD/Ψi + · · ·
)

D/ = γµDµ, Dt = Dt , Di = −Di(~D)2, Dµ = ∂µ + iAµ

As in the Lorentz-invariant case, this theory has global
axial U(1) symmetry

δΨi = iα(x)γ5Ψi , δΨ̄i = Ψ̄i iα(x)γ5

Is the axial current conserved? Note that the current has a
complicated expression in terms of fields.
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Application to particle physics

Use Fujikawa’s argument and heat kernel method of
regularization to compute the anomaly:

∂µJµ5 = 2Tr
(

γ5 exp[iD/ 2/Λ6]
)

The final answer is exactly as in the Lorentz-invariant case:

∂µJµ5 = − N
16π2 ǫ

µνλσFµνFλσ
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Application to particle physics

The Model

We will now consider a simple extension of the system to
describe Higgs mechanism in which the Higgs field is a
composite object.

The degrees of freedom of the extended model are:

ψiα, χi , α = 1,2

ψiα transforms as the fundamental repn. of SU(2) and χi

as a singlet. The index α is gauged.

The 4-fermi interaction

(ψ†
iαχi)(χ

†
i ψiα)

leads to breaking of the SU(2) symmetry.
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Application to particle physics

The bilinear order parameter χ†
i ψiα ≡ φα acts as (a

composite) Higgs field because its SU(2) phase is eaten
up by the gauge fields to which the ψiα couple.

The key point is that gauge field masses arise from their
gauge-invariant interactions with the ψ’s because of the
exchange of the would-be Nambu-Goldstone bosons, the
“pions”, π(t , x), a well-known mechanism originally
discovered in the context of Meissner effect.
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Application to particle physics

ψ x xψ

ψ

ψ ψ

ψ

π

L  

L  L  

R L  R
w w

In addition, we have the usual quarks and leptons,
appropriately coupled to the above fermions:

(ψ†
iαχi)(q

†
2q1α) + h.c., ǫαβ(ψ†

iαχi)(q
†
1βq′

2) + h.c.

which is equivalent, after symmetry breaking, to the
standard Yukawa couplings, (φ∗αq†

2q1α + h.c.) and
(ǫαβφ∗αq†

1βq′
2 + h.c.) .
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Application to particle physics

After mass generation and Higgs mechanism, at low
energies, the ψiα and χi combine to give massive fermions.
It may be possible to arrange their masses to be sufficiently
high, consistent with phenomenological constraints.

Actually two χi ’s are needed to give mass to both
components of ψiα. Assuming that the pair χia, a = 1, 2
transforms as a doublet of another SU(2), one can arrange
the four-fermi interactions to be invariant under this
“custodial” SU(2).

A consistent application of these ideas to the entire
Sandard Model will require extension of this work to the
pure gauge sector at z = 3 and its RG flow down to low
energies.



Refs Motivation Outline Lorentz Violations The Model Large-N Soln. Deformations RG flow to IR HEP Summary

Summary

Fermions at z = 3 in 4-dims have an asymptotically free
four-fermi coupling. Hence, this theory provides an UV
completion of relativistic effective four-fermi theories at low
energies, without introducing new degrees of freedom.

Our example has dynamical mass generation and a
composite Higgs field. This could eliminates the need for a
Higgs potential, thus avoiding the hierarchy problem.

Phenomenologically, the key issue is that of acceptable
Lorentz violations at low energies. This seems to require
fine tuning.

Applications to condensed matter physics may be more
feasible at present. Combined with AdS/CFT, this could
provide a powerful tool for solving problems in this area.
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