

Rainer Fries

Texas A&M University & RIKEN BNL

Seminar, TIFR, Mumbai December 15, 2009

Overview

- Introduction: heavy ion collisions and hard probes
- Hadron chemistry and flavor conversions

[With W. Liu, Phys.Rev.C77:054902,2008 Phys.Rev.C78:037902,2008]

Tomography + development of a new test environment

[In progress, with R. Rodriguez]

Summary

Introduction

Matter in Extreme Conditions

Rainer Fries

Quark Gluon Plasma

 Asymptotic freedom & lattice QCD predict deconfinement of quarks and gluons above a critical temperature T_c + restoration of chiral symmetry.

Crossover at μ = 0.

Rainer Fries

RIKEN BNI

[Cheng et al, PRD 77 (08) 014511]

Static quark potential (Karsch et al.)

Energy density $\varepsilon(T)$, pressure p(T)

5

How to Produce 10¹² K Matter?

Sketch of a HE Nuclear Collision

- Where is the QGP?
- Hierarchy in Momentum Space:
- Soft particles ($P_T < 1-2$ GeV): Bulk fireball
 - \Box Equilibration, thermalization \rightarrow Quark Gluon Plasma
 - □ Non-perturbative dynamics
- Hard particles $(P_T > 1 2GeV)$: Rare probes
 - □ Hard probes of the bulk fireball (QGP)
 - □ Creation: perturbative, FSI: maybe perturbative.

Fireball

Sketch of a HE Nuclear Collision

- Where is the QGP?
- Hierarchy in Momentum Space:
- Soft particles ($P_T < 1-2$ GeV): Bulk fireball
 - \Box Equilibration, thermalization \rightarrow Quark Gluon Plasma
 - □ Non-perturbative dynamics
- Hard particles $(P_T > 1 2GeV)$: Rare probes
 - □ Hard probes of the bulk fireball (QGP)
 - □ Creation: perturbative, FSI: maybe perturbative.

Bulk Fireball: Temperature and Pressure

STAR

PHENIX PHOBOS BRAHMS

√s_{NN}=130 GeV

Model re-fit with all data

T = 176 MeV, μ_b = 41 MeV

 $\overline{p}/p \quad \overline{A}/\Delta \quad \overline{\Xi}/\Xi \quad \overline{\Omega}/\Omega \quad \pi/\pi^* K'/K^* K/\pi \quad \overline{p}/\pi \quad K''/h^* \quad \phi/h^* \quad A/h^* \equiv fh^* \quad \Omega/\pi^*$

- Hadron ratios: thermometer
 - Chemical freeze-out around 175 MeV
 - \Box Low net baryon number

 $n_{i}(T,\mu) = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}-\mu_{i}B_{i}-\mu_{s}S_{i})/T} \pm 1} \quad \mathbb{1}$

• Low- P_T spectra: explosion-like blastwave

- Well described by hydrodynamic evolution.
- Expansion velocity $\beta_L \sim 1$, $\beta_T \sim 0.5 0.7$

 $\overline{\mathbf{p}}/\mathbf{p} = \mathbf{K}^{T}\mathbf{K}^{T} \mathbf{K}^{T}\mathbf{k}^{T} \overline{\mathbf{p}}/\pi^{T} \Omega/\hbar^{T}$

s_{NN}=200 GeV

T = 177 MeV, μ, = 29 MeV

Model prediction for

×50

× 10

Bulk Fireball: v₂ Phenomenon

- Finite impact parameter *b* > 0:
 - □ Spatial anisotropy in the initial state
 - □ Momentum anisotropy in the final state

Bulk Fireball: V₂ Phenomenon

- Finite impact parameter *b* > 0:
 - Spatial anisotropy in the initial state
 - Momentum anisotropy in the final state
- Fourier analysis

$$\frac{dN}{P_T dP_T d\varphi} = \frac{dN}{2\pi P_T dP_T} \left[1 + 2\sum_n v_n (P_T) \cos(n\varphi) \right]$$

- \Box v₂ = second harmonic ("elliptic flow")
- Described very well by hydrodynamics

Hard Probes: Jet Quenching

Ι

- Simplest possible probe: measure opacity of the medium
 - Drag force on QCD jets or hadrons = jet quenching
 - □ Most models: energy loss of the leading parton.
 - □ Related to broadening in transverse direction.
- Energy loss determined by the momentum transfer in collisions

 \Box Sensitive to transport coefficient $\hat{q} = \frac{\mu^2}{2}$

= momentum transfer squared per mean free path/collision.

• Several calculations on the market using different sets of assumptions, e.g.

 \mathcal{F}

Energy Loss

Example: higher twist

□ Compute modification to evolution equations of fragmentation functions in DIS on large nuclei.

$$\widetilde{D}_{q/h}(z_h,\mu^2) = D_{q/h}(z_h,\mu^2) + \int_0^{\mu^2} \frac{dl_T^2}{l_T^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z}$$
$$\times \left[\Delta \gamma_{q \to qg}(z,x,l_T^2) D_{q/h}\left(\frac{z_h}{z}\right) + \Delta \gamma_{q \to gq}(z,x,l_T^2) D_{g/h}\left(\frac{z_h}{z}\right) \right]$$

$$\Delta \gamma_{q \to qg}(z, x, l_T^2) = \frac{2\pi\alpha_s C_A}{N_c l_T^2 f_{q/A}(x)} \left[\frac{1+z^2}{(1-z)_+} T_{qg}(x, x_L) + \delta(1-z) \Delta T_{qg}(x, l_T^2) \right]$$

 $\frac{T_{qg}}{f_q}$ ~ number of gluon scattering partners ~ $\hat{q}L$

13

• Destructive interference between poles \rightarrow LPM effect

Expected shift in energy
$$\langle \Delta z \rangle = \int_{0}^{Q^{2}} \frac{dl_{T}^{2}}{l_{T}^{2}} \int_{0}^{1} dz \frac{\alpha_{s}}{2\pi} z \Delta \gamma \sim \int \frac{dx_{L}}{x_{L}^{2}} R_{A} \sim \frac{R_{A}}{x_{A}} \sim A^{2/3}$$

Extrapolate to nuclear collisions.

RIKEN BNI

Rainer Fries

[X. Guo, X.N. Wang, PRL 85,3591 (2000); NPA 696, 788 (2001)]

Jet Quenching: Results

RHIC: dramatic suppression effect for single hadrons

Rainer Fries

Jets: Correlations

- Away-side jets vanish
 - □ Trigger on a high P_T hadron and look for associated hadron as a function of relative azimuthal angle and rapidity

Towards Precision Measurements (?)

Details: Initial State Effects

- First hurdle: initial state nuclear effects
- Shadowing, anti-shadowing, EMC effect on nuclear parton distributions

□ Large uncertainties, in particular for gluons and at small x.

 p_{τ} (GeV/c)

Chemistry of Hadrons at High P_T

Hadro-Chemistry at Low and Intermediate \mathbf{P}_{T}

Remember: hadron ratios given by statistical model.

 Intermediate P_T: baryon/meson ratios and scaling laws led to quark recombination models.

Rainer Fries

Hard Probes Revisited

- How else can we use hard probes? Measure the "flavor"!
- Obviously: flavor of a parton can change when interacting with the medium.
- Here: very general definition of flavor:
 - 🗆 Gluons g
 - Light quarks q = u,d
 - Strange quarks s
 - Heavy quarks Q = c,b
 - \square Real photons, virtual photons (dileptons) γ
 - Measure flavor conversions \rightarrow jet chemistry

Jet Chemistry

- Flavor of a jet here = identity of the leading parton.
 - □ Flavor of a jet is NOT a conserved quantity in a medium.
 - Only well-defined locally!
 - The picture here:
 - Parton propagation through the medium with elastic or inelastic collisions
 - After any collision: final state parton with highest momentum is the new leading parton ("the jet")

- □ Hadronization washes out signals; need robust flavor signals on the parton side.
- Other mechanisms might also change hadron chemistry in jets:
 - E.g. changed multiplicities
 - [Sapeta, Wiedemann]

Applications: Photons

 10^{-4}

 10^{-5}

10⁻⁶

10⁻⁷

 10^{-8}

10-9

 10^{-10}

 $d^2 p_T dy [GeV^2]$

Photon and dilepton conversions:

> [RJF, Müller, Srivastava] [Srivastava, Gale, RJF] [Zakharov], [Zhang, Vitev]

- First estimate:
 - Competitive photon sources for $P_{T} \sim 4-6$ GeV at RHIC energies, even more important at LHC.
- Experimental situation: not resolved From a recent calculation:

[Turbide, Gale, Frodermann, Heinz]

Applications: Gluons and Protons

Gluon \leftrightarrow (light) quark conversions

[Ko, Liu, Zhang; Schäfer, Zhang, Wang; ...]

- Available in some jet quenching schemes (HT, AMY, ...)
- Relative quenching of gluons and factor 9/4
 - $\hfill\square$ Not explicitly observed in data
 - □ Shouldn't be there in a system path!

- Ko et al: elastic $g \leftrightarrow q$ conversions
 - □ Lose 30% of quark jets at RHIC
 - □ enhance p/π ratio; need elastic cross sections × 4 to get p+p values
 - Dependence on fragmentation functions!

Why Could It Be Exciting?

- For chemistry, momentum transfer is not important (unless there are threshold effects)
- Rather: flavor conversions are sensitive to the mean free paths λ of partons in the medium.
- Complementary information, could help settle interesting questions
 - □ Many interactions with small momentum transfer?
 - □ Few scatterings with large momentum transfer?
- But: measurements will be challenging
 - □ Need particle identification beyond 6-8 GeV/c at RHIC, outside of the recombination region.

Two Examples for Rare Probes

• Example 1: excess production of particles which are rare in the medium and rare in the probe sample

- □ Example: photons
- \Box Need enough yield to outshine other sources of N^{rare}.
- Example 2: chemical equilibration of a rare probe particle

g
e.g.
$$g + s \rightarrow s + g$$

 $w_{jet} = \left(\frac{s}{u+d}\right)_{jet} \approx 5\%$ @ 10 GeV for RHIC
 $w_{ce} = \left(\frac{s}{u+d}\right)_{medium} \approx 50\%$

- Example: strangeness at RHIC
- □ Coupling of jets (not equilibrated) to the equilibrated medium should drive jets towards chemical equilibrium.

Conversion Rates

Coupled rate equations for numbers of jet particles (flavors a, b, c, ...) in a fireball simulation.

$$\frac{dN^{a}}{dt} = -\sum_{b} \Gamma^{a \to b}(p_{T}, T)N^{a} + \sum_{c} \Gamma^{c \to a}(p_{T}, T)N^{c}$$

$$\Gamma = \frac{1}{2E_1} \int \frac{\mathbf{g}_2 d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} f(p_2) [1 \pm f(p_4)] \\ \times \overline{|M_{12 \to 34}|^2} (2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_3 - p_4) = \left\langle \overline{|M_{12 \to 34}|^2} \right\rangle$$

• Here: reaction rates from elastic $2 \rightarrow 2$ collisions

$$q + \overline{q} \leftrightarrow g + g$$
$$q + g \leftrightarrow g + q$$

Quark / gluon conversions

$$q + \overline{q} \to \gamma + g$$
$$q + g \to \gamma + q$$

Photons and dileptons;

inverse reaction negligible

$$g + Q \leftrightarrow Q + g$$
$$g + g \leftrightarrow Q + \overline{Q}$$

Heavy quarks production?

- Need to compare to $2 \rightarrow 3$ processes.
- Non-perturbative mechanisms?

Results: Protons

- Use the model by Ko, Liu and Zhang:
 - $\hfill\square$ Rate equations plus energy loss.
 - □ Elastic channels; cross sections with *K*-factor
 - □ Longitudinally and transversely expanding fireball
 - RHIC: T_i = 350 MeV @ 0.6 fm/c
 - LHC: T_i = 700 MeV @ 0.2 fm/c
- Use double ratios to cut uncertainties from fragmentation functions.

Results: Strangeness

- Kaons: see expected enhancement at RHIC
 - □ Measure above the recombination region!

Numerical Results: Heavy Quarks

- Have to take into account threshold effect
- At RHIC: additional heavy quark production marginal
- LHC: not at all like strangeness at RHIC; additional yield small
 - □ Reason: charm not chemically equilibrated at LHC
 - □ Results in small chemical gradient between jet and medium charm
 - $\hfill\square$ Also: threshold effect

Elliptic Flow v_2

- Azimuthal anisotropy for finite impact parameter.
- Three different mechanisms:

		Initial anisotropy	Final anisotropy	Elliptic flow v ₂	
	Bulk	pressure gradient	collective flow	<i>v</i> ₂ > 0	
	saturated hard probe	path length	quenching	<i>v</i> ₂ > 0	
E	rare hard P _T probe	path length	additional production	<i>v</i> ₂ < 0	
2)			Turbide Gale &	R IF PRI 96 (2006)]	

Photon Elliptic Flow

- Have to add other photon sources with vanishing or positive v₂.
 [Turbide, Gale, RJF; Chatterjee, Frodermann, Heinz, Srivastava; ...]
- Status:
 - □ Large negative v_2 excluded by experiment.
 - □ Large uncertainties from fireball model?

[Turbide, Gale, RJF]

Rainer Fries

TIFR 2009

Strangeness Elliptic Flow

- Strangeness as non-equilibrated probe at RHIC: additional strange quarks have negative v_2 .
- Expect suppression of kaon *v*₂ outside of the recombination region.

New Results from STAR

Blast from the past: remember strangeness enhancement from the 1980s?

New Simulation of Hard Probes

Plans for the Near Future

- We develop a standardized test bed to simulate *N* jets/hard particles in a fireball.
 - □ Part of a NSF project with R. Rodriguez, R.J. Fries, E. Ramirez
- Input:
 - □ initial phase space distributions
 - □ background (aka fireball)
 - □ specifics of dynamics (energy loss, fragmentation)
- What it should do:
 - □ Evolution of particle distributions;
 - \Box (modified) fragmentation and hadronization
 - □ analysis of results in terms of experimentally relevant observables

Propagating Particles in a Medium (PPM)

- Some results from the testing process
 - Using vacuum fragmentation and GLV average energy loss

$$\Delta E = \frac{C_R \alpha_s}{4} \frac{\mu^2}{\lambda} L^2 \log E$$

Neutral pion R_{AA} vs PHENIX data

$$\Box$$
 Estimate $\hat{q} = \frac{\mu^2}{\lambda} \approx 2.5 \,\mathrm{GeV^2/fm}$

Triggered away side fragmentation function for charged hadrons.

Propagating Particles in a Medium (PPM)

- Map functions
 - Example: emissivity for 8-10 GeV up-quarks going to the right, b=7.4 fm collision of Au ions.
- Goals:
 - Build a flexible test bed for hard and electromagnetic probes.
 - □ Comprehensive, quantitative studies of observables.
 - \Box photon/Z jet/hadron correlations at NLO accuracy.

- Understanding photon/Z jet/hadron correlations ↔ understanding electromagnetic sources and conversion processes.
- Eventually code can be made public and/or be made part of a larger effort (Techqm, JET)

Jet-Photon Correlations

- Additional photons are background for photon tagged jets.
- Turn this into an advantage: measure photon spectrum opposite to a jet of known energy to disentangle different sources.
- Photons opposite 10 and 20 GeV jets:

First Results: Resolving Spatial Structures

- What can hard probes tell us about the spatial structure of the fireball?
 - □ Or: can we do true tomography?
 - □ Seemingly hopeless: we sum over many events and only see an average fireball.
- What is the effect of an inhomogeneous fireball on hard probes?
 - □ Realistic initial conditions with fluctuations have been studied for hydrodynamics.
 - \Box Applicability of hydro and elliptic flow seem to set some boundaries for times > 1 fm/c.
 - □ Hard probes from the surface layer and in peripheral collisions might be affected by fluctuations in the background.

- Use events with fluctuating transverse profiles of the energy density.
 - □ Have tried simple transverse profiles with Gaussian fluctuations.
 - □ Here: initial state Glauber estimates of the number of participants (i.e. no energy flow build-up taken into account that would wash out inhomogeneities);
 - \Box Assume $\hat{q} \propto \varepsilon^{3/4} \propto n_{\text{part}}^{3/4}$.
 - □ Will run some existing initial state simulations (e.g. GLISSANDO)
 - $\hfill\square$ For every observable take average over events.
- Check single pion spectra:
 - □ As expected: fluctuations lead to slightly less suppression.
 - □ This can be absorbed in the definition of energy loss parameter,
 - \Box Fit data well with $\hat{q} = 3.1 \,\text{GeV/fm}^2$
 - □ Nothing won, effect no longer observable.
 - But the extracted strength of energy loss changes by 25%. Add to the list of uncertainties

- Centrality dependence and P_T dependence:
- With inhomogeneities dependence stays the same after rescaling of \hat{q} .
 Results fit PHENIX pion data.
- No signature.

• 10-20% reduction in v_2 even after redefinition of \hat{q} .

TIFR 2009

1.00E-008 dNDipion spectrum: $P_{T1} = 10 \, {\rm GeV}$ —pi0-pi0 pt1=10 $P_{T_1}dP_{T_1}P_{T_2}dP_{T_1}$ b3.2 fluc 0 Visible deviation with pi0-pi0 b3.2 fluc 2 1.00E-009 inhomogeneities 1.00E-010 1.00E-011 1.00E-012 0 2 4 6 8 10 12 14 16 18 20 P_{T2} 0.5 0.4 $P_{T1} = 10 \, \text{GeV}$ 0.3 Relative deviation on linear scale: 0.2 0.1 0 10-20% reduction in correlation -0.1 (fluc-mean)/fluc b3.2 pt1=10 GeV -0.2 strength after redefinition of \hat{q} . (fluc-mean)/fluc b7.4 pt1=10 GeV -0.3 -0.4 -0.5 12 16 18 20 0 2 6 8 10 14 P_{T2}

Summary & Outlook

- Hadro-chemistry for hard probes
 - □ Flavor changing processes are present in jet-medium interactions.
 - □ Jet chemistry contains information complementary to jet quenching measurements.
 - \Box Predict strangeness enhancement at high P_T.
- Work progressing on a new framework for studies of hard and electromagnetic probes.
- Study of partons in inhomogeneous backgrounds:
 - □ Found 25% change in the extracted quenching strength to explain the data.
 - □ Even after adjusting the quenching strength, up to 20% secondary effect visible in elliptic flow and di-hadron correlations.

Backup

Pressure

- Finite impact parameter *b* > 0:
 - □ Spatial anisotropy in the initial state
 - □ Momentum anisotropy in the final state
- Space \leftrightarrow momentum space

Two Great Discoveries

*v*₂ scaling for mesons and baryons

Instantaneous Coalescence

 $q\overline{q} \to M$

- Simple realization of a recombination model
 - □ Recombine valence quarks of hadrons
 - \Box Dressed quarks, no gluons
- Instantaneous projection of quark states on hadron states:

[Fries, Muller, Nonaka, Bass] [Greco, Ko, Levai] [Hwa, Yang]

■ Recombination itself does not make absolute predictions. If successful, it predicts the *difference* between hadron species → chemistry

Particle composition in "jet" and ridge

Hard Probes

- Hard processes ⇒ QCD jets
- Our hope: this is a well-calibrated tool.
 - □ perturbative calculations available
 - p+p baseline experiment
- Description of initial hard process based on QCD factorization.

$$d\sigma^{A+B\to C+X} = \sum_{a,b,c} f_{a/A} \otimes d\sigma^{a+b\to c+x} \otimes f_{b/B} \otimes D_{C/c}$$
PDF PDF Parton cross section PDF PDF FF

p+p indeed well under control:

Higher Twist Fragmentation Functions

- Rescattering of the final state partons off the nucleus.
- Twist-4 = double scattering or interference between single and triple scattering
- Hadronic tensor *W* in lowest order in α_s

$$\frac{dW^{\mu\nu}}{dz_h} = \sum_q \int dx f_{q/A}(x,\mu^2) H^{\mu\nu}(x,p,q) \widetilde{D}_{q/h}(z_h,\mu^2)$$

Modified fragmentation function

$$\widetilde{D}_{q/h}(z_h,\mu^2) = D_{q/h}(z_h,\mu^2) + \int_0^{\mu^2} \frac{dl_T^2}{l_T^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z}$$
$$\times \left[\Delta \gamma_{q \to qg}(z,x,l_T^2) D_{q/h}\left(\frac{z_h}{z}\right) + \Delta \gamma_{q \to gq}(z,x,l_T^2) D_{g/h}\left(\frac{z_h}{z}\right) \right]$$

Numerical Results: Photons

Numerical Results: Strangeness

TIFR 2009

Kaons (RHIC):

□ No enhancement

Rainer Fries

- □ Too much initial strangeness!
- □ Maybe it works with charm?

Numerical Results: Heavy Quarks

- Have to take into account threshold effect
- At RHIC: additional heavy quark production marginal

Propagating Particles in a Medium (PPM)

- Developing flexible code to simulate N jets in a fireball.
 - Part of a NSF project; authors: R. Rodriguez, R.J. Fries, E. Ramirez
- Input:
 - □ initial phase space distribution
 - □ background (aka fireball)
 - □ specifics of dynamics (energy loss model, fragmentation)
- What it should do:
 - Evolution of particle distributions; (modified) fragmentation and hadronization; analysis of results in terms of experimentally relevant observables
- E.g. leading particle energy loss + fragmentation:

