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Experiment I: Superconductivity in ultrathin nanowires

• ultrathin MoGe wires (width ∼ 10 nm)

• produced by molecular templating using
a single carbon nanotube
[A. Bezryadin et al., Nature 404, 971 (2000)]

superconductor-metal QPT as
function of wire thickness

• thicker wires are superconducting at
low temperatures

• thinner wires remain metallic

superconductor-metal QPT as
function of wire thickness



Pairbreaking mechanism

• pair breaking by surface magnetic impurities

• random impurity positions
⇒ quenched disorder

• gapless excitations in metal phase
⇒ Ohmic dissipation

weak field enhances superconductivity
magnetic field aligns the impurities
and reduces magnetic scattering



Experiment II: Itinerant quantum magnets

• quantum phase transitions between paramagnetic metal and ferromagnetic or
antiferromagnetic metal

• transition often controlled by chemical composition ⇒ disorder appears naturally

• magnetic modes damped due to coupling to fermions ⇒ Ohmic dissipation

• typical example: ferromagnetic transition in CePd1−xRhx

(Sereni et al., Phys. Rev. B 75 (2007) 024432 + Westerkamp, private communication)



What is the fate of a quantum phase transition under the
combined influence of disorder and dissipation?
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Dissipative O(N) order parameter field theory

N -component (N > 1) order parameter field ϕ(x, τ) in d dimensions
derived by standard methods (Hubbard-Stratonovich transformation etc.)

S = T
∑
q,ωn

(
r + ξ2

0q
2 + γ |ωn|

) |ϕ(q, ωn)|2 +
u

2N

∫
ddxdτ ϕ4(x, τ)

Disorder:





distance r from criticality
bare correlation length ξ0

Ohmic dissipation constant γ



 random functions of position

• Superconductor-metal quantum phase transition in nanowires (d = 1, N = 2)
ϕ(x, τ) represents local Cooper pair operator (Sachdev, Werner, Troyer 2004)

• Hertz’ theory of itinerant quantum Heisenberg antiferromagnets (d = 3, N = 3)
ϕ(x, τ) represents staggered magnetization (Hertz 1976)



Strong-disorder renormalization group

• introduced by Ma, Dasgupta, Hu (1979), further developed by Fisher (1992, 1995)
• asymptotically exact if disorder distribution becomes broad under RG

Basic idea: Successively integrate out the local high-energy modes and
renormalize the remaining degrees of freedom.

discretized order-parameter field theory for “rotor” variables φi(τ)

S = T
∑

i,ωn

(εi + γi|ωn|) |φi(ωn)|2 − T
∑

i,ωn

Ji φi(−ωn) φi+1(ωn)

the competing local energies are:

• interactions (bonds) Ji favoring the ordered phase
• local “gaps” εi favoring the disordered phase

⇒ in each RG step, integrate out largest among all Ji and εi



Recursion relations in one dimension

J=J2 J3/ε3

ε5ε4ε3ε2ε1

J1

J1 J4

J3 J4J2

~

ε5ε4

ε=ε2 ε3 /J2

ε2ε1

J1

J1 J3

J4J2

~

J3

ε3

if largest energy is a gap, e.g., ε3 À J2, J3:

• site 3 is removed from the system

• coupling to neighbors is treated in 2nd order
perturbation theory

new renormalized bond J̃ = J2J3/ε3

if largest energy is a bond, e.g., J2 À ε2, ε3:

• rotors of sites 2 and 3 are parallel

• can be replaced by single rotor with moment
µ̃ = µ2 + µ3

renormalized gap ε̃ = ε2ε3/J2



Renormalization-group flow equations

• strong disorder RG step is iterated, gradually reducing maximum energy Ω

• competition between cluster aggregation and decimation

• leads to larger and larger clusters connected by weaker and weaker bonds

⇒ flow equations for the full probability distributions P (J) and R(ε)

−∂P

∂Ω
= [P (Ω)−R(Ω)] P + R(Ω)

∫
dJ1dJ2 P (J1)P (J2) δ

(
J − J1J2

Ω

)

−∂R

∂Ω
= [R(Ω)− P (Ω)] R + P (Ω)

∫
dε1dε2 R(ε1)R(ε2) δ

(
ε− ε1ε2

Ω

)

Flow equations are identical to those of the random transverse-field Ising chain

Note symmetry between J and ε!



Fixed points

If bare distributions do not overlap:

〈ln ε〉 > 〈lnJ〉: no clusters formed – disordered phase

〈ln ε〉 < 〈lnJ〉: all sites connected – ordered phase

If bare distributions do overlap:

〈ln ε〉 > 〈lnJ〉: rare clusters – disordered Griffiths phase

〈ln ε〉 < 〈lnJ〉: rare “holes” – ordered Griffiths phase

〈ln ε〉 = 〈lnJ〉: cluster aggregation and decimation
balance at all energies – critical point

P(ζ) =
1
Γ

e−ζ/Γ, R(β) =
1
Γ

e−β/Γ

log. variables ζ = ln(Ω/J), β = ln(Ω/ε), Γ = ln(Ω0/Ω)

Distributions become infinitely broad at critical
point

J,e

R(e)P J( )

J,e

R(e)P J( )

J,e

R(e)P J( )

J,e

R(e) P J( )

J,e

R(e) P J( )

Critical point

Disordered

Ordered

Ordered
Griffiths

Disordered
Griffiths

initial (bare) distributions
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Critical behavior

• at critical FP, disorder scales to ∞
⇒ infinite-randomness critical point

• activated dynamical scaling ln(1/Ω) ∼ Lψ

with tunneling exponent ψ = 1/2

• moments of surviving clusters grow like
µ ∼ lnφ(1/Ω) with φ = (1 +

√
5)/2

• average correlation length diverges as
ξ ∼ |r|−ν with ν = 2

dissipative O(N) order parameter is in
universality class of dissipationless random
transverse-field Ising model.

Quantum Griffiths regions:

• power-law dynamical scaling with
nonuniversal exponent

finite-temperature phase
boundary and crossover line take
unusual form

Tc ∼ exp(−const |r|−νψ)



Quantum-critical thermodynamics

to calculate thermodynamic properties at temperature T :
run RG down to energy scale Ω = T and consider remaining clusters as free

Static order parameter susceptibility:

each surviving cluster contributes µ2/T

χ(r, T ) =
1
T

n(Ω = T )µ2(Ω = T ) =
1
T

[ln(1/T )]2φ−d/ψ Θχ

(
rνψ ln(1/T )

)

Specific heat:

each surviving cluster contributes T to the total energy

C(r, T ) =
∂

∂T
[Tn(Ω = T )] = [ln(1/T )]−d/ψ ΘC

(
rνψ ln(1/T )

)



Dynamics and transport

to calculate dynamic OP susceptibilities at external frequency ω (and T = 0):
run RG down to energy scale Ω = γeffω = γµ(Ω)ω

single-cluster contributions:

χj(ω + iδ) =
µ2

j

ε− iµjγω
, χloc

j (ω + iδ) =
µj

ε− iµjγω

Dynamic susceptibilities at T = 0:

Imχ(r, ω) ∼ 1
ω

[ln(1/ω)]φ−d/ψ
X

(
rνψ ln(1/ω)

)

Imχloc(r, ω) ∼ 1
ω

[ln(1/ω)]−d/ψ
X loc

(
rνψ ln(1/ω)

)

Transport properties: optical conductivity, dc conductance – work in progress



Quantum Griffiths singularities

in disordered Griffiths phase:

thermodynamics is characterized by nonuniversal power laws

local susceptibility χloc(r, T ) ∼ T d/z′−1

specific heat C(r, T ) ∼ T d/z′−1

magnetization in field m(r,H) ∼ Hd/z′

dynamical exponent

z′ ∼ r−zν diverges at infinite-randomness critical point



Numerical confirmation
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• A. Del Maestro et al. (2008) solved disordered
large-N problem numerically exactly

• calculated equal time correlation function C,
energy gap Ω, and ratio R of local and order
parameter dynamic susceptibilities

ν ψ φ

SDRG 2 1/2 (
√

5 + 1)/2
Numerics 1.9(2) 0.53(6) 1.6(2)
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Order parameter symmetry

• our explicit calculations are for an infinite number of OP components, N = ∞

Are the results valid for the physical cases N = 2 (superconductor-metal
transition) and N = 3 (Hertz’ antiferromagnetic transition)?

Analysis:

• infinite-randomness FP is due to multiplicative structure of recursion relations

• bond renormalization J̃ = J2J3/ε3 follows from 2nd order perturbation theory,
does not depend on N

• multiplicative structure of gap renormalization ε̃ = ε2ε3/J2 corresponds to
exponential dependence of the gap on the cluster size

• applies to all continuous symmetry cases N > 1 (Mermin-Wagner)

• Ising OPs are different with even stronger disorder effects

Infinite-randomness critical point for all continuous symmetry cases N > 1



Generalizations: d > 1, nonohmic damping

Higher dimensions d > 1

• infinite randomness scaling scenario also appears in 2D and probably in 3D

• renormalization group must be implemented numerically because lattice
connectivity changes

• critical exponent values are different, only known numerically

Nonohmic damping

• if damping term is nonohmic, γ|ωn|2/z0, recursion relations change

ε̃2
−x = α

[
ε−x
2 + ε−x

3

]
+O (

J−x
2

)
with x = (2− z0)/z0

• subohmic case, z0 > 2: quantum phase transition destroyed by smearing

• superohmic case, z0 < 2: transition survives, likely with conventional scaling
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Dissipative random transverse-field Ising chain

H = −
∑

i

Jiσ
z
i σ

z
i+1−

∑

i

hiσ
x
i +

∑

i,n

σz
i λi,n(a†i,n + ai,n) +

∑

i,n

νi,na†i,nai,n

Ji: exchange interaction between z-components of spin σi

hi: transverse magnetic field, acting on x-component of spin σi

a†i,n, ai,n: harmonic oscillator bath coupling to z-component of spin σi

Bath spectral function

E(ω) = π
∑

n

λ2
i,nδ(ω − νi,n) = 2παωe−ω/ωc

α: dimensionless dissipation strength
ωc: oscillator energy cutoff

Linear low freq. spectrum: Ohmic dissipation



Strong-disorder renormalization group

Integrate out local high energy modes: Ω = max(Ji, hi, ωc/p)

To reduce maximum energy from Ω to Ω− dΩ:

1. Integrate out all oscillators with frequencies ν ∈ [p(Ω− dΩ), pΩ]

h̃i = hi exp

(
−αi

∫ pΩ

p(Ω−dΩ)

dω

ω

)
= hi

(
1− αµi

dΩ
Ω

)

2. Decimate all transverse fields hi ∈ [Ω− dΩ, Ω]

J̃ = Ji−1Ji/hi

3. Decimate all interaction energies Ji ∈ [Ω− dΩ, Ω]

h̃ = hihi+1/Ji, µ̃ = µi + µi+1

Extra downward renormalization of the transverse fields due to dissipation



Renormalization-group flow equations

Flow equations for the probability distributions P (J) and R(h, µ)

−∂P

∂Ω
= [P (Ω)− (1− αµ̄)Rh(Ω)] P + (1− αµ̄)R(Ω)

∫
dJ1dJ2 P (J1)P (J2) δ

[
J − J1J2

Ω

]

−∂R

∂Ω
= [(1− αµ̄)Rh(Ω)− P (Ω)] R +

αµ

Ω

[
R + h

∂R

∂h

]
+

+P (Ω)

∫
dh1dh2dµ1dµ2 R(h1, µ1)R(h2, µ2) δ

[
h− h1h2

Ω

]
δ[µ− µ1 − µ2]

(1− αµ̄): probability for decimating field vanishes for µ > 1/α
⇒ important finite “volume” scale 1/α

• clusters act as Ohmic spin-boson problem with effective damping constant αµ

• if αµ > 1, they undergo localization transition (Caldeira, Leggett, Weiss)

Large clusters freeze independently ⇒ quantum phase transition is smeared



Smeared quantum phase transition
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( ) • quantum critical point and
disordered Griffiths phase
destroyed

• replaced by
inhomogeneously ordered
region in the tail of the
ordered phase

Low temperature thermodynamics: dominated by large frozen clusters

Example: uniform susceptibility χ ∼ T−1−1/z



Infinite-randomness physics in CePd1−xRhx??

• ferromagnetic phase shows pronounced tail, evidence for glassy behavior in tail,
possibly due to RKKY interactions

• above tail: nonuniversal power-laws characteristic of quantum Griffiths effects

(Sereni et al., Phys. Rev. B 75 (2007) 024432 + Westerkamp, private communication)



Classification of weakly disordered phase transitions according to
importance of rare regions

T. Vojta, J. Phys. A 39, R143–R205 (2006)

Dimensionality Griffiths effects Dirty critical point Examples
of rare regions (classical PT, QPT, non-eq. PT)

dRR < d−c weak exponential conv. finite disorder class. magnet with point defects

dilute bilayer Heisenberg model

dRR = d−c strong power-law infinite randomness Ising model with linear defects

random quantum Ising model

disordered directed percolation (DP)

dRR > d−c RR become static smeared transition Ising model with planar defects

itinerant quantum Ising magnet

DP with extended defects



Conclusions

• We have performed a strong-disorder renormalization group study of the QPT in
disordered dissipative systems with continuous symmetry order parameters

• 1D: analytical solution gives infinite-randomness critical point in the universality
class of the random transverse-field Ising model

• 2D: numerical solution displays analogous scenario, exponent values different
3D: preliminary numerical results point in same direction

• unconventional transport properties, work in progress

• discrete OP symmetry: destruction of the sharp quantum phase transition by
smearing

For details see: J. A. Hoyos, C. Kotabage, T. Vojta, Phys. Rev. Lett. 99, 230601 (2007)

J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601 (2008)

T. Vojta, J. A. Hoyos, C. Kotabage, Phys. Rev. B 79, 024401 (2009)

Interplay between disorder and dissipation leads to exotic quantum critical behavior.


