
Quantum Theory of Materials: Methods and
Applications

Manish Jain1 2

1ICES University of Texas, Austin

2Department of Physics, University of California, Berkeley and Lawrence Berkeley
National Laboratory

May 16, 2012

1/41



Outline

Introduction.
• Quantum theory of materials.
• Methods for calculating material properties.

Defects in materials.
• Defects in high-κ dielectrics.
• Defects for quantum computing.

2/41



Outline

Introduction.
• Quantum theory of materials.
• Methods for calculating material properties.

Defects in materials.
• Defects in high-κ dielectrics.
• Defects for quantum computing.

3/41



Quantum Theory of Solids

Structure
Composition

Theory
Properties

Materials by design

Detailed microscopic study – understand relationships between
structure, composition and properties.
Predict and interpret experiment – structural, dynamical,
electronic and optical properties of materials.

Assist in designing new materials.
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First-principles theoretical methods

Pros:

No adjustable parameters.

Reliable: Well-justified and tested approximations.

Predictive: Can be used to design and understand properties
of new materials.

Cons:

Computationally expensive.
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Material properties using ab initio methods

Structural properties:
– Lattice parameters, phase transitions, structure factors, pair
correlation functions, elastic constants etc.

Dynamical properties:
– Lattice polarizabilities, dielectric constants, Born effective
charges, heat capacity, infrared spectra, Raman spectra etc.

Electronic properties:
– Conductivity, density of states etc.

Optical properties:
– Reflectivity, absorption, refractive index, dielectric function
etc.

Electronic structure

6/41



Material properties using ab initio methods

Structural properties:
– Lattice parameters, phase transitions, structure factors, pair
correlation functions, elastic constants etc.

Dynamical properties:
– Lattice polarizabilities, dielectric constants, Born effective
charges, heat capacity, infrared spectra, Raman spectra etc.

Electronic properties:
– Conductivity, density of states etc.

Optical properties:
– Reflectivity, absorption, refractive index, dielectric function
etc.

Electronic structure

6/41



Methods

Solve the Schrödinger’s equation for a solid:

ĤΨ = EΨ

where
Ĥ = T̂e + T̂z + Ûe + Ûz + Ûez + V̂ext

where

T̂e, T̂z :Kinetic energy of electrons and nuclei

Ûe, Ûz, Ûez :Potential energy of electron, nuclei and
electron-nuclei interactions

V̂ext :External potential

Equation contains 3*Z*N + 3*N variables where Z is the atomic
number and N is the number of atoms.
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Methods

“The fundamental laws necessary for the mathematical treatment of
a large part of physics and the whole of chemistry are thus
completely known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too complex to
be solved.”

— P. A. M. Dirac1

“It therefore becomes desirable that approximate practical methods
of applying quantum mechanics should be developed ...”

— P. A. M. Dirac1

1P. A. M. Dirac, Proc. R. Soc. Lond. A 123, 714 (1929).
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Methods – Born-Oppenheimer Approximation

Electrons move “fast” while nuclei are “slow”.

Total wavefunction is approximated as:

Ψ({~r}, {~R}) = Φ({~r}; {~R})χ({~R})

Dependence of potential on {~R} parametric – electrons move
in a field created by static ions.
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Pseudopotential Approximation

Outer valence electrons determine properties of materials – core
electrons do not participate in chemical bonding.

Captures the physical content of the periodic table.
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Pseudopotential Approximation

Valence electrons experience a repulsive potential near core due to
orthogonalization to core states.

Energy and length scales set by the valence states.
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Methods – Ground-state properties

Properties that are intrinsic to a system with all its electrons in
equilibrium.

Density functional theory is the “standard model”
for understanding ground-state properties.

Total energy is a functional of the charge density.

Ground-state properties depend on the total
energy of the system.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
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Methods – Ground-state properties

Kohn-Sham formulation: Map the interacting many-electron
problem to non-interacting electrons moving in a
self-consistent field.

Not known exactly – local density approximation (LDA) and
generalized gradient approximation etc.

1W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
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Methods – Ground-state properties

Phase transitions1

Crystal Structure1

Phonons2
Charge density1

1M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
2P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B, 43, 7231 (1991).
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Methods – Excited-state properties

Spectroscopic properties that involve experiments creating an
excited particle above the ground state.

Concept and formalism of the interacting particle Green’s function.
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Methods – Excited-state properties

N±1 particle problem.
Photoemission, tunneling.
Quasiparticle approach.

Fermi sea Fermi sea
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Methods – Excited-state properties

N±1 particle problem.
Photoemission, tunneling.
Quasiparticle approach.

G(~r, ~r′, ω) =
∑
s

fs(~r)f
∗
s (~r′)

ω − ωs

ωs = EN − EN−1,s fs(~r) = 〈N− 1, s | ψ̂(~r)|N〉 ωs < µ

ωs = EN+1,s − EN fs(~r) = 〈N| ψ̂(~r)|N + 1, s〉 ωs ≥ µ
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Methods – Excited-state properties

Many-body perturbation theory is the “standard model” for
understanding excited-state properties.

G−1 = G−1
0 + Σ

GW approximation to the self-energy (Σ).

Σ= = iGW

W = ε−1 v

1L. Hedin and S. Lundqvist, in Advances in Research and Applications, edited by F. Seiz,
D. Turnbull, and H. Ehrenreich, Solid State Physics Vol. 23 (Academic Press, New York,
1969) pp. 1-181.
2M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
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Methods – Excited-state properties

Materials: InSb, InAs,
Ge,
GaSb, Si, InP,
GaAs, CdS,
AlSb, AlAs,
CdSe, CdTe,
BP, SiC, C60,
GaP, AlP,
ZnTe, ZnSe,
c-GaN, w-GaN,
InS, w-BN,
c-BN,
diamond, w-AlN,
LiCl,
Fluorite, LiF 0 2 4 6 8 10 12 14
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1S. G. Louie in Topics in Computational Materials Science, edited by C. Y. Fong (World
Scientific, Singapore, 1997).
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Methods – Excited-state properties

N+2 particle problem.
Optical properties – absorption etc.
Electron-hole interaction (excitons).

Fermi sea
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Methods – Excited-state properties

Coupled electron-hole excitations:

|S〉 =

elec∑
v

hole∑
c

AS
vc â
†
v b̂
†
c|0〉

where |0〉 ground-state of many electron system.
â†v and b̂†c create quasi-particles and quasi-holes.
AS
vc are coupling constants.

Solve Bethe-Salpeter equation for two particle Green’s
function.
Electron-hole interaction kernel:

+Keh =

1M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
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Methods – Excited-state properties

0 2 4 6 8 10
Energy (eV)

0

10

20

30

40

50

�

2

Non-interacting
Experiment

Si Optical absorption1

1J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie,
Comput. Phys. Commun. 183, 1269 (2012).
2P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
3G. G. Macfarlane and V. Roberts, Phys. Rev. 98, 1865 (1955).
4H. R. Philipp, J. Appl. Phys. 43, 2835 (1972). 21/41
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High-κ dielectric materials – Motivation

Moore’s law about size of transistor.
HfO2 has replaced SiO2 in todays MOSFET devices.

κSiO2 ≈ 3.9

κHfO2
≈ 16− 17

1http://www.intel.com/technology/45nm/index.htm
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High-κ dielectric materials – Motivation

High defect density.

Charge trapping by defects in the interfacial layer or oxide –
threshold voltage instability1.

Oxygen-related defects – vacancy2 (VO) or interstitials (IO)
major cause.

Study the stability of point defects – VO and IO.

1G. Ribes et. al., IEEE Trans. Device Mater. Reliab. 5, 5 (2005).
2K. Shiraishi et. al., Jpn. J. Appl. Phys., Part 2 43 L1413 (2004); H. Park et. al., IEEE
Electron Device Lett. 29, 54 (2008).
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High-κ dielectric materials – Definitions

Formation energy of an oxygen-vacancy:

Ef [~R] = E[~R]− Eref +
1

2
EO2
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High-κ dielectric materials – Definitions

Formation energy of an oxygen-vacancy:

Efq [~Rq](EF) = Eq[~Rq]− Eref +
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2
EO2 + q(EF + Ev)
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High-κ dielectric materials – Definitions

Formation energy of an oxygen-related defect in hafnia :

Efq [~Rq](EF) = Eq[~Rq]− EHfO2 − nOµO + q(EF + Ev)

where µO is the oxygen chemical potential.

Charge transition level : εq/q-1 = Fermi energy where defect q→ q− 1.

= Efq-1[~Rq-1](EF = 0)− Efq [~Rq](EF = 0)

EF

VBM CBM

Efq

ε+1/0

0
+1
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High-κ dielectric materials – Computational details

Three fold coordinated (VO(3)) and four fold coordinated
(VO(4)) vacancies in charge states {0, +1, +2}

Three fold coordinated (IO(3)) and four fold coordinated
(IO(4)) interstitials in charge states {0, -1, -2}

96 atom super cells.

Bulk structural parameters and band gap (6.00 eV) in good
agreement with experiment.

27/41



High-κ dielectric materials – Formation energy of vacancies

DFT+GW1
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Qualitative agreement with PBE03, HSE2.
Quantitatively, charge transition levels are different and which
defects are stable when placed next to Si1.

1M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. 107, 216803 (2011).
2J.L. Lyons, A. Janotti and C.G. Van de Walle, Microelectronic Engineering 88, 1452 (2011).
3P. Broqvist and A. Pasquarello, Appl. Phys. Lett. 89, 262904 (2006). 28/41



High-κ dielectric materials – Formation energy of interstitials

DFT+GW
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1J.L. Lyons, A. Janotti and C.G. Van de Walle, Microelectronic Engineering 88, 1452 (2011).
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High-κ dielectric materials – Conclusions

DFT+GW method for calculating the stability of oxygen
vacancies and interstitals.
Qualitative agreement with previous hybrid functional
calculations on the vacancies and interstitials.
Quantitative disagreement with previous hybrid functional
calculations - vacancies near a Si/HfO2 interface.

DFT+GW HSE
VO +1,0 +2,+1
IO +2 +2
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Defects for spin-qubit applications

Room temperature individually addressable spin systems in the
solid-state for quantum computing.
NV− center in diamond is the leading candidate.

Possible room-temperature qubit with long coherence time
(∼1ms) for quantum computing.
High sensitivity, high-spatial resolution magnetometry.

32/41



NV− center in diamond – Motivation

Optical initialization at room-temperature provides initial spin pure
state for spin-qubit operation.

Notation :2S+1 Λ

Λ : Irreducible representation of the orbital symmetry
S : Total Spin
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NV− center in diamond – Unsolved problem

Identification of singlet-level structure.
Effective optical initialization path between the two triplet
levels.
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NV− center in diamond – Unsolved problem

NV− is a deep level center in a band gap of diamond
with multiple localized, interacting electrons.

Strong electron-electron correlation
– Not appropriate for mean-field type calculation
Screening from diamond
– mimicking this system by a small isolated-diamond cluster
with a NV− defect without additional input incorrect.
Large structural relaxation in the excited state.
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NV− center in diamond – Extended Hubbard model

Ĥ =
∑
i,σ

Einiσ +
∑
i 6=j,σ

ti,jc
†
i,σcj,σ

+
∑
i

Uni,↑nj,↓ +
∑

i 6=j,σ,σ′

Vni,σnj,σ′

i, j :Atomic sites (C or N)
σ, σ′ :Spin direction

Ei :On-site energy
ti,j :Hopping integral
U :On-site Coulomb repulsion
V :Nearest neighbor

Coulomb repulsion

Effective Coulomb
interaction parameters

Geometry dependent
parameter sets

Strong electron-electron
correlation

Screening from diamond

Large structural relaxation

Hindered by the difficulty in getting physically grounded model
parameters. 36/41



NV− center in diamond – Level diagram

Use ab initio GW to get model parameters, incorporating realistic
electron-electron interactions.

Level diagram1 from exact diagonalization of model Hamiltonian

All energies in eV.

1S. Choi, M. Jain and S. G. Louie, submitted to Phys. Rev. Lett. 37/41



NV− center in diamond – Conclusion

Constructed extended Hubbard Hamiltonian from ab initio GW
calculations.
Through exact diagonalization, many-electron effects strongly
affect the energy level diagram qualitatively and quantitatively.
Computed ground- and excited-state energy surfaces and
transition rates between them provided a consistent picture
with experiments.
Proposed an optical initialization pathway in which
inter-sytstem crossing plays a crucial role.

S. Choi, M. Jain and S. G. Louie, submitted to Phys. Rev. Lett.
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Conclusion

Ab initio methods to understand and predict properties of
materials.
Methods – accurate, reliable and applicable to real materials.
Oxygen-related defects in high-κ material – HfO2.
NV− center in diamond for quantum computing application.
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Improvement of methods

Using many-body perturbation theory, systematically improve
approximations via the linearized Sham-Schlüter equation which
would lead to an optimized effective potential:

∫∫∫
dεdr′dr′′GKS(r, r′; ε)[Σxc[GKS ](r′, r′′; ε)− vxc(r)δ(r′ − r′′)]GKS(r′′, r; ε) = 0

Finite temperature calculations within the GW approximation
including electron-phonon interactions.
Extending GW approximation to calculate quasiparticle and optical
properties of open-shell systems.
Use higher order Feynman diagrams in the self energy
(systematically) to go beyond the GW approximation.

Y. M. Niquet, M. Fuchs, and X. Gonze, Phys. Rev. A 68, 032507 (2003).
F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 105, 265501 (2010).
J. Lischner, J. Deslippe, M. Jain, and S. G. Louie, submitted to Phys. Rev. Lett.
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