A bottom-up reconstruction of new physics at Large Hadron Collider

Ritesh K. Singh

Institut für Theoretische Physik und Astrophysik
Universität Würzburg

at

Tata Institute of Fundamental Research

Mumbai, January 13, 2010
1. The Standard Model
 - Building block
 - The particles and forces

2. Beyond the Standard Model
 - The approach
 - New physics
 - New particles

3. New physics with top quark
 - Top quark at the edge
 - Top polarization
 - Top polarization measurement

4. Search for Extra-dimensions
 - Features of the extra-dimension
 - Flat extra-dimension at LHC
 - Warped extra-dimension at LHC

5. Conclusions
The Standard Model

Ritesh Singh

New physics at LHC
It was long believed that matter is made of atoms and by mid 19th century it was an established fact. By early 20th century we started to probe the Sub-atomic world. Nucleus was identified in 1911. Particle list:

1932: e^-, p^+, n^- were the fundamental building blocks.

1950: e^-, p^+, n^-, μ^-, ν_e, ν_μ, π^+, π^-, π^0, K^0, K^\pm etc.

So many of particle cannot be fundamental. Certain pattern emerged among the zoo of particles. ⇒ These particle must be build of something else.
Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the **Sub-atomic** world.
Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.
It was long believed that matter is made of atoms and by mid 19th century it was an established fact.

By early 20th century we started to probe the Sub-atomic world.

Nucleus was identified in 1911.

Particle list:

- 1932: e, p, n were the fundamental building blocks.
Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the **Sub-atomic** world.
- Nucleus was identified in 1911.

Particle list:
- 1932: e, p, n were the fundamental building blocks.
- 1950: e, p, n, μ, ν_e, ν_μ, π^\pm, π^0, K^0, K^\pm etc.
 So many of particle cannot be **fundamental**.
Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Particle list:
- 1932: e, p, n were the fundamental building blocks.
- 1950: e, p, n, μ, ν_e, ν_μ, π^\pm, π^0, K^0, K^\pm etc.
 So many of particle cannot be fundamental.

 Certain pattern emerged among the zoo of particles.
It was long believed that matter is made of atoms and by mid 19th century it was an established fact.

By early 20th century we started to probe the Sub-atomic world.

Nucleus was identified in 1911.

Particle list:

- 1932: e, p, n were the fundamental building blocks.
- 1950: e, p, n, μ, ν_e, ν_μ, π^\pm, π^0, K^0, K^\pm etc.

So many of particle cannot be fundamental.

Certain pattern emerged among the zoo of particles.

⇒ These particle must be build of something else.
The quark model

The matter particles were divide in two groups:

- **Hadrons**: $p, n, \pi^\pm, \pi^0, K^\pm$ etc. particles that *can* interact strongly.
- **Leptons**: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that *cannot* interact strongly.
The quark model

The matter particles were divide in two groups:

- **Hadrons**: $p, n, \pi^{\pm}, \pi^{0}, K^{\pm}$ etc. particles that *can* interact strongly.
- **Leptons**: $e, \nu_{e}, \mu, \nu_{\mu}, \tau$, etc. particles that *cannot* interact strongly.

Leptons

- are fundamental particles
- interact only through electromagnetic and weak interactions.
- can be seen in *free state.*
The quark model

The matter particles were divide in two groups:

- **Hadrons**: $p, n, \pi^\pm, \pi^0, K^\pm$ etc. particles that can interact strongly.
- **Leptons**: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

<table>
<thead>
<tr>
<th>Leptons</th>
<th>Hadrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>are fundamental particles</td>
<td>are not fundamental particles</td>
</tr>
<tr>
<td>interact only through electromagnetic and weak interactions.</td>
<td>interact through strong weak and electromagnetic interactions.</td>
</tr>
<tr>
<td>can be seen in free state.</td>
<td>are bound states of quarks that cannot be seen in free state.</td>
</tr>
</tbody>
</table>
The quark model

The matter particles were divide in two groups:

- **Hadrons**: $p, n, \pi^{\pm}, \pi^0, K^{\pm}$ etc. particles that can interact strongly.
- **Leptons**: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

Leptons
- are fundamental particles
- interact only through electromagnetic and weak interactions.
- can be seen in free state.

Hadrons
- are not fundamental particles
- interact through strong weak and electromagnetic interactions.
- are bound states of quarks that cannot be seen in free state.

Quarks carry color quantum number and fractional electric charges. (bottom-up)
Structure of the Standard Model

Three Generations of Matter (Fermions)

<table>
<thead>
<tr>
<th></th>
<th>I (First)</th>
<th>II (Second)</th>
<th>III (Third)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>2.4 MeV</td>
<td>1.27 GeV</td>
<td>171.2 GeV</td>
</tr>
<tr>
<td>Charge</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>Spin</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Name</td>
<td>up</td>
<td>charm</td>
<td>top</td>
</tr>
</tbody>
</table>

Additional Particle: Higgs Boson

- SU(3)_c singlet
- SU(2)_L doublet
- Y = 1

Leads to masses of the particles via spontaneous symmetry breaking.

Ritesh Singh

New physics at LHC
The Standard Model

Structure of the Standard Model

Three Generations of Matter (Fermions)

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>charge</td>
<td>spin</td>
</tr>
<tr>
<td>2.4 MeV</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>1.27 GeV</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>171.2 GeV</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>up</td>
<td>charm</td>
<td>top</td>
</tr>
</tbody>
</table>

Quarks

- **d**: down, mass ≤ 2.2 eV, spin $\frac{1}{2}$
- **s**: strange, mass <0.17 MeV, spin $\frac{1}{2}$
- **b**: bottom, mass <15.5 MeV, spin $\frac{1}{2}$
- **g**: gluon, mass 91.2 GeV, spin 0

Leptons

- **e**: electron, mass 0.511 MeV, spin $\frac{1}{2}$
- **μ**: muon, mass 105.7 MeV, spin $\frac{1}{2}$
- **τ**: tau, mass 1.777 GeV, spin $\frac{1}{2}$
- **ν_e**: electron neutrino, mass ≤ 2.2 eV, spin $\frac{1}{2}$
- **ν_μ**: muon neutrino, mass <0.17 MeV, spin $\frac{1}{2}$
- **ν_τ**: tau neutrino, mass <15.5 MeV, spin $\frac{1}{2}$

Bosons (Forces)

- **Z**: weak force, mass 91.2 GeV, spin 0
- **W**: weak force, mass 80.4 GeV, spin 1

Gravity not included.

Additional particle: Higgs boson

SU(3)_c singlet

SU(2)_L doublet

Y = 1

Leads to masses of the particles via spontaneous symmetry breaking.

(top-down)

Describes almost all observed phenomena.

Building block

The particles and forces

Beyond the Standard Model

New physics with top quark

Search for Extra-dimensions

Conclusions
Gravity not included.

Gauge groups:
\[SU(3)_c \times SU(2)_L \times U(1)_Y \]
The Standard Model

Beyond the Standard Model

New physics with top quark

Search for Extra-dimensions

Conclusions

Building block

The particles and forces

Structure of the Standard Model

Gravity not included.

Gauge groups: \(SU(3)_c \times SU(2)_L \times U(1)_Y \)

Additional particle: Higgs boson

\(SU(3)_c \) singlet

\(SU(2)_L \) doublet

\(Y = 1 \)

Leads to masses of the particles via spontaneous symmetry breaking.

(top-down)
Structure of the Standard Model

Gravity not included.

Gauge groups:
\[SU(3)_c \times SU(2)_L \times U(1)_Y \]

Additional particle: **Higgs boson**

\[SU(3)_c \] singlet

\[SU(2)_L \] doublet

\[Y = 1 \]

Leads to masses of the particles via spontaneous symmetry breaking.

Describes almost all observed phenomenon
Beyond the Standard Model
Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.
- Lagrangian
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.
Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.

Ritesh Singh
New physics at LHC
Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \(\Rightarrow\) Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.

Bottom-up
Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistency of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.

Ritesh Singh
New physics at LHC
Bottom-up vs Top-down

Top-down

- **Symmetry:** gauge symmetry, space time symmetry etc.
- **Matter content:** fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- **Self consistancy of Lagrangian:** gauge anomaly etc.
- **Mechanisms:** spontaneous symmetry breaking, phase transitions etc.
- **Predictions for experiments.**

Bottom-up

Observables: σ, asymmetries, correlations etc.
Particle content: observed or required to explain observations.
Quantum number: ad hoc assignments to explain observations.
Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.

Ritesh Singh
New physics at LHC
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistency of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistency of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.

Ritesh Singh
New physics at LHC
Bottom-up vs Top-down

Top-down
- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries \Rightarrow Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up
- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers \Rightarrow Symmetry.
- Lagrangian
An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1
- Spin: 1/2
- Decay modes:
 - $t \rightarrow b \ W^+ + \bar{t} \rightarrow b \ H^+$
 - $t \rightarrow c \ Z^0$ (Br < 0.1)

Bottom-up

- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1
- Spin: possibly 1/2
- Decay modes:
 - $t \rightarrow b \ W^+ + \bar{t} \rightarrow b \ H^+$
 - $t \rightarrow c \ Z^0$ (Br < 0.1)
An example of top-quark

<table>
<thead>
<tr>
<th>Top-down</th>
<th>Bottom-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mass: Heavy</td>
<td>• Mass: 173.1 ± 1.3 GeV</td>
</tr>
</tbody>
</table>

Top-down
- **Mass:** Heavy

Bottom-up
- **Mass:** 173.1 ± 1.3 GeV

- **Charge:** +2/3 at 95% C.L.
- **Color Quantum number:** 3
- **Iso-spin:** +1/2
- **Hypercharge:** +1
- **Spin:** possibly 1/2
- **Decay modes:**
 - $t \rightarrow b W^+$
 - $t \rightarrow b H^+$
 - $t \rightarrow c Z_0$ (Br < 0.1)
An example of top-quark

Top-down
- Mass: Heavy
- Charge: $+2/3$

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not $+4/3$ at 95% C.L.
An example of top-quark

Top-down
- Mass: Heavy
- Charge: $+\frac{2}{3}$
- Color Quantum number: 3

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not $+\frac{4}{3}$ at 95% C.L.
- Color Quantum number: 3
An example of top-quark

Top-down
- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3
- Iso-spin: +1/2
An example of top-quark

Top-down
- Mass: Heavy
- Charge: $+\frac{2}{3}$
- Color Quantum number: 3
- Iso-spin: $+\frac{1}{2}$
- Hypercharge: $+1$

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not $+\frac{4}{3}$ at 95% C.L.
- Color Quantum number: 3
- Iso-spin: $+\frac{1}{2}$
- Hypercharge: $+1$???
An example of top-quark

Top-down
- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1
- Spin: 1/2

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1 ???
- Spin: possibly 1/2
An example of top-quark

Top-down
- Mass: Heavy
- Charge: $+2/3$
- Color Quantum number: 3
- Iso-spin: $+1/2$
- Hypercharge: +1
- Spin: $1/2$
- Decay modes:
 - $t \rightarrow b \ W^+$
 - $t \rightarrow b \ H^+$
 - $t \rightarrow c \ Z^0$ etc.

Bottom-up
- Mass: 173.1 ± 1.3 GeV
- Charge: not $+4/3$ at 95% C.L.
- Color Quantum number: 3
- Iso-spin: $+1/2$
- Hypercharge: $+1$???
- Spin: possibly 1/2
- Decay modes:
 - $t \rightarrow b \ W^+$
 - $t \rightarrow c \ Z^0$ (Br < 0.1)
The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate
The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY

Fermion mass
Scale hierarchy
From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY
- Fermion mass
- Scale hierarchy

Extra Dim
- CP violation
- Fermion mass
- Scale hierarchy
The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY
- Fermion mass
- Scale hierarchy

Extra Dim
- CP violation
- Fermion mass
- Scale hierarchy

Techni Color
- CP violation
- Fermion mass
- Scale hierarchy
The Standard Model has been tested to a high accuracy, but it still lacks:

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

- **SUSY**
 - Fermion mass
 - Scale hierarchy

- **Extra Dim**
 - CP violation
 - Fermion mass
 - Scale hierarchy

- **Techni Color**
 - CP violation
 - Fermion mass
 - Scale hierarchy

- **Little Higgs**
 - CP violation
 - Fermion mass
 - Scale hierarchy

Ritesh Singh
New physics at LHC
All new physics models introduce new symmetries and particles.

Scalars

Fermions

Vectors

Polarization observables and decay pattern are most important features to study new particles.
All new physics models introduce new symmetries and particles.

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Fermions</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs, sfermions</td>
<td>Polarization, 2-body decay, cascade decay.</td>
<td>KK-excitations of gauge bosons</td>
</tr>
</tbody>
</table>
All new physics models introduce new symmetries and particles.

Scalars
Higgs, sfermions, techni-pions etc.

Fermions
gaugino, higgsino, heavy fermion partners.

Vectors

Polarization observables and decay pattern are most important features to study new particles.
All new physics models introduce new symmetries and particles.

Scalars
Higgs, sfermions, techni-pions etc.

Fermions
gaugino, higgsino, heavy fermion partners.

Vectors
KK-excitations of gauge bosons, heavy bosons.
All new physics models introduce new symmetries and particles.

Scalars
Higgs, sfermions, techni-pions etc.

Productions:
s-channel resonance, pair production, associated production

Fermions
gaugino, higgsino, heavy fermion partners.

Vectors
KK-excitations of gauge bosons, heavy bosons
New particles

All new physics models introduce new symmetries and particles.

Scalars
Higgs, sfermions, techni-pions etc.

Productions:
s-channel resonance, pair production, associated production

Fermions
gaugino, higgsino, heavy fermion partners.

Productions:
pair production, associated production

Vectors
KK-excitations of gauge bosons, heavy bosons.
New particles

All new physics models introduce new symmetries and particles.

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Fermions</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs, sfermions, techni-pions etc.</td>
<td>gaugino, higgsino, heavy fermion partners.</td>
<td>KK-excitations of gauge bosons, heavy bosons.</td>
</tr>
</tbody>
</table>

Productions:
- s-channel resonance, pair production, associated production
- s-channel resonance, pair production, associated production
- s-channel resonance, pair production, associated production

Polarization observables and decay pattern are most important features to study new particles.
New physics models introduce new symmetries and particles.

Scalars
- Higgs, sfermions, techni-pions etc.
- **Productions:**
 - s-channel resonance, pair production, associated production
- **Signature:**
 - threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions
- gaugino, higgsino, heavy fermion partners.
- **Productions:**
 - pair production, associated production.
- **Signature:**
 - threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors
- KK-excitations of gauge bosons, heavy bosons.
- **Productions:**
 - s-channel resonance, pair production, associated production
New particles

All new physics models introduce new symmetries and particles.

Scalars
Higgs, sfermions, techni-pions etc.

Productions:
s-channel resonance, pair production, associated production

Signature:
threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions
gaugino, higgsino, heavy fermion partners.

Productions:
pair production, associated production.

Signature:
threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors
KK-excitations of gauge bosons, heavy bosons.

Productions:
s-channel resonance, pair production, associated production.
New particles

All new physics models introduce new symmetries and particles.

Scalars
- Higgs, sfermions, techni-pions etc.

Productions:
- s-channel resonance,
- pair production,
- associated production

Signature:
- threshold behaviour,
- polarization,
- 2-body decay, cascade decay.

Fermions
- gaugino, higgsino, heavy fermion partners.

Productions:
- pair production,
- associated production

Signature:
- threshold behaviour,
- polarization,
- 2-body decay, cascade decay.

Vectors
- KK-excitations of gauge bosons, heavy bosons.

Productions:
- s-channel resonance,
- pair production,
- associated production

Signature:
- polarization, 2-body decay, cascade decay.

Ritesh Singh

New physics at LHC
All new physics models introduce new symmetries and particles.

Scalars
- Higgs, sfermions, techni-pions etc.
- **Productions**: s-channel resonance, pair production, associated production
- **Signature**: threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions
- gaugino, higgsino, heavy fermion partners.
- **Productions**: pair production, associated production.
- **Signature**: threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors
- KK-excitations of gauge bosons, heavy bosons.
- **Productions**: s-channel resonance, pair production, associated production
- **Signature**: polarization, 2-body decay, cascade decay.

Polarization observables and decay pattern are most important features to study new particles.
New physics with top quark
Top quark: A looking glass

The mass of the top-quark is very large ($m_t \sim 173$GeV)
Top quark: A looking glass

The mass of the top-quark is very large \((m_t \sim 173\text{GeV})\)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
Top quark: A looking glass

The mass of the top-quark is very large \(m_t \sim 173 \text{GeV} \)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

- its decay width \(\Gamma_t \sim 1.5 \text{ GeV} \) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
Top quark: A looking glass

The mass of the top-quark is very large ($m_t \sim 173$GeV)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

- its decay width ($\Gamma_t \sim 1.5$ GeV) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.

- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).
The mass of the top-quark is very large ($m_t \sim 173$GeV)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5$ GeV) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).
- leptons from top decay provide a **clean** and **un-contaminated** probe of top-production mechanism.
The mass of the top-quark is very large ($m_t \sim 173\text{GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

- its decay width ($\Gamma_t \sim 1.5\ \text{GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.

- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).

- leptons from top decay provide a clean and un-contaminated probe of top-production mechanism.

We have a clean looking glass for new physics.
Anomalous tbW vertex:

$$\Gamma^\mu = \frac{g}{\sqrt{2}} \left[\gamma^\mu (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu\nu}}{m_W} (p_t - p_b)_\nu (f_{2L} P_L + f_{2R} P_R) \right]$$
Anomalous top decay

Anomalous tbW vertex:

\[\Gamma^\mu = \frac{g}{\sqrt{2}} \left[\gamma^\mu (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu \nu}}{m_W} (p_t - p_b)_\nu (f_{2L} P_L + f_{2R} P_R) \right] \]

- In the SM, $f_{1L} = 1, f_{1R} = 0, f_{2L} = 0, f_{2R} = 0$.
- Contribution from f_{1R}, f_{2L} are proportional to m_b.

Anomalous top decay

Anomalous tbW vertex:

$$\Gamma_\mu = \frac{g}{\sqrt{2}} \left[\gamma_\mu (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu\nu}}{m_W} (p_t - p_b)_\nu (f_{2L} P_L + f_{2R} P_R) \right]$$

- In the SM, $f_{1L} = 1, f_{1R} = 0, f_{2L} = 0, f_{2R} = 0$.
- Contribution from f_{1R}, f_{2L} are proportional to m_b.

$$\frac{1}{\Gamma_t} \frac{d\Gamma_t}{d \cos \theta_f} = \frac{1}{2} \left(1 + \alpha_f P_t \cos \theta_f \right)$$

$$\alpha_l = 1 - O(f_i^2)$$

$$\alpha_b = - \left[\frac{m_t^2 - 2 m_W^2}{m_t^2 + 2 m_W^2} \right] + \Re(f_{2R}) \left[\frac{8 m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2 m_W^2)^2} \right] + O \left(\frac{m_b}{m_W}, f_i^2 \right)$$
Lepton distribution

\[AB \rightarrow t P_1 \ldots P_{n-1} b W^+ \rightarrow l^+ \nu \]

Lepton distribution is independent of anomalous \(t b W \) coupling if the \(t \)-quark is on-shell; narrow-width approximation for the \(t \)-quark, anomalous couplings \(f_1 R \), \(f_2 R \) and \(f_2 L \) are small, narrow-width approximation for the \(W \)-boson, \(b \)-quark is mass-less, \(t \rightarrow b W (\ell \nu) \) is the only decay channel for the \(t \)-quark.

\[\text{⇒ Lepton distribution from top decay is pure probe of possible new physics in the top production process.} \]
Lepton distribution

\[AB \rightarrow t \quad P_1 \ldots P_{n-1} \quad b \quad W^+ \quad l^+ \nu \]

Lepton distribution is independent of anomalous \(tbW \) coupling if
Lepton distribution

\[AB \rightarrow t \quad P_1 \ldots P_{n-1} \quad b \quad W^+ \rightarrow l^+ \nu \]

Lepton distribution is independent of anomalous \(tbW \) coupling if

- \(t \)-quark is on-shell; narrow-width approximation for \(t \)-quark,
Lepton distribution

\[AB \rightarrow t \ P_1 \ldots \ P_{n-1} \]
\[\rightarrow b \ W^+ \]
\[\rightarrow l^+ \nu \]

Lepton distribution is independent of anomalous \(tbW \) coupling if
- \(t \)-quark is on-shell; narrow-width approximation for \(t \)-quark,
- anomalous couplings \(f_{1R} \), \(f_{2R} \) and \(f_{2L} \) are small,
Lepton distribution

Lepton distribution is independent of anomalous tbW coupling if

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R}, f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
Lepton distribution

\[AB \rightarrow t \ P_1 \ldots \ P_{n-1} \ \rightarrow b \ W^+ \ \rightarrow l+\nu \]

Lepton distribution is independent of anomalous \(tbW \) coupling if

- \(t \)-quark is on-shell; narrow-width approximation for \(t \)-quark,
- anomalous couplings \(f_{1R} \), \(f_{2R} \) and \(f_{2L} \) are small,
- narrow-width approximation for \(W \)-boson,
- \(b \)-quark is mass-less,
Lepton distribution is independent of anomalous tbW coupling if

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R}, f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
- b-quark is mass-less,
- $t \rightarrow bW(\ell \nu_\ell)$ is the only decay channel for t-quark.
Lepton distribution is independent of anomalous tbW coupling if

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R}, f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
- b-quark is mass-less,
- $t \rightarrow bW(\ell\nu_\ell)$ is the only decay channel for t-quark.

\Rightarrow Lepton distribution from top decay is pure probe of possible new physics in the top production process.
Polarization or t-quark: top-down

Polarized cross-sections

$$\sigma(\lambda, \lambda') = \int \frac{d^3 p_t}{2E_t(2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right) \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda, \lambda')$$

where $\rho(\lambda, \lambda') = M(\lambda, \ldots) M^*(\lambda', \ldots)$
Polarization or t-quark: top-down

Polarized cross-sections

$$\sigma(\lambda, \lambda') = \int \frac{d^3 p_t}{2 E_t (2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2 E_i (2\pi)^3} \right) \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda, \lambda')$$

where $\rho(\lambda, \lambda') = \mathcal{M}(\lambda, \ldots) \mathcal{M}^*(\lambda', \ldots)$

Total cross-section: $\sigma_{tot} = \sigma(+, +) + \sigma(-, -)$
Polarization or t-quark: top-down

Polarized cross-sections

$$
\sigma(\lambda, \lambda') = \int \frac{d^3 p_t}{2E_t(2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right) \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda, \lambda')
$$

where $\rho(\lambda, \lambda') = M(\lambda, \ldots) M^*(\lambda', \ldots)$

Total cross-section: $\sigma_{tot} = \sigma(+, +) + \sigma(-, -)$

Polarization density matrix :

$$
P_t = \frac{1}{2} \begin{pmatrix} 1 + \eta_3 & \eta_1 - i\eta_2 \\ \eta_1 + i\eta_2 & 1 - \eta_3 \end{pmatrix},
$$

$$
\eta_3 = \frac{(\sigma(+, +) - \sigma(-, -))}{\sigma_{tot}}
$$

$$
\eta_1 = \frac{(\sigma(+, -) + \sigma(-, +))}{\sigma_{tot}}
$$

$$
i \eta_2 = \frac{(\sigma(+, -) - \sigma(-, +))}{\sigma_{tot}}
$$
Polarization or t-quark: bottom-up

Polarization of t-quark through decay asymmetries:

\[
\begin{align*}
\alpha_f \frac{\eta_3}{2} &= \frac{\sigma(p_f.s_3 < 0) - \sigma(p_f.s_3 > 0)}{\sigma(p_f.s_3 < 0) + \sigma(p_f.s_3 > 0)} \\
\alpha_b &= -0.4 \\
\alpha_f \frac{\eta_2}{2} &= \frac{\sigma(p_f.s_2 < 0) - \sigma(p_f.s_2 > 0)}{\sigma(p_f.s_2 < 0) + \sigma(p_f.s_2 > 0)} \\
\alpha_f \frac{\eta_1}{2} &= \frac{\sigma(p_f.s_1 < 0) - \sigma(p_f.s_1 > 0)}{\sigma(p_f.s_1 < 0) + \sigma(p_f.s_1 > 0)}
\end{align*}
\]

\[s_i.s_j = -\delta_{ij} \quad p_t.s_i = 0\]

For \(p_t^\mu = E_t(1, \beta_t \sin \theta_t, 0, \beta_t \cos \theta_t) \), we have

\[s_1^\mu = (0, -\cos \theta_t, 0, \sin \theta_t), \quad s_2^\mu = (0, 0, 1, 0), \quad s_3^\mu = E_t(\beta_t, \sin \theta_t, 0, \cos \theta_t)/m_t.\]

\textbf{Ptlong} is implemented in \textsc{SHERPA}.
Lepton’s azimuthal distribution

Lab frame azimuthal distribution of leptons:

\[A_\ell = \frac{\sigma(\cos \phi_1 > 0) - \sigma(\cos \phi_1 < 0)}{\sigma(\cos \phi_1 > 0) + \sigma(\cos \phi_1 < 0)} \]

Used for:
- \(Z' \) at LHC (Les Houches 05)
- \(g^{(1)} \) in RS model at LHC (Nucl. Phys. B797, 1, (2008))
Lepton’s azimuthal distribution

Lab frame azimuthal distribution of leptons:

\[A_\ell(m_{tt}) = \frac{\sigma(\cos \phi_l > 0) - \sigma(\cos \phi_l < 0)}{\sigma(\cos \phi_l > 0) + \sigma(\cos \phi_l < 0)} \]

Used for:
- \(Z' \) at LHC (Les Houches 05)
- \(g^{(1)} \) in RS model at LHC (Nucl. Phys. B797, 1, (2008))
Lepton’s azimuthal distribution

Lab frame azimuthal distribution of leptons:

\[P_p = (0.8, -0.6) \]
\[\eta_3 = +0.559, \eta_1 = -0.504 \]

Distribution of all the decay particles.
Top polarization at LHC

\[pp \rightarrow tj \rightarrow bl^+\nu_{lj} \]

\[\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right| \]

Depends upon:
- Top polarization
- \(p_T \) distribution

\[\sigma = 131 \text{ pb} \quad \eta_3 = -0.196 \]
\[\Delta_{lb} = 0.35 \]

Cuts: No cuts

Model: SM
Top polarization at LHC

\[pp \rightarrow \tilde{t}_1 \tilde{t}_1 \rightarrow t\chi^0_1 \bar{t}\chi^0_1 \]

\[\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right| \]

Depends upon:
- Top polarization
- \(p_T \) distribution

\(\sigma = 1.44 \text{ fb} \quad \eta_3 = +0.184 \)
\(\Delta_{lb} = 0.12 \)

Cuts: No cuts

Model: MSSM
\(M_{\tilde{t}_1} = 355 \text{ GeV}, \quad m_\chi = 164 \)
\(\text{GeV} \quad Br(\tilde{t}_1 \rightarrow t\chi^0_1) = 0.76 \)
Top polarization at LHC

\[pp \rightarrow t\bar{t} \rightarrow b l^+ \nu \] \[\rightarrow b l^- \bar{\nu} \]

\[(1/\sigma) \frac{d\sigma}{d\Phi} \]

Lepton

b-quark

\[\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right| \]

Depends upon:
- Top polarization
- \(p_T \) distribution

\[\sigma = 3.36 \text{ pb} \quad \eta_3 = +0.819 \]

\[\Delta_{lb} = 0.40 \]

Cuts: \[m_{tt} \in [2.5, 3.5] \text{ TeV} \]

Model: SM + \(g^{(1)} \)

\[M_g = 3 \text{ TeV}, \Gamma_g = 500 \text{ GeV} \]
Search for Extra-dimensions
In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

In models with extra space dimensions, the additional dimensions are compact.
In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

In a box model, a particle in a box has an infinite potential well, which corresponds to a particle in an extra dimension. The particle states are equi-spaced, and the mass spectrum is given by $0, (R^{-1})\text{GeV}, 2(R^{-1})\text{GeV}, ...$ near-degenerate spectrum. All particles have an infinite tower of states. We have particles like $\gamma(1), Z(1), g(1), t(1)$, etc. at nearly the same mass $(R^{-1})\text{GeV}$. Several particles with the same quantum numbers (QN) as in the standard model (SM) and large (R^{-1}) but near-degenerate mass.
World with extra-dimensions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well
 or Particle in a box
World with extra-dimensions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well
 or Particle in a box

⇒ Infinite tower of equi-spaced (R^{-1}) states
In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well
 or Particle in a box

⇒ Infinite tower of equi-spaced \((R^{-1})\) states

Mass spectrum of photon:

\(0, (R^{-1})\) GeV, \(2(R^{-1})\) GeV, ...
World with extra-dimensions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well or Particle in a box

⇒ Infinite tower of equi-spaced \((R^{-1})\) states

Mass spectrum of photon:

\(0, (R^{-1}) \text{ GeV}, 2(R^{-1}) \text{ GeV}, ...\)

Near-degenerate spectrum
World with extra-dimensions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

- **Compact extra dim**
 - Infinite potential well or Particle in a box
 - Infinite tower of equi-spaced \((R^{-1})\) states

Mass spectrum of photon:
- \(0, (R^{-1}) \text{ GeV}, 2(R^{-1}) \text{ GeV}, \ldots\)

Near-degenerate spectrum

- All particles have infinite tower of states.
In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well or Particle in a box

⇒ Infinite tower of equi-spaced \((R^{-1})\) states

Mass spectrum of photon:

0, \((R^{-1})\) GeV, \(2(R^{-1})\) GeV, ...

Near-degenerate spectrum

- All particles have infinite tower of states.
- We have \(\gamma^{(1)}, Z^{(1)}, g^{(1)}, t^{(1)}\) etc. at nearly the same mass \((R^{-1})\) Gev.
World with extra-dimensions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

⇒ Infinite potential well or Particle in a box

⇒ Infinite tower of equi-spaced \((R^{-1})\) states

Mass spectrum of photon:

\(0, (R^{-1})\) GeV, \(2(R^{-1})\) GeV, ...

Near-degenerate spectrum

- All particles have infinite tower of states.
- We have \(\gamma^{(1)}, Z^{(1)}, g^{(1)}, t^{(1)}\) etc. at nearly the same mass \((R^{-1})\) Gev.

Several particles with same QN as in SM and large \((R^{-1})\) but near-degenerate mass.
In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.
In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

\[q\bar{q} \rightarrow V \rightarrow t\bar{t} \]
In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

\[q\bar{q} \rightarrow V \rightarrow t\bar{t} \]

\[V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)} \]
In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

$$qar{q} \rightarrow V \rightarrow t\bar{t}$$

$$V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)}$$

The pure SM background:

$$gg \rightarrow t\bar{t}$$
Flat extra-dimensions and top quarks

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

\[q\bar{q} \rightarrow V \rightarrow t\bar{t} \]

\[V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)} \]

The pure SM background:

\[gg \rightarrow t\bar{t} \]

All KK-excitations contribute to a resonance in \(m_{t\bar{t}} \) distribution. The presence of \(Z \) and \(Z^{(1)} \) is responsible for finite polarization of top quark.
Flat extra-dimensions and top quarks

Under progress

Ritesh Singh

New physics at LHC
For $M_{KK} = 2$ TeV, and $|m_{t\bar{t}} - M_{KK}| < 50$ GeV,

<table>
<thead>
<tr>
<th>Models</th>
<th>$\sigma(pp \rightarrow t\bar{t})$ (fb)</th>
<th>P_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>77.9</td>
<td>-1.33×10^{-3}</td>
</tr>
<tr>
<td>$SM + \gamma^{(1)}$</td>
<td>185</td>
<td>-2.55×10^{-4}</td>
</tr>
<tr>
<td>$SM + Z^{(1)}$</td>
<td>150</td>
<td>-3.26×10^{-1}</td>
</tr>
<tr>
<td>$SM + g^{(1)}$</td>
<td>1700</td>
<td>-6.13×10^{-5}</td>
</tr>
<tr>
<td>$SM + V_{KK}$</td>
<td>1900</td>
<td>-5.78×10^{-2}</td>
</tr>
</tbody>
</table>
Flat extra-dimensions and top quarks

Weak resonance model, \(f_i \bar{f}_i V := A_V T^f_i + B_V Q^{f_i} ; i = L, R \)

- Flat extra-dimensions and top quarks
- Under progress

Ritesh Singh
New physics at LHC
Flat extra-dimensions and top quarks

Strong resonance model, \(f \bar{f} V := R_V P_L + L_V P_L \)

\[
\begin{align*}
\sigma_S \text{[pb]} & \\
R_V & \\
L_V &
\end{align*}
\]
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.

For electro weak boson:

$$f_i \bar{f}_i V := \left(A_V T_3^f_i + B_V Q^f_i \right) Q_V(f_i) ; i = L, R$$
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.

For electro weak boson:

$$f_i \bar{f}_i V := \left(A_V \ T^f_i + B_V \ Q^f_i \right) Q_V(f_i) ; i = L, R$$

For strong boson:

$$f \bar{f} V := Q_V(f_R) \ R_V \ P_R + Q_V(f_L) \ L_V \ P_L$$
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.

For electro weak boson:

$$f_i \bar{f}_i V := \left(A_V T_3^i + B_V Q_i^f \right) Q_V(f_i) ; i = L, R$$

For strong boson:

$$f \bar{f} V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.

For electro weak boson:

$$f_i \bar{f}_i V := \left(A_V T_3^f + B_V Q^f_i \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f \bar{f} V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A_{FB}^b anomaly through $Z - Z'(1)$ mixing,
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of \(V_{KK} \).

For electro weak boson:

\[
 f_i \bar{f}_i V := \left(A_V T^f_i + B_V Q^f_i \right) Q_V(f_i) ; i = L, R
\]

For strong boson:

\[
 f \bar{f} V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L
\]

- can explain fermion mass hierarchy,
- can explain \(A_{FB}^b \) anomaly thoughg \(Z - Z'(1) \) mixing,
- can explain \(A_{FB}^t \) anomaly thoughg \(g^{(1)} \) contribution at Tevatron,
Warped extra-dimension and top quark

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}.

For electro weak boson:

$$f_i f_i V := \left(A_V T^f_3 + B_V Q^f_i \right) Q_V(f_i) ; i = L, R$$

For strong boson:

$$f f V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A^b_{FB} anomaly though $Z - Z'(1)$ mixing,
- can explain A^t_{FB} anomaly though $g^{(1)}$ contribution at Tevatron,
- can be probed at LHC upto $M_{KK} = 3$ TeV through polarization.
Warped extra-dimension and top quark

$$\Gamma_{g^{(1)}} = 627 \text{ GeV}, \Gamma_{Z^{(1)}} = 75 \text{ GeV}, \Gamma_{\gamma^{(1)}} = 137 \text{ GeV}$$

(Nucl. Phys. B797, 1, (2008))
In the case of warped extra-dimension:

- there are too many free parameters for the fit.
- the ”Weak resonance model” fails
- the ”Strong resonance model” fits well with ”wrong” values of the couplings.
- more observables are needed to establish the presence of extra-dimensions.
to conclude
to conclude

- There are many models of physics beyond the SM.
to conclude

- There are many models of physics beyond the SM.
- These models are expected to have significant signals at upcoming LHC.
to conclude

- There are many models of physics beyond the SM.
- These models are expected to have significant signals at upcoming LHC.
- Many of the models will have similar collider signature.
There are many models of physics beyond the SM.

These models are expected to have significant signals at upcoming LHC.

Many of the models will have similar collider signature.

We need a model-independent i.e. a bottom-up approach to the signatures to establish or rule out some models.
Beyond the conclusions....

- Spin measurement using azimuthal distribution (arXiv:0903.4705)
- Spin assessment in off-shell decays: A case of gluino (Under progress)
- MCMC analysis of CPV-MSSM and GHU-MSSM (Under progress)