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Magnetism in ionic insulators

Many ionic insulators have magnetic ions with an
associated magnetic moment due to incomplete shells.

Interactions between these localized moments.

Magnetic dipolar interaction energy (small ∼ 10−5 eV).

Exchange energy E = J
∑

〈ij〉 Si · Sj due to Coulomb
interactions and Pauli exclusion.

How big is J? When is it positive?
Difficult questions.
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Superexchange interaction

Consider MnO which is
antiferromagnetic ionic solid.

Mn2+ has 5 electrons in its d shell
being parallel due to Hund’s rule.

O2− has fully occupied p orbitals.

Antiparallel alignment of spins in
neighbouring Mn ions has lower
kinetic energy due to delocalization
of electrons (virtual hoppings).

Arnab Sen, TIFR Geometrically frustrated magnets



Unfrustrated magnets

Usually ordered states at low temperature T (O(JS2)).

Ordering at low T largely determined by classical
energetics even for small spin length S for unfrustrated
magnets.

E.g. ground state for cubic lattice Heisenberg
antiferromagnet is the Neel state and the low energy
excitations are long wavelength spin waves.
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Frustration

Not all the interactions can be simultaneously satisfied.

Randomness: e.g., Spin glasses

Multiple interactions: e.g., J1 − J2 Model

Geometry
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Geometric frustration

Arrangement of spins on the lattice such that all
interactions cannot be satisfied together.
Neel state avoided. Simplest case:

?

In extreme cases, macroscopic degeneracy of classical
minimum energy configurations (highly frustrated
magnets).

Arnab Sen, TIFR Geometrically frustrated magnets



Schematic of magnetic susceptibility

No magnetic ordering even for T well below O(JS2) unlike
unfrustrated magnets, instead in a cooperative
paramagnetic regime (J. Villain (1979)).

T → 0: Quantum effects+ subdominant interactions like
next nearest neighbour interactions, magnetic anisotropies
etc.
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Fig from Martinez et al., PRB 46, 10786 (1992)

f = |θcw| /T*
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Materials
 

TriangularKagomePyrochlore

Hagemann et al., PRL 86, 894 (2001).
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Interesting questions

Spin liquids

Description of the system when there is no magnetic
ordering? Is the physics trivial?

Signatures/probes of such correlated phases?

Sensitivity

How can degeneracy be split?

Can unusual states be obtained in this way?

’Quenching’ of leading exchange interactions allow new physics
to happen.
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Macroscopic degeneracy I

Macroscopic degeneracy of ground states of the Ising
antiferromagnet on both kagome and triangular lattice.

Disordered at all temperatures.
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Macroscopic degeneracy II

Zero modes for the kagome lattice Heisenberg
antiferromagnet.

Triangular lattice Heisenberg antiferromagnet forms an
ordered state at low temperatures.
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Ground state correlations

Local constraints can lead to long-ranged correlations.

Best example → dipolar spin liquid on the pyrochlore
lattice.
∑

4
Sα

i = 0 → ∇ · ~Bα = 0.

Power-law correlators–〈Bl
i (0)Bm

j (r)〉 ∝ δlm

(

3ri rj−r2δij
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Isakov, Gregor, Moessner and Sondhi, PRL 93, 167204 (2004).

Arnab Sen, TIFR Geometrically frustrated magnets



Quantum fluctuations

Quantum fluctuations can be introduced in a perturbative
manner by doing a 1/S expansion.

Large-S calculations on kagome lattice lead to an ordered
state (Chubukov, PRL 69, 832 (1992)).
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S = 1/2 Case

Precise nature of ground state
remains a subject of debate.

Exact diagonalization studies find
very short ranged spin-spin
correlations and a spin gap of
△ ≈ 0.25J.

Recent study finds a state with a 36
site unit cell to be the ground state
(Singh and Huse, PRB 76,
180407(R) (2007)).

Also obtained by Nikolic and Senthil (PRB, 68, 214415
(2003), Fig from there) using a Resonating-Valence-Bond
picture (Anderson, Science 235, 1196 (1987)) .
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Single-ion anisotropy

Motion of the electrons in the magnetic ions influenced by
the crystalline environment.

Energy depends on the absolute orientation with respect to
the crystal axes.
H = J

∑

〈ij〉
~Si · ~Sj − D

∑

i(
~Si · n̂i)

2

Pyrochlore spin ice Ho2Ti2O7 (Ho3+, J=8)
Easy axes n̂ point outward from center of each
tetrahedron, D ∼ 50K , J ∼ 1K .
Harris et. al., PRL 79, 2554 (1997).

Kagome Nd-langasite Nd3Ga5SiO14 (Nd3+, J=9/2)
Easy axis perpendicular to lattice plane,
D ∼ 10K , J ∼ 1.5K
A. Zorko et. al., PRL 100, 147201 (2008).
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Our work

S ≥ 3/2 easy axis on the kagome and triangular lattices:

H = J
∑

〈ij〉 Si · Sj − D
∑

i(S
z
i )2

Physics when D term forces a collinear state?

Best answered by working out small J/D expansion for
effective Hamiltonian for pseudospin-1/2 variables σi

(σz = ±1 ↔ Sz = ±S).
Assumption: Perturbative results in J/D will be valid as long as
collinear states selected by anisotropy.
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Zero field

To O(J3/D2), Heff is given as
Heff = J1

∑

〈ij〉 σiσj − J2
∑

〈ij〉
1−σiσj

2 (σiHi + σjHj)
where
J1 = JS2, J2 = (S3J3)/(4D2(2S − 1)2), and exchange field
Hi = Γijσj with Γij = 1 for nearest neighbours and zero
otherwise.

Additional O(J2S/D2S−1) pseudo-spin exchange term
subleading for S > 3/2.
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Dice Lattice Dimer Model

Can be cast as an interacting dimer model on the Dice
lattice.
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No minority rule

HD = 2J2
∑

P n2|nP〉〈nP|

Minimizing J2 for minimally frustrated states → No spin is a
minority spin of both the triangles to which it belongs.
Entropy still macroscopic.
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Semiclassical spin liquid
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System remains a spin liquid down to very low
temperatures.
Very different short-ranged correlations from classical Ising
model.
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Triangular Lattice
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The J2 term

HD can be written in a simplified form as
HD = 2J2

∑3
n=0 n2|nP〉〈nP|

HD can be minimized by noting that the average number of
dimers on the perimeter of a hexagon is 2 and 〈x2〉 ≥ 〈x〉2

Minimum potential energy for all configurations with g2 = 1.
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Orientationally ordered state

0
−1

0

T2 T1

T0

Translational symmetry of the triangular lattice intact.

However, symmetry of π/3 rotations about a lattice site
broken.
Orientational OP Φ =

∑

P −Bp exp(i2pπi/3) where Bp

denotes the average of the Ising exchange energy on all
links of the pth (p=0,1,2) on the triangular lattice.
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Transition
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Below a critical temperature Tc ≈ 1.67J2, the system
orders in an orientationally ordered state.

The transition has a first order nature.
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Consequences (I)

 0
 

 0.01
 

 0.02
 

 0.03
 

 0.04
 

 0  0.5  1  1.5  2  2.5
2βJ2(S)

L=24

0.025|Φ|2

2χJ2(S)/(S2Ns)

0.0 2.0
0

π

π
0 π 2π

a)

2

S(q)

qx

qy

b)

Bragg lines with enhanced signal are the signature of
orientational order.

Sudden drop in magnetic susceptibility χ when the
ordering transition takes place.
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Consequences (II)

Presence of low-temperature zero magnetization plateau
that extends for a range of magnetic fields
0 < B < Bc ∼ J3/D2.

Slow glassy dynamics of spins due to extended nature of
stripes in this disorder-free system.
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Kagome in magnetic field

Include magnetic field along the easy axis
H = J

∑

〈ij〉
~Si · ~Sj − D

∑

i(S
z
i )2 − B

∑

i Sz
i

For Ising spins, m = 1/3 plateau for 0 < |B| < 4JS, with
the Zeeman energy gap largest at B = 2JS.

Ground states characterized by a 2 : 1 constraint that
requires each triangle to have (+S,+S,−S).

Can be represented as dimer coverings of honeycomb
lattice.

Dimer
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Effective hamiltonian on the m = 1/3 plateau

Because of the strong 2 : 1 constraint, the first term (for
any S ≥ 3/2) that breaks degeneracy is a diagonal term at
O(J6/D5).

Leading off-diagonal term tring ∼ J6S−2/D6S−3.

Calculation tricky, result simple
Hexagons with exactly one dimer on them pay energy

penalty V = (2S)6J6

1024(2S−1)5D5 .
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Sublattice symmetry broken
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Dimer Representation of
m=1/3 configurations.

Ordering can be characterized by a sublattice order
parameter Φ =

∑

p mp exp(2pπi/3), where mp denotes the
sublattice magnetization of the pth sublattice.
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Glassy dynamics without disorder

JS2/V(S) =2
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Vogel-Fulcher law: Relaxation time τ = exp(∆/(T − Tf ))

Arnab Sen, TIFR Geometrically frustrated magnets



Summary

S > 3/2 kagome and triangular lattice antiferromagnets
with strong easy axis anisotropy considered.

The kagome magnet goes into a semiclassical spin liquid
with distinctive and unusual short-range correlations below
a crossover temperature T ∗ ≈ 0.08J3S/D2 at zero field.

The triangular magnet undergoes a first order transition at
Tc ≈ 0.1J3/D2 to an orientationally ordered collinear state
that gives rise to a zero magnetization plateau for small
magnetic fields along the easy axis.

On the m = 1/3 magnetization plateau on the kagome
lattice, the system breaks sublattice rotation symmetry but
no translational symmetry.
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