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Plan:

e Random Convex Hull = definition

e Convex Hull of n planar Brownian motions
e Motivation = an ecological problem

e Cauchy's formulae for perimeter and area of a closed convex curve in
two dimensions

—> applied to random convex polygon

= link to Extreme Value Statistics
e Exact results for the mean perimeter and the mean area for all n.

e Summary and Conclusions
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Random Convex Hull in a Plane

e Convex Hull = Minimal convex polygon enclosing the set
e The shape of the convex hull — different for each sample
e Points drawn from a distribution — Independent or Correlated

e Question: Statistics of observables: perimeter, area and no. of vertices
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Independent Points in a Plane

Each point chosen independently from the same distribution
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Independent Points in a Plane

Each point chosen independently from the same distribution
Associated Random Convex Hull — well studied by diverse methods

P. Lévy ('48), J. Geffroy ('59), Spitzer & Widom ('59), Baxter ('59)..
Rényi & Sulanke ('63), Efron ('65), ....many others
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Correlated Points: Vertices of an Open Random

Walk

convex hull convex hull

/\QQ/ ZOV

8-step walk another 8—step walk

e Continuous-time limit: Brownian path of duration T
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Correlated Points: Vertices of an Open Random

Walk

convex hull convex hull

7ol ZOV

8-step walk another 8—step walk

e Continuous-time limit: Brownian path of duration T

e mean perimeter and mean area of the associated Convex hull?

e mean perimeter: (L) = V8nx T (Takacs, '80)
e mean area: (A1) = 5 T (El Bachir, '83, Letac '93)
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Correlated Points: Vertices of a Closed Random

Walk

| 7 /
L/ 3
W%
8 step random bridge another 8 step bridge

e Continuous-time limit: Brownian bridge of duration T : starting at O
and returning to it after time T
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Correlated Points: Vertices of a Closed Random

Walk

| 7 /
L/ 3
W%
8 step random bridge another 8 step bridge

e Continuous-time limit: Brownian bridge of duration T : starting at O
and returning to it after time T

e mean perimeter: (L) = %3 T (Goldman, '96).

e mean area: (A)="7
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Home Range Estimate via Convex Hull

Models of home range for animal movement, Worton (1987)

Integrating Scientific Methods with Habitat Conservation Planning, Murphy
and Noon (1992)

Theory of home range estimation from displacement measurements of animal
populations, Giuggioli et. al. (2005)

Home Range Estimates, Boyle et. al., (2009)
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Global Convex Hull of n Independent Brownian

Paths
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7(‘
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e
S,

e Mean perimeter (L,) and mean area (A,) of n independent Brownian

paths (bridges) each of duration T7?

o (L)) =a,VT; (AN =0,T
a1 = V8w, (= /2| (open path)

oy =/73/2, 1 =7|(closed path)
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Global Convex Hull of n Independent Brownian

Paths

-----

-
7(‘
~—
e
S,

e Mean perimeter (L,) and mean area (A,) of n independent Brownian

paths (bridges) each of duration T7?

o (L)) =a,VT; (AN =0,T
a1 = V8w, (= /2| (open path)

oy =/73/2, 1 =7|(closed path)
— both for open and closed paths — n-dependence?
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e Recall




Global Convex Hull of n Independent Brownian
Paths

n = 3 closed paths n = 10 open paths
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Cauchy’s Formulae for a Closed Convex Curve

C : CLOSED CONVEX CURVE

e For any point [X(s), Y(s)] on C define:
Support function: M(6) = max [X(s)cos(8) + Y(s)sin(6)]
se
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Cauchy’s Formulae for a Closed Convex Curve

C : CLOSED CONVEX CURVE

e For any point [X(s), Y(s)] on C define:
Support function: M(6) = max [X(s)cos(8) + Y(s)sin(6)]
se

2T
e Perimeter: L= / do M(0)
Jo
. _ 1% 2 / 2
o Area: A= | do [/\/I (0) — [M'(6)]
Jo
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a circle centered at the origin:

v
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a circle centered at the origin:

\
|
|

/

\\ oe
4

2w
L= / do M(6) = 2rr
0

A = % /0 6 [M2(0) ~ M O)F] = =

v
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a circle centered at the origin: a circle touching the origin:

M(O) =r M(0) = r(1 +sin6)
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a circle centered at the origin: a circle touching the origin:

M(O) =r M(0) = r(1 +sin6)

\\
]
) r

\\ oe
4 0

2w
L= / do M(6) = 2rr
0

A = % /0 6 [M2(0) ~ M O)F] = =
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Cauchy’s formulae Applied to Convex Polygon

1/

g O

Let (xk, yx) € | = vertices of an N-step random walk starting at O

Let C (green) be the associated Convex Hull
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Cauchy’s formulae Applied to Convex Polygon

(xk, yk) € | = vertices of the walk
C — Convex Hull with coordinates {X(s), Y(s)} on C
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Cauchy’s formulae Applied to Convex Polygon

(X5 Y
Yo T 7 7 7 = :
!
T + ooy '/
+ |
0 }
O \ Xk*
+ \ i
AN
\ M@)

M(9) = max [X(s)cos® + Y(s)sin6]

= 0 in6
max [xk cos 8 + yi sin 6]
= Xg+ COS O + yy sin 6

k* — label of the point with largest projection along 6
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Support Function of a Convex Hull

-

(Xis i)~~~ ; M'(0)

Y
NOLX
0 \\J‘,/ ~ \
[0 10N Xyw v,
| \ +/
\.
" M(@)
M(0) = i+ cos + yi«sinf
M'(6) = —xk=sinf+ yy- cosf
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Cauchy’s Formulae Applied to Random Convex Hull
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Cauchy’s Formulae Applied to Random Convex Hull

Mean perimeter of a random convex polygon

W= [ a0 m)

JOo

with M(0) = xx= cos @ + yi= sin 0

=1 [ e[y - )]

with M’(0) = —xk= sin 0 + yx« cos @
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Isotropically Distributed Points

Mean Perimeter

with M(0 = 0) = maxkes {xx} = X~
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Isotropically Distributed Points

Mean Perimeter

with M(0 = 0) = maxkes {xx} = X~

N (o) (A) = [(M2(0)) — (M )]

with M’ (0 = 0) = yu«
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Isotropically Distributed Points

Mean Perimeter

with M(0 = 0) = maxkes {xx} = X~

N (o) (A) = [(M2(0)) — (M )]

with M’ (0 = 0) = yu«

— Link to Extreme Value Statistics
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Cauchy’s Formulae Applied to the Convex Hull of a

Brownian Path (n=1)

(6, yr)
N\

|
(L) = 2m(M(0))

——————————— [ with M(0) = max_{x(7)} = x(7")

0<7<T

Mean Area

_ 2 o / 2
x(r), y(r) — a pair of (A) = m [(M2(0)) = (IM'(O)])]
independent one-dimensional ) ey i
Brownian motions: 0 <7< T with M’(0) = y(7")
% = 1x(7)
& =ny(7)
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value of y at the special time © when

is maximal

0 WV

xo| /N B 0
“/ ;NT{O) //
SRR o
|
) \

<
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value of y at the special time © when

is maximal

xo| /N B 0
“/ ;NT{O) //
SRR o
|
) \

0 WV

<

o (M(0)) = [;° dM M oy(M|T); (M?(0)) = [;~ dM M? o1(M|T)
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value of y at the special time © when

is maximal

xo| /N B Y0
“/ ;NT{O) //
SRR o
|
) \

1Y TV

o (M(0)) = [;° dM M oy(M|T); (M?(0)) = [;~ dM M? o1(M|T)
e 01(M|T) — prob. density of maximum M(0) of x(7) in [0, T]
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value of y at the special time © when

is maximal

xo| /N B Y0
“/ ;NT{O) //
SRR o
|
) \

1Y TV

o (M(0)) = [;° dM M oy(M|T); (M?(0)) = [;~ dM M? o1(M|T)
e 01(M|T) — prob. density of maximum M(0) of x(7) in [0, T]

o (IMO)) =[] dr* pu(+*|T) (2(77))
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value of y at the special time © when

is maximal

xo| /N B Y0
“/ ;NT{O) //
SRR o
|
) \

1Y TV

o (M(0)) = [;° dM M oy(M|T); (M?(0)) = [;~ dM M? o1(M|T)
e 01(M|T) — prob. density of maximum M(0) of x(7) in [0, T]

o (IMO)) =[] dr pu(7*|T) (2(77)) = (77)
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Distribution of M and = for a single Brownian Path

X(7) ‘
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Distribution of M and = for a single Brownian Path
X(7) ‘
AN
y

0 T* T—= T

e Joint Distribution: P;(M,7*|T) = # e M/
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Distribution of M and = for a single Brownian Path

X(1) !

0 T* T—= T

e Joint Distribution: P;(M,7*|T) = # e M/

e Marginals: o1(M|T) = \/;efw/ﬂ
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Distribution of M and = for a single Brownian Path

X(7) ‘

0 T* T—= T
e Joint Distribution: Pi(M,7*|T) = W3/+ — e—M?/2r*
o Marginals: o1 (M|T) = \/gefw/zr
pu(T7|T) = # — Lévy's arcsine law
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Distribution of the time at which a Brownian

Motion is maximal over [0,T]

*

Lévy's Arcsine Law: p1(7*|T) = + £ (%)
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Distribution of the time at which a Brownian

Motion is maximal over [0,T]

Lévy's Arcsine Law: p1(7*|T) = + £ (%)

2
Cumulative distribution: Prob(7* < t|T) = = arcsin (\/f)
7r

()

L
05
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Results for n=1 Open Brownian Path

@ Mean Perimeter

(L) =V8rnT
T
A a0
x(7), y(r) — a pair of (4) 2
independent one-dimensional
Brownian motions over

0<7<T
Takdcs, Expected perimeter length, Amer. Math. Month., 87 (1980)
El Bachir, (1983)
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Results for n=1 Closed Brownian Path

Mean Perimeter

=T Goldman, '96

x(7), y(r) — a pair of
independent one-dimensional
Brownian bridges over 0 <7 < T
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Results for n=1 Closed Brownian Path

Mean Perimeter

(L) =4/=T Goldman, '96

Mean Area

=
(A) = % — New Result

x(7), y(r) — a pair of )
independent one-dimensional
Brownian bridges over 0 <7 < T
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Convex Hull of n Independent Brownian Paths

Mean Perimeter

(Ln) = 2w (M,)

with M, = max,; {xi(7)} = x;- (77)

4

Mean Area

T (A = [2) — ()]

xi(7), yi(T) — 2 n independent with M), = yi-(T") |
one-dimensional Brownian paths each of
duration T
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Distribution of the global maximum M and © for n

paths

x@| |/ N
W, 2
0 v
3 \\\
0 T* T—= T
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Distribution of the global maximum M and © for n

paths

x@| |/ N
W, 2
0 v
3 \\\
0 T* T—= T

n—1
o Joint Distribution: P,(M, 7| T) = n Pi(M,*|T) [erf (L)}

u2

erf(z) = % foz du e”
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Marginals of M and = for arbitrary n

n—1
e Marginals: o,(M|T) = \/gne_Mz/zr [erf (%”
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Marginals of M and = for arbitrary n

n—1
e Marginals: 0,(M|T) = /-2 ne—M/2T [erf (%)}

pn(T*|T) = % fa (T*/T)
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Marginals of M and = for arbitrary n

n—1
e Marginals: 0,(M|T) = /-2 ne—M/2T [erf (%)}

pn(T*|T) = % fa (T*/T)

/:C ue [erf(uy/x)]" ! du
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Marginals of M and = for arbitrary n

n—1
e Marginals: 0,(M|T) = /-2 ne—M/2T [erf (%)}

pn(T*|T) = % fa (T*/T)
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Marginals for n Independent Brownian Bridges

X(T)
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Marginals for n Independent Brownian Bridges

X(T)
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Marginals for n Independent Brownian Bridges

X(T)

e Marginals: ,(M|T) =4 M ( _2M2/T) B

po(T*|T) = + 82 (77/T)
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Marginals for n Independent Brownian Bridges

X(T)

e Marginals: ,(M|T) =4 M ( _2M2/T)

po(T*|T) = + 82 (77/T)

£ (:)=n i (n - 1) (—1)

[1+4k><(17><)]2
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Perimeter (open paths)

e v

xi(7), yi(t) — 2n
independent
one-dimensional Brownian
pathsover 0 <7< T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Perimeter (open paths)

<Ln> = anﬁ

e v

an = 4nV21 / duue™ [erf(u)]" !
Jo

xi(7), yi(t) — 2n
independent
one-dimensional Brownian
pathsover 0 <7< T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Perimeter (open paths)
(L) = anVT

on = 4m/27r/ duue [erf(u)]™ !
0

a1 = V8r=5,013.
xi(1), yi(t) — 2n ay = 41 =7,089.
independent tan™! (1/\/§>
one-dimensional Brownian a3 = 24—~/ —8 333..
VT
pathsover 0 <7 < T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Area (open paths)

=6,
. L
x(7), yi(r) = 2n with M/, = y;. (%)
independent
one-dimensional Brownian
pathsover 0 <7< T

S.N. Majumdar Convex Hull of n Planar Brownian Motions



Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Area (open paths)

<An> = ﬁn T

: B, = 4n/m / du u ferf(u)]" " (ve™" — h(u)

=), ) 0
X,'(’T), y,'(’T) —2n _ il 1 efuz/t dt
h(u) = 2w fo t(1—1)

independent
one-dimensional Brownian
pathsover 0 <7< T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Open Brownian Paths

Mean Area (open paths)

<An> = 5n T

Bn=4n\T /0.OC du u [erf(u)]"* (ue*“ — h(u)

xi(7), yi(t) — 2n 6 = Z—1,570.
independent 2

one-dimensional Brownian P = m=3,141.
pathsover 0 <7< T B = w+3—+3=4400.
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Closed Brownian Paths

Mean Perimeter (Closed Paths)

369 -7y <"> (=1)k+1

xi(1), yi(T) — 2n
independent
one-dimensional Brownian
bridges over 0 <7 < T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Closed Brownian Paths

Mean Perimeter (Closed Paths)

(L7) = oV T
C 7‘—3/2 S n (71)k+1
TR Z@ Vk

af = +/m3/2=3,937.

xi(7), yi(t) — 2n o = Vm3(vV2-1/2)=5,090..
independent _ 3 3 1
one-dimensional Brownian a5 = Vr3 (ﬁ -5 I %> =5,732..

bridges over 0 <7 < T
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Mean Perimeter and Mean Area of the Convex Hull

of n Independent Closed Brownian Paths

\ Mean Area (Closed Paths)

(AT) =BaT
T lem1l n 1¢ B
/ G =5 Z -4 (1) w(k
69 3.6 B 2 kK 3 + 2 (1) w(k)
k=1 k=2
Xi(T), y,'(T) —2n
independent w(k) = (}) (k—1)7*? (ktan " (vVk — 1) — vk — 1)

one-dimensional Brownian
bridges over 0 <7 < T
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Mean Perimeter and Mean Area of the Convex Hull
of n Independent Closed Brownian Paths

Mean Area (Closed Paths)

(AR) =BaT

¢ s
xi(7), yi(T) — 2n Bf = < =1,047..
independent (4 + 37)
one-dimensional Brownian B = — o = 1,757..
bridges over 0 <7< T g = 2,250..
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Numerical Check

Average perimeter / area

Number of paths

The coefficients a, (mean perimeter) (lower triangle), 8, (mean area)
(upper triangle) of n open paths and similarly o¢ (square) and 5
(diamond) for n closed paths, plotted against n. The symbols denote
numerical simulations (up to n = 10, with 10° realisations for each point)
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Asymptotics for large n

For n open paths:

(Lp) ~ (2#\/%) VT

(A)) ~@2nminn) T
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Asymptotics for large n

For n open paths:

(Lp) ~ (2#\/%) VT

(A)) ~@2nminn) T

For n closed paths:
(L) ~ <7r Vv2In n) VT

(A5~ (ZInn) T
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Asymptotics for large n

For n open paths:

(Lp) ~ (2#\/%) VT

(A)) ~@2nminn) T

For n closed paths:
(L) ~ <7r Vv2In n) VT

(A5~ (ZInn) T
e As n — oo, Convex Hull — Circle
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Asymptotics for large n

For n open paths:

(Lp) ~ (2#\/%) VT

(A)) ~@2nminn) T

For n closed paths:
(L) ~ <7r Vv2In n) VT

(A5~ (ZInn) T

e As n — oo, Convex Hull — Circle

e Very slow growth with n = good news for conservation
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Summary and Conclusion

e Unified approach adapting Cauchy’'s formulae
= Mean Perimeter and Area of Random Convex Hull

both for Independent and Correlated points
e Provides a link Random Convex Hull = Extreme Value Statistics

e Exact results for n planar Brownian paths — Open and Closed

= Ecological Implication: Home Range Estimate

Very slow (logarithmic) growth of Home Range with population size n
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Open Questions

e For n planar Brownian paths each of duration T
Mean no. of Vertices (V,(T)) — ?
Only n =1 case (Open) path, the result is known:

’ (VA(T)) =~ 2 log( T)‘ for large T (Baxter, '61)

e Distributions of the perimeter, area of the convex hull?

e Non-Brownian paths — anomalous diffusion, e.g., Lévy flights, external
potential ?

e Effect of Interactions between trajectories on convex hull?

e 3 dimensions: Random Convex Polytopes ?
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