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Broad relevance of collective behavior

Observed in wide range of organisms and ecological contexts

— From bacterial (or cellular) swarms to wildebeests

Nonequilibrium statistical mechanics of self-driven particles

Robotics: Coordination of mobile autonomous agents
Natural Algorithms

Traffic Organization, Human Crowds, etc.



Question: Individuals to collectives

1. How do individual level interactions scale to collective patterns

Individual level interactions Self-ordered collective motion

Video Courtesy: Yael Katz @ CouzinLab



Why such interactions occur?

Individual level interactions Self-ordered collective motion

— Local interactions can change

— Over relatively long evolutionary timescales (due to reproduction, mutation and natural
selection)

2. Why do such interactions among individuals occur/exist in the
natural world?

Image Credit: http://richardschwartz.files.wordpress.com/2010/07/fish-school.jpg



Individual versus collective benefits

* One may argue that local social interactions lead to emergent
group benefits (or mutual benefits to individual members).

— e.g., Improved navigational and/or foraging ability

e But natural selection does not optimize group properties.

— It favors individuals with higher relative-fitness, typically leading to
conflict among individuals.

 What happens in a migratory context?



Collective motion in migratory species

e Ubiquitous phenomena: Cells to Wildebeests.
— Involves climbing gradients (magnetic, resource, etc).

* Massive number of individuals

Image credits:
(L) Tamas Vicsek, (C) http://forces.si.edu/images/elnino/locustLarge.jpg, (R) http://www.martinwgrosnick.com/images/Wildebeest_48284F.jpg
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A self-propelled particle model
for collective migration

* We will consider following two individual traits

— Ability to sense environmental gradient/cues

» Geomagnetic field, resource, thermal, chemical and/or electromagnetic fields.

— Ability to socially interact with neighbors

* Respond to neighbors motion, e.g., through visual or chemical cues.

* Given a need to migrate in a specific direction:

— How do individuals optimize above two traits.

* Individuals (self-propelled particles) move
— in a continuous two-dimensional space
— with constant speed
— update their direction of motion in discrete time steps.



Solitary migration

* Environment: a global migratory gradient along x-axis.

s

Migratory direction

* Trait 1: Gradient detection trait (ability): Wgi

— Determines how accurately an individuals find migratory direction.

0; = —'w‘gigz'(f)-*-

— For simplicity, assume temporally uncorrelated noise.

dgi(F;wg;) Low "-'-FQri High "-'-“'gi dg; (6 wyi)

Migratory direction Migratory direction

V Guttal and | D Couzin, 2010, PNAS, Vol: 107: 16172-16177 Based on Couzin et al, Nature, 2005



Migratory benefits

* b, =distance moved in the direction
of gradient, per unit time
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Costs of gradient detection ability
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* p, has same units as migratory benetfits.

* Different magnitude of costs is obtained by varying p,,

V Guttal and | D Couzin, 2010, PNAS, Vol: 107: 16172-16177



Individual migratory fitness

* Fitness (reproductive success) = Benefit — Cost.
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e Solitary individual optimum.

 What if we allow flocking interactions between individuals?



Collective motion

Trait 2: Flocking/ Social interactions: wjg
Denote position by ¢i(?) and velocity by V;(f)

Repulsion: Avoid others within a body length r,

Sociality: a tendency to attract towards, and align direction of travel,
with neighbors within radius r, (outer radius)
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Attraction Alignment

V Guttal and | D Couzin, 2010, PNAS, Vol: 107: 16172-16177

Based on Couzin et al, Nature, 2005



Balancing two traits/tendencies

e Gradient detection trait (ability): Wy

e Sociality trait: Ws
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V Guttal and | D Couzin, 2010, PNAS, Vol: 107: 16172-16177

Based on Couzin et al, Nature, 2005



Plausible population level dynamics

o 00923%98
fv“ﬁgw%go“ o . . .
}%@m Brownian swarms Collective Migration
n°f:°n < ’ Mlgrat Y
c Benefits per
A Density=1.0 irdivudal
v / 1
= 0.5 W Sy i=en
O
(&
Q .
A | So.lltar\./
3 0 Migrations
1 1.0
Random walking/ >
individuals .

Gradient detection ability u‘.ug -



Individual traits are determined by
natural selection

 We do not predetermine what the individual traits in the
population are.

* |tis going to be determined by natural selection.
— Individuals may possess only gradient detection ability.
— Or only social interactions and thus, follow nearby individuals.

— Or a combination of both.

— Evolved populations may also be heterogeneous.



Plausible population level dynamics
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* Where would evolved populations be in this parameter space?



Selection algorithm

Start with a large homogeneous population (large sizes: 16,000 to
60,000 individuals)

They move according to the equations of motion over one
generation (averaged over several realizations) .

Calculate Fitness:

— Find benefit for each individual
— Find cost of gradient detection depending on its g
— Calculate Fithess = Benefit — Cost.

Reproduce proportional to fitness (Roulette Wheel Selection)
— Asexual reproduction

— The gradient detection ability, w, and the sociality trait, ws of the parent are
passed on to offspring with a small mutation.

Repeat the process until an equilibrium of trait/phenotype
distributions is reached.



Evolved strategies:

No cost of gradient climbing:
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Evolved strategies:
* Very high cost of gradient climbing:
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Evolved strategies:

* Intermediate cost of gradient climbing:
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Spatiotemporal dynamics of the evolved

popu lation: 16,000 individuals using GPU (CUDA) on this laptop (realtime)



Self-sorting and collective

migration




Group structure in the evolved
population

Tl
agaasilye .
s i -.?e_\,:;.’,-\.;(':.
Y

GREEN: Social individuals (high sociality but weak or no gradient detection ability)
BLUE: Leaders (high gradient climbing ability and low sociality)

Self-organize into groups with mixture populations and they collectively migrate



Group structure in the evolved
population

(Y]

h | | |

20.9

t - :T 100 :IIIIIIIII LU rrrrrrrri Frrrrrrrd |||||||||:

(O 2

Q) iu:: SO —

A ° ]

O 0.6} 3 F o . °°
- = R E

c S o} ;

O 2 | z

© umm — - =

) = 20 =

h O 3_ ;{ =0 oy

(@ Rl A L L L L ]

Q_ 400 800 1200 1600 2000

o) - Group size

L 2

(a .

o
S

500 1000 1500
Group Size



Strategies as a function of cost of o,
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Solitary versus social strategies

Proportion of leaders
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If we do not allow social
Interactions:

i.e., for solitary individuals,
the migration collapses
at cost approx. 18 units.



Phase diagram of evolved populations
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Role of social interactions

* It allows exploitation of leaders i.e., those who invest in
sensing environment are exploited by social individuals who
only follow others naively.

 They both coexist as a mixed strategy, resulting in collective
migration.

* In our model, evolved collective migratory populations
migrate less efficiently than solitary populations.
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