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Origin of Dirac physics in graphene



Relevant Basics about graphene

A

B

Tight binding model for graphene
with nearest neighbor hopping.

Can in principle include next-nearest 
neighbor hopping: same low energy
physics.   Ref: arXiv:0709.1163

Each unit cell has two electrons
from 2pz orbital leading to 
delocalized   bond.Honeycomb lattice 



Diagonalize in momentum space
 to get the energy dispersion.
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Energy dispersion: 



There are two energy bands 
(valence and conduction)
corresponding to energies  

Two inequivalent Fermi points 
rather than a Fermi-line.

These two bands touch each other
at six points at the edges of the 
Brillouin zone

Two of these points K and K’
are inequivalent; rest are related by 
translation of a lattice vector.

Dirac cone about the K and K’ points



No large k scattering leads to two species of massless Dirac Fermions. 

Thus at low energies one can think of 
a four component wave function for the 
low-energy quasiparticles (sans spin). 

Terminology             Pauli matrix               Relevant space

 Pseudospin                                               2 by 2 matrix associated
                                                                   with two sublattice structure

 Valley                                                        2 by 2 matrix associated
                                                                   with two BZ points K and K’

 Spin                                                           2 by 2 matrix associated with
                                                                   the physical spin.

At each valley, we have a massless
Dirac eqn. with Dirac matrices 
replaced by Pauli matrices and c 
replaced by vF.



Zero doping
Fermi point

Finite doping
Fermi surface

EF can be tuned by an 
external gate voltage.

DOS varies linearly with E for
undoped graphene but is 
almost a constant at large 
doping. 

EF=0 EF>0

Helicity associated with Dirac electrons at K and K’ points.

Electrons with E>0 around K point have their
pseudospin along k where pseudospin refers 
to A-B space. For K’, pseudospin points 
opposite to k.

Solution of Ha about K point:

Within RG, interactions are (marginally) irrelevant.



Dirac nature II: Potential barriers in graphene

V0

t

r

d

Simple Problem: What is the probability of the 
incident electron to penetrate the barrier?

Solve the Schrodinger equation
and match the boundary conditions 

Answer:

where

Basic point: For V0 >>E, T  a monotonically decreasing 
function of the dimensionless barrier strength.



Simple QM 102: A 2D massless Dirac electron in a potential barrier

V0

t

r

d

Basic point: T is an oscillatory function of the dimensionless barrier strength. 
Qualitatively different physics from that of the Schrödinger electrons.

For normal incidence, T=1.
Klein paradox for Dirac electrons.
Consequence of inability of a 
scalar potential to flip pseudospin

For any angle of incidence T=1 if
  n  Transmission resonance 
condition for Dirac electrons. 

Katnelson et al. Nature Physics ( 2006).



Conventional Superconducting junctions



Superconductivity and tunnel junctions

Measurement of 
tunneling conductance 

eV

Normal metal (N) Superconductor (S)

Insulator (I)

eV

Normal metal (N)

Insulator (I)

Normal metal (N)

N-I-N interface

N-I-S interface



N I S

Andreev reflection
2e charge transfer

Basic mechanism of current 
flow in a N-I-S junction

Andreev reflection is strongly suppressed 
in conventional junctions if the insulating 
layer provides a large potential barrier: 
so called  tunneling limit

In conventional junctions, subgap 
tunneling conductance is a 
monotonically decreasing function 
of the effective barrier strength Z. 

BTK, PRB, 25 4515 (1982)

Zero bias tunneling condutance
decays as 1/(1+2z^2)^2 with 
increasing barrier strength.



Josephson Effect

S1 S2

The ground state wavefunctions
have different phases for S1 and S2

Thus one might expect a current 
between them: DC Josephson Effect

Experiments: Josephson junctions [Likharev, RMP 1979]

S1 S2N

S-N-S junctions or weak links

S1 S2B

S-B-S or tunnel junctions 



Josephson effect in conventional tunnel junctions

S1 S2B

Formation of localized subgap 
Andreev bound states at the 
barrier with energy dispersion
which depends on the phase
difference of the superconductors.

The primary contribution
to Josephson current comes
from these bound states.

Kulik-Omelyanchuk limit: Ambegaokar-Baratoff limit:

Both Ic and IcRN  monotonically decrease as we go from KO to AB limit.



Graphene Junctions



Graphene N-B-S junctions
Superconductivity is induced via
proximity effect by the electrode.

Effective potential barrier created by a gate 
voltage Vg over a length d.  Dimensionless 
barrier strength: 

Dirac-Bogoliubov-de Gennes (DBdG) Equation

 EF         Fermi energy
U(r)        Applied Potential = Vg for 0>x>-d

 r         Superconducting pair-potential 
between electrons and holes at K and K’ points 

Question: How would
the tunneling conductance
of such a junction behave 
as a function of the gate 
voltage?

Applied bias voltage V.



Results in the thin barrier limit

Central Result: In complete contrast to conventional NBS junction,
Graphene NBS junctions, due to the presence of Dirac-like dispersion 
of its electrons, exhibit novel  periodic oscillatory behavior of subgap
 tunneling conductance as the barrier strength is varied. 

  periodic oscillations of 
subgap
tunneling conductance as a 
function of barrier strength  

Tunneling conductance maxima
occur at =(n+1/2)



Transmission resonance condition

Maxima of conductance occur
when r=0.

For subgap voltages, in the thin barrier limit, and for
eV << EF, it turns out that 

r=0  and 
hence G is 
maximum if:

.1  =0: Manifestation of Klein Paradox. Not seen
      in tunneling conductance due to averaging over
      transverse momenta. 

  =0: Maxima of tunneling conductance 
     at the gap edge: also seen in conventional
     NBS junctions. 

3. =(n+1/2)   Novel transmission resonance
    condition for graphene NBS junction. 



Oscillations persists: so one expects 
the oscillatory behavior both as 
functions of VG and d to be robust.

However, the maximum value of G
may be lesser than the Andreev 
limit value of 2G0 

The periodicity of the oscillations 
shall vary with VG and will deviate 
from 
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Graphene S-B-S junctions

 EF         Fermi energy
U(r)        Applied Potential = V0 for 0>x>-d

 r         Superconducting pair-potential in
              regions I and II as shown 

Question: How would 
the Josephson current
behave as a function
of the gate voltage V0

Procedure:
1. Solve the DBdG equation in regions 
     I, II and B.

2. Match the boundary conditions at the 
    boundaries between regions I and B 
    and B and II.  

3. Obtain dispersion for bound Andreev
    subgap states and hence find the 
    Josephson current. 

Schematic Setup 
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DBdG quasiparticles has a
transmission probability T
which is an oscillatory function
of the barrier strength 

The Josephson current is an 
oscillatory function of the barrier
strength    



Ic and IcRN are   periodic bounded oscillatory functions of  the effective barrier strength 

For =n, IcRN reaches 0/e: 
Kulik-Omelyanchuk limit.

IcRN is bounded with values between 0/e for =n and  2.270/e for 
=(n+1/2).  

Due to transmission resonance of DBdG
quasiparticles, it is not possible to make
T arbitrarily small by increasing gate voltage
V0. Thus, these junctions never reach 
Ambegaokar-Baratoff limit.



Kondo Physics and STM spectroscopy



Kondo effect in conventional systems

Formation of a many-body 
correlated state below a 
crossover temperature TK, 
where the impurity spin is 
screened by the conduction 
electrons.

Metal + Magnetic Impurity

Features of Kondo effect:

1. Appropriately described by the Kondo model:

2. The coupling J, in the RG sense, grows 
    at low T and becomes weak at high T. 
    Negative beta function. 
    Anderson J. Phys. C 3, 2436–2441 (1970) .

3. For two or more channels of conduction 
    electrons (multichannel) the resultatnt
    ground state is a non-Fermi liquid.
    For a single channel, the ground state is 
    still a Fermi liquid.  

4. All the results depend crucially 
    on the existence of constant 
    DOS at EF

5. Kondo state leads to a peak in 
    the conductance at zero bias.
    as measured by STM.



What’s different for possible Kondo effect in graphene

Theoretical prediction: Sengupta and Baskaran PRB (2007)

For undoped graphene, linearly varying
DOS makes a Kondo screened phase 
impossible [Casselano and Fradkin, 
Ingersent, Polkovnikov, Sachdev and Vojta].

At finite and large doping, an
effectively constant DOS occurs
and hence one should see a 
Kondo screened phase.

One can tune into a Kondo screened 
phase by applying a gate voltage

Also, two species of electrons from K
and K’ points may act as two channels
if the impurity radius is large enough so
that large-momenta scatterings are 
suppressed. 

Possibility of two-channel
Kondo effect in graphene. 



Recent  STM experiments on doped graphene

Constant current STM topography
of pure graphene (100 nm2 I=40pA)

Adding Cobalt impurity in graphene

There is no experimental control 
over the position of these cobalt 
atoms.

The position of these atoms can be 
accurately determined by STM 
topography

Typical parameters: 
EF=250meV and T=4K. L. Mattos, et al, (unpublished)



Observation of Kondo peak
in doped graphene sample
With TK=16K Proof of two-channel character of 

the Kondo state: non-Fermi liquid 
ground state in graphene.  

Two channel Kondo physics: Impurity at hexagon center 



Bimodal Spectra for the Conductance G

No analog in conventional Kondo systems: property of Dirac electrons

Impurity at the center: peaked
structure of G and 2CK effect

Impurity on site: dip structure 
of G and 1CK effect



Theory of STM spectra in graphene

Model Hamiltonians for Graphene, Impurity and STM tip



Tunneling current

Interaction between the tip,
impurity and graphene:
Anderson model

Tunneling current is derived from
the rate of change of number of 
tip electrons

   Obtain an expression for the current 
   using Keldysh perturbation theory



Turn the crank and obtain 
a formula  for the current  

Wingreen and Meir(1994)

Contribution from 
undoped graphene

Impurity contribution

Shape of the spectra
depends crucially on 
the Fano factor q
and hence on W0/U0

U0  coupling of graphene to tip

W0  coupling of impurity to tip

V0  coupling of graphene to impurity

What determines the 
coupling of Dirac 
electrons to the STM 
tip? 



What  determines  U0

Bardeen Tunneling formula
~

Tight-binding
wave-function
for graphene 
electrons

Plane-wave part Localized pz orbital part

Impurity on hexagon center

U0 becomes small leading to large q.
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Peaked spectra for all
values of EF independent
of the applied voltage 

Conductance spectra shows a peak for center impurities
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Asymmetric position: 
No cancelation and U0

remains large

Impurity on Graphene site

G should exhibit a change from peak to a dip through an 
anti-resonance with change of EF

Impurity on 
Graphene siteImpurity on 

hexagon center

Should be observed 
on surfaces of 
topological insulators

Refs: Saha et al (2009)
Wehling et al (2009)
Uchoa et al (2009)



Conclusion

1. The field of graphene has shown unprecedented progress
      over the last few years. First example of so called 
     “ Dirac materials”.

2. Several interesting physics phenomenon:
      
     a) Dirac physics on a tabletop.
     b) Unconventional Kondo physics 
     c) STM spectroscopy with Dirac fermions.

3.   Potential applications in engineering:

     a) Detection of gas molecules with great precision
     b) Possibility of nanoscale room temperature transistors.

4.   Future: 

     a) Controlled sample preparation and better lithography.
     b) More strongly correlated phenomenon such as FQHE.
     c) Graphene based electronics: future direction of nanotechnology? 
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