Aspects of Dirac Physics in Graphene

K. Sengupta

Indian Association for the Cultivation of Sciences, Kolkata

Overview

- 1. Origin of Dirac physics in graphene
- 2. Superconducting junctions
- 3. Physics of graphene junctions
- 4. Kondo physics and STM spectroscopy in graphene
- 5. Conclusion

Origin of Dirac physics in graphene

Relevant Basics about graphene

Honeycomb lattice

Tight binding model for graphene with nearest neighbor hopping.

Can in principle include next-nearest neighbor hopping: same low energy physics. Ref: arXiv:0709.1163

Each unit cell has two electrons from $2p_z$ orbital leading to delocalized \Box bond.

$$H = \int d^2 x \, \psi^{\dagger} \left(\begin{array}{cc} 0 & \widehat{t} \\ \widehat{t}^* & 0 \end{array} \right) \, \psi$$

$$\psi = (\psi_A, \psi_B)$$

K

Diagonalize in momentum space to get the energy dispersion.

$$H = \int d^2k \,\psi^{\dagger}(\mathbf{k}) \begin{pmatrix} 0 & h(\mathbf{k}) \\ h^*(\mathbf{k}) & 0 \end{pmatrix} \,\psi(\mathbf{k})$$
$$h(\mathbf{k}) = -t \sum_{j=1}^{3} e^{-i\mathbf{k}\cdot\tau_j}$$

Energy dispersion: $E_{\pm}(\mathbf{k}) = \pm E(\mathbf{k}) = \pm |h(\mathbf{k})|$

There are two energy bands (valence and conduction) corresponding to energies $\pm E(\mathbf{k})$

These two bands touch each other at six points at the edges of the Brillouin zone

Two of these points K and K' are inequivalent; rest are related by translation of a lattice vector.

Two inequivalent Fermi points rather than a Fermi-line.

Dirac cone about the K and K' points

Thus at low energies one can think of a four component wave function for the low-energy quasiparticles (sans spin).

$$\psi = (\psi_A^K, \psi_B^K, \psi_A^{K'}, \psi_B^{K'})$$

Terminology	Pauli matrix	Relevant space
Pseudospin	σ	2 by 2 matrix associated with two sublattice structure
Valley	au	2 by 2 matrix associated with two BZ points K and K'
Spin	S	2 by 2 matrix associated with the physical spin.

$$\mathcal{H}_a = \int d^2 k \, \psi^{\dagger} \, v_F(\tau_3 \sigma_x k_x + \sigma_y k_y) \, \psi$$

At each valley, we have a massless Dirac eqn. with Dirac matrices replaced by Pauli matrices and c replaced by v_{F} .

No large k scattering leads to two species of massless Dirac Fermions.

Helicity associated with Dirac electrons at K and K' points.

Solution of H_a about K point:

$$\psi_K \simeq \left(1, \pm e^{i\gamma}
ight)$$

 $\gamma = an^{-1}(k_y/k_x)$

Electrons with E>0 around K point have their pseudospin along k where pseudospin refers to A-B space. For K', pseudospin points opposite to k.

 E_F can be tuned by an external gate voltage.

DOS varies linearly with E for undoped graphene but is almost a constant at large doping. $\rho(E) \sim |E - E_F|$

Within RG, interactions are (marginally) irrelevant.

Dirac nature II: Potential barriers in graphene

$$T = |t|^{2} = \frac{4\chi^{2}k^{2}}{4\chi^{2}k^{2} + (k^{2} + \chi^{2})^{2}\sinh^{2}(\chi)}$$

where

Answer:

 $\chi = rac{2(V_0-E)d}{\hbar v_d}$, $v_d = \hbar/md$, $k^2 = 2md^2 E/\hbar^2$

Basic point: For $V_0 >> E$, T a monotonically decreasing function of the dimensionless barrier strength.

Simple QM 102: A 2D massless Dirac electron in a potential barrier

Basic point: T is an oscillatory function of the dimensionless barrier strength. Qualitatively different physics from that of the Schrödinger electrons.

Katnelson et al. Nature Physics (2006).

Conventional Superconducting junctions

Superconductivity and tunnel junctions

Basic mechanism of current flow in a N-I-S junction

Andreev reflection is strongly suppressed in conventional junctions if the insulating layer provides a large potential barrier: so called tunneling limit

In conventional junctions, subgap tunneling conductance is a monotonically decreasing function of the effective barrier strength Z.

Zero bias tunneling condutance decays as $1/(1+2z^2)^2$ with increasing barrier strength.

2e charge transfer

BTK, PRB, 25 4515 (1982)

Josephson Effect

Experiments: Josephson junctions [Likharev, RMP 1979]

S-N-S junctions or weak links

S-B-S or tunnel junctions

Josephson effect in conventional tunnel junctions

Formation of localized subgap Andreev bound states at the barrier with energy dispersion which depends on the phase difference of the superconductors.

$$E_{\pm} = \pm \Delta_0 \sqrt{1 - T \sin^2(\phi/2)},$$

 $T = 4/(4 + Z^2),$
Z is the dimensionless barrier strength.

The primary contribution to Josephson current comes from these bound states.

$$I = \frac{2e}{\hbar} \sum_{n=\pm} \sum_{k_{\parallel}} \frac{\partial E_n}{\partial \phi} f(E_n/k_B T_0)$$

Kulik-Omelyanchuk limit:

 $T
ightarrow 1 \quad I(T_0 = 0) \sim |\sin(\phi/2)|$ $I_c R_N = \pi \Delta_0/e$ Ambegaokar-Baratoff limit:

$$T \rightarrow 0$$
 $I(T_0 = 0) \sim T \sin(\phi)$
 $I_c R_N = \pi \Delta_0 / 2e$

Both I_c and I_cR_N monotonically decrease as we go from KO to AB limit.

Graphene Junctions

Graphene N-B-S junctions

Dirac-Bogoliubov-de Gennes (DBdG) Equation

$$\begin{pmatrix} \mathcal{H}_a - E_F + U(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & E_F - U(\mathbf{r}) - \mathcal{H}_a \end{pmatrix} \psi_a = E \psi_a.$$

 $E_F \longrightarrow$ Fermi energy $U(r) \longrightarrow$ Applied Potential = V_g for 0>x>-d $\Box r \longrightarrow$ Superconducting pair-potential between electrons and holes at K and K' points Question: How would the tunneling conductance of such a junction behave as a function of the gate voltage? Results in the thin barrier limit

Central Result: In complete contrast to conventional NBS junction, Graphene NBS junctions, due to the presence of Dirac-like dispersion of its electrons, exhibit novel
periodic oscillatory behavior of subgap tunneling conductance as the barrier strength is varied.

periodic oscillations of subgap
 tunneling conductance as a function of barrier strength

Tunneling conductance maxima occur at $\Box = (n+1/2)\Box$

Transmission resonance condition

Maxima of conductance occur when r=0.

$$G = G_0 \int_0^{k_F} \frac{dk_{\parallel}}{2\pi} \left(1 - |r|^2 + |r_A|^2 \right)$$

For subgap voltages, in the thin barrier limit, and for $eV \ll E_F$, it turns out that

$$r \sim \sin(\gamma) \cos(\chi) \sin(\beta)$$

where $\cos(\beta) = eV/\Delta_0$ and $\gamma = \sin^{-1}[\hbar v_F k_{\parallel}/(eV + E_F)]$ is the angle of incidence

- 1. =0: Manifestation of Klein Paradox. Not seen in tunneling conductance due to averaging over transverse momenta.
 - I =0: Maxima of tunneling conductance at the gap edge: also seen in conventional NBS junctions.
 - 3. □=(n+1/2)□ □ Novel transmission resonance condition for graphene NBS junction.

However, the maximum value of G may be lesser than the Andreev limit value of $2G_0$

Graphene S-B-S junctions

Schematic Setup

subgap states and hence find the

Josephson current.

DBdG quasiparticles has a transmission probability T which is an oscillatory function of the barrier strength []

2 - 2 0 2 f $I(\phi, \chi, T_0) = I_0 g(\phi, \chi, T_0)$ $g(\phi, \chi, T_0) = \int_{-\pi/2}^{\pi/2} d\gamma \left[\frac{T(\gamma, \chi) \cos(\gamma) \sin(\phi)}{\sqrt{1 - T(\gamma, \chi) \sin^2(\phi/2)}} \right]$ $\times \tanh\left(\epsilon_{+}/2k_{B}T_{0}\right)$

The Josephson current is an oscillatory function of the barrier strength \vec{l}

I_c and I_cR_N are [] periodic bounded oscillatory functions of the effective barrier strength

 I_cR_N is bounded with values between $\Box \Box_0/e$ for $\Box = n\Box$ and $2.27\Box_0/e$ for $\Box = (n+1/2)\Box$.

For $\Box = n \Box$, $I_c R_N$ reaches $\Box \Box_0/e$: Kulik-Omelyanchuk limit.	Due to transmission resonance of DBdG quasiparticles, it is not possible to make T arbitrarily small by increasing gate voltage V ₀ . Thus, these junctions never reach
	Ambegaokar-Baratoff limit.

Kondo Physics and STM spectroscopy

Kondo effect in conventional systems

Formation of a many-body correlated state below a crossover temperature T_{κ} , where the impurity spin is screened by the conduction electrons.

Features of Kondo effect:

1. Appropriately described by the Kondo model:

Metal + Magnetic Impurity

- The coupling J, in the RG sense, grows at low T and becomes weak at high T. Negative beta function. Anderson J. Phys. C 3, 2436–2441 (1970).
- 3. For two or more channels of conduction electrons (multichannel) the resultatnt ground state is a non-Fermi liquid. For a single channel, the ground state is still a Fermi liquid.

 $H = H_0 + J\mathbf{S} \cdot \mathbf{s}(0)$

 $\beta(J) = -\rho(E_F)J^2$ $T_K = D \exp(-1/\rho(E_F)J)$

- 4. All the results depend crucially on the existence of constant DOS at E_F
- 5. Kondo state leads to a peak in the conductance at zero bias. as measured by STM.

What's different for possible Kondo effect in graphene

Also, two species of electrons from K and K' points may act as two channels if the impurity radius is large enough so that large-momenta scatterings are suppressed.

Possibility of two-channel Kondo effect in graphene.

Theoretical prediction: Sengupta and Baskaran PRB (2007)

Recent STM experiments on doped graphene

a 0 0 Height (pm) 215 2 nm

Adding Cobalt impurity in graphene

Constant current STM topography of pure graphene (100 nm² I=40pA)

*Typical parameters: E*_{*F*}=250meV and T=4K.

There is no experimental control over the position of these cobalt atoms.

The position of these atoms can be accurately determined by STM topography

L. Mattos, et al, (unpublished)

Two channel Kondo physics: Impurity at hexagon center

Observation of Kondo peak in doped graphene sample With T_{κ} =16K

Proof of two-channel character of the Kondo state: non-Fermi liquid ground state in graphene.

Bimodal Spectra for the Conductance G

Impurity at the center: peaked structure of G and 2CK effect

Impurity on site: dip structure of G and 1CK effect

No analog in conventional Kondo systems: property of Dirac electrons

Theory of STM spectra in graphene

Model Hamiltonians for Graphene, Impurity and STM tip

$$H_{G} = \int_{k} \psi_{s}^{\beta\dagger}(\vec{k}) \left[\hbar v_{F}(\tau_{z}\sigma_{x}k_{x} + \sigma_{y}k_{y}) - E_{F}I \right] \psi_{s}^{\beta}(\vec{k})$$

$$H_{d} = \sum_{s=\uparrow,\downarrow} \epsilon_{d}d_{s}^{\dagger}d_{s} + Un_{\uparrow}n_{\downarrow}$$

$$H_{t} = \sum_{\nu} \left[\sum_{\sigma=\uparrow\downarrow} \epsilon_{t\nu}t_{\nu s}^{\dagger}t_{\nu s} + (\Delta_{0}t_{\nu\uparrow}^{\dagger}t_{-\nu\downarrow}^{\dagger} + \text{h.c}) \right] \quad (2)$$

Tunneling current

Interaction between the tip, impurity and graphene: Anderson model

$$H_{Gd} = \sum_{\alpha=A,B} \int_{k} \left(V_{\alpha}^{0}(\vec{k}) c_{\alpha,s}^{\beta}(\vec{k}) d_{s}^{\dagger} + \text{h.c.} \right)$$
$$H_{dt} = \sum_{s=\uparrow,\downarrow;\nu} \left(W_{\nu}^{0} t_{\nu s} d_{s}^{\dagger} + \text{h.c.} \right).$$
$$H_{Gt} = \sum_{\alpha=A,B;\nu} \int_{k} \left(U_{\alpha;\nu}^{0}(\vec{k}) c_{\alpha,s}^{\beta}(\vec{k}) t_{\nu s}^{\dagger} + \text{h.c.} \right)$$

Tunneling current is derived from the rate of change of number of tip electrons

$$\mathcal{I}(t) = e \langle dN_t / dt \rangle = i e \langle [H, N_t] \rangle / \hbar$$

Obtain an expression for the current using Keldysh perturbation theory

$$\begin{aligned} G^{\beta\,(1)\,<}_{s,\alpha;\nu}(t;\vec{k}) &= -i\langle t^{\dagger}_{\nu}(t)c^{\beta}_{s\alpha}(0;\vec{k})\rangle \\ G^{\beta\,(1)\,<}_{\nu;s,\alpha}(t;\vec{k}) &= -i\langle c^{\beta\,\dagger}_{s\alpha}(t;\vec{k})t_{\nu}(0)\rangle \\ \mathcal{G}^{(2)\,<}_{\mu\nu}(t) &= -i\langle t^{\dagger}_{\nu}(t)d_{\mu}(0)\rangle \\ \mathcal{G}^{(2)\,<}_{\nu\mu}(t) &= -i\langle d^{\dagger}_{\mu}(t)t_{\nu}(0)\rangle \end{aligned}$$

$$I(t) = \frac{e}{\hbar} \left[\sum_{\mu\nu} \left(W^*_{\mu\nu} \mathcal{G}^{(2)<}_{\mu\nu}(t) - W_{\mu\nu} \mathcal{G}^{(2)<}_{\nu\mu}(t) \right) + \int_k \sum_{s\alpha\beta\nu} \left(U^*_{\alpha,s;\nu}(\vec{k}) G^{\beta(1)<}_{s,\alpha;\nu}(t;\vec{k}) - U_{\alpha,s;\nu}(\vec{k}) G^{\beta(1)<}_{\nu;s,\alpha}(t;\vec{k}) \right) \right]$$

What determines U^o

Impurity on hexagon center

$$\begin{split} & \overbrace{5}^{4} \overbrace{6}^{2} \\ & \overbrace{5}^{5} \overbrace{6}^{1} \\ \\ & \sum_{R=1,3,5} \Psi^{\beta}_{A,s}(\vec{R},z) \ = \ \sum_{R=2,4,6} \Psi^{\beta}_{B,s}(\vec{R},z) = 0. \end{split}$$

U^o becomes small leading to large q.

 $q(\epsilon) = [W^0/U^0 + V^0 I_1(\epsilon)]/[V^0 I_2(\epsilon)],$

Peaked spectra for all values of E_{F} independent of the applied voltage

Conductance spectra shows a peak for center impurities

Impurity on Graphene site

Asymmetric position: No cancelation and U^o remains large

 $q(\epsilon) = [W^0/U^0 + V^0 I_1(\epsilon)] / [V^0 I_2(\epsilon)] \approx I_1/I_2 \simeq -\ln|1 - \Lambda^2/(eV + E_F)^2| / \pi.$

G should exhibit a change from peak to a dip through an anti-resonance with change of E_{F}

Impurity on Graphene site

Should be observed on surfaces of topological insulators

Conclusion

- 1. The field of graphene has shown unprecedented progress over the last few years. First example of so called "Dirac materials".
- 2. Several interesting physics phenomenon:
 - a) Dirac physics on a tabletop.
 - b) Unconventional Kondo physics
 - c) STM spectroscopy with Dirac fermions.
- 3. Potential applications in engineering:
 - a) Detection of gas molecules with great precisionb) Possibility of nanoscale room temperature transistors.
- 4. Future:
 - a) Controlled sample preparation and better lithography.
 - b) More strongly correlated phenomenon such as FQHE.
 - c) Graphene based electronics: future direction of nanotechnology?