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Kitaev model

Kitaev, Ann. Phys. 321 (2006) 2

Some observations:

• A two-dimensional quantum spin model which is completely solvable

• Reduces to a problem of non-interacting Majorana fermions

• Excitations have Abelian or non-Abelian statistics

• Model has topological order
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Majorana fermions
A Majorana fermion operator m is one which anticommutes with all other
fermion operators and is Hermitian. We can normalize it so that m2 = 1

Two different Majorana operators satisfy {m1, m2} = 0

Two such operators can be combined to give a single Dirac fermion operator:

d =
1√
2

(m1 + i m2) and d† =
1√
2

(m1 − i m2)

so that d2 = d†2 = 0 and {d, d†} = 1

If the operators m1 and m2 are associated with widely separate points,
so that the interaction between the Majoranas is negligible, then it is very
difficult to disturb a state which contains a single Dirac fermion d†d = 1

To manipulate that Dirac fermion, one might try to couple
an external field operator φ(~r) to d†d = 1 + im1m2.

But it is difficult to have a term like this since it is non-local
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Majorana fermions · · ·

Majorana fermions separated by large distances from each other provide
a robust way of storing information

They may occur in certain situations such as in a fractional quantum Hall
system with filling fraction equal to 5/2, at the core of half-vortices in
layered p−wave superconductors (such as Sr2RuO4), at the
interface of a ferromagnetic insulator and a superconductor on
the surface of a topological insulator, and perhaps in p−wave
condensates of spin-polarized 40K and 6Li atoms in
optical traps

Read and Green, Phys. Rev. B 61 (2000) 10267;
Ivanov, Phys. Rev. Lett. 86 (2001) 268;
Stern, von Oppen and Mariani, Phys. Rev. B 70 (2004) 205338;
Tewari, Zhang, Das Sarma, Nayak and Lee, Phys. Rev. Lett. 100 (2008) 027001
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Majorana fermions · · ·

Spin-1/2’s can be written in terms of Majorana fermions in many ways,
all of which satisfy the anticommutation relations at the same site j and
the commutation relations between different sites j and k

• Can use three Majorana fermions (Shastry) to write σx
j = − iby

j bz
j ,

σy
j = − ibz

j bx
j and σz

j = − ibx
j by

j , where the ba
j are Majorana fermions

• Can use four Majorana fermions (Kitaev) to write σx
j = icjcx

j ,

σy
j = icjcy

j and σz
j = icjcz

j , where the cj and ca
j are Majorana

fermions, and the physical states are those which satisfy cjcx
j cy

j cz
j = 1

Both these representations increase the dimension of the Hilbert space,
giving some redundant states

This is the route Kitaev used to solve his model. We will follow a different route
which involves Majorana fermions but does not introduce any redundant states

Feng, Zhang and Xiang, Phys. Rev. Lett. 98 (2007) 087204; Lee, Zhang and Xiang,
Phys. Rev. Lett. 99 (2007) 196805; Chen and Nussinov, J. Phys. A 41 (2008) 075001
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Quantum statistics
In quantum mechanics, statistics refers to the change of the wave function of
two particles when they are exchanged (for identical particles), or when one
is taken around the other in a loop in two dimensions (for any two particles)

1

2
12

If the wave function has only component and it picks up a phase under the
above processes, the statistics is called Abelian

If the wave function has n components and it gets multiplied by a n × n

unitary matrix under the above processes, and the unitary matrices for
different pairs of particles do not commute with each other, the statistics
is called non-Abelian. This is more robust since finite-dimensional matrices
satisfying some group properties are more tightly constrained than phases
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Kitaev model
The model has spin-1/2’s on a honeycomb lattice, with highly anisotropic
couplings between nearest neighbors. The Hamiltonian is

H =
X

j+l=even

(J1 σx
j,lσ

x
j+1,l + J2 σy

j−1,lσ
y
j,l + J3 σz

j,lσ
z
j,l+1)

Can assume that all couplings Ji ≥ 0

x y
z

a

b
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Jordan-Wigner transformation
The Kitaev model can be solved exactly by mapping it to Majorana fermions by
a Jordan-Wigner transformation, even though it is a model in two dimensions

a~n =

2

4

~n−1
Y

~m=−∞
σz

~m

3

5 σy
~n

(σx
~n) for even (odd) numbered chains,

b~n =

2

4

~n−1
Y

~m=−∞
σz

~m

3

5 σx
~n (σy

~n
) for even (odd) numbered chains,

depending on whether ~n lies on the A or B sub-lattice

These operators satisfy the anticommutation relations

{ a~m , a~n } = { b~m , b~n } = 2 δ~m~n, and { a~m , b~n } = 0

The string of σz
~m’s is chosen to go along the x and y bonds, towards the

right (left) on even (odd) numbered chains
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Jordan-Wigner transformation

H =
X

j+l=even

(J1 σx
j,lσ

x
j+1,l + J2 σy

j−1,lσ
y
j,l + J3 σz

j,lσ
z
j,l+1)

The xx and yy interactions become local and quadratic in the Majorana
fermions under the Jordan-Wigner transformation

The zz interaction would normally become non-local and quartic in the
fermions

But in this model, this remains local and only couples fermions on nearest
neighbor sites due to a large number of conserved quantities
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Conserved quantities

x y
z

1
2

3

4

5
6

W 

The model has a conserved quantity W associated with each hexagon:

W = σy
1 σz

2 σx
3 σy

4 σz
5 σx

6

Hence there are 2N/2 decoupled sectors corresponding to the values of
W = ± 1 in the N/2 different hexagons (the number of sites is N )

Because of these conserved quantities, the zz interactions become
local in terms of the Majorana fermions

The Kitaev model – p.11/34



Kitaev model · · ·

1

2

W
1

W
2

W
3

. . .

If 1/2 lies on an even/odd numbered chain, then σz
1σz

2 ∼ a1 b1 W1 W2 W3 · · ·

In any particular sector with some given values of Wi, the zz interaction
reduces to a product of two fermion operators. The ground state turns out
to lie in a sector in which all the Wi = 1. In that sector, we find that

H = i
X

~n

[ J1 b~n a
~n− ~M1

+ J2 b~n a
~n+ ~M2

+ J3 b~n a~n ] ,

where ~M1 =
√

3
2

î + 3
2
ĵ and ~M2 =

√
3

2
î − 3

2
ĵ
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Brillouin zone
Define the Fourier transforms

a~n =

r

4

N

X

~k

[ a~k
ei~k·~n + a†

~k
e−i~k·~n ],

b~n =

r

4

N

X

~k

[ b~k
ei~k·~n + b†

~k
e−i~k·~n ],

where ~k runs over only half the Brillouin zone which looks as follows:

kx

ky

2π

3

−

2π

3

2π
√

3
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Hamiltonian
The Hamiltonian of the Kitaev model is

H =
X

~k

“

a†
~k

b†~k

”

H~k

0

@

a~k

b~k

1

A ,

H~k
= 2 [J3 + J1 cos(~k · ~M1) + J2 cos(~k · ~M2)] σ3

+ 2 [J1 sin(~k · ~M1) − J2 sin(~k · ~M2)] σ1,

where ~M1 =
√

3
2

î + 3
2
ĵ and ~M2 =

√
3

2
î − 3

2
ĵ

This is a system of non-interacting Majorana fermions

Depending on the values of J1, J2, J3, there may or may not be
a gap between the ground state and the first excited state
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Phase diagram of Kitaev model
If J1 < J2 + J3, J2 < J3 + J1 and J3 < J1 + J2, the system is gapless
at one value of (kx, ky), with a massless Dirac spectrum around that point:
E = ± v

q

δk2
x + δk2

y

For all other values of (J1, J2, J3), the system is gapped

The phase diagram can be shown in terms of points in an equilateral triangle
satisfying J1 + J2 + J3 = 1 (the value of Ji is the distance from the
opposite side)

GAPLESS

GAPPEDGAPPED

GAPPED

J1J2

J3
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Topological order
On the surface of a torus, in the thermodynamic limit, the energy spectrum
is independent of the product of the Wi along the two loops shown in red

The two loop variables can take the values ± 1 independently.
Hence all energy levels have a degeneracy of 4

This is a signature of topological order

Recall: fractional quantum Hall states also have topological order. On a surface
of genus g, (g = 0 and 1 for a sphere and a torus respectively), the ground
state for a quantum Hall state with filling fraction 1/3 has a degeneracy of 3g
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Quantum statistics
Back to the Kitaev model on the plane: the ground state lies in the sector in
which all the hexagonal quantities Wi = 1. This is called a vortex-free state

If Wi = −1 on any hexagon, it is called a vortex. The lowest energy state
in a sector with one vortex is separated from the ground state by a finite gap;
this is true in all the phases. The fermionic spectra can be gapped or gapless

In the gapped phases, the different particles (fermions and vortex) have
Abelian statistics. Taking any particle around any other, or exchanging
two identical particles, only multiplies the wave function by ± 1

Difficult to discuss statistics for a gapless system as exchanging two particles
or taking one around the other produces low-energy excitations no matter how
slowly the exchange is done, so the initial and final states are quite different

Adding a magnetic field at each site,
P

i (hxσx
i + hyσy

i + hzσz
i ),

produces a gap, and makes it possible to discuss statistics.
It also allows a vortex to move from one hexagon to another
since the Wi do not commute with the magnetic field term
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Quantum statistics · · ·

Taking a fermion around a vortex gives a phase factor of − 1

But taking one vertex around another produces non-Abelian statistics
which is described by the fusion rules of the conformal field theory of
the Ising model in two dimensions

If 1, ε and σ denote the vacuum, Majorana fermion and vortex
operators respectively, then the fusion rules are given by

ε × ε = 1, ε × σ = σ, σ × σ = 1 + ε

These relations describe various coalescing and splitting processes,
and they can also be used to find what happens when two particles
are exchanged (if they are identical) or if one is taken around the other

The fact that the last fusion rule is the sum of two terms means that we need
a two-dimensional wave function to describe a state with two vortices, and
the exchange of two vortices changes the wave function by a unitary matrix
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Spin correlation functions
Consider the two-spin correlation function 〈σa

i σb
j〉 in some eigenstate of

the Kitaev Hamiltonian H

If i and j are not nearest neighbors, one can find a hexagon invariant
Wk which commutes with σa

i and anticommutes with σb
j

σx
i

σx
j

W
k

Here Wk anticommutes with σx
j because Wk contains the term σz

j
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Spin correlation functions · · ·

Since we can choose every eigenstate of H to also be an eigenstate
of Wk, with eigenvalue ± 1, we have
〈σa

i σb
j〉 = 〈Wkσa

i σb
jWk〉 = 〈σa

i Wkσb
jWk〉 = − 〈σa

i σb
j〉,

which implies that 〈σa
i σb

j〉 = 0

A similar argument shows that if i and j are nearest neighbors, and
the bond joining them has, say, an xx interaction, then 〈σa

i σb
j〉 = 0

if either a or b is different from x

Thus, 〈σa
i σb

j〉 6= 0 only if i and j are nearest neighbors and a = b

is equal to the type of bond which joins i and j

Thus the two-spin correlation functions are extremely short-ranged and
of a very special type

Baskaran, Mandal and Shankar, Phys. Rev. Lett. 98 (2007) 247201
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Spin correlation functions · · ·

We can also consider correlation functions in time

In the gapless phase, the ground state correlation functions fall off as powers:

〈0|σa
i (t)σa′

i′ (0)|0〉 ∼ 1

tα

for large times t if i, i′ and a, a′ satisfy the constraints discussed before,
and

〈0|σa
i (t)σa′

i′ (t)σb
j(0)σ

b′

j′ (0)|0〉 ∼ 1

(t2 + |i − j|2)2

if t2 + |i − j|2 is large
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Spin correlation functions · · ·

Instead of considering correlation functions of spins, we can consider correlations
of the Majorana fermions. In general, these will involve correlations of spins with
strings of σz

i joining them

We can consider expectation values of an operator like O~r = i a~n b~n+~r .

This commutes with all the hexagon invariants Wi, otherwise its expectation
value would be zero. In the gapless phase, we again expect this value to
fall off as a power for large ~r

One of our studies involved looking at these correlations and how they vary
if the coupling parameters Ji change with time

For J3 → ± ∞, nearest-neighbor spins form Ising antiferromagnetic
(ferromagnetic) dimers on the vertical (zz) bonds. These correspond to
〈O~r〉 = ± δ~r,~0

or or
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Quenching in the Kitaev model
Let us hold J1, J2 fixed, and vary J3 in time as Jt/τ, from t = −∞ to t = ∞
(as shown by the red dotted line). Then the system will pass through the gapless
region for some time

GAPLESS

J1J2

J3

We expect that if we start with the ground state of the system at t → −∞
and the variation of J3 is adiabatic, i.e., τ → ∞, then we will end up with
the ground state of the system at t → ∞. The question is, how close do
we get to the final ground state if τ is large but not infinite?

Sengupta, Sen and Mondal, Phys. Rev. Lett. 100 (2008) 077204;
Mondal, Sen and Sengupta, Phys. Rev. B 78 (2008) 045101 The Kitaev model – p.23/34



Scaling of defect density
As J3 is varied through the gapless region, the energy of the low-lying excitations
typically vanishes on some lines in half the Brillouin zone as indicated in red

kx

ky

Using the Landau-Zener result for the transition probability from the ground state to
the excited state of a two-level system, we showed that the quenching produces
defects in the final state (i.e., deviations from the ground state) whose density
scales as n ∼ 1/

√
τ

The reason that n → 0 as a power of τ rather than exponentially is that we
are passing through a gapless region. So no matter how large τ is, there
are states with sufficiently low energies (∆E . 1/τ ) which get excited The Kitaev model – p.24/34



Plot of defect density

n versus Jτ and α = tan−1(J2/J1)

The defect density is maximum when α = π/4, i.e., when J1 = J2 because
this is when the system stays in the gapless phase for the longest time
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Defect correlation functions
We can compute the correlation function 〈O~r〉 , where O~r = ib~0a~0+~r and
~r =

√
3(n1 + n2/2) x̂ + (3n2/2) ŷ

This gives an idea of the ‘shape’ and ‘size’ of the defects

Plot of 〈O~r〉 versus ~r for several values of J2/J1 for Jτ = 5

The ‘shape’ of the defects changes with J2/J1 and the ‘size’ is of the order of √
τ
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Large-S Kitaev model
Do the various features of the spin-1/2 Kitaev model survive for higher spins?

Baskaran, Sen and Shankar, Phys. Rev. B 78 (2008) 115116

The Hamiltonian is

H =
1

S

X

j+l=even

(J1 Sx
j,lS

x
j+1,l + J2 Sy

j−1,lS
y
j,l + J3 Sz

j,lS
z
j,l+1)

x y
z

1
2

3

4

5
6

W 

The conserved quantities on each hexagon survive:

W = eiπ (S
y

1
+ Sz

2
+ Sx

3
+ S

y

4
+ Sz

5
+ Sx

6
) The Kitaev model – p.27/34



Large-S Kitaev model · · ·

H =
1

S

X

j+l=even

(J1 Sx
j,lS

x
j+1,l + J2 Sy

j−1,lS
y
j,l + J3 Sz

j,lS
z
j,l+1)

The most interesting situation arises if J1 = J2 = J3

Then there are continuous families of classical ground states, for instance,
all the spins on the A sublattice pointing in some direction and all the spins
on the B sublattice pointing in the opposite direction

Apart from these continuous families, there is also a discrete set of ground
states in which pairs of nearest neighbor spins on, say, a xx bond point
along the ± x̂ direction

The number of such discrete states is equal to the number of dimer coverings
of the honeycomb lattice which is 1.175N times 1.414N (due to the choice
of ±), which gives 1.662N discrete classical ground states
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Dimer coverings
Now we consider the correction to the energy at the next order in 1/S. This is
done by looking at the spin wave spectrum around different classical ground
states, calculating the zero point energy of the spin waves, and finding the
ground state for which this is the minimum

We did this calculation only around the discrete set of classical ground states
(the dimer coverings) because a similar calculation for a one-dimensional
version of the Kitaev model showed that those have a lower zero point
energy than the continuous family of ground states

x y x y x y

Classical ground states in which the spins point only along the ± x̂ or ± ŷ

directions have a lower spin wave zero point energy than ground states with
spins pointing in other directions
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Dimer coverings · · ·

For each dimer covering, there is a set of self-avoiding walks (SAWs) covering the
lattice such that none of bonds appearing on the SAW is a dimer. For instance, a
SAW is shown by 1’s below

1

1

1

1

1

1

1

To do a spin wave analysis, we make a Holstein-Primakoff transformation from
a large spin to a harmonic oscillator. For a spin pointing in the ẑ direction,
we define Sz = S − (p2 + q2)/2, Sx =

√
S q and Sy =

√
S p

We then write the spin Hamiltonian up to second order in the p’s and q’s
The Kitaev model – p.30/34



Spin wave analysis
We then find that, to this order, there is no interaction between spins lying on
different SAWs. Thus we only have to study the spin waves on separate SAWs,
each of which can either form an infinitely long chain or a finite closed loop

The zero point energy turns out to be the lowest if all the SAWs are closed
loops forming hexagons

1

2

3

We find that pairs of spins in groups of three dimers can still point in 2 different
ways without changing the zero point energy. This gives 2N/3 ∼ 1.260N

different dimer coverings with the same zero point energy. This is still exponentially
large although it is smaller than the number of classical ground states ∼ 1.662N The Kitaev model – p.31/34



Spin wave analysis · · ·

H =
1

S

X

j+l=even

(J1 Sx
j,lS

x
j+1,l + J2 Sy

j−1,lS
y
j,l + J3 Sz

j,lS
z
j,l+1)

What happens if the three couplings are not equal? If J3 is larger than the
other two, the classical ground states are those in which pairs of spins on
each zz bond form antiferromagnetic dimers. The number of such states is
2N/2 if the number of sites is N

The degeneracy between this discrete set of classical ground states is not
broken by the zero point energy of the spin waves
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Generalizations of Kitaev model
The Kitaev model involves three anticommuting matrices at each site, and
a coordination number of three

This can be extended to a model obtained by replacing each point of the
honeycomb lattice by a triangle

Yao and Kivelson, Phys. Rev. Lett. 99 (2007) 247203

or to a lattice in three dimensions

Mandal and Surendran, Phys. Rev. B 79 (2009) 024426

The model can be generalized to have four anticommuting matrices (like the Dirac
matrices) at each site, and a coordination number of four such as a square lattice

Yao, Zhang and Kivelson, Phys. Rev. Lett. 102 (2009) 217202

or more complicated lattices

Wu, Arovas and Hung, arXiv:0811.1380 The Kitaev model – p.33/34



Outlook

Effect of disorder and doping on the Kitaev model

Higher spin Kitaev models: a Jordan-Wigner transformation naturally leads
to Majorana fermion operators for half-odd-integer spins and hard core
boson operators for integer spins

The spin-1/2 Kitaev chain is completely solvable and is known to be gapless,
while preliminary studies of the spin-1 model shows that it has a small gap.
The integer spin chain has N conserved quantities while the half-odd-integer
spin chain has N/2 conserved quantities

The Kitaev model – p.34/34
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