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c I1s very high; but did Newton have reason to believe that mgtlmoulc
travel faster tham ?
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Galileian relativity :c — c+ v =
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Spacetime is curved!
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Tilting of local light cones — measure of local spacetime curvature

GRAVITATIONAL FORCE replaced byCURVED SPACETIME GE-
OMETRY (Gauss, Riemarnn
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What causes spacetime to curve ?
Einstein’s equation
G = 3nGTy

sptm curvature = 8w (G energy — mom density

e Energy-momentum densijtnot mass, generates curvature
e Spacetime geometry BYNAMICAL !
e Matter tells spacetime how to curve, spacetime tells mawer to mov::

What evidence is there of a dynamical spacetime ?

e Expanding universe (Hubble)
e Gravitational waves (Hulse-Taylor pulsar)
e Black holes
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Black holes ... are the most perfect macroscopic object® the In the
universe. The only elements in their construction are ouioms of spac:?
and time ... and because they appear as ... family of exaatieo$ of
Einstein’s equation, they are the simplest objects as welubramanian
Chandrasekhar

Yet Black hole sptms have

e Singularities, where all known laws of physics break down
e Event horizon : boundary of sptm accessible to asympt. obs.

Laws of bh mechsgardeen, carter, Hawking 1972

0Apor = 0
Khor — const
OM = Kpor 0Aper + -+
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Gen. Sec. Law of thermo sekenstein, 1973:5<Sowj + Sbh) > 0.

A
Sph = = (kp = 1)
12,

lp = (Gh/A)? ~ 107%3em — quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics
Physics atl0~>3 cm determines entropy of bh of sizé!! cm — Extreme
Macro QM!

Two issues to be addressed:

e How is it that Sbh — Sbh(-Ahor) WalllE SthermO = Sthermow()l) ?
e \What degrees of freedom contribute toS;;, ?
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Vac EM in Minkowski sptm: V - E = 0 everywhere i/ = Q(V) = 0
Can define total charge globally
QtOt — / E . ﬁdQCL
— holographic

But, H, = (1/87)(E? + B?) — photons
Vac GR :no 7% s.t. vV, 7% = 0 in bulk
H, = / INH + N - P]
S

~ Owhen H~0, P~0

= no analogue ofE? + B? in vac GR! Excitations ‘polymeric’
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Grav energ\yglobally defined

1
H g omar = - s d20abvaKb

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approx,, = g0 + hap

Ny ~—~—
bkgd  graviton

Hy = (1/81)[(°h)* + (°m)7

As |h| /|, bkreactn ', approx. invalid
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Hamiltonian constraint (bulk)
ﬁv ‘¢U> = 0

Z = TryTry exp —ﬁ[lﬁ]erﬁb}
— T?“b eXP —ﬁ[:]b — Zb
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Bulk states decouple! Boundary states determine bh thermodynainics
completely— holography ! (pm 2001, 2007)

Different from StrOng holographyt Hooft 1992; Susskind 1993; Bousso 2002)

Holographic Hypothesis (HH)

... Given any closed surface, we can represent all that hagpgravita-

tionally) inside it by degrees of freedom on this surfacelfitsrhis ... sug-
gests that quantum gravity should be described bypmlogical quantun

field theory in which all (gravitational) degrees of freedame projecte(
onto the boundary.

What sort of boundary ? Not asymptotic bdy; muer bdy of accessiblz
sptm— EH (teleological, stationary, )..

Work with Isolated Horizons (IHps local, non-stationary generalizat on
of EHS (ashtekar et. al. 1997-2001)
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e Nonstationary

e Null (lightlike) inner boundary of sptm with topdt @ 52

o A(S?) = const — isolation

e Zeroth law of IHMsurface grav; = const

e Mrg = Myppy — &8 LOMrg = Kj0Ap,, + ... (Istlaw of IHM)
¢ IH microcanonical ensemble with fixed, .

e Hawking radiation requires IH» Dynamical Hor
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Canonical Ensemble of IHs in rad bath: computeZ, — Scqn
e Assume equil. IH with fixedd; g and My = M(Arp).
e Keep Gaussian fluCtbas, Bhaduri, PM 2001; Chatterjee, PM 2003)
o Ay, ~ nl%, n>> 1 (justify later)

1
Scan(Arg) = Sie(Arg) + 3 log A(Arg)

_J/

th flz‘[c corr

Two Issues arise :

e EXxpectS.,, + ve real = C' > 0 (th stab). How/when violated (e.g.
Schwarzschild)?

e How to computeS; g ? Need microscopic QG theory of IH



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)

M S
Mp ~ kp



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)

M S
A>O:>ﬂ > el
Mp kp

Necessary and Sufficient cond. fo5.,, > 0 and C' > 0



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)

M S
A>O:>ﬂ > el
Mp kp

Necessary and Sufficient cond. fo5.,, > 0 and C' > 0

Saturation = C' " oo ! — ‘First Order Phase Transition’ betwestable
and unstable phases



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)

M S
A>0:>ﬂ > el
Mp kp

Necessary and Sufficient cond. fo5.,, > 0 and C' > 0

Saturation = C' " oo ! — ‘First Order Phase Transition’ betwestable
and unstable phases

Similar to Hawking-Page transition for AdS-Schw but no clasical
metrics used anywhere here



Condition for thermal stability (chatteriee, Pm 2005; PM 2007)

M S
A>0:>ﬂ > el
Mp kp

Necessary and Sufficient cond. fo5.,, > 0 and C' > 0

Saturation = C' " oo ! — ‘First Order Phase Transition’ betwestable
and unstable phases

Similar to Hawking-Page transition for AdS-Schw but no clasical
metrics used anywhere here

Generalizable to more general black holes with charge agdlanmo-
mentum, withinGrand canonical ensembi@uteriee, Pm 2005; PM in prog
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Bulk dof g, — e — w!/ — SL(2,C) gauge potential— Self-dua

a
connection formulatioRen 1982, Ashtekar 1985

IH null bdy = 3gabdxad:cb =0 = 39

3 dim gravity :S;g = [;;; v/ —>9 R impossible!
On IHw(bulk) — A(IH) — SL(2,C') gauge pot of TGT

k
= S0 S+sources
Sarp + Sip — variational principle OK, providel

k= (A]H/47Tl12t>)nea7“est int >>1

Quantize CSt sources— Sy = logdim Ho 54 sources
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SL(2,C) inv self-dual gravity— complex config. space-> gauge fix tc
Barbero-ImmirziSU (2) inv formlation

Global canonical variables Fluxés; g = [¢ do’ f E!

For A, £ canonical quantizatios>

AF, By | = iogng 09

LQG : promote these to operatdig A) , E; g

Wave functionals in ‘position’ basi¢ = V[.A] can be expressed as fuiic-
tions of holonomieg)(h; ,...hy ; ...).

Holonomies completely specified by spimassociated with link
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Area operator (also volume, length) have bded, discretetispe

a(ji, .- JN) = _VZPZ\/]p (Jp+1)

lim a(ji,...7n) < ACZ+O(ZP)

N—o0

Equispaced/j, = 1/2



‘Quantum’ Isolated Horizon — effective descriptioipshtekar, Baez, Corichi, Krasn v
1997)
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Need to compute; g = log dim Hog ptsources(jy,...j,) TOF fixed Arg +
O(Ip)

Witten (1986) :dim H g = #conf blocks of SU(2); WZW (CFT5) on
punctureds?

4 dim gravity— 2 dim CFT link

—> (Kaul, PM 1998)
n Jp
dim HCS+(]1,,]n> — H Z [5m1_|_...—|—mn,0

DO | — DO | }—\'ts
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Are
Al
-
(Ashtekar et. al. 1997)

3 Arn 1
_ §1og <@> + const. + O(A;y)

J/

N

(Kaul,PM 2000)

Infinite series of corrections to semicl BHAL : characterisic signature
of LQG
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Plaquettes havel ,; ~ 13, : Ay /Ay = Ny >> 1

Each Plag has a binary BIT (e.g., spin 1/2 state) count tota
dim{net spin = 0 states} = N

Nppp! Nrpp!
(Npn/2)1)? (Nop/2 + D (Nppp /2 — 1)!

N —

Use Stirling approximation foN;;;, >> 1 and Sy, = log N with units
chosen such thatp = 1

For macroscopic isolated black holesi/;p;, >> 1) pas, kaul, Pm 2001

App 3 Anpp 415,
Sy, = SIbh 2 +0
Ibh 2 5 0g ( 4@3 + const. + Albh

'
qu.sptm.corr.

N\
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Summary

e \Weaker version of holography derived from QGR, albeit hetiari

e Can bh entropy receives positive log (area) correctionstduberma
fluct

e Thermal stability: prelim non-semicl understanding whynsoblack
holes decay and others may not

e Microcan bh entropy understood for macro bhs; BH area lawivee
Infinite series of finite corrections — signature of LOG

e Bekenstein entropy bound tightened due to LQG corrections
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Pending Issues

e |[H — Dynamical Hor unclear: Hawking radiation ?

e Info Loss Puzzle: can lowest area quantum be a remnant ? byao\s
do we get back lost info ?

e How does LQG resolve black hole singularities ?



