Fixed-Energy Sandpiles Belong Generically to Directed Percolation

Outline

Part- I

Why things can go wrong in the study of absorbing phase transition ?

- the difficulties
- how to avoid them
- Part-II
 - fixed energy sandpile models as APT
 - generically belong to DP ?

Classical Systems

□ Hamiltonian dynamics

$$\dot{p} = -\frac{\partial \mathcal{H}}{\partial q} \qquad \dot{q} = -\frac{\partial \mathcal{H}}{\partial p}$$

□ Many particles. Predictability ?

Denisov, PK, Politi et.al, EPJB 2007

Stochastic dynamics (Markovian)

System wonders in configuration space

Transition rate : $W(C \rightarrow C')$

How often a configuration is visited ? Prob(C)= P(C)

Stationary state (ss): P(C) do not change with t

Equilibrium : a special ss, satisfy detailed balance..

 $P(C) W(C \rightarrow C') = P(C') W(C \rightarrow C)$

Ergodicity

- Ising Model
- Monte Carlo (single spin flip)

- Non-zero chance of reaching any configuration
- Detailed balance

 $P(C) W(C \rightarrow C') = P(C') W(C' \rightarrow C)$

Absorbing and 'transient' configurations

- Absorbing :
 - once reached,

the system can not escape

• Transient :

a set configurations the system does not visit, once left.

Absorbing phase transition (APT)

- One or more absorbing configurations
- No detailed balance :

W(C2→C1)=0 C1→

 Question : Will a thermodynamic system falls into the absorbing state ?

Critical behaviour (numerical study)

- Decay of OP from a highly active state
- At $\lambda = \lambda_c$, $\rho(t) \sim t^{-\alpha}$

Other exponents

Correlation lengths :

 $\xi_{\perp} \sim (\lambda - \lambda_c)^{-\nu_{\perp}}$

$$\xi_{\parallel} \sim (\lambda - \lambda_c)^{-\nu_{\parallel}}$$

X

Finite size scaling :

 $\beta/\nu_{\perp} = 0.25$ z=1.59

• For finite L and $\lambda = \lambda_c$, $\rho(t, L) \sim L^{-\beta/\nu_{\perp}} F(t/L^z)$

Summary : numerical study of critical behaviour (from decay of $\rho_a(t)$)

Model with many absorbing states
Pair contact process (PCP)

Phase space

Isolated particles are inactive

Absorbing = "all particles are isolated"
Infinitely many absorbing configurations

APT in DP class

DP Universality :

Critical behaviour of APT in CP, PCP, DK, DP and may other models are identical. **DP** is known to be the most robust

universality class of APT.

DP experiment :

TABLE II. Summary of the measured critical exponents (see the remark [36] for the range of errors shown in the list).

Exponent	DSM	1-DSM2		DP^{a}
Density order parameter	β	0.59(4)		0.583(3)
Correlation length ^b	ν_{\perp}	0.75(6)	0.78(9)	0.733(3)
Correlation time	ν_{\parallel}	1.29(11)		1.295(6)
Inactive interval in space ^b	μ_{\perp}	1.08(18)	1.19(12)	$1.204(2)^{\circ}$
Inactive interval in time	μ_{I}	1.60(5)		1.5495(10)
Density decay	α	0.48(5)		0.4505(10)
Local persistence	θ_1	1.55(7)		1.611(7) ^d
Aging in autocorrelator	b	0.9(1)		0.901(2)
	λ_C/z	2.5(3)		2.583(14)
Survival probability	δ	0.46(5)		0.4505(10)
Cluster volume	θ	0.22(5)		0.2295(10)
Cluster mean square radius	ζ	1.15(9)		1.1325(10)

Absorbing Phase Transitions generically belong to DP if the system has # a fluctuating scalar order parameter # short range interaction # no unconventional symmetry # no quenched disorder

DP Conjecture

Janssen, Z Phys B 1981 Grassberger, Z Phys B 1982

Takeuchi et al. PRE 2009

Non-recurrent configurations...

- More complicated !
- Stationary state (active phase):
 - system wonders

in 'recurrent space'

 may fall into an absorbing one, with probability<1

Phase space

- time evolution may depend strongly on initial condition !

Example : Conserved Lattice Gas (1D)

- N hardcore particles on a ring (size L)
- Infinite nearest neighbour repulsion

- Isolated particles can not move
- Active particle : has only one occupied neighbour
- Total active particles : N_a , activity density $\rho_a = N_a / L$

Critical exponents of CLG (1D)

Numerical Results Exact Results v_{\perp} Ζ α CLG 2 1/4 1 Ω 0.276 1.09 1.58 0.276 0.159 DP

- Oliveira PRE 2005

- U. Basu and PKM, PRE 2009

-Lee and Lee, PRE 2008

 \mathcal{V}_{\parallel}

1.732

4

Scaling violation :

$$\beta = \alpha v_{\parallel}$$
$$z \neq v_{\parallel} / v_{\perp}$$

Universality Class of Absorbing Phase Transitions with a Conserved Field

Michela Rossi,^{1,2} Romualdo Pastor-Satorras,² and Alessandro Vespignani²

2D CLG Measured: $z, v_{\perp}, \beta, \alpha$ Assumed : $z = v_{\parallel}/v_{\perp}$ Violation : $\beta \neq \alpha v_{\parallel}$

L. It follows that data collapse in time is not achievable with standard scaling forms, and that θ violates the usual scaling relation. Albeit its origin is not clear, it is noteworthy that this anomaly is common to all APT with conserved fields inspected so far [10,11], irrespective of the updating rules employed, either parallel or sequential.

PHYSICAL REVIEW E 77, 021113 (2008)

Absorbing phase transition in a conserved lattice gas model in one dimension

Measured : *z* , v_{\perp} , $\beta \, \alpha$, v_{\parallel}

Correct : $\beta = \alpha v_{\parallel}$

1D CLG

Violation : $z \neq v_{\parallel}/v_{\perp}$

Sang-Gui Lee and Sang B. Lee *

with these values. A similar violation of the scaling relation was previously found by Rossi *et al.* [18]. They found that, with the relation in Eq. (4), simple scaling behavior was broken with their data. They, instead, obtained ν_{\parallel} from the relation in Eq. (6) using the value of z estimated from the finite-size scaling plot of Eq. (5). If we do similarly, we would get $\nu_{\parallel}=2$; however, this value does not yield the data collapsing.

- Choose randomly from a set of
 - recurrent configurations
 - which has large number of active sites

How to do that ?

- Exactly solvable models : recurrent space is known
- Numerical simulation:
 - -choose a configuration from stationary state (recurrent)
 reactivate it "suitably" for a short time
 [a highly active configuration, but possibly non-recurrent.

but it is not far from the "recurrent space"]

Suitably reactive initial state = "natural initial condition"

CLG 1D (again)

- Exactly solvable, but no "recurrent config"
- We use natural initial condition

Even CP shows apparent scaling violation in presence of transient states

Model : CLG guided CP
▲ 1D Lattice (PBC). Each site 1 1 0 0 0 A
▲ A is active if corresponding 1 is active (110 or 011).

 CLG
O
 1
 1
 O
 1
 O
 1
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 I
 O
 I
 I
 O
 I
 O
 I
 I
 O
 I
 O
 I
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O</

Dynamics: "> "1, O" follow CLG dynamics (density conserving) 0 **-** 1 A - A - A - A - A A, 0" follow CP dynamics \Rightarrow Any configuration with OO is transient01100110.... CLG CP **A O A A A A A O A O**..... Activity density : $\rho_A = N_A/L$

Critical behaviour (natural ic)

Part-II

Fixed-Energy Sandpiles Belong Generically to Directed Percolation

M. Basu, U. Basu, S. Bondyopadhyay, PKM and H. Hinrichsen, PRL 2012

Outline

- Sandpile models & Self organized criticality (SOC)
- Fixed energy sandpile model (as APT) Equivalence of SOC and FES ?
- FES has non-recurring states
- Difficulty in studying critical behaviour from random ic
- Natural initial condition heals

BTW model Bak, Tang, and Weizenfield Phys. Rev. Lett. 59, 381 - 384 (1987)

In 2 dimension

1. Slow driving

2. Avalanches

If $h(x, y) \ge 4$ then

 $h(x, y) \rightarrow h(x, y) + 1$

$$\begin{array}{c} h(x, y) \rightarrow h(x, y) - 4 \\ h(x+1, y) \rightarrow h(x+1, y) + 1 \\ h(x-1, y) \rightarrow h(x-1, y) + 1 \\ h(x, y+1) \rightarrow h(x, y+1) + 1 \\ h(x, y-1) \rightarrow h(x, y-1) + 1 \end{array}$$

3. Dissipation at the boundaries

Avalanche size distribution

 Shows a power-law distribution
 A stochastic version (2D) was introduced later

S. S. Manna, J. Phys. A 24, L363 (1991)

• which shows a critical behaviour different from BTW

Manna Model (1D interval)

 Sites with more than 2 grains, move each grain individually to a randomly selected neighbor

If all sites have one or no grains,
 add a grain at a random site

Dissipation at boundaries

t

Fixed energy sandpile (FES)

- Use the same update rules for toppling
- No driving
- No dissipation (use periodic b.c.)
- Take conserved density as control parameter

SOC and FES equivalence

- Slow drive and dissipation in SOC
 - makes density critical density.
- Avalanche exponents

$$\tau = \frac{1 + \theta + 2\,\delta}{1 + \theta + \delta}$$

 $\tau_{\parallel} = 1 + \delta$

Manna Universality Class

• APT in stochastic FES (Manna Model) and several other models (CTTP, CLG, ...), where orderpameter is coupled to a conserved field form a new universality class-

$$\begin{split} \partial_t \rho_a &= r \rho_a - b \rho_a^2 + \nabla^2 \rho_a + \sigma \sqrt{\rho_a} \eta + \omega \rho_a \phi \\ \partial_t \phi &= D \nabla^2 \rho_a \,, \end{split}$$

Conserved DP or Manna Class (MC)

 MC is believed to be one of the fundamental universality class of absorbing APT

Doubts about an independent MC

- Existing evidence are numerical
- Scattered exponents

Ref.	ϕ_c	α	β	$ u_{\parallel}$	ν_{\perp}	z
Lübeck [1, 19]	0.96929(3)	0.141	0.382	2.452	1.760	1.393
Dickman et. al. [20]	0.92965(3)	-	0.412	2.41	1.66	1.45
Lee [21]	0.98285(5)	0.118	0.396	3.36	2.26	1.49
Dickman [22]	0.92978(2)	0.141	0.289	2.03	1.36	1.50
this work	0.929735(15)	0.155(5)	0.308(2)	1.74(1)	1.13(1)	1.52(2)
DP		0.159	0.277	1.733	1.096	1.580

- About 15% error in estimation of α , v_{\parallel} , β
- MC and DP have same mean-field theory
- Universality splitting in 1D:

CTTP has different $(v_{\perp}, v_{\parallel})$ but same (α, β, z) as MC

Odd time

1

0

Background disorder

• The relative excess of particles, to the left of position j.

$$S(j) = (\sum_{i=1}^{j} h_i) - j \phi$$

Density
$$\phi = \frac{1}{N} \sum_{i=1}^{N} h_i$$

Decay of activity density

 Undershooting in random ic

Healed by "natural ic"

Matches with decay of ρ_a of DP with same ϵ

Scaling with natural ic (Manna FES)

Scaling with natural ic (CTTP)

Critical exponents

Manna Model

		Model	α	α		β		ν_{\parallel}	z			
		DCMM[9]	0.141(24)	0.3	82(19)	1.3	47(91)	1.87(13)	1.393	3(37)		
		DCMM*	0.159(3)	<	0.31	1.(95(5)	1.75(5)	1.51	(5)		
		CCMM*	0.1596(2)	0.2	77(18)	1.(96(4)	1.74(1)	1.52	2(1)		
Ī	Ref.		ϕ_c		α		β	$ u_{\parallel} $	ν_{\perp}	;	z	
	Lübeck [1, 19]		0.96929(3)		0.141		0.382	2.452	1.760	1.3	393	
	Dickman et. al. [20]		0.92965(3)		-		0.412	2.41	1.66	1.	45	
	Lee [21] 0.98285		0.98285(5) 0.118			0.396	3.36	2.26	1.	49	
	Dickm	ian [22]	0.92978(2	2)	0.141		0.289	2.03	1.36	1.	50	
ŀ	this w	ork	0.929735(15)		0.155(5)		0.308(2)	1.74(1)	1.74(1) $1.13(1)$		1.52(2)	
	I ——				1							
	Re	f.	α		β		$ u_{\parallel} $	$\beta/2$	β/ u_{\perp}			
Ð	CL	G 1D[25]	1/4		1		4	1	1			
br	me	dified [28] 0.13(1)	0.277((3)	2.41	0.22	0.223(5)			
D	lad	lder [26]	_		0.40(1)		-	-	-			
	thi	s work	0.1553(1)	0.275(6)		1.76(2)	2) 0.25	1(4) 1.50		2)	
	DF)	0.159		0.27	7	1.73	0.2	52	1.53	8	

СТТР

CLG Ladder

and the second second

Conclusion

 Dynamical behaviour in transient (nonrecurrent) state could be very different from the same in stationary state.

• "Recurrent" initial conditions give consistent scaling.

 If recurrent space is not identified (in absence of exact solution), one may use
 "natural" ic : suitably re-activated stationary state

APT in fixed energy sandpiles

- Fixed energy sandpile models have "non-recurrent" configurations.
 - suffer from undesirable"transients" and
 - unusual undershooting in decay of activity

• Natural initial condition "heals" the ill-effect

The critical behaviour generically belong to DP

SOC.... ?

• Manna class turned out to be DP.

A simple conclusion, "SOC is just DP" would be premature.

Drive and dissipation produce non-trivial background

Equivalence of SOC and FES is still debated

- [30] A. Fey, L. Levine, and D. B. Wilson, Phys. Rev. Lett. 104, 145703 (2010).
- [31] A. Fey, L. Levine, and D. B. Wilson, Phys. Rev. E 82, 031121 (2010).
- [32] Su.S. Poghosyan, V.S. Poghosyan, V.B. Priezzhev, and P. Ruelle, eprint arXiv:1104.3548

