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Outline

● Part- I

Why things can go wrong in  the study of 
absorbing phase transition ?

                     - the difficulties

                      - how to avoid  them  

● Part-II

   - fixed energy sandpile models as APT          

   -  generically  belong to DP ? 

 



  

 Hamiltonian dynamics 

Denisov, PK, Politi  et.al, EPJB 2007

  Many particles. Predictability  ?

Chaos ?

Classical Systems



  

Stochastic dynamics
(Markovian)

 System wonders in configuration space

 How often a  configuration is visited ?

                Prob(C)= P(C) 

 Stationary state (ss):  P(C) do not change with t

 Equilibrium :  a special ss,  satisfy  detailed balance.. 

P(C) W(C    C') = P(C') W(C'    C)

Transition rate : W(C    C')  
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Ergodicity

● Ising Model  

● Monte Carlo (single spin flip)

●

● Non-zero chance of reaching

            any configuration

● Detailed balance

C1

C0C0

C2

C3 C7

C6

C4

C5

P(C) W(C      C') = P(C') W(C'      C)

C7

C1 C5 C7 C5 C4
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Ergodic

Phase space



  

Absorbing and 'transient' configurations

C0 C1

C3 C4

C7C6C5

C2

C8

C9 C10

C12

C16

C14

C11

C15

C13

● Absorbing :

- once reached,

 the system can not escape

● Transient : 
a set configurations the system does not visit, once left.

Nontrivial time evolution

Rest of the talk : 
I will elaborate  these difficulties

recurrent

absorbing

Phase space

non-recurrent



  

● One  or more absorbing configurations 

● No detailed balance : 

 W(C2    C1)=0

● Question : Will a thermodynamic system  

      falls into the absorbing state  ? 

                     

C0 C1

C3 C4

C7C6C5

C2

Absorbing phase transition (APT)

C8

Ergodic

C1 C2

  
Some  control parameter

YES NO.  Remain active with non-zero probability

●a non-equilibrium phase transition : APT 
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● A particle can  create  another particle 

 in its (vacant) neighbourhood (rate    ).

● It may die with rate 1

● Only one absorbing  configuration :   {...0000...}

 

Ergodic
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Example : Contact Process (CP)



0          A         2A     1               

3-site



  

Absorbing phase transition 

   

          absorbing                active 

Recurrent
Recurrent

Larger  LL

  

Absorbing phase transition  in CP 

Will it  fall into     ? 
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c=3.2978



  

Critical behaviour (numerical study)
● Decay of OP  from a highly active state

● At

          

          For large t,     

=c , t ~t−

t  t=const.

Determination of 
c ,

t  t

t

=0.159



  

Critical exponents

For c , ~



=0.276



  

Other exponents

Correlation lengths :
⊥~−c

−⊥

∥~−c 
−

∥



  

Off-critical scaling
● For ≠c , t ~ t−F t 

1/ 
∥

∥=1.73

Data Collapse 



  

Finite size scaling :

● For finite L and =c , t , L~L−/⊥F t /L z


Finite size scaling

⊥=¿

/⊥=0.25
z=1.59



  

Summary : numerical study of critical behaviour
(from decay of            )



c ,

Finite size scaling

z ,/⊥∥

∥

at            



  

Model with many absorbing states
  Pair contact process (PCP) 

 Isolated particles are inactive

 

 Absorbing  =  “all particles are  isolated”

 Infinitely many absorbing  configurations 

 APT in DP class 

recurrent
0          2A         3A     1               

Phase space



  

DP Universality :
 Critical behaviour of APT in  CP, PCP, DK, DP  and may 
other models are identical. DP is known to be the most robust 

universality class  of APT.

DP experiment :

 Janssen, Z Phys B 1981
Grassberger, Z Phys B 1982

Absorbing Phase Transitions generically 
 belong to DP  if the system has 

a fluctuating scalar order parameter
 short range interaction
 no unconventional symmetry  
no quenched disorder

DP ConjectureDP Conjecture

Takeuchi et al.  PRE 2009  



  

Non-recurrent  configurations...
● More complicated !
● Stationary state (active phase): 

- system wonders 

  in 'recurrent space'

- may fall  into an absorbing one, 

  with probability<1

-  time evolution may depend strongly  on initial 
condition !

       

recurrent

absorbing

Phase space



  

Example : Conserved Lattice Gas (1D)

● N hardcore particles on a ring (size L) 
● Infinite nearest neighbour repulsion

● Isolated particles can not move
● Active particle :  has only one occupied neighbour

● Total active particles :        , activity density 

110            101
011            101

Particle conserving
dynamics 

a=N a/L

=N /L

Na



  
(active)(inactive)

 110           101 1100        1010

1101        1011

N11●     and         can only decrease.

● Simultaneously

N00

=0

c=1/2

N00N11 N00N11

 011           101

recurrent

=1

N00 0

=1/2

N11 0

●#“recurrent configurations”      0
               as

●  No recurrent configurations  
                   at 

c

c=1/2



  

Critical exponents of CLG (1D)

  z         '

CLG      1       1    2    0

   DP  0.276 1.09 1.58 0.276  

  

   1/4    4

0.159   1.732

β ν ⊥ α ||νβ

- Oliveira PRE 2005
- U. Basu and PKM, PRE 2009

● Scaling violation :

Exact Results Numerical Results

-Lee and Lee, PRE 2008

z≠∥/⊥

=∥



  

≠∥

z=∥/⊥

z≠∥/⊥

2D CLG 
Measured:
Assumed :
Violation  :

z ,⊥ , ,

1D CLG 
Measured :

Correct     :

Violation   :

z ,⊥ ,

=∥

 ,∥



  

Closer look (1D CLG) : 

Finite size scaling Off critical  scaling

- Great scaling collapse
- Starting from 
   “random initial condition”

- No “recurrent” config.
       at =c



  

Decay of      , revisited.
Fluctuations in stationary state

● Initial condition :  
● Choose randomly from  a set of 
       - recurrent  configurations
         - which has large number of active sites 

a



  

How to do that ?
● Exactly solvable models : recurrent space is known

●  Numerical simulation:

   -choose a configuration from  stationary state (recurrent)

    - reactivate it “suitably”  for a short time 

        [a highly active configuration, but possibly non-recurrent.

            but  it is not far from the “recurrent space” ]

●  Suitably reactive initial state =  “natural initial condition”

      

 



  

CLG 1D  (again)
● Exactly solvable, but no “recurrent config”
● We use  natural initial condition

c
=c

at 

t−1/4

t−1/2



  

CLG (1D) : from natural ic

Off critical scaling

∥=2

z=∥/⊥



  

Even CP  shows apparent scaling  
violation in presence of transient states

Recurrent

Model : CLG guided CP

1D Lattice (PBC). Each site

 A is active if corresponding 1 is 
   active ( 11O or  O11).

1 O1 O
A 0 A

....O 1 1 1 O 1  1 O  1 O....

....A 0 A A A A A 0  A 0.....
CLG
CP

0



  

Dynamics:  

....O 1 1 OO 1  1 O  1 O....

....A 0 A A A A A 0  A 0.....

“1, O”  follow CLG dynamics   
     (density conserving)
 “A, 0” follow  CP dynamics  

 Any configuration with OO is transient

CLG
CP

0          A         2A     1               

11O      1O1       O11

Activity density :  A=N A /L



  

Critical behaviour (natural ic)

=0.505

Recurrent

Natural

Random

t−0.1596

c=3.183

Other Exponents 
are

 consistent with DP



  

t−0.32

Critical behavior 
(random ic)

∥=0.86

=∥

z≠∥/⊥



  

Part-II
Fixed-Energy Sandpiles Belong Generically 

to Directed Percolation
M. Basu, U. Basu, S. Bondyopadhyay, 
PKM and H. Hinrichsen, PRL 2012



  

Outline
● Sandpile models  & Self organized 

  criticality (SOC)

● Fixed energy sandpile model (as APT)

 Equivalence of  SOC  and FES  ?

● FES  has   non-recurring states

●  Difficulty  in studying critical behaviour from random ic

● Natural initial condition heals



  

BTW model 
Bak, Tang, and Weizenfield
Phys. Rev. Lett. 59, 381 - 384 (1987)

In 2 dimension 



  

Avalanche size distribution

● Shows a power-law  

                   distribution
● A stochastic  version (2D)

    was introduced later

●   which  shows a critical behaviour 

                 different from BTW  



  

Manna Model (1D interval)

● Sites with more than 2 grains, 

move each grain individually to

 a randomly selected neighbor

● If all sites have one or no grains, 

  add a grain at a random site

● Dissipation at boundaries

t



  

Fixed energy sandpile (FES)

● Use the same update rules for toppling
● No driving
● No dissipation (use periodic b.c.)
● Take conserved density as control parameter

Munoz, Dickman, Vespignani and Zapperi, Phys. Rev. E 59, 6175 (1999)

Absorbing phase 
transition  



  

SOC and FES equivalence

● Slow drive and dissipation in SOC 

makes density               critical density.
●

● Avalanche exponents  



  

Manna Universality Class
● APT in stochastic FES (Manna Model)  and several other 

models (CTTP, CLG, ...), where orderpameter is coupled 
to a conserved field form a new universality class- 

             

                                   Conserved DP or Manna Class (MC)

● MC is believed to be one of the fundamental universality 
class of absorbing  APT



  

Doubts about an independent MC 
● Existing evidence are numerical

● Scattered exponents

●

●

●

●

● About 15%  error in estimation of 

● MC and DP have same mean-field  theory

● Universality splitting in 1D:

   CTTP has different             but same              as MC

 ,∥ ,

⊥ ,∥  , , z 



  

FES  have non-recurrent states
● In steady state, activity lives in odd and even 

sub lattices alternatively

             Two consecutive sites can not be active.

● Random initial condition :  
   macroscopic number of 

        consecutive  active sites 

       (non-recurrent configurations)

- Unusual  journey  to steady state

- Background inhomogeneity has long life



  



  



  

Background disorder
● The relative excess  of particles, to the

     left  of position  j.

Density 



  



  



  

Decay of activity density

● Undershooting in 
random ic

● Healed by “natural ic”

Matches with decay of      
of  DP with same     

a




  

Scaling with natural ic (Manna FES)



  

Scaling with natural ic (CTTP)



  

Scaling with natural ic 
CLG on a ladder



  

Critical exponents
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Scaling functions...



  

Conclusion
● Dynamical behaviour  in transient (non-

recurrent) state could be very different  from 
the   same in stationary state.

● “Recurrent” initial conditions  give consistent 
scaling.

● If recurrent space is not identified (in absence 
of exact solution),  one may use 

  “natural” ic : suitably re-activated stationary state

    



  

APT in fixed energy sandpiles
● Fixed energy sandpile models have “non-

recurrent” configurations.

  - suffer from undesirable“transients” and 

  - unusual undershooting in decay of activity

● Natural  initial condition “heals” the ill-effect

●  The critical behaviour generically belong to  DP



  

 SOC..... ?

● Manna class turned out to be DP.
 A simple conclusion,   “SOC is just DP” would be premature.

 

● Drive and dissipation produce non-trivial background

● Equivalence of SOC and FES is still debated
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