

Markov chain model for the Indus script

Ronojoy Adhikari
The Institute of Mathematical Sciences Chennai

Outline

- Statistical models for language.
- The Indus civilisation and its script.
- Difficulties in decipherment.
- A Markov chain model for the Indus script.
- Statistical regularities in structure.
- Evidence for linguistic structure in the Indus script.
- Applications

Collaborators

References

- "Entropic evidence for linguistic structure in the Indus script", Rajesh P. N. Rao, Nisha Yadav, Hrishikesh Joglekar, Mayank Vahia, R. Adhikari, Iravatham Mahadevan, Science, 24 April, 2009.
- "Markov chains for the Indus script", Rajesh P. N. Rao, Nisha Yadav, Hrishikesh Joglekar, Mayank Vahia, R. Adhikari, Iravatham Mahadevan, PNAS, 30 Aug, 2009.
- "Statistical analysis of the Indus script using n-grams", Nisha Yadav, Hrishikesh Joglekar, Rajesh P. N. Rao, Mayank Vahia, R. Adhikari, Iravatham Mahadevan, Plos One under review (arxiv.org/0901.3017)
- Featured in Physics Today, New Scientist, Scientific American, BBC Science in Action, Nature India and in other news media.
- http://indusresearch.wikidot.com/script

Disclaimer
 We have not deciphered the script!

Statistical properties of language : al Kindi

source : wikipedia
"One way to solve an encrypted message, if we know its language, is to find a different plaintext of the same language long enough to fill one sheet or so, and then we count the occurrences of each letter. We call the most frequently occurring letter the 'first', the next most occurring letter the 'second', the following most occurring the 'third', and so on, until we account for all the different letters in the plaintext sample".
"Then we look at the cipher text we want to solve and we also classify its symbols. We find the most occurring symbol and change it to the form of the 'first' letter of the plaintext sample, the next most common symbol is changed to the form of the 'second' letter, and so on, until we account for all symbols of the cryptogram we want to solve" - "A Manuscript on Deciphering Cryptographic Messages" (~ 800 CE)

al Kindi noted that language has statistical regularities in terms of letters.

He also introduced the Indian numerals and methods calculation to the Arab world.

Statistical properties of language: Zipf

Ranked

frequency of words

For the Brown Corpus

$$
\begin{aligned}
& r=1: " t h e " \\
& r=2:: " a n d " \\
& r=3: " o f "
\end{aligned}
$$

$$
\log f_{r}=a-b \log (r+c)
$$

Zipf-Mandelbrot law
For the "Wikipedia Corpus"

Markov chains and n -grams

Andrei Markov was a founder of the theory of stochastic processes.

letter sequences
markov $=\mathrm{m}|\mathrm{a}| \mathrm{r}|\mathrm{k}| \mathrm{o} \mid \mathrm{v}$
word sequences
to be or not to be $=$ to|be|or|not|to|be
tone sequences
doe a deer $=\mathrm{DO}|\mathrm{RE}| \mathrm{MI}|\mathrm{DO}| \mathrm{MI}|\mathrm{DO}| \mathrm{MI} \mid$
many other examples can be given.

Unigrams, bigrams, ... n-grams.

unigrams	$P(s)$
bigrams	$P\left(s_{1} s_{2}\right)$
trigrams	$P\left(s_{1} s_{2} s_{3}\right)$
n-grams	$P\left(s_{1} s_{2} s_{3} \ldots s_{N}\right)$
	$P\left(s_{1} s_{2}\right)=$

conditional probabilities

$$
P\left(s_{N} \mid s_{N-1} \ldots s_{1}\right)=P\left(s_{N} \mid s_{N-1}\right)
$$

$$
P\left(s_{1} s_{2} \ldots s_{N}\right)=P\left(s_{N} \mid s_{N-1}\right)
$$

$$
\times \quad P\left(s_{N-1} \mid s_{N-2}\right)
$$

$$
\times \quad P\left(s_{2} \mid s_{1}\right)
$$

$$
\times \quad P\left(s_{1}\right)
$$

A first-order Markov chain approximation to a sequence of tokens, in terms of bigram conditional probabilities.

Markov processes in physics

source : wikipedia

Brownian motion : Einstein (1905)

$$
\begin{gathered}
P\left(x_{1}, x_{2}, \ldots, x_{N}\right)=P\left(x_{N} \mid x_{N-1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
P\left(x^{\prime} \mid x\right)=\frac{1}{\sqrt{2 \pi D \tau}} \exp \left[\frac{-\left(x^{\prime}-x\right)^{2}}{2 D \tau}\right]
\end{gathered}
$$

We have no "microscopic" model for language. The conditional probabilities are, therefore, empirical.

Markov chains and language : Evegeny Onegin

> What is the probability of co-occurences of vowels and consonants?

$$
\begin{aligned}
& P(v \mid v) P(v \mid c) \\
& P(c \mid v) P(c \mid c)
\end{aligned}
$$

First known use in language modelling (1911)

Markov chains, n -grams and the Shannon entropy

1. Zero-order approximation (symbols independent and equi-probable). XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD
2. First-order approximation (symbols independent but with frequencies of English text).
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
3. Second-order approximation (digram structure as in English). ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE
4. Third-order approximation (trigram structure as in English). \qquad IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
5. First-Order Word Approximation. Rather than continue with tetragram, \cdots, n-gram structure it is easier and better to jump at this point to word units. Here words are chosen independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.
6. Second-Order Word Approximation. The word transition probabilitics are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

Claude Shannon introduced the idea of entropy as a measure of missing information in his seminal 1948 paper on communication theory.

$$
H=-\sum_{a} p(a) \ln p(a)
$$

Fun with Markov chains

Dissociated Press algorithm.

Sampling from a Markov Chain

$$
\begin{aligned}
P\left(s_{1} s_{2} \ldots s_{N}\right) & =P\left(s_{N} \mid s_{N-1}\right) \\
& \times P\left(s_{N-1} \mid s_{N-2}\right) \\
& \vdots \\
& \times P\left(s_{2} \mid s_{1}\right) \\
& \times P\left(s_{1}\right)
\end{aligned}
$$

Now And the sun rose up his father, and they said, O LORD judge betwixt us concerning that is his brother Abel. And the likeness of the field which his wife; and the God set by her.

And Mahalaleel eight days of thine only bring them unto us? one that Ishmael his wife, and hath also heard thee: bury thy dead; none other but the land whereon thou fearest God, the choice of the two hundred and eat, and with him, Because the flocks by force thy face, and he ungirded his father, and behold the LORD. And she said unto his dead, and sent messengers before him forth jewels of Padanaram, for I pray thee, drink also: and Esau said, Behold, in the LORD hath given no man is life, and we said, I establish my father speak unto Zoar. Then again bare Abram and which returned that is my service which he took a wife took one that are these things, and daughters: And I give all thy brother, and Methusael begat sons and I pray thee, if now done in the same is the ground. And God went out, and the sons of Ellasar; four hundred pieces of Abram's brother's name Asher. And I pray thee. And Jared were sons of them unto my son of the LORD said unto him in the name Seth: For Sarah saw the LORD scatter again into the younger. And Enoch walked with thee a keeper of millions, and twelve princes shall thirty years, and came to pass, when he commanded Noah. http://www.toingtoing.com/?p=79

Markov Chain models can only capture syntax. They are "dumb" as far as semantics goes.

Syntax versus semantics

Noam Chomsky led the modern revolution in theoretical linguistics.

‘Colourless green ideas sleep furiously.'

'Bright green frogs croak noisily.'

'Green croak frogs noisily bright.'

"Nonsense" poetry.

'Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.
"Beware the Jabberwock, my son! The jaws that bite, the claws that catch! Beware the Jubjub bird, and shun The frumious Bandersnatch!"

He took his vorpal sword in hand: Long time the manxome foe he soughtSo rested he by the Tumtum tree, And stood awhile in thought.

And as in uffish thought he stood, The Jabberwock, with eyes of flame, Came whiffling through the tulgey wood, And burbled as it came!

One, two! One, two! and through and through
The vorpal blade went snicker-snack!
He left it dead, and with its head
He went galumphing back.
"And hast thou slain the Jabberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!"
He chortled in his joy.
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
"slithy" - adjective
"gyre" - verb

Markov chains for language : two views

"But it must be recognised that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of the term". - Chomsky
"Anytime a linguist leaves the group the recognition rate goes up".- Jelenik

We analysed the Indus script corpus using Markov chains.

This is the first application of Markov chains to an undeciphered script.

Is it possible to infer if a sign system is linguistic without having deciphered it ?

The Indus valley civilisation

Largest river valley culture of the Bronze Age. Larger than Tigris-Euphrates and Nile civilisations put together.

Spread over 1 million square kilometers.

Antecedents in 7000 BCE at Mehrgarh.

700 year peak
between
2600 BCE and 1900
BCE.
Remains discovered in 1922.

The Indus civilisation : spatio-temporal growth

Acknowledgemen
t:
Kavita Gangal.
Time :5000 BC

The Indus civilisation : spatio-temporal growth

Time : 4000 BC

The Indus civilisation : spatio-temporal growth

The Indus civilisation : spatio-temporal growth

The Indus civilisation : spatio-temporal growth

The Indus civilisation : spatio-temporal growth

Time :2500 BC

The Indus civilisation : spatio-temporal growth

Time :2000 BC

The Indus civilisation : spatio-temporal growth

Time :1900 BC

The Indus civilisation : spatio-temporal growth

The Indus civilisation : spatio-temporal growth

An urban civilisation : Mohenjo Daro

Acknowledgement : Bryan Wells

The Indus script : seals

copyright : J. M. Kenoyer
source : harappa.com

The Indus script : tablets

The script is read from right to left.
n intaglio

The Indus people wrote on steatite, carnelian, ivory and bone, pottery, stoneware, faience,
copper and gold, and inlays on wooden boards.
ure tablet
Inspite of almost a century of effort, the script is still undeciphered.

[^0]Why is the script still undeciphered?

Short texts and small corpus

Indus

Language unknown

The subcontinent is a very linguistically diverse region.

1576 classified mother tongues, 29 language with more than a 1 million speakers. (Indian Census, 1991).

Current geographical distributions may not reflect historical distributions.

No multilingual texts

The Rosetta stone has a single text written in hieroglyphic, Demotic, and Greek.

This helped Thomas Young and JeanFrancois Champollion to decipher the hieroglyphics.

No contexts

$$
\longleftarrow ?
$$

No place names, or names of kings, or dynasties or rulers.

Attempts at decipherment

Ideographic? Syllabic ? Logo-syllabic?
"I shall pass over in silence many other attempts based on intuition rather than on analysis.'

The non-linguistic hypothesis

S. Farmer, R. Sproat, M. Witzel, EJVS, 2004

The collapse of the Indus script hypothesis : the myth of a literate Harappan civilisation.

> No long texts.
> 'Unusual' frequency distributions.
> 'Unusual' archaeological features.

Massimo Vidale, East and West, 2007
The collapse melts down : a reply to Farmer, Sproat and Witzel
"Their way of handling archaeological information on the Indus civilisation (my field of expertise) is sometimes so poor, outdated and factious that I feel fully authorised to answer on my own terms."

Syntax implies statistical regularities

Power-law
frequency distribution

Beginnerender asymmetry :

Correlations between tokens :

Ranked word frequencies have a power-law distribution. This empirical result is called the Zipf-Mandelbrot law. All tested languages show this feature.

Languages have preferred order in Subject Object and Verb. Articles like ' a ' or 'the' never end sentences.

In English, 'u' follows 'q' with overwhelming probability. SVO order has to be maintained in sentences.
Prescriptive grammar : infinitives are not to be split.

From corpus to concordance

SIGN LIST OF The indus script									
大	｜大｜	${ }_{3}$	R 4	先	大	大	${ }_{8+}$	）${ }_{\text {9\％}}$	$\underset{\text { c }}{\text { c }}$
¢	${ }_{8}^{818}$	$8{ }_{13}$	${ }_{8}^{814}$		遃 ${ }_{16}$	艾	$\underset{18}{\text {＋}}$	＋80	${ }_{20}$
${ }_{21}$	${ }_{22}$	${ }_{23}$	24	N1	:	${ }_{27}$	大p	$\underset{\text { 8 }}{\text { OPb }}$	大o
大0	犬U	OXU	${ }_{34}$	$\underset{\text { dut }}{\text { dut }}$	${ }_{36}$	葙	$\underset{38+}{\text {＊}}$	${ }_{39}$	$\underset{\text { tot }}{\substack{\text { coin }}}$
大	${ }_{4}^{\text {d }}$	${ }_{4}{ }^{\text {d }}$	热	$\stackrel{5}{45}$	${ }_{\substack{4 \\ 40}}^{\text {¢ }}$	$\stackrel{1}{4}$	48\％	$\frac{9}{99}$	sot
舞	唯	\bigcirc	災	－	\％	－	${ }_{58}$	${ }_{\text {c }}^{\text {cot }}$	＇Sist
＇Shi＇	$\left(g_{6}\right)^{9}$		（ （2，$_{6}^{6}$ ）	${ }_{6}$	，＇，${ }^{6}$ ，	资	，	co	婴
＇8，	，	＇．${ }^{131}$	靠	頁	${ }_{7}^{764}$	賁	早	易	啫
（－3）	3	\％	$\frac{8}{84 t}$	${ }^{1 / 1}$	1	11	＇，／ll＇	111	1115
IIIF	III	I／／	｜／／	$1 / 1 / 1$	$1 / 1 / 1 /$		${ }_{\text {O } 8+}$	9	${ }_{100}^{11}$
$\underset{101}{1}$	$\underset{\substack{102+}}{112}$	$\begin{gathered} 11 \\ \text { 103t } \end{gathered}$	$\begin{gathered} 1111 \\ 104+ \end{gathered}$	$\prod_{\substack{10 \\ 105}}^{11}$	111111	$\prod_{\substack{107 \\ 107}}$	11111	ilit	$\underset{110}{111111}$

Compiled by Iravatham Mahadevan in 1977 at the Tata Institute of Fundamental Research． Punch cards were used for the data processing．
$\longleftarrow-417$ unique signs．

Mahadevan concordance : our data set

text identifier Indus text

Signs are mapped to numbers in our analysis.

2906 texts. 3573 lines.
101-220-59-67-119-23
-97

Probabilities are assigned on the basis of data, with smoothing for unseen ngrams. Technical, but straightforward.

Estimating the probabilities of unseen events

HHHHHH: 6 heads in 6 throws. $\xrightarrow{?} P(H)=1$

$$
P(T)=0
$$

maximum likelihood estimate

$$
P(i)=\frac{n_{i}}{N}
$$

Laplace's rule of succession

$$
P(i)=\frac{n_{i}+1}{N+2}
$$

Not a deductive problem, but an inductive problem!

Scientific inference and Bayesian probability

Mathematical derivation.

$$
\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{H}) \mathrm{P}(\mathrm{H}) / \mathrm{P}(\mathrm{D})
$$

posterior $=$ likelihood \times prior $/$ evidence

Inference with uniform prior for binomial distribution

$$
\begin{aligned}
& P\left(n_{1} \mid \theta, N\right)=\frac{N!}{n_{1}!\left(N-n_{1}\right)!} \theta^{n_{1}}(1-\theta)^{N-n_{1}} \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{H}) \text { - likelihood } \\
& P(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} \\
& \langle\theta\rangle=\frac{a}{a+b}
\end{aligned}
$$

$$
P\left(\theta \mid n_{1}, N\right) \sim \theta^{n_{1}+a-1}(1-\theta)^{n-n_{1}+b-1} \quad \mathrm{P}(\mathrm{H} \mid \mathrm{D})=\text { posterior }
$$

Posterior estimates

$$
\theta_{\text {mode }}=\frac{n_{1}+a-1}{N+a+b-2}
$$

$$
a=1, b=1
$$

Estimate using mode. Gives MLE. Like doing mean-field theory.

$$
\langle\theta\rangle_{\text {posterior }}=\frac{n_{1}+a}{N+a+b}
$$

$$
a=1, b=1
$$

Estimate using mean. Gives LRS. Like retaining fluctuations.

Generalising this to multinomial distributions is straightforward but tedious.

Smoothing of n -grams

Results from the Markov chain : unigrams

Unigrams follow the Zipf-Mandelbrot law

Beginners, enders and unigrams

Does this indicate SOV order?

Results from the Markov chains : bigrams

Independent sequence
Indus script

Information content of n -grams

unigram entropy

$$
H_{1}=-\sum_{a} P(a) \ln P(a)
$$

bigram conditional entropy

$$
H_{1 \mid 1}=-\sum_{a} P(a) \sum_{b} P(b \mid a) \ln P(b \mid a)
$$

We calculate the entropy as a function of the number of tokens, where tokens are ranked by frequency. We compare linguistic and non-linguistic systems using these measures. Two artificial sets of data, representing minimum and maximum conditional entropies, are generated as controls.

Unigram entropies

Indus: Mahadevan Corpus
English : Brown Corpus
Sanskrit : Rig Veda
Old Tamil : Ettuthokai
Sumerian : Oxford Corpus
DNA : Human Genome
Protein : E. Coli
Fortran : CFD code

Bigram conditional entropies

Comparing conditional entropies

Evidence for language

Unigrams follows the Zipf-
Mandelbrot law.

Clear presence of beginners and enders.

Conditional entropy is like natural language.

Conclusion : evidence in favour of language is greater than against.

An application : restoring illegible signs.

Fill in the blanks problem : $\underline{\underline{?}} \underline{\underline{t}}$

$$
P\left(s_{1} x s_{3}\right)=P\left(s_{3} \mid x\right) P\left(x \mid s_{1}\right) P\left(s_{1}\right)
$$

Most probable path in state-space gives the best estimate of missing sign. For large spaces, we use the Viterbi algorithm.

Benchmarking the restoration algorithm

Success rate on simulated examples is greater than 75% for most probable sign．

Text No．	Text	Incomplete Text	Most Probable Restoration	Probable Restored Sign			
4312	$\bigcup_{342} N E \underbrace{}_{43} N$	$\bigcup_{342} w \% \sum_{03} \underset{70}{\infty}$	$\bigcup_{342} \underset{48}{ } \underbrace{}_{53} \underbrace{}_{70}$				
4016				$\begin{array}{lll} \hat{x} & \\| & \widehat{x} \\ 67 & 00 & 65 \end{array}$			
5237	$\bigcup_{342} \underset{135}{ } x_{6700}^{11} 0$	$\bigcup_{342}^{\sim} \underset{135}{ } \underset{67000}{11}$	$\bigcup_{342} y_{135} x_{6790}^{11} 0$	$\bigotimes_{267} \bigoplus_{391}^{\infty}$			
2653							
5073							
3360	$\boldsymbol{v}_{16087211}\left\\|\frac{\Delta 18}{A} \sqrt{A}\right\\|_{104}^{\\| 12} \underset{60}{ }$			\sqrt{A}			
9071		ひ夕弗败 3422031827267980267	$\bigcup_{342203} 9 \underset{182}{ } \underset{72679890}{x} \underset{7 c}{d \prime}$	$\text { II } p_{00} \bigcup_{302}$			
4081			$\left.\bigcup_{342287}\right)_{102389} \underbrace{}_{80} \underset{336}{ } \\|_{65}$	$\left\\|\\|_{102}</ s>\hat{\Omega}_{65}\right.$			

Restoring damaged signs in Mahadevan corpus

8802				免界
8317		U		U
${ }^{193}$	Ư＊	笽	UK	U
1407	U＊＊＊＊		U＊＊＊＊	4，答桇
${ }^{2179}$				90
${ }^{339}$				
${ }^{8101}$				${ }_{\substack{4 \\ 20}}$
2302				U思／s\％

West Asian seals

Another useful application ：different ＇languages’？

West Asian Text （from［11］）	Likelihood
$\uparrow \kappa^{*} \kappa^{*} \phi$	0
$\Psi 1 / 1]^{\prime \prime}$（d）$\otimes+8$	2.71×10^{-10}
F ㅅㅅㅇ	6.32×10^{-8}
	4.66×10^{-14}
	0
Э ¢ $^{\text {¢ }}$	8.82×10^{-12}
UFF＇CA	1.20×10^{-12}
大呯多念白	2.22×10^{-17}
Indus valley held－out texts （median）	6.85×10^{-8}

$$
\begin{aligned}
\text { Likelihood } & =\mathrm{P}(\mathrm{D} \mid \mathrm{H}) \\
& =\mathrm{P}(\mathrm{~T} \mid \mathrm{M})
\end{aligned}
$$

$$
\begin{aligned}
P\left(s_{1} s_{2} \ldots s_{N}\right) & =P\left(s_{N} \mid s_{N-1}\right) \\
& \times P\left(s_{N-1} \mid s_{N-2}\right) \\
& \vdots \\
& \times P\left(s_{2} \mid s_{1}\right) \\
& \times P\left(s_{1}\right)
\end{aligned}
$$

Conclusion ：West Asian texts are structurally different from the Indus texts． Speculation：Different language？Different names ？

Future work

- Enlarge the space of instances : more linguistic and non-linguistic systems. Enlarge the metrics used : entropy of n-grams.
- Induce classes from the Markov chain. This may help uncover parts of speech.
- Use algorithmic complexity (Kolmogorov entropy) to distinguish language from non-language.
- Borrow techniques from bio-informatics, e.g. motif-recognition in DNA to help recognise motifs.

Thanks to Vikram for inviting me to speak.
Thank you for your attention.

Epigraphist's view of Markov chains

Markov
chains

[^0]: copyright : J. M. Kenoyer source : harappa.com

