Low Missing Energy and New Physics: To Miss or Not To Miss

Biswarup Mukhopadhyaya Regional Centre for Accelerator-based Particle Physics Harish-Chandra Research Institute Allahabad, India

May 1, 2012

 New physics search at the LHC is often associated with large missing energy (MET): A big motivation: dark matter

- New physics search at the LHC is often associated with large missing energy (MET): A big motivation: dark matter
- But it is important to look for signals with low MET as well, and perhaps without compromise on the dark matter issue

- New physics search at the LHC is often associated with large missing energy (MET): A big motivation: dark matter
- But it is important to look for signals with low MET as well, and perhaps without compromise on the dark matter issue
- Distinguishing among various scenarios: a challenge

- New physics search at the LHC is often associated with large missing energy (MET): A big motivation: dark matter
- But it is important to look for signals with low MET as well, and perhaps without compromise on the dark matter issue
- Distinguishing among various scenarios: a challenge
- Useful signals to study at the LHC: same-sign tri-and four-leptons

The LHC...

$$p \Rightarrow \Leftarrow p$$
 $7/8/14 \text{ TeV}$

Goals of the LHC....

- To discover the Higgs boson and complete the Standard Model of electroweak interactions
- To know more about top and bottom quark properties
- To understand strong interaction better
- To look for quark-gluon plasma
- Physics beyond the standard electroweak theory

The current state of affairs for electroweak physics....

• About 5 fb^{-1} of data with 7 TeV already taken, and partly analysed

nt state of affairs for electroweak physics....

- About 5 fb^{-1} of data with 7 TeV already taken, and partly analysed
- Higgs mass range narrowed down, with some tantalising but inconclusive hints....

nt state of affairs for electroweak physics....

- About 5 fb^{-1} of data with 7 TeV already taken, and partly analysed
- Higgs mass range narrowed down, with some tantalising but inconclusive hints....
- The theory of weak + electromagnetic interactions is almost certainly the proposed $SU(2) \times U(1)$ gauge theory, but the origin of masses not yet certain

nt state of affairs for electroweak physics....

- About 5 fb^{-1} of data with 7 TeV already taken, and partly analysed
- Higgs mass range narrowed down, with some tantalising but inconclusive hints....
- The theory of weak + electromagnetic interactions is almost certainly the proposed $SU(2) \times U(1)$ gauge theory, but the origin of masses not yet certain
- The search for new physics is on, mostly accepting the 'Higgs lore', but no positive evidence yet

BUT....

• Why do we think there should be new physics ?

BUT....

- Why do we think there should be new physics ?
- Why should new laws be manifest at the LHC energy?

Phenomenological dissatisfactions (unexplained features):

- Large number of unrelated free parameters
- Replication of fermion families
- The pattern of fermion masses
- Maximal P but small CP violation

Theoretical/Philosophical questions:

- No way to unify with strong interaction
- No clue on a quantum theory of gravity
- Divergent higher-order contributions to the Higgs boson mass

Sporadic/seasonal/volatile issues:

- The muon anomalous magnetic moment (3 3.5 σ inconsistency)
- \bullet PAMELA (excess positrons \sim 10 80 GeV from galactic halo)
- \bullet ATIC (excess galactic cosmic-ray electrons \sim 300 -800 GeV)
- Tevatron multimuon events (excess multimuons, inexplicable from b-decays)
- Top quark forward-backward asymmetry at Tevatron
- Wjj events in the CDF experiment

Concrete and persistent problems:

- Neutrino masses and mixing
- Cold dark matter (no particle physics explanation)
- Matter-antimatter asymmetry in the universe
- A positive cosmological constant (!)

Physics beyond the standard model...

Effective energy scale to be probed at the LHC: $\simeq 1$ -2 TeV

Out of the many motivations listed, which ones definitely suggest 'something new' at this energy?

Why new physics at the TeV scale?

- The issue of Grand Unification (very indirect!)
- To understand why the Higgs should be within a TeV (relatively pressing!)
- Finding a cold(warm?) dark matter candidate (Somewhat imperative)

Thus the Dark matter issue is rather central to new physics search at the LHC

Searches for new physics at the LHC...

Events with large missing- E_T (MET) or resonances are the first to be looked for

Popular belief: dark matter candidates ⇒ MET

Theories often proposed with a Z_2 symmetry to accommodate a stable particle (dark matter candidate)

A candidate theory: supersymmetry (SUSY) with R-parity ($R=(-)^{(3B+L+2S)}$) A lot of progress has taken place in SUSY search—mSUGRA-based cMSSM ruled out upto \simeq 850 GeV (with $4.7fb^{-1}$)

There can be other Z_2 -endowed scenarios: (Universal extra dimensions with KK parity, Little Higgs with T-parity)

Distinguishing among models with Z_2

'Inverse problem' within SUSY— mapping from signature space to parameter space
Arkani-Hamed et al. (2006)
Larger number of observables studied

⇒ degeneracy in the parameter space better lifted

SUSY vs. other scenarios with large MET General distinction strategies (LHC, dark matter search....):

A.K. Datta, G. Kane, M. Toharia (2005)

D. Hooper, G. Zaharijas (2006)

A. K Datta, P. Dey, S. Gupta, BM, A. Nyffeler (2007)

J. Hubisz et al. (2008)

M. Burns et al., 2008

W. Ehrenfeld et al. (2009)

B. Bhattacharjee it et al. (2009)

But is is also important to remember that....

So long as large MET signals elude us,

One needs to think of scenarios where such Z_2 symmetry is broken

Some of the resulting theories may still accommodate dark matter candidates

Also, some scenarios with Z_2 still yield low MET

We need criteria to point towards them and to discriminate among various low-MET scenarios in general

Examples....

- (a) SUSY with R-parity violation (SUSY-RPV)
- (b) Little Higgs theories with broken T-parity (LHT-TPV)
- (c) Universal extra dimensions with conserved Kaluza-Klein parity (UED-KKC)
- (d) Universal extra dimensions with Kaluza-Klein parity violated (UED-KKV)
- (e) SUSY with a compressed spectrum

The present discussion includes cases (a) - (d)

SUSY-RPV....

The MSSM superpotential: (source of interaction of all chiral (f, \tilde{f}) supermultiplets) $W_{MSSM} = Y_{ij}^l L_i H_1 E_j^c + Y_{ij}^d Q_i H_1 D_j^c + Y_{ij}^u Q_i H_1 U_j^c$ (Assuming that baryon and lepton number are conserved)

When $R = (-)^{L+3B+2S}$ violated via L or B, one can write

$$W=W_{MSSM}+W_{RPV}$$
, with $W_{RPV}=\lambda_{ijk}L_iL_jE_k^c+\lambda_{ijk}^{'}L_iQ_jD_k^c+\epsilon_iL_iH_2+\lambda_{ijk}^{''}U_i^cD_j^cD_k^c$

We consider here L-violating W_{RPV} : $\lambda_{ijk}^{"}=0$

Offers mechanisms for neutrino mass generation

SUSY-RPV....

Most phenomenological studies: one type of R-parity violating coupling at a time

Result: the MSSM-LSP (say, the lightest neutralino) has two/three body decays with at least one lepton in the final state

The gravitino or the axino may be the dark matter candidate

LHT-TPV....

The Higgs is the pesudo-goldstone boson of a broken approximate global symmetry

The breaking scale stabilises the electroweak scale

In a minimal (littlest) form, $SU(5) \rightarrow SO(5)$ Underlying electroweak gauge group : $[SU(2) \times U(1)]^2$, with an exchange symmetry (T-parity) – a Z_2 symmetry (stabilises, for example, the m_W/m_Z ratio)

Result: a division into T-even (SM) and T-odd (new) particles $[SU(2) \times U(1)]^2 \longrightarrow SU(2) \times U(1)$ at scale f New particles include heavy T-odd fermions (Q_H, L_H) , heavy gauge bosons (W_H, Z_H, A_h) , a Higgs triplet...... The lightest T-odd particle (LTP) is stable: (Usually the A_H)

LHT-TPV....

 Z_2 symmetry \Rightarrow LTP is the dark matter candidate (A neutral, weakly interacting particle) The spectrum and the interactions are controlled by $f = \mathcal{O}(\text{TeV}), f \kappa_{ii} = \text{matrix deciding heavy fermion masses}$ But T-parity can be broken... by Wess-Zumino-Witten anomaly terms Results: terms $\sim \frac{N}{48\pi^2 f^2} \epsilon_{\mu\nu\alpha\beta} V^{\mu}_{H} V^{\nu} \partial^{\alpha} V^{\beta}$ The LTP becomes unstable: For example, $A_H \longrightarrow WW^{(*)}$, $ZZ^{(*)}$ leading to tree-level or loop-induced decays such as $\ell\nu\ell\nu$, $\ell\ell$,...

UED-KKC....

At least one spacelike compact extra dimension, of radius R, where all fields can propagate

New particles are Kaluza-Klein towers, with same spin as in the zero-mode SM states

The extra dimension 'orbifolded' about the axis from $\phi = 0 - \pi$: a Z_2 symmetry (for ensuring proper fermion chiralities) \Rightarrow A conserved 'Kaluza-Klein parity'

The lightest KK-odd particle (LKP) is stable due to the Z_2 symmetry: dark matter candidate (A neutral, weakly interacting particle): Usually the first excitation (A_1) of the photon

The spectrum is decided by R^{-1} , and the cut-off scale A highly compressed spectrum in general

UED-KKV...

KK-parity can be broken by additional asymmetric operators at the orbifold fixed points ⇒ The LKP is again unstable

Claim: all of these four scenarios, including UED-KKC, can lead to similar MET signals at the LHC How to distinguish?

K. Ghosh, S. Mukhopadhyay, BM (2010)

MET distributions for all four scenarios...

 $M_s = Strongly interacting particle mass \simeq 1 TeV SUSY-RPV: <math>\lambda$ -type with one coupling

Distinguishing among the various scenarios...

Prescription: use multileptons $\ell=e,\mu$ Dileptons: limited discriminating power Trileptons: sometimes effective, but.... four-and five-lepton final states can be useful discriminators

Isolated and central leptons, with appropriate transverse momentum requirements

Sufficient statistics required for discrimination: 14 TeV run necessary For $M_s=600$ GeV, 5 fb^{-1} at 14 TeV is enough For $M_s=1$ TeV, 30 fb^{-1} is required for 5σ significance for all scenarios

Distinguishing among the various scenarios...

Effective mass distribution with $M_s=1$ TeV: UED-KKC stands out $(M_{eff}=\Sigma_i p_{\scriptscriptstyle T}^i + MET)$

Four-lepton invariant mass...

$$M_{4l} = (p_{l_1} + p_{l_2} + p_{l_3} + p_{l_4})^2$$

If the 4ℓ all come from one particle,
then $M_{4l} = mass$ of the parent particle

Four-lepton invariant mass...

4ℓ invariant mass distributions: explanation

UED-KKC:

$$M_{4\ell} \leq \sqrt{2 \frac{(M_{Z_1}^2 - M_{L_1}^2)(M_{L_1}^2 - M_{\gamma_1}^2)}{M_{L_1}^2} + 4(E_1 E_3 + E_1 E_4 + E_2 E_3 + E_2 E_4)}$$
compressed spectrum $\Rightarrow M_{4\ell}$ within a narrow band

4ℓ invariant mass distributions: explanation

• UED-KKC:

$$\begin{array}{l} \textit{M}_{4\ell} \leq \\ \sqrt{2\frac{(\textit{M}_{Z_1}^2 - \textit{M}_{L_1}^2)(\textit{M}_{L_1}^2 - \textit{M}_{\gamma_1}^2)}{\textit{M}_{L_1}^2}} + 4(\textit{E}_1\textit{E}_3 + \textit{E}_1\textit{E}_4 + \textit{E}_2\textit{E}_3 + \textit{E}_2\textit{E}_4)} \\ \textit{compressed spectrum} \Rightarrow \textit{M}_{4\ell} \textit{ within a narrow band} \end{array}$$

• LHT-TPV: most events from $A_H A_H \longrightarrow 4W^{(*)}$ On the top is a narrow peak from $A_H \longrightarrow 2Z^{(*)}$

4ℓ invariant mass distributions: explanation

• UED-KKC:

$$M_{4\ell} \leq \sqrt{2 \frac{(M_{Z_1}^2 - M_{L_1}^2)(M_{L_1}^2 - M_{\gamma_1}^2)}{M_{L_1}^2} + 4(E_1 E_3 + E_1 E_4 + E_2 E_3 + E_2 E_4)}$$
compressed spectrum $\Rightarrow M_{4\ell}$ within a narrow band

- LHT-TPV: most events from $A_H A_H \longrightarrow 4W^{(*)}$ On the top is a narrow peak from $A_H \longrightarrow 2Z^{(*)}$
- UED-KKV: Peak from one side: $Z_1 \longrightarrow \ell L_1 \longrightarrow \ell \ell \gamma_1 \longrightarrow 4\ell$

4ℓ invariant mass distributions: explanation

UED-KKC:

$$\begin{array}{l} \textit{M}_{4\ell} \leq \\ \sqrt{2\frac{(\textit{M}_{Z_1}^2 - \textit{M}_{L_1}^2)(\textit{M}_{L_1}^2 - \textit{M}_{\gamma_1}^2)}{\textit{M}_{L_1}^2}} + 4(\textit{E}_1\textit{E}_3 + \textit{E}_1\textit{E}_4 + \textit{E}_2\textit{E}_3 + \textit{E}_2\textit{E}_4)} \\ \textit{compressed spectrum} \Rightarrow \textit{M}_{4\ell} \textit{ within a narrow band} \end{array}$$

- LHT-TPV: most events from $A_H A_H \longrightarrow 4W^{(*)}$ On the top is a narrow peak from $A_H \longrightarrow 2Z^{(*)}$
- UED-KKV: Peak from one side: $Z_1 \longrightarrow \ell L_1 \longrightarrow \ell \ell \gamma_1 \longrightarrow 4\ell$
- SUSY-RPV: no peak at all

Some more discrimination criteria....

• Pairwise opposite-sign lepton invariant masses and their correlations in 4ℓ events

Some more discrimination criteria....

- Pairwise opposite-sign lepton invariant masses and their correlations in 4ℓ events
- Angular correlation of each lepton with the nearest jet (for SUSY-RPV, there is often peaking in the forward direction)

Some more discrimination criteria....

- Pairwise opposite-sign lepton invariant masses and their correlations in 4ℓ events
- Angular correlation of each lepton with the nearest jet (for SUSY-RPV, there is often peaking in the forward direction)
- $N(5\ell)/N(4\ell)$: SUSY-RPV and LHT-TPV show higher ratios than the two other cases
 Reason: compressed spectrum tends to soften leptons from cascade

Same-sign trileptons(SS3 ℓ): unexplored potential...

Lepton sign: seriously used in the search for same-sign dilepton (SSD) events

Majorana fermions enhance SSD rates p_{\pm} + isolation

Majorana fermions enhance SSD rates, p_T + isolation cuts reduce backgrounds (mostly from $t\bar{t}$)

Leptons of higher multiplicity and same sign: SM backgrounds extremely small

Theories with L-violation + self-conjugate fields: unsuppressed signals

A very discriminating check on scenarios with low-MET

SUSY-RPV stands out by contributing to SS3 ℓ (and also SS4 ℓ) (Even in the early run)

Also, the dynamics of R-parity violation can be probed thereby S. Mukhopadhyay, BM (2010, 2011)

Same-sign trileptons(SS3 ℓ): unexplored potential...

Standard model contribution to $\sigma(\text{SS}3\ell)$: with appropriate cuts, $\simeq 2.5 \times 10^{-3}$ fb ($\simeq 7.0 \times 10^{-4}$ fb) at 14 (7) TeV Even smaller backgrounds for SS4 ℓ

If high-MET new physics signals continue to elude us, Low-MET ones must be looked for SS3 $\ell \Rightarrow$ a discriminating signature of specific scenario(s) In SUSY-RPV, LSP-pair decays (with no branching ratio suppression) can yield two same-sign leptons, and one more comes from the cascade

• SUSY with R-parity: rates are always very low due to lack of L-violation and branching fraction suppression

- SUSY with R-parity: rates are always very low due to lack of L-violation and branching fraction suppression
- SUSY with compressed spectrum: rates even lower

- SUSY with R-parity: rates are always very low due to lack of L-violation and branching fraction suppression
- SUSY with compressed spectrum: rates even lower
- LHT-TPV: Decay of the LTP to one charged lepton has low branching ratio

- SUSY with R-parity: rates are always very low due to lack of L-violation and branching fraction suppression
- SUSY with compressed spectrum: rates even lower
- LHT-TPV: Decay of the LTP to one charged lepton has low branching ratio
- UED: SS3ℓ occurs even more rarely

- SUSY with R-parity: rates are always very low due to lack of L-violation and branching fraction suppression
- SUSY with compressed spectrum: rates even lower
- LHT-TPV: Decay of the LTP to one charged lepton has low branching ratio
- UED: SS3ℓ occurs even more rarely
- Thus SUSY-RPV stands out

Coverage in mSUGRA parameter space at 14 TeV

5-event contours with background << 1: One λ -type coupling included

Rates at 7 TeV

Case	$\sigma_{SS3\ell}$ (fb)
λ -type: $m_{\tilde{g}} \simeq 660 GeV$, neutralinoLSP	19.82
λ -type: $m_{\tilde{g}} \simeq 000 \text{GeV}$, neutralinoLSP	4.29
λ -type: $m_{\tilde{g}} \simeq 770 GeV$, stauLSP	30.74
λ -type: $m_{ ilde{g}} \simeq 1 TeV$, stauLSP	3.35
λ' -type: $m_{\tilde{g}} \simeq 660 GeV$, neutralinoLSP	2.07

In a purely phenomenological R-parity violating SUSY

Some general conclusions about SS3 ℓ :

- $M_{2(1)} \ge 2M_{1(2)} \Rightarrow Signal \ rate \ enhanced$
- $M_1 \simeq M_2 \Rightarrow Signal \ suppressed \ unless \ M_3 >> M_{1,2}$
- For $m_{\tilde{g}}$, $m_{\tilde{q}} \simeq 1$ TeV, 5 background-free events possible with 0.6 5.5 fb⁻¹ at 7 TeV, and 0.1 3.0 fb⁻¹ at 14 TeV
- The nature of SUSY-RPV can be extracted for one type of RPV coupling present at a time

Some numbers in CMSSM with $m_{ ilde{p}} \simeq m_{ ilde{p}} \simeq 1$ TeV: ss3l

$$\tan \beta = 5$$

Cut	SM	S	Sig(S)
Lepton selection $+ MET > 30 GeV$	7.01×10^{-4}	2.41	5.9
MET > 50 GeV		2.23	5.6
MET > 100 GeV		1.65	4.7
$m_{ ext{eff}}^{\ell} > 100~ ext{GeV}$		2.39	5.8
$m_{ ext{eff}}^{\ell} > 200~ ext{GeV}$		1.57	4.6
$m_{ m eff} > 150~{\it GeV}$		2.40	5.9
$m_{eff} > 250 \; GeV$		2.10	5.4

Table: Same-sign trilepton rates (in fb) and the expected signal significance, for $7\,\text{TeV}$ LHC and $1~\text{fb}^{-1}$ of integrated luminosity. $(\lambda_{123}=10^{-3})$

After lepton acceptance + MET cut, 3 events with

Some numbers in CMSSM with $m_{\tilde{p}} \simeq m_{\tilde{p}} \simeq 1$ TeV: SSD

$$\tan \beta = 5$$

Cut	SM	S	Sig(S)
Lepton selection $+ MET > 30 GeV$	10.7	11.61	3.1
MET > 50 GEV		10.95	
MET > 100 GeV		8.66	
$m_{eff}^{\ell} > 100~GeV$	6.4	10.59	3.5
$m_{ ext{eff}}^{ ilde{\ell}^{\prime}} > 200 \; GeV$	1.0	5.50	3.7
$m_{\it eff} > 150~\it GeV$	7.4	11.41	3.5
$m_{eff} > 250 \; GeV$	1.8	9.46	4.7

Table: Same-sign dilepton rates (in fb) and the expected signal significance, for $7\,TeV$ LHC and $1\,fb^{-1}$ of integrated luminosity. ($\lambda_{123}=10^{-3}$)

After lepton acceptance + MET cut, 5σ discovery in the SSD channel with $2.6fb^{-1}$

Define
$$x = \sigma_{SS3\ell}/(\sigma_{SS3\ell} + \sigma_{MS3\ell})$$
, and $y = \sigma_{SS4\ell}/(\sigma_{SS4\ell} + \sigma_{MS4\ell})$

The dynamics is reflected in x and y

x and y depend only on how charginos and neutralinos decay to leptons of either sign, and are independent of the spectrum Assumption:

- (a) neutralino LSP
- (b)only one L-violating coupling at a time

• For λ -type coupling,

 $x \simeq 0.12$

In actual simulations, $x = 0.11 \pm 0.02$

• For λ -type coupling,

$$x \simeq 0.12$$

In actual simulations, $x = 0.11 \pm 0.02$

• With λ' -type coupling,

Let
$$B(\chi_1^0 \longrightarrow l^{\pm}q\bar{q}') = \alpha$$
 ($\alpha \simeq 0.5$) Then

$$x = \alpha^2/4 + 4y(1/\alpha - 1)$$

For the bilinear terms $\epsilon_i L_i H_2$ side by side with $\mu H_1 H_2$,

The ϵ_i can be rotated away from the superpotential,

RPV is then driven by sneutrino vev in the scalar potential

Then correct neutrino masses $\Rightarrow \langle \tilde{\nu} \rangle \simeq 100 \text{keV}$ in that basis

$$\chi_1^0 \longrightarrow \ell W, \nu Z$$

(BR's fixed unless sneutrinos are closely degenerate with the Higgs)

Then

$$x = 3.53y + 0.06$$

(Including backgrounds, the relations are satisfied upto 10 - 20 %)

• Several well-motivated scenarios can have signals where MET is not the main thing

- Several well-motivated scenarios can have signals where MET is not the main thing
- Some of these may even contain dark matter candidates

- Several well-motivated scenarios can have signals where MET is not the main thing
- Some of these may even contain dark matter candidates
- Multilepton final states can help in distinguishing among different scenarios

- Several well-motivated scenarios can have signals where MET is not the main thing
- Some of these may even contain dark matter candidates
- Multilepton final states can help in distinguishing among different scenarios
- Same-sign trileptons: a very clear signal of SUSY with L-violation

- Several well-motivated scenarios can have signals where MET is not the main thing
- Some of these may even contain dark matter candidates
- Multilepton final states can help in distinguishing among different scenarios
- Same-sign trileptons: a very clear signal of SUSY with L-violation
- The early run has interesting prospects

- Several well-motivated scenarios can have signals where MET is not the main thing
- Some of these may even contain dark matter candidates
- Multilepton final states can help in distinguishing among different scenarios
- Same-sign trileptons: a very clear signal of SUSY with L-violation
- The early run has interesting prospects
- SS3\ell and SS4\ell can differentiate among various R-parity breaking terms

"It is the mark of an educated mind to be able to be able to entertain a thought without accepting it"

—Aristotle