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Introduction to ultracold bosons 



State of cold bosons in a lattice: experimentBloch 2001



Energy Scales

δEn = 5Er  ~ 20 U
U ~10-300 t

rE20

For a deep enough potential, 
the atoms are localized : Mott 
insulator described by single 
band Bose-Hubbard  model.

From BEC to the Mott state

Ignore higher bands

The atoms feel a potential  V = -a |E|2 

Model Hamiltonian

Apply counter 
propagating laser: 
standing wave of light.



Mott-Superfluid transition:  preliminary analysis

Mott state with 1 boson per site

Stable ground state for 0 < m < U

Adding a particle to the Mott state
Mott state is destabilized when 
the excitation energy touches 0.

Removing a particle from the Mott state

Destabilization of the Mott state via addition  of particles/hole: onset of superfluidity



Beyond this simple picture

Higher order energy calculation
by Freericks and Monien: Inclusion
of up to O(t3/U3) virtual processes.

Mean-field theory (Fisher 89, 
Seshadri 93)

Phase diagram for n=1 and d=3

MFT

O(t2/U2) theories

Predicts a quantum phase 
transition with z=2 (except at
the tip of the Mott lobe where 
z=1).

Mott

Superfluid

Quantum Monte Carlo studies for 
2D & 3D systems: Trivedi and Krauth,
B. Sansone-Capponegro 

No method for studying dynamics beyond mean-field theory



Projection Operator Method



Distinguishing between hopping processes

Distinguish between two  types of hopping processes 
using a projection operator  technique

Define a projection operator 

Divide the hopping to classes (b) and  (c)

Mott state



Building fluctuations over MFT

Design a transformation which eliminate hopping
processes of class (b) perturbatively in J/U. 

Obtain the effective Hamiltonian

Use the effective Hamiltonian 
to compute the ground state 
energy and hence the phase 
diagram



Equilibrium phase diagram 

Reproduction of the phase  diagram 
with remarkable accuracy in d=3: 
much better than standard 
mean-field or strong coupling 
expansion in d=2 and 3. 

Allows for straightforward generalization  for treatment of dynamics

Accurate for large z as can be 
checked by comparing with QMC
data for 2D triangular (z=6) 
and 3D cubic lattice 



Non-equilibrium dynamics: Linear ramp

Consider a linear ramp of J(t)=Ji +(Jf - Ji) t/t. 
For dynamics, one needs to solve the Sch. Eq.

Make a time dependent transformation 
to address the dynamics by projecting on
the instantaneous low-energy sector. 

The method provides an accurate description
of the ramp if J(t)/U <<1 and hence can 
treat slow and fast ramps at equal footing.  

Takes care of particle/hole production 
due to finite ramp rate 



Absence of critical scaling: may 
be understood as the inability of 
the system to access the critical
(k=0) modes. 

Fast quench from the Mott to the SF 
phase; study of superfluid dynamics.

Single frequency pattern near the critical 
Point; more complicated deeper in the SF
phase. 

Strong quantum fluctuations near the QCP;
justification of going beyond mft.

F



Experiments with ultracold bosons on a lattice: finite rate dynamics

2D BEC confined in a trap and in the presence 
of an optical lattice.

Single site imaging done by light-assisted collision
which can reliably detect even/odd occupation 
of a site.  In the present experiment they detect
sites with n=1. 

Ramp from the SF side near the QCP to deep inside
the Mott phase in a linear ramp with different 
ramp rates. 

The no. of sites with odd n displays plateau like 
behavior and approaches the adiabatic limit 
when the ramp time is increased asymptotically.

No signature of scaling behavior. Interesting 
spatial patterns.  

W. Bakr et al. Science 2010



Power law ramp

Slope of both F and Q depends on 
a; however, the plateau-like behavior
at large t is independent of  a. 

 

Use a power-law ramp protocol

Absence of Kibble-Zureck scaling for 
any a due to lack of contribution of 
small k (critical) modes in the dynamics.



Periodic protocol: dynamics induced freezing



Dynamics induced freezing

Tune J from superfluid phase to Mott
and back through the tip of the Mott lobe.

Key result

There are specific frequencies
at which the wavefunction of
the system comes back to itself
after a cycle of the drive 
leading to P=1-F -> 0. 

Dynamics induced freezing



Mean-field analysis: A qualitative picture 

1. Choose a gutzwiller wavefunction: 

2. The mean-field equations for fn
En is the on-site energy of the
state |n>

3. Numerical solution of this equation 
indicates that fn vanishes for n>2 for all
ranges of drive frequencies studied. 

4. Analysis of these equations leads to the 
    relation involving 



5. Thus one can describe the system 
in terms of three real variables : amplitude 
of state |1> and the sum and difference 
of the relative phases.

6. One can construct a frequency-
independent relation between r1 and fs

 Numerical solution of (6)  

There is a range of frequency for which 
r1 and fs  remain close to their original 
values; dynamics induced freezing occurs 
when fd/4p = n within this range.

 

fs=f0+f2-2f1    fd=f2-f0



Robustness against quantum fluctuations and presence of a trap

Mean-field theory Projection operator formalism

Density distribution of
the bosons inside a trap

Robust freezing 
phenomenon



Bosons in an electric field



Applying an electric field to the Mott 
state

Energy 
Scales:

hων = 5Εr  ≈ 20 
U

U ≈10−300 J

rE20



Construction of an effective model: 
1D

Parent Mott state



Charged excitations

quasiparticle quasihole



                               Neutral dipoles

Neutral dipole state 
with energy U-E.

Resonantly coupled to the 
parent Mott state when U=E.

Two dipoles which are not nearest 
neighbors with energy 2(U-E).



Effective dipole Hamiltonian: 1D



Weak Electric Field

• The effective Hamiltonian for the dipoles for weak E:

• Lowest energy excitations: Single band of dipole 
excitations.

• These excitations soften as E approaches U. This is a 
precursor of the appearance of Ising density wave with 
period 2.

• Higher excited states consists of multiparticle 
continuum.

For  weak electric field, the ground state is dipole vaccum and the low-energy
excitations  are single dipole  



Strong Electric field

The ground state is a state of maximum dipoles.

Because of the constraint of not having two dipoles on 
consecutive sites, we have two degenerate ground states

The ground state breaks Z2 symmetry.

The first excited state consists of band of  domain walls 
between the two filled dipole states.

Similar to the behavior of Ising model in a transverse field.



Intermediate electric field: QPT

Quantum phase transition 
at E-U=1.853w. Ising 
universality.



Recent Experimental observation of Ising order (Bakr et al Nature 2010)

First experimental realization of effective Ising model in ultracold atom system



Quench dynamics across the quantum critical point

Tune the electric field from 
Ei to Ef instantaneously

Compute the dipole order 
Parameter as a function of  time

The time averaged value of the order parameter is maximal near the QCP



Generic critical points: A phase space argument

The system enters the impulse region when
rate of change  of the gap is the same order
as the square of the gap. 

For slow dynamics, the impulse region is a 
small region near the critical point where
scaling works

The system thus spends 
a time T  in the impulse 
region which depends on 
the quench time 

In this region, the energy gap scales as 

Thus the scaling law for the defect 
density turns out to be

Generalization to finite system size
finite-size scaling



Dynamics with a finite rate: Kibble-Zureck scaling

Change the electric field linearly 
in time with a finite rate v

Quantities of interest

Scaling laws for 
finite –size systems

Theory

Experiment

Q ~ v2 (v) for slow (intermediate) quench. These are 
termed as LZ(KZ) regimes for finite-size systems.



Kibble-Zureck scaling for finite-sized system 

Expected scaling laws for Q and F

Dipole dynamics  Correlation function

Observation of Kibble-Zurek law for 
intermediate v with Ising exponents. 
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