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Introduction to ultracold bosons



State of cold bosons in a lattice: expergnaat2001

V,=I4E, V,=I6E, V,=20E,



From BEC to the Mott state

Apply counter The atoms feel a potential V = -a |E|-
propagating laser:
standing wave of light. Energy Scales

For a deep enough potential, SEn=5Er ~ 20U
the atoms are localized : Mott
insulator described by single

band Bose-Hubbard model.
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Model Hamiltonian
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Ignore higher bands



Mott-Superfluid transition: preliminary analysis

Mott state with 1 boson per site U
Hon—site = Eznz(nz - 1)—MZ n;
i i

‘ @ @ ‘ @ @ ‘ Stable ground stateforO <m < U

Mott state is destabilized when

Adding a particle to the Mott state the excitation energy touches 0.

SEp=(—p+U) -2zt = (—p+U)/22

Removing a particle from the Mott state
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ol loleo] |
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Fion of the Mott state via addition of particles/hole: onset of su,



Beyond this simple picture
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No method for studying dynamics beyond mean-field theory



Projection Operator Method



Distinguishing between hopping processes

(a)
\o/\o/\/\/ s> M ott state
\/\/ — \/\/
eTe ‘o t 3
\/\/P””Pl\/\/

Distinguish between two types of hopping processes
using a projection operator technique

Define a projection operatorll{:’e = |)(nl: x ) (nl

Divide the hopping to classes (b) and (c)

T = Z{rrf‘; _Jbibr’ = ZETE’ = EeKPﬁT&? + TelPy) + PELTE’PFL]




Building fluctuations over MFT

gn a transformation which eliminate hopp:rE

esses of class (b) perturbatively in J/U. S = dopi[Pe, Te]/U

btain the effective Hamiltonian H* = exp(iS)H exp(—iS)
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Jse the effective Hamiltonian

— LM — (b LET* |4l 373 /772
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Equilibrium phase diagram
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Allows for straightforward generalization for treatment of dynam



Non-equilibrium dynamics: Linear ramp

sider a linear ramp of J(t)=]i +(Jf - Ji) t/t. |;pp,|y) = HIT ()]
dynamics, one needs to solve the Sch. Eq.

e a time dependent transformation
ddress the dynamics by projecting on |_|}.r,.r}“ = exp(iS[J(t)])|)
instantaneous low-energy sector. — i

3

method provides an accurate descriptiol(iid: + 85/0t)ly") = H*[J()]|v')
1e ramp if J(t)/U <<1 and hence can |

t slow and fast ramps at equal footin’?. . .
Takes care of particle/hole productio

due to finite ramp rate
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Experiments with ultracold bosons on a lattice: finite rate dynamics

1.0

EC confined in a trap and in the presence | ———F
1 optical lattice. 08l

le site imaging done by light-assisted collisié
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site. In the present experiment they detect

s with n=1. 02}
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Mott phase in a linear ramp with different Ramp time (ms)
) rates.
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ywvior and approaches the adiabatic limit
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Power law ramp

Use a power-law ramp protocol

J(t)=Ji+(Jr—Ji)(t/T)"

0 e U Slope of both F and Q depends on
a; however, the plateau-like behavio
0 at large t is independent of a.

l

Absence of Kibble-Zureck scaling for
any a due to lack of contribution of
small k (critical) modes in the dynami




Periodic protocol: dynamics induced freezing



Dynamics induced freezing

Ine ] from superfluid phase to Mott
1d back through the tip of the Mott lobe. -
l p/U A=1
J(t) = Jo+0d.J cos(wt) Mo
0.0343 /U:
Key result
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Mean-field analysis: A qualitative picture
Choose a gutzwiller wavefunctic|V(r,t))me =11 22, fa()n)

The mean-field equations for fiv, — E,,)f, = A(t)v/nfa_1 + A*()Vn+ 1fn11,
)

En is the on-site energy of the; ..\ _ .
state |n> A(t) = =2J(t) 22, vV fi_1f,

Numerical solution of this equatici0.fo = —2J(t)[l/11*fo + V2/5 [7]
licates that fn vanishes for n>2 fiio.fs = Esfo —2J()2|f1]>f2 + V215 f1]
1ges of drive frequencies studied io,f, = Eifi —=J@®)[2|f2? + |fo|?) f1 + 2V2f] f2fol.

\nalysis of these equations leads to - J 2 _ p 2 _ _§ 2 /9
elation involving 1ol tl f2 el f1]7/2.

frn = rn(t)explion(t)]. 'f'é[u] (t) = —('f'% (¢) —1)/2+ [—]n,



hus one can describe the system "t = ~V22/()sn(0a)r1go(ry).
srms of three real variables : ampli:?:*s = ~U 2/ [91(r1) — g2(r1) cos(s)] (6)
tate |1> and the sum and differenc 4. = —U+2u+:J(t)ri [1 — V2 GOS(@S)/QD(*'H]

1e relative phases. go(r1) = \/(1 22— 402, gi(r) = 62 — 3 — 2,

fs=f0+f2-2f1 fd=1f2-f0 g2(r1) = 2V2[r1(r} —1)/g0(r1) + go(r1)] - (7)

)ne can construct a frequency-
ependent relation between rl1 ana

—V?2 Sill(@_g)'!'lgg ("}'1)
[91(r1) — g2(r1) cos(gs)] = U/zJ(¥)

d'l'l/d(f)s =

<=Numerical solution of (6)

§ of;'-r “There is a range of frequency for which

rl and fs remain close to their original
values; dynamics induced freezing occur
when fd/4p = n within this range.
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Robustness against quantum fluctuations and presence of a trap
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Bosons in an electric field



Applying an electric field to the Mott

20F

.....................

Ere e T

hwv =5Er = 20
U
U =10-300J
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Construction of an effective model:

1D
LY

Parent Mott state | 7

S g

g

H = —n-'Z(b:bj + b';fb_r. ) +%Z n, (”.- — l) = Z E-rn
oy :

n=>b'b

U-E

WK E.U

Describe spectrum in subspace of states resonantly
coupled to the Mott insulator




wilidl ycu CAULCILAULIVI IO
quasiparticle

\ /
: ° 8

OOI

Effective Hamiltonian for a quasiparticle in one dimension (similar for a quasthole):

H, = —Z[BW(Z}_;'Z}I gt Z:l_:f ab; ) + Eﬂ):fbj ]
J

Exact eigenvalues &€ =FEm . m=—oco.:-00

Exact eigenvectors w, (/)= S (OW/E )

All charged excitations are strongly localized in the plane perpendicular electric field.
Wavefunction is periodic in time, with period A/E (Bloch oscillations)
Quasiparticles and quastholes are not accelerated out to infinity



Neutral dipoles

Resonantly coupled to the
parent Mott state when U=E.

Neutral dipole state Two dipoles which are not nearest
with energy U-E. neighbors with energy 2(U-E).



Effective dipole Hamiltonian: 1D

d| = Creates dipole on link /

H,=-Now) (d+d,)+(U-E)) dld,

f

Constraints: d,d, <1 . d/ . d, .d'd =0

F4+177 1 +]

Determine phase diagram of H, as a function of (U-E)/w

Note: there is no explicit dipole hopping term.

However, dipole hopping 1s generated by the
interplay of terms in /4, and the constraints.




Weak Electric Field

For weak electric field, the ground state is dipole vaccum and the low-energy
excitations are single dipole

* The effective Hamiltonian for the dipoles for weak E:

. w?ng(ng + 1)
Haeff = (U—-F) zl: [|l > | + U — B)2 (|l ><

Hi4+1><l| + I ><1+1])]

* Lowest energy excitations: Single band of dipole
excitations.

* These excitations soften as E approaches U. This is a
precursor of the appearance of Ising density wave with
period 2.

* Higher excited states consists of multiparticle
continuum.



Strong Electric field

The ground state is a state of maximum dipoles.

Because of the constraint of not having two dipoles on
consecutive sites, we have two degenerate ground states

10

ddidid dyd) |0y or dydyd dgdd), -0

The ground state breaks Z2 symmetry.

The first excited state consists of band of domain walls
between the two filled dipole states.

Similar to the behavior of Ising model in a transverse field.
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Intermediate electric field: QPT
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Recent Experimental observation of Ising order (Bakr et al Nature 2(
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Quench dynamics across the quantum critical point

une the electric field from
i to Ef instantaneously

mpute the dipole order

rameter as a function of time g -
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O(t?oo-r PORTTTRY ORI | W W 2
0.02- 'E =44
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1 f
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e time averaged value of the order parameter is maximal near the QCP



Generic critical points: A phase space argument

' system enters the impulse region when ;A /5 < A
2 of change of the gap is the same order n(Ag)/dt = A
‘he square of the gap.

slow dynamics, the impulse region is a Ar ~ At / ‘ o
all region near the critical point where k T
ling works

The system thus spends
a timeT in the impulse
region which depends on
the quench time

'his region, the energy gap scales as

T ~ T,zv/(zu+1)

&k — T—zufl[zu—l—l)

us the scaling law for the defect . d d/z —vd/(zv41)
nsity turns out to be

- - . - . d_(d4z)v/{zvr+1 , 1/v+=
neralization to finite system size Q ~ Lil 2/ ril g (L 1/v2)

ite-size scaling F ~ L@/ Gy ¢ ([ /vE2)y,



Dynamics with a finite rate: Kibble-Zureck scaling

1ange the electric field linearly Hy(t) = [U—E0)])>  dide—J> (df +dy).
time with a finite rate v £ £

Q(t) = (W(OIH@)[¥(?)) - Ec(t),

)
>
'(‘(\Q/N F(t) —logll{ﬂ{ e ®)],
na(t) = (¥())_, (1 +257) [¥(1)),
)=
)

)uantities of interestEXPerim;,t D(t) = na(t) — (Yc(®)Y_, (1 +257) [¥a(t)),

Cij(t) = ($()]57 55 19(0)),

Q - Ldt![d—l—z}yf[zp—l—l]QT(_LrLlfv+z)‘I

Scaling laws for F ~ LA/ ¢ (y YV Ee),

finite -size systems
gr(il: < 1) ~ ;1?2_(d+z)1’f{z1’+1]_
frlz < 1) ~ p2—dv/(zv+1)

Q ~ v2 (v) for slow (intermediate) quench. These are
termed as LZ(KZ) regimes for finite-size systems.



Kibble-Zureck scaling for finite-sized system

bservation of Kibble-Zurek law for

ntermediate v with Ising exponents.
da | .

Expected scaling laws for Q and

T T T T ITTTY
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r=14 1 S |
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L=24 r
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L=72 ] 1077 ?
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Dipole dynamics Correlation function
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