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CHAPTER 1 1

Introduction

In this thesis, we study the clustering of passive, non-interacting particles driven by

fluctuating surfaces that evolve through stochastic dynamics. In particular, we consider

fluctuating surfaces that evolve according to the Kardar-Parisi-Zhang (KPZ) equation

where the dynamics do not respect reflection symmetry and Edwards-Wilkinson (EW)

equation which respects reflection symmetry. The particles slide downward, following

the local slope of the surface. This problem belongs to a general class of problems

dealing with coupled driven diffusive systems and we will begin this chapter with a

discussion of this topic. We will then discuss a specific example of such systems — the

passive scalar problem in fluid dynamics. The passive scalar problem has a connection

to our problem — the Kardar-Parisi-Zhang equation can be mapped to the Burgers

equation for a compressible fluid. This mapping and a detailed description of our

problem will be discussed next. The following section will describe previous work

which is of direct relevance to our problem. The final portion of this chapter contains

a brief discussion of our results and the plan of the thesis.

1.1 Coupled driven diffusive systems

The term driven diffusive systems refers to multiparticle systems in which individual

particles have a diffusive motion apart from an overall systematic drive. This general

area describes a vast variety of physical systems — from stirred fluids and growing

thin films [1] to traffic [2]. The attempts at theoretical modeling of these systems

include setting up and trying to solve continuum equations like the Navier-Stokes [3] or

Burgers [4] equations for fluids or studying lattice models like the asymmetric exclusion

process (ASEP) [2], a simple model for traffic. While this is an extremely interesting

area attracting a lot of current attention, our interest in this thesis is to study what

happens when two such systems are coupled together.
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The coupling of two or more driven diffusive systems can give rise to complex

and interesting behaviour. There are diverse physical systems where such coupling

arises, for instance, growth of binary films [5], motion of stuck and flowing grains in a

sandpile [6], movement of ants along a trail [7], coupled motion of magnetic fields and

fluids in magnetohydrodynamic turbulence [8] and the flow of passive scalars like ink

or dye particles in a fluid [9, 10].

Coupled systems can be further subclassified into two categories. The first category

is systems with a bidirectional coupling i.e. the evolution of each field affects the other,

an example being ant trails [7]. Here, the density of ants and density of pheromones are

the two coupled fields. Pheromones are substances dropped by moving ants to guide

subsequent ants. Ants prefer to move towards the direction of increasing pheromone

density and while moving, keep dropping more pheromones for other ants to follow.

This coupling leads to interesting patterns in ant traffic and studies are underway to

look for these features in real ant trails.

The other category, one of interest to us, is semiautonomously coupled systems.

Here, one of the fields evolves independently and drives the other field. The problem

of passive scalars like ink or dye in stirred fluids [9, 10] is an example of such systems.

In this case, fluid flow is the independent field to which the dye particles are coupled.

The word passive in “passive scalars” implies that the ink or dye particles follow the

local flow of the fluid, but the flow is not affected by their presence; the word scalar

qualifies the passive field e.g. the density of the dye particles. The passive scalars, apart

from being driven by the fluid, also diffuse, and this combination leads to intricate and

interesting behaviour.

1.2 Passive Scalars

As we mentioned earlier, our problem of sliding particles on a fluctuating surface can be

mapped to the passive scalar problem which describes the behaviour of particles or fields

driven by a fluid. In this section, we will provide a brief description of the important

work done in the general area of passive scalar advection. The examples of passive

scalars which we encounter in daily life — ink, dye mixing in fluids, smoke particles

mixing in air, etc. describe passive particles which are driven by incompressible fluids.

Here we see that the passive particles spread out and mix evenly in the large time

limit. However, if the fluid in question is compressible, the behaviour can change
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drastically and it is possible that the passive scalar particles cluster together rather

than mixing with the fluid and reaching a more homogeneous state. Thus we can

see that the nature of the driving fluid is of great importance in this problem. The

subsection below discusses in brief the properties of the driving fluids. We will address

the problem of passive fields driven by these fluids in the subsection after that.

1.2.1 The Navier-Stokes and Burgers fluids

The dynamics of incompressible fluids like water are described by the Navier-Stokes

equations

∂~v

∂t
+ (~v.∇)~v = −1

ρ
∇p+ ν∇2~v + f (1.1)

and

∇.~v = 0. (1.2)

Let us first consider Eq. (1.1) above. The L.H.S. of this equation describes the total

derivative of velocity ~v, which takes into account the motion of the fluid. The first term

on the R.H.S. describes the force due to the pressure differences inside the fluid, p is

the pressure and ρ is the fluid density. The second term arises from viscous interactions

and ν is the coefficient of viscosity. The last term on the R.H.S. is the forcing term

and corresponds to the external force applied to the liquid to drive it. The second

equation, Eq. (1.2) is derived from the equation of continuity

∂ρ

∂t
+ ∇.(ρ~v) = 0 (1.3)

by demanding that ρ is a constant independent of space and time.

Although the Navier-Stokes equations are of immense practical importance since

they model realistic fluids, they are difficult to approach analytically and have eluded

a solution. Most of the methods adopted to solve these equations require considerable

computational power. Apart from trying to solve these equations directly, alternative

approaches have been tried, which include studying the simpler and more approachable

Burgers equation[4, 11], or in the context of passive scalars, replacing the fluid by a

random Gaussian field [12]. While these approaches may not offer us solutions which

are directly useful in practical situations, they afford us an insight into the physics of
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the problem. We discuss below the Burgers equation which is of direct relevance to

our problem.

The Burgers equation is similar to the Equation (1.1) above with the difference that

the pressure term − 1
ρ
∇p is not present

∂~v

∂t
+ (~v.∇)~v = ν∇2~v + f. (1.4)

The removal of this term changes the character of the fluid significantly; since there is no

pressure inside the fluid, it becomes highly compressible. An example of a compressible

fluid that we see around us is vehicular traffic where traffic jams are regions of high

fluid density while empty stretches of road in front of such a jam are regions of low

density. The Burgers equation provides a simplified model for vehicular traffic [13].

Interestingly, in the case of irrotational flow (curl of the velocity is zero), this equation

can be mapped to the well known Kardar-Parisi-Zhang (KPZ) equation for evolving

interfaces by the transformation ~v = −∇h, where h is the height of the interface. This

mapping is important to our problem and we shall discuss the KPZ equation and the

mapping in detail later.

The Burgers equation has been the subject of much research since its introduction in

1930s by J. M. Burgers [4]. When the forcing f = 0, we have what is called the unforced

Burgers equation which describes a decaying fluid flow field. Any initial velocity given

to the fluid particles will decay due to the viscosity. Here, one is interested in studying

the solutions when the viscosity is very small and the initial conditions are random. The

mapping to the KPZ equation is useful here; the Hopf-Cole transformation h = 2ν ln θ

changes the nonlinear KPZ equation into a linear diffusion equation in θ which can be

solved exactly. There are various methods adopted to study the evolution of the particle

trajectories as the system evolves from a random initial state. It has been shown in this

case that there is an emergence of shocks as the system evolves in time [11, 14]. A shock

is a region in space where velocity of a particle jumps discontinuously from a higher to

a lower value as it crosses it. Thus similar to a traffic jam, there is an aggregation of

particles at the position of a shock and the density of the fluid increases. The motion

of the particles is deterministic in this case and the velocity curves show a sawtooth

or a ramp like structure with the slope of the ramp being proportional to 1/t, and the

number or ramps falling in time [11].

The other case of interest is that of a stochastic driving force f . This is the case
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of interest to us as we consider the KPZ equation with noise as our driving field. The

noise in our case is delta correlated white noise and the structure of shocks is different

in this case. We shall see later that instead of a large, smooth, sawtooth like structure,

one sees a state with statistical fluctuations around a uniform slope and an absence of

shocks. We will discuss the solution in detail later in the KPZ context.

1.2.2 Passive scalars driven by fluids

In this subsection, we will discuss some important results in the general area of passive

scalar advection. Before going to the results, let us describe the two points of view

that are relevant to the study of fluids and passive scalars — the Lagrangian and the

Eulerian points of view. A fluid is a dynamical system with a macroscopic motion

apart from the motion of individual particles and to characterise such a system one

can take two points of view. We will take weather measurement as an illustrative

example for describing these. One can measure the relevant quantity over a period

of time at a given point in space, which is the Eulerian point of view. This is like

monitoring the quantity of interest, temperature in this case, from a weather station.

The other possibility is to tag a given element e.g. a small fluid or passive scalar parcel,

and to move along with it as one takes measurements, which is the Lagrangian point

of view. This is similar to taking measurements from a weather balloon which is free

to move with the wind. The fluid dynamics Equations (1.1) and (1.4) above involve

total derivatives and are written from an Eulerian point of view i.e. they describe the

velocity of a fluid at time t at a point r in the fixed or the laboratory reference frame.

One can write the generic equation for the density ρ of passive scalars in an Eulerian

frame

∂ρ

∂t
+ ∇.(ρ~v) = κ∇2ρ (1.5)

where ~v is the fluid velocity. The first term on the R.H.S. is a diffusive term and

indicates that the passive scalars, apart from being advected by the fluid also have

a random motion due to thermal noise. This diffusive motion allows the particles to

switch fluid streamlines and makes the study of passive scalars nontrivial and interest-

ing. The ∇.(ρ~v) term makes the equation above difficult to solve.

One can also study the passive field using the trajectory of individual particles.

The noninteracting passive particles follow the equation
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d~xm
dt

= a~v|~xm
+ ζm(t) (1.6)

where m is a label for the particle. The equation shows that the trajectory of a passive

particle is governed by the local fluid velocity and a random noise. Equation (1.6), as

we will see in the later chapters, is of importance to us; we will be constructing models

for Monte-Carlo simulations and the equation provides a natural way of looking at the

trajectories of individual particles. Equation (1.6) also shows us why the passive scalar

problem is nontrivial — it requires the knowledge of the field at the exactly the point

where the particle is present.

Previous work

From our experience with fluids around us, we know that the addition of passive scalars

like ink/dye to a stirred, incompressible fluid like water leads to spreading and mixing

at various length scales till the density becomes homogeneous. This process is however

not as simple as releasing the scalars in a stationary fluid and letting them diffuse

through the entire fluid by diffusion. It has been observed that the addition of fluid

drive to diffusion hastens the mixing process but also introduces intermittency [9].

The term intermittency implies an activity that occurs in bursts and in this case

refers to the fluctuations in the density of the passive scalars. The mathematical

measure for this intermittent behaviour is usually provided by correlation functions;

exponents describing the higher order correlation functions of the quantity of interest

(e.g. density) do not grow linearly with the order.

While various models have been proposed to understand this sort of intermittent

behaviour [14, 15], a simpler and quite successful approach has been developed by

Kraichnan [12]. In the Kraichnan model, instead of considering the turbulent velocity

field from the complex fluid dynamics equations, the driving field is modelled in a

much simpler way. The fluid velocity field is assumed to be a random, incompressible

field which is Gaussian and delta correlated in time. So, in Eq. (1.5) above, the

statistical properties of the velocity field ~v are fully specified by the two point correlator

〈vα(t, ~r)vβ(t′, 0)〉 = δ(t − t′)[dαβ0 − dαβ(~r)]. The form of dαβ is chosen such that the

condition for incompressibility ∂αd
αβ(~r) = 0 (which follows from ∂αv

α = 0) is satisfied.

While neglecting the time correlations and choosing a simple Gaussian ensemble

for space distribution are big simplifications over the realistic Navier-Stokes velocity
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fields, the model still gives non-trivial statistics for the passive scalar field and is be-

lieved to capture much of the essential physics of the process. It can be shown that the

second order correlation of the passive scalar field follows a power law rγ as a function

of distance r [12, 9]. In this model, γ is a free parameter, in particular, the choice of

γ = 2/3 is close to the experimental value [16] and consistent with previous results

(Kolmogorov-Obukhov-Corrsin (KOC) theory [9]). The importance of the model lies

in the fact that it predicts anomalous scaling of the higher order moments [12] and

thus shows intermittency. So, the study of this simpler model leads to the understand-

ing that the complex nature of the passive scalar statistics originates from the mixing

process rather than the complexity of the turbulent velocity field of a realistic fluid.

It also opens up a gateway for investigation of passive scalar properties by analytical

methods. Recent work [17] has shown that though the Kraichnan model shows multi-

scaling in equal time correlation functions, it does not show dynamic or time dependent

multiscaling. This is a result of neglecting the time correlations in the driving field.

Till now, we have considered non-inertial passive scalars in incompressible fluids.

We have seen that there is a mixing on larger and larger scales with the presence of

intermittency. While the picture of spreading and mixing is intuitive, being realised

in everyday incompressible fluids like water, there can be interesting, counter-intuitive

consequences if the fluid is highly compressible or if the passive scalars possess inertia.

Let us consider the case of inertial passive scalars first.

Let us consider a driven fluid with a homogeneously distributed initial passive scalar

density. We would expect that when the passive particles possess no inertia they would

follow the lines of flow strictly, if there is no diffusion. The presence of diffusion would

tend to homogenise the density field at smaller length scales. In either case, we expect

that the passive scalar paricles would not show clustering at large times if the passive

particles do not possess inertia. The situation is different when the passive particles

possess inertia. They do not tend to follow the flow lines faithfully and might lag

behind. This opens up the possibility of the particles clustering together and causes

the passive scalar flow to be compressible (the divergence of the passive scalar velocity

field is non zero), even though the fluid is incompressible (the divergence of the fluid

velocity field is zero) [18]. Deutsch [19] and later Wilkinson and Mehlig [20] have studied

the clustering transition under the change in inertia. They model the medium in which

particles are moving through a random force with correlations that decay rapidly and

show how the path coalescence mechanism causes a clustering of the scalars. Wilkinson
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and Mehlig [21] have also shown the formation of structures called caustics in spatial

dimensions larger than one. The nomenclature caustics originates from the similarity of

the structures to optical caustics. They show that these structures further enhance the

clustering. In the presence of turbulence and vortices, there is another mechanism by

which clustering or large fluctuations can occur [22, 23]; due to their inertia, the passive

particles inside the vortices and eddies are driven outwards due to the centrifugal force

and thus tend to aggregate in the boundary regions between the eddies.

Apart from considerable work on the theoretical aspects of passive scalar clustering,

there also has been experimental work in this direction. While the driven particles in

these experiments might not necessarily be passive, the results still shed light on aspects

of the dynamics which relate to clustering. Fessler et. al. [24] have studied the motion

of inertial particles driven by a turbulent fluid. They measured the density distribution

and found that it shows significant departure from the expected random distribution

of particles. Their measurements show formation of clusters which are separated from

each other at much larger scales than the scales on which clustering occurs. Apart

from inertial effects, clustering can also be caused if the flow of the passive particles

can be made compressible. Cressman et. al. [25] and Sommerer and Ott [26] have

achieved this compressibility in the following way. They have made an arrangement

where the fluid flow can be manipulated in three dimensions while the passive particles

are extremely light and thus tend to float on the two dimensional top surface of the

fluid. Turbulence is created in the fluid such that the top fluid layer is dynamic, with

fluid entering the top layer from below at certain places and leaving at others. The

passive particles follow the fluid flow while always floating on the surface and thus tend

to cluster in the areas where the fluid is flowing downwards i.e. leaving the surface

layers. Thus they are able to create a two dimensional compressible subsystem in a

system with three dimensional incompressible flow. Cressman et. al. [25] have studied

the amount of clustering using the mean squared separation of tagged particles, they

show that this separation increases slower than if the motion were diffusive. Sommerer

et. al. [26] have studied the fractal structure of the passive particle concentration and

show that the fractal has a dimension approximately equal to 1.73.

We now turn to the case of direct interest to us — noninertial passive scalars

in a compressible fluid. Compressible fluids, as we saw in the case of the Burgers

equation, have a tendency towards shock formation. Shocks are regions where the

velocity suddenly changes its value and the fluid density increases; this causes the
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passive scalars, which are carried by the fluid, to accumulate in these shocks. Gawedzki

and Vergassola [27, 10] have studied the effect of compressibility on passive scalars

using the Kraichnan approach. They consider a Gaussian random velocity field and

the velocity-velocity correlation is chosen so as to allow for the compressibility of the

fluid. They study the separation of two marked particles as a function of time. When

the fluid is incompressible, two particles separated by an infinitesimal distance reach

an O(1) separation in finite time; there is an explosion of trajectories. On the other

hand, when the compressibility of the fluid is increased, one sees a transition. The

trajectories of particles are now seen to implode and collapse leading to clustering of

particles. They have also measured the density-density correlation function for the

passive particles and find that it diverges at small values of separation. This indicates

strong clustering and is a feature that we observe in our system as well; however, they

did not find scaling with system size, which is an important feature of the steady state

of our system. Though these and other studies have shown that clustering of particles is

possible in compressible fluids, there has been limited work on the detailed description

of the steady states in such systems. A major aim of our thesis is to describe such

steady states. The equation we have considered for this purpose is the Burgers equation

which describes a perfectly compressible fluid.

The general problem studied in this thesis is that of passive, noninteracting particles

sliding on fluctuating surfaces. As we will see below, in the specific case of a Kardar-

Parisi-Zhang (KPZ) surface, this problem can be mapped to the passive scalar problem

in fluid dynamics by using the mapping of the KPZ equation to the Burgers equation.

We have studied other types of fluctuating surfaces as well, which do not correspond

to a fluid problem.

1.3 Passive Sliders on fluctuating surfaces

The general problem of growing or evolving interfaces has been the centre of much

attention in the recent past. The surface of a growing thin film, burning paper fronts

or the surface of an evolving sandpile are the kind of systems one is interested in

modeling [1]. These interfaces can be thought of as evolving height fields and one

can write continuum equations for the evolution of the height. In our work, we have

considered two such well known equations — The Kardar-Parisi-Zhang (KPZ) and

the Edwards-Wilkinson (EW) equations [1]. In our problem, these equations describe
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the independently evolving field, similar to the fluid in the passive scalar problem.

Coupled to this field are particles that slide over the surface, following the local slope.

A general discussion of the KPZ and EW equations will be followed by the discussion

of the coupled problem.

1.3.1 Fluctuating surfaces

The Edwards-Wilkinson equation

∂h

∂t
= ν∇2h+ ζh(~x, t) (1.7)

describes an evolving height field h(~x, t). ζh is a Gaussian white noise satisfying

〈ζh(~x, t)ζh(~x′, t′)〉 = 2Dhδ
d(~x − ~x′)δ(t − t′). The term ν∇2h in the above equation

can be thought of as a surface tension term because it tends to smoothen out the sur-

face features. The noise term ζh(~x, t) describes a random drive causing fluctuations in

the surface profile. Thus according to the above equation, the local change in height is

governed by a random fluctuation term and the surface tension term which smoothens

the surface profile.

Given the above equation, we would like to describe the physical attributes of the

surface, e.g. how rough it is, how does it evolve in time, etc.? A measure of the surface

roughness is provided by the width W of the surface in a finite system of size L

W (L, t) ≡

√√√√ 1

L

L∑

i=1

[h(x, t) − h(t)]2 (1.8)

where h(t) is the average height. The quantity defined above is the root mean square

fluctuation in the height. It is well known [1] that for the surfaces under consideration,

the width scales as

W (L, t) ∼ Lαf

(
t

Lz

)
. (1.9)

The exponent α in the above equation is called the roughness exponent since it provides

a measure for the height fluctuations. A portion of the surface having a length l will
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have typical height fluctuations (hills and valleys) of size ∼ lα. The exponent z is the

dynamic exponent and describes how fast surface fluctuations evolve. To understand

the significance of z, again consider a section of length l. Hills/valleys present in this

section will typically be replaced by valleys/hills in time of order lz. For the EW

equation, it can be shown that α = (2 − d)/2 and z = 2, where d is the spatial

dimension under consideration [1].

The KPZ equation

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + ζh(~x, t) (1.10)

contains the nonlinear term λ
2
(∇h)2 in addition to the linear terms of the EW equation.

This term breaks the h→ −h symmetry and changes the behaviour of the height fluc-

tuations significantly. In one dimension, one can calculate the value of the exponents

α = 1/2 and z = 3/2 exactly [28], but in higher dimensions, one only has numerical

estimates. As we have mentioned before in the subsection on Burgers fluid, the trans-

formation v = −∇h maps Eq. (1.10) (with λ = 1) above to the Burgers equation for a

compressible fluid

∂~v

∂t
+ λ(~v.∇~v) = ν∇2~v + ∇ζh(~x, t). (1.11)

The restriction on the velocity field in the above equation is that it has no vorticity;

the velocity field can be written as a gradient of the height field, implying that the curl

of the velocity is zero.

1.3.2 Sliding particles on fluctuating surfaces

With this background, let us consider the coupled problem. We consider non-interacting

particles which slide over the fluctuating surfaces described by the above equations.

These particles see the local slope and try to move downwards as if they are subject

to gravity. This problem was first studied by Drossel and Kardar [5, 29]. A brief

description of their work has been provided in a later subsection. The motion of the

particles is described by the following equation

d~xm
dt

= −a∇h|~xm
+ ζm(t) (1.12)
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where ~xm is the position of the mth particle. The term −a(∇h) shows that the particle

tends to follow the local slope and brings in the effect of gravity. The white noise

ζm(t) represents the randomising effect of temperature, and satisfies 〈ζm(t)ζm(t′)〉 =

2κδ(t − t′). The non-interacting nature of the particles means that the equation for

motion of each particle evolves independently and does not involve the effects of the

presence of other particles. Thus, in terms of the continuum equations, we want to

solve the coupled equations Eqs. (3.9) and (4.2), and, Eqs. (1.10) and (4.2). The

transformation ~v = −∇h in Eq. (4.2) above leads to

d~xm
dt

= a~v|~xm
+ ζm(t) (1.13)

which is the equation of motion for a passive scalar particle driven by the Burgers

fluid. Thus, the problem of passive sliding particles on a KPZ surface is equivalent to

the problem of passive scalars in a Burgers fluid. As mentioned earlier, the nonlinear

term in the KPZ equation breaks the h → −h symmetry. This allows for two kind of

coupled dynamics depending on the sign of a/λ. The case a/λ > 0 corresponds to the

sliding particles moving in the same direction as the surface. In the fluid picture, this

corresponds to particles moving in the direction of flow (advection). The other case,

a/λ < 0 corresponds to the particles and surface moving in the opposite direction to

each other, which corresponds to particles moving opposite to the flow or anti-advection

in the fluid picture. We will henceforth refer to these dynamics as the KPZ advection

and the KPZ anti-advection dynamics. Since the EW equation does not contain the

symmetry breaking nonlinear term, one does not have the two distinct cases as for the

KPZ equation.

1.3.3 Relevant parameters: ω and K

The coupled problem described above involves two time time scales, that of particle

motion τp and that of surface motion τs. We are interested in studying the change in

the steady state properties of the system when the relative value of the time scales

ω ≡ τp/τs is varied. In particular, the limit of ω = 0 i.e. particles moving on a static

surface under the effect of temperature can be solved exactly. We will present our

results on this problem in a separate chapter. We have also studied the variation of the

steady state under the change in the parameter K which is a measure of the bias for the

particle motion. One can think of the tendency of the particles to slide preferentially
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downward as being caused by a gravitational field. The parameter K depends on the

gravitational field and temperature, and will be defined precisely in the next chapter.

1.4 Passive Sliders: Known results

While we are studying passive particles whose dynamics is governed by the surface

fluctuations and diffusion, we should remember that it is possible that the particles

themselves might interact with each other. This inter-particle interaction can affect

the steady state properties strongly. Two of the simpler cases that one can consider

are (i) hard core exclusion interaction and (ii) no interaction i.e. particles moving

independently of each other. Our work deals with noninteracting particles, and as we

might expect, and will show later, this property leads to a very strong clustering of

particles. The resulting clustered state has very interesting scaling properties and its

characterisation is one of the principal results of this thesis. However, before we go to

a description of our results and the plan of the thesis, let us describe in brief what is

known from work on related problems.

1.4.1 Passive particles with hard core exclusion

Das et. al. [30, 31] have studied passive particles, interacting via hard core exclusion,

sliding on fluctuating surfaces in one dimension. The evolution of the KPZ and EW

surfaces leads to the formation of hill and valley like structures which are dynamical in

nature. It was observed by them that the particles tend to cluster in the valleys of the

surface. They characterised the clustering by measuring the two point density-density

correlation function C(r) in the steady state. The correlation function was shown to

be a scaling function of the distance r divided by the system size L and the scaling

function was observed to exhibit a cusp in the limit r → ∞, L → ∞, |r/L| → 0 [30, 31]

C(r) = m2
c(1 − b

∣∣∣ r
L

∣∣∣
α

) (1.14)

with α < 1. The constant m2
c in the above equation is the intercept of the curve on

y−axis and describes the behaviour of the correlations at large distances. A non-zero

value of m2
c implies that the correlations are present at large distances and thus the

system possesses long range order. The above result is to be contrasted to the normal

phase ordering results where we have α = 1, corresponding to a linear drop. This linear
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behaviour leads to a power law decay in the structure function for large wavevectors,

and the result is known as Porod law [32]. An example of phase ordered systems

which follow this law is the low temperature phase of an Ising system with conserved

magnetisation. The Porod law indicates the presence of large regions of either phase

separated by boundaries that are sharp on the scale of system size.

Another feature of the steady state of this problem is that the probability p(l) of

a cluster having having a size l decays as a power law, p(l) ∼ l−θ. This indicates that

clusters of all sizes are present in the system. The cuspy decay and the power law

distribution of cluster sizes in the hard core case shows the presence of large clusters

of particles and large stretches of empty sites separated by a boundary region where

the particles are loosely scattered. The size of the boundary region itself scales as the

system size and the region has a lot of structure. Thus we see that this system shows

a very different kind of phase ordering than the one seen in ordinary phase separated

systems. A study of the Fourier components of the density profile shows that the large

clusters themselves are of a dynamic nature and the system shows fluctuations that do

not damp down in the thermodynamic limit. These results characterise a new kind of

steady state — the fluctuation dominated phase ordered (FDPO) state. This feature of

fluctuations again distinguishes the steady state from the Porod law steady state where

the fluctuations vanish in the thermodynamic limit. Later work by Gopalakrishnan and

Barma [33] has shown that FDPO is the steady state for the system in two dimensions

as well. Chatterjee and Barma [34] have studied the dynamical properties of FDPO.

Their measurements on the autocorrelation function show that it is a function of t/Lz (z

being the dynamic exponent of the surface) and decays with a cusp at small argument.

The cuspy decay is again a special feature of FDPO and distinguishes it from normal

phase separating systems where one sees a linear decay. These authors have also studied

the approach to steady state and ageing effects. They show that if one starts from a

random disordered state and starts measuring the autocorrelation function at time t1,

one again sees that the autocorrelation function shows a cuspy decay, with L being

replaced by t
1/z
1 in the argument.

1.4.2 Non-interacting passive particles

We now discuss the non-interacting particles case, which is of direct interest to us.

Drossel and Kardar [29] were the first to study this problem, with a KPZ surface as
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the driving field, albeit with slightly different dynamics for the driven particles. They

considered a solid on solid model for surface dynamics with particles being updated

at the site of a recent surface update, and considered both the cases — advection and

anti-advection. They observed strong clustering of particles, which they monitored by

studying the number of particles in bins of variable sizes. We will comment on this

result in the next chapter (KPZ advection). Part of the motivation for their study

came from a solid on solid model for an evolving surface composed of two species of

particles [5]. They claim that in a specific region of the parameter space, the domain

walls separating the regions occupied by the two components can behave like passive

particles sliding on the KPZ surface. They reported numerical results for the density-

density correlation function for the KPZ anti-advection case. They reported that this

function decays as a power law with the power being close to 0.3.

The above work, however does not report the crucial property of system size depen-

dence of the scaling properties of the correlation function or the probability distribution

of occupancy. In [29], Drossel and Kardar have also described results from a pertur-

bative renormalization group calculation. These results, however, do not agree with

numerical results. As we will show in Chapter 2, the particles show extremely strong

clustering and fluctuations that grow with the system size. Thus the renormalization

group approach, which works well for normal critical point behaviour, is not directly

applicable to our system. These points will be discussed further in Chapter 2 (Section

2.2.6).

Apart from this work, Bohr and Pikovsky [35] and Chin [36] have studied dy-

namical quantities for a model similar to our KPZ advection (one dimension), with the

difference that they do not consider noise acting on particles. In the absence of noise,

all the particles coalesce and ultimately form a single cluster in steady state, very

different from the strongly fluctuating, distributed particle state under study here.

References [35] and [36] study the process of coalescence in time. Further, they find

that the RMS displacement for a given particle increases in time t as t1/z, where z

is equal to the dynamic exponent of the surface, indicating that the particles have a

tendency to follow the valleys of the surface. Drossel and Kardar [29] have studied the

RMS displacement in the same problem in the presence of noise and observe the same

behaviour. For the case of KPZ anti-advection, Drossel and Kardar [29] show evidence

for the dynamic exponent for particle motion being continuously dependent on K; the

parameter K characterises the random noise which acts on the particles in addition to
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the surface drive. We have addressed this point in our work and our numerical results

point to this dependence being just a crossover effect. Gopalakrishnan [37] has studied

the variation of RMS displacement of passive sliders on a one dimensional EW surface,

and the possibility was raised that there are two different exponents characterising this

quantity for ω ≤ 1 and for ω > 1. We will present numerical evidence that the apparent

change in exponent with change in ω is due to a crossover effect and that there is a

single exponent which describes the RMS displacement.

1.5 Our results, plan of the thesis

We begin with results on KPZ advection in one dimension. We have performed Monte-

Carlo simulations on a lattice version of the problem and numerically evaluated the

quantities of interest. We see that in the steady state, the two point density-density

correlation function is a function of the distance r divided by the system size L and

diverges at small r/L, indicating a strong clustering of the particles. We take this as

the defining property of a new kind of steady state — the strong clustering state (SCS).

Our results imply that the two point correlation function in the SCS is a function of

the system size, and diverges in the thermodynamic limit for any finite value of the

separation. Contrasting the divergence in our case to the cusp in the FDPO case,

we see that there is much more clustering in our case. The removal of the hard core

constraint allows for very high densities and thus leads to such strong aggregation of

particles.

The other quantity we measure is the probability density of occupancy of a site.

We again see that this quantity shows scaling with system size, showing that a large

number of particles aggregate in a few sites. We see that the clusters are highly dynamic

in nature, breaking and re-forming all the time. This leads to fluctuations which are

significant even in the thermodynamic limit. This feature of SCS is similar to FDPO

where again one sees giant fluctuations that do not damp down in the thermodynamic

limit. We have measured dynamic quantities like the RMS displacement of a tagged

particle and see that the particles have an overall tendency to follow the valleys in

which they are clustered. The model for Monte-Carlo simulation and the above results

are discussed in detail in the second chapter.

We describe our results on the KPZ anti-advection and the EW dynamics (one
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dimension) in the third chapter. We see that the steady state in these cases is again an

SCS but the amount of clustering is less than the KPZ advection case. Apart from these

general results, we discuss specific issues, like the possibility of the dynamic exponent

depending continuously on the parameter K in the case of KPZ anti-advection and the

apparent change in the dynamic exponent with change in ω, proposed earlier, in the

EW case.

The limit ω = 0 for the above dynamics corresponds to particles moving under

the effect of temperature on a static surface. This is the well known Sinai model

of random walkers on a random landscape. This equilibrium problem can be solved

exactly by using a mapping to a quantum mechanics problem [38]. We show that the

equilibrium state is again an SCS and surprisingly, the results match very well with

the nonequilibrium KPZ advection case. The calculation and the correspondence to

the nonequilibrium problem will be discussed in detail in the fourth chapter.

We have also performed simulations in two dimensions for all the three dynamics

discussed above. In the fifth chapter, we discuss the Monte-Carlo model and the results

from the simulations. We show that the steady state is an SCS, even in two dimensions.

The last chapter is devoted to conclusions and a discussion of our results.
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KPZ advection, one dimension

In this chapter, we will describe our results on the Kardar-Parisi-Zhang (KPZ) ad-

vection case where the particles and the surface move in the same direction. In the

fluid language, the problem is equivalent to studying passive scalars that move with

the flow in the Burgers fluid. We will consider the surface/fluid evolving in one spatial

dimension. In the first section, we will describe the lattice Monte-Carlo model used for

the simulations and discuss its connection to the continuum description. We will then

describe our results from the simulations. We will begin with results on statics and

define the strong clustering state (SCS). The results on dynamics will be next, followed

by a discussion on fluctuations in the steady state. We will end with our results on the

change in steady state when ω is varied and when the surface is tilted.

2.1 Lattice model for Monte-Carlo simulations

2.1.1 Lattice model details

As described in the previous chapter, for the KPZ advection case, we want to solve the

coupled equations below (in one dimension)

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + ζh(~x, t). (2.1)

and

d~xm
dt

= −a∇h|~xm
+ ζm(t) (2.2)

with a/λ > 0. As shown in the previous chapter, the transformation v = −∇h maps

the KPZ equation to the Burgers equation, thus mapping the problem to the passive
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Fig 2.1: Schematic diagram of the surface and non-interacting particles sliding on top
of it. Arrows show possible surface and particles moves.

scalar problem in fluid dynamics.

The method we have adopted to deal with the above coupled equations is to perform

Monte-Carlo simulations on a discrete lattice model which mimics the behaviour of the

equations at large length and time scales. The model we have considered, consists of

a flexible, one-dimensional lattice in which particles reside on sites, while the links or

bonds between successive lattice sites are also dynamical variables which denote local

slopes of the surface. The total number of sites is L and the total number of particles

N is taken to be equal to L in our simulations. Each link takes either of the values +1

(upward slope → /) or −1 (downward slope → \). The rules for evolution are:

We choose a site at random, and if it is on a local hill (/\), we change the local hill

to a local valley (\/) (Fig. 2.1, extreme left), otherwise, we leave it unchanged. After

every such Ns surface moves, we perform Np particle updates according to the following

rule: we choose a particle at random and move it one step downward with probability

(1 + K)/2 or upward with probability (1 − K)/2. The parameter K ranges from 1

(particles totally following the surface slope) to 0 (particles moving independently of the

surface). If a downward move is performed on a particle sitting on a local hill (/\), it is

moved to either side with equal probability and an attempted upward move is neglected.

Similarly, a particle inside a local valley can be moved upward in either direction with

equal probability while a downward move is neglected. In our simulations, we update

the surface and particles at independent sites, reflecting the independence of the noises

ζh(x, t) and ζm(t); this is in contrast to Drossel and Kardar’s update rule [29] where only

particles at a site affected by the surface evolution are moved. The ratio ω ≡ Ns/Np

controls the relative time scales of the surface evolution and particle movement. In

particular, the limit ω → 0, with L held fixed, corresponds to the adiabatic limit of

the problem where particles move on a static surface and the steady state is a thermal

equilibrium state.
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Fig 2.2: The figure on the left shows a KPZ lattice configuration with a possible move.
The figure on the right shows the equivalent configuration and lattice move for the
ASEP.

2.1.2 Connection with the continuum equations

To see how the lattice model described above describes a KPZ surface, we will consider

the mapping of the above model to the well known asymmetric simple exclusion process

(ASEP) [39, 40].

The ASEP consists of a lattice with empty sites (holes), and particles. The particles

interact with each other via hard core repulsions which means that no more than one

particle is allowed at a given site. The dynamics is as follows: particles are chosen at

random and a move is attempted to the right hand neighbouring site with probability

p and to the left neighbouring site with probability q, p > q. The move is successful

if the neighbouring site is empty, otherwise the particle stays at the same site. This

model can be solved exactly for various boundary conditions. For periodic boundary

condition, which is of interest to us, it is known that all possible configurations in

the steady state occur with equal probability [39]. The current in the ASEP can be

calculated by the following argument. There is a movement to the right if the site

under consideration is occupied and the site to the right is unoccupied; this process

has a probability p[ρ(1 − ρ)] where ρ is the density of particles. Similarly one can

reason for movement to the left and the average current is given by the expression

(p− q)[ρ(1 − ρ)].

Now, let us consider the mapping of ASEP to our lattice model (Fig. 2.2): An up

slope in our surface model is equivalent to a particle on a lattice in ASEP and a down

slope to an empty space (hole). The flipping of a hill to a valley then corresponds to

the motion of a particle (exchange of particle and hole). In our lattice model p = 1,

q = 0.

A coarse grained description of the ASEP leads to the KPZ equation [41]. The

continuum description of the ASEP, obtained by coarse graining over regions which

are large enough to contain many sites, involves the density of particles ρ(x) and the

local current J(x). These are connected through the continuity equation
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∂ρ

∂t
+
∂J

∂x
= 0 (2.3)

J(x) = −ν ∂ρ
∂x

+ j(ρ) + η (2.4)

where ν is the particle diffusion constant, η is a Gaussian noise variable and j(ρ) is the

systematic contribution to the current associated with the local density ρ. Using the

expression for the bulk ASEP with density ρ for j, we have

j(ρ) = (p− q)ρ(1 − ρ) (2.5)

where p and q are the particle hopping probabilities to the right and left respectively,

with our one-step model corresponding to p = 1 and q = 0.

Since we identify the presence (absence) of a particle in the lattice model with an

up (down) slope, we may write

ρ =
1

2
(1 +

∂h

∂x
) (2.6)

Using Eqs. (2.4),(2.5) and (2.6) in Eq. (2.3) leads to

∂h

∂t
= −1

2
(p− q) + ν

∂2h

∂x2
+

1

2
(p− q)(

∂h

∂x
)2 − 2η (2.7)

which is the KPZ equation (Eq. (3.1)) in one dimension with an additional constant

term, and λ = (p− q) and ζh = −2η. Note that the signs of the constant term and λ

are opposite. Thus a downward moving surface (corresponding to p > q) has positive

λ. The constant term can be eliminated by the boost h → h− 1
2
(p− q)t, but its sign

is important in determining the overall direction of motion of the surface. The case

(a/λ) > 0 which is of interest to us thus corresponds to the lattice model in which

particles move in the same direction as the overall surface motion.

The parameters ω and K defined in the lattice model are connected to the contin-

uum equations as follows. In the limit of a stationary surface, we achieve equilibrium
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and the particles settle into a Boltzmann state with particle density ∼ e−βh(x), here

h(x) is the surface height profile and β is the inverse temperature. β is related to K

by β = ln
(

1+K
1−K

)
and to the parameters a and κ in Eq. (4.2) by β = a/κ. Thus

K =
ea/κ − 1

ea/κ + 1
(2.8)

The parameter ω cannot be written simply in terms of the parameters in the con-

tinuum equations, because it modifies Eqs. (3.1) and (3.9) as we now show. ω is the

ratio of the update speeds or equivalently the time between successive updates of the

particles ∆tp and surface ∆ts. The noises ζh(~x, t) and ζm(t) in Eqs. (3.1) and (4.2)

can be written as
√

Dh

∆ts
ζ̃h(~x, t) and

√
κ

∆tp
ζ̃m(t) respectively. Here ζ̃h(~x, t) is noise of

O(1), uncorrelated in time, white in space while ζ̃m(t) is uncorrelated noise of O(1).

The factors of
√

1
∆t

in the terms indicate that the strength of the noise depends on

how frequently noise impulses are given to the particles; the square root arises from

the random nature of these impulses. Thus the change in height ∆h in time ∆ts and

the distance travelled ∆~xm in time ∆tp are respectively

∆h = ∆ts[ν∇2h+
λ

2
(∇h)2] +

√
∆tsDhζ̃h(~x, t) (2.9)

∆~xm = ∆tp[−a∇h|~xm
] +

√
∆tpκζ̃(t) (2.10)

We now identify ∆ts and ∆tp with the Monte-Carlo time step δt as ∆ts = Nsδt and

∆tp = Npδt. We can thus replace ∆ts by ω∆tp and take it to be the natural continuous

time. We thus get

∂h

∂t
= ω[ν∇2h+

λ

2
(∇h)2] +

√
ωζh(~x, t) (2.11)

d~xm
dt

= −a∇h|~xm
+ ζm(t) (2.12)

We can see that the ω dependence in the above equation cannot be removed by rescaling

space and time. Eq. (3.1) is recovered as a special case of Eq. (2.11) on setting ω =

1. The same analysis can be carried through for the EW equation by dropping the

nonlinear term in the equations above.
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2.1.3 Details of the simulations

In our simulations, we started with a random surface and particle configuration. As

we know, the largest valleys/hills in the system have breadth of the order of system

size and they overturn to form hills/valleys in time ∼ Lz, where z = 3/2. In our

simulations, we evolved the system for approximately 10 × L2 number of steps before

we started our measurements. This ensures that we have reached steady state before

taking the numerical data. We sampled the data every 1000 Monte Carlo time steps to

reduce correlation between the samples. The average was taken over a total of 30, 000

samples.

We used the RAN3 random number generator for our Monte-Carlo simulations.

RAN3 is a lagged Fibonacci generator [42, 43] and has a large period of 255 − 1. It is

also known to be one of the faster generators [43]. We have checked our results from

the simulations by using another random number generator, the Mersenne Twister [44].

We saw that changing the generator does not make a difference to our results.

The values of system size that we have worked with are 256, 512, 1024, 2048. The

values were chosen such that we have minimal finite size effects while keeping the time

of the simulation for the complete run within reasonable limits (up to 2 days).

2.2 Numerical results

We begin this section with the simplest case ω = K = 1; surface updates are attempted

as frequently as particle updates, and both particles and surface always move only

downwards.

2.2.1 Two Point Density Density Correlation Function

The two point density-density correlation function is defined as

G(r, L) ≡ 〈nini+r〉L, (2.13)

where ni is the number of particles at site i. We obtained numerical data for various

system sizes L and tried to scale the data such that it lies on a single curve. Figure 2.3
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Fig 2.3: The inset shows G(r, L) versus r for different values of L. The main plot
shows the scaling collapse when r is scaled with L and G(r, L) with 1/L0.5. The
dashed, straight line shows a power law with exponent −1.5. The lattice sizes for both
plots are L= 512 (∗), 1024 (×), 2048 (+).

shows the scaling collapse of numerical data for various system sizes L which strongly

suggests that for r > 0, the scaling form

G(r, L) ∼ 1

Lθ
Y

( r
L

)
(2.14)

is valid with θ ' 1/2. The scaling function Y (y) has a power law divergence Y (y) ∼ y−ν

as y → 0, with ν close to 3/2 (1.48 ± 0.04). The data for r = 0, which is not a part of

the scaling function (Eq. 2.14) above, points to G(0, L) ∼ L (Fig. 2.4).

The result in Eq. (2.14) is in agreement with an exact result of Derrida et. al. [45]

for a slightly different model. As we have seen in the previous section, the single step

model which we use for Monte-Carlo simulations, can be mapped on to an asymmetric

simple exclusion process (ASEP). The particles/holes in the ASEP map to the up/down

slopes in our model and the flipping of a hill to a valley is equivalent to swapping a

particle with a hole. In [45], apart from particles and holes, a third species, namely

second-class particles, is introduced which act as holes for the particles and particles

for the holes. When translated to the surface language, these second class particles
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behave like the sliders in our model, with the difference that they are not passive:

there is no surface evolution at a site where second-class particles reside. The effect of

non-passivity is relatively unimportant for KPZ advection-like dynamics of the surface,

as particles mostly reside on stable local valleys while surface evolution occurs at local

hilltops. Moreover, if the number of second class particles is small, the probability of

the rare event where they affect the dynamics of local hills goes down even further.

With only two such particles in the full lattice, the probability p(r) that they are at

a distance r goes as [45] p(r) ∼ 1
r3/2

. This quantity can be connected to the two

point correlation function G(r, L) as follows. The probabilty pr is proportional to the

probability that there is, simultaneously, a particle at the site i and a particle at the

site i+ r. Thus

pr ∼
∑

i

〈PiPi+r〉, (2.15)

Pi being the probability of having a particle at site i. The correlation in the above sum

is a probability density - probability density correlation and can be connected to the

density-density correlation as below.
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pr ∼ L〈ni
N

ni+r
N

〉 =
L

N2
〈nini+r〉 (2.16)

where we perform the sum in Eq. (2.15) using the fact of translational invariance.

Using L = N , the scaling form G(r, L) ≡ 〈n(0)n(r)〉 ∼ L−θY (r/L) and the functional

form for small r/L — Y (y) ∼ y−ν (ν = 3/2), we obtain

pr ∼ r−3/2. (2.17)

Thus our scaling form (Eqs. (2.14)) is consistent with Derrida et. al.’s exact result

Number of particles in a bin

The result for G(r, L) also allows us to calculate a quantity N(l, L), first defined in

[29], which monitors the degree of clustering. To calculate N(l, L), the lattice is divided

into L/l bins of size l and we ask for the number N(l, L) of particles in the same bin

as a randomly chosen particle. N(l, L) is a good measure of clustering — if N(l, L)

rises linearly with l, one concludes that the particles are fairly spread out, while if

N(l, L) saturates or shows a decreasing slope, one concludes that particles are clustered.

N(l, L) can be related to the two point correlation function G(r, L) as follows

Suppose that the number of particles in the kth bin is N(k) (N(k) =
∑
iεk

ni). We

denote by pk, the probability of choosing the kth bin (pk = N(k)
N

). Then

N(l, L) =
∑

k

〈pkNk〉 =
∑

k

〈
N2
k

N

〉
(2.18)

N(l, L) =
1

N

∑

k

l∑

i=1

∑

r

〈nini+r〉 (2.19)

⇒ N(l, L) =
L

l

l

N

∑

r

〈nini+r〉 (2.20)

Since L = N ,
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Fig 2.5: The inset shows N(l, L) versus bin size l for different system sizes (L). The main
plot shows N(l, L) scaled with L versus bin size l. The curve shows c1L(1 − c2l

−ν+1)
with c1 = 1 and c2 = 0.72. The straight line shows N(l, L) = L, the form predicted in
[29]. The lattice sizes for both plots are L= 512 (∗), 1024 (×), 2048 (+).

N(l, L) =

∫ l/2

−l/2
〈ρ(0)ρ(r)〉dr (2.21)

So, the two point correlation function

G(l, L) =
∂

∂l
N(l, L) ⇒ N(l, L) =

∫ l

0

G(r, L)dr (2.22)

We know that G(r, L), in the advection case, has the form

G(r, L) = Lδ(r) +
1

Lν−1

( r
L

)−ν
(2.23)

⇒ N(l, L) = c1L(1 − c2l
−ν+1) (2.24)

The value of ν according to us is 3/2, using which we obtain a very good fit to the

binning data.
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The form for N(l, L) proposed in [29] is

⇒ N(l, L) ∼ l2χρ−1L2−2χρ (2.25)

The L dependence is obtained by demanding that N(L, L) = L. Their proposed value

χρ = 1/2 removes the l dependence; the claim is that this is correct for large l where

N(l, L) becomes independent of l. As we can see in Fig. 2.5, our form in Eq.(2.24)

captures the curvature of the curve correctly and thus describes the binning data much

better than the l-independent form of [29].

2.2.2 Probability Density of Occupancy

Another quantity of primary interest is the fraction of sites P (n, L) that are occupied

by n particles, which is the same as the probability that any given site has an occupancy

n. If Nn is the number of sites which have an occupancy of n, we define P (n, L) as

P (n, L) ≡ 〈Nn/L〉 (2.26)

where the brackets indicate a time average over configurations in the steady state. For

n > 0, this quantity shows a scaling with the total number of particles, which in turn

is equal to the system size L. We have (see Fig. 2.6)

P (n, L) ∼ 1

L2δ
f

( n

Lδ

)
, (2.27)

with δ ' 1 (1 ± 0.07). The scaling function f(y) seems to fit well to a power law y−γ

with γ ' 1.15 (1.15 ± 0.02) (Fig. 2.6), though as we shall see in the chapter on the Sinai

equilibrium limit, the small y behaviour may follow y−1 ln y. We can use the scaling

form in the above equation to calculate G(0, L), 〈n2〉 ≡ G(0, L) =
∫ L

0
n2P (n, L)dn ∼

Lδ = L, which, as we have seen above, is borne out independently by the numerics. Nu-

merical data for P (0, L) (which is not a part of the scaling function in Eq. (2.27)) shows

that the number of occupied sites Nocc ≡ (1 − P (0, L))L varies as Lφ with φ ' 0.23,

though the effective exponent seems to decrease systematically with increasing system

size L (Fig. 2.7).
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2.2.3 Results on Dynamics

One of the simplest ways of studying the dynamics of the passive sliders is to tag a

particle and track its movement. In particular, we can ask for the root mean square

(RMS) displacement R(t)

R(t) ≡ 〈(x(t) − x(0))2〉1/2 (2.28)

where x(t) is the position of the particle at time t. This quantity has been studied

earlier [29, 36] and R(t) is found to obey the scaling form

R(t) = Lχh

(
t

Lz

)
(2.29)

where h(y) ∼ y1/z, with z = 3/2 for small y. The requirement that R(t) has to be

independent of L in the limit L → ∞ leads to χ = 1. The value of z above is the

same as the dynamic exponent zs of the KPZ surface. As discussed in the introduction

chapter, the dynamic exponent zs of a surface carries information about the time scale

of evolution of valleys and hills; the landscape evolves under surface evolution and

valleys/hills of breadth L′ are typically replaced by hills/valleys in time of order L′zs .

Thus the observation z = zs suggests that the particles follow the valley movement. We

have verified the above results in our simulations (Fig. 2.8). At large times (t ∼ Lz),

due to the hills/valleys getting decorrelated, the value of z changes from 3/2 to the

diffusion value 2 as can be seen in Fig. 2.8 (large t/Lz).

We have also evaluated the density-density autocorrelation function G̃(t, L)

G̃(t, L) ≡ 〈ni(0)ni(t)〉L (2.30)

and find that it scales with the system size as (Fig. 2.9)

G̃(t, L) ∼ Ỹ

(
t

Lz

)
. (2.31)

Again, z = zs = 3/2, reaffirming our conclusion that particles tend to follow valleys.

The scaling function shows a power law behaviour Ỹ (ỹ) ∼ ỹ−ψ with ψ ' 2/3 as ỹ → 0.
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2.2.4 Relations Between the Exponents

The exponents defined in the above sections can be connected to each other by simple

relations using scaling analysis. For instance, δ, ν and θ are related by

δ = ν − θ (2.32)

This can be proved as follows. Using N = L, it can be easily shown that

∫ L

0

〈n(0)n(r)〉dr = L (2.33)

⇒ 〈n(0)2〉 +

∫ L

1

〈n(0)n(r)〉dr = L (2.34)

We will first show that the first term on L.H.S. of the above equation goes as Lδ. We

know that

〈n(0)2〉 = 〈n2〉 =

∫ L

0

n2P (n, L)dn (2.35)

Using Eq.(2.27), we have

〈n2〉 ∼ 1

L2δ

∫ L

0

n2f
( n

Lδ

)
dn (2.36)

Defining X = n/Lδ, we have

〈n2〉 ∼ Lδ
∫ L1−δ

0

X2f (X) dX (2.37)

Our numerical results suggest that the integral in the above equation is convergent for

large L. We thus have 〈n2〉 ∼ Lδ. We use this in Eq.(2.34) to obtain

∫ L

1

〈n(0)n(r)〉dr = L− aLδ (2.38)
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Using the scaling form in Eq.(2.14), we have

a′
1

Lθ

∫ L

1

Y (
r

L
)dr = L− aLδ (2.39)

a′ and a are positive constants. Guided by numerical evidence, we substitute Y (y) to

be a power law for y in the range 0 < y < bL (where b is a constant between 0 and 1)

and a constant in the range bL < y < L. This is consistent with the fact that we are

working on a periodic lattice and the scaling function has to be symmetric and thus

have a zero slope at y = 1/2. We thus have

a′

Lθ−ν

∫ bL

1

r−νdr + cL1−θ ∼ L− aLδ (2.40)

⇒ a′
∫ bL

1

r−νdr + cL1−ν ∼ L1+θ−ν − aLδ+θ−ν (2.41)

⇒ eL0 − dL1−ν + cL1−ν = L1+θ−ν − aLδ+θ−ν (2.42)

⇒ eL0 − fL1−ν = L1+θ−ν − aLδ+θ−ν (2.43)

We will now consider the two cases ν ≥ 1 and ν < 1. When ν ≥ 1, the sec-

ond term on the L.H.S. either goes to zero in the large L limit (ν > 1) or has the

same form as the first term (ν = 1). Thus, balancing powers on both sides, we have

δ + θ − ν = 1 + θ − ν = 0. We thus get δ = 1 and δ = ν − θ. (We have assumed,

guided by numerical evidence, that δ+θ−ν is not negative). If ν < 1, then the second

term on the L.H.S. of Eq.(2.43) does not go to zero in the large L limit. Balancing the

powers on both sides we have, δ+θ−ν = 0 (b and f in Eq.(2.43) are negative constants

when ν < 1) and 1+θ−ν = 1−ν. Thus θ = 0 and β = ν. We regain the form δ = ν−θ.

We can also relate φ, δ and γ by
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φ = δ(γ − 2) + 1 (2.44)

which can be seen below. Using the normalisation condition on P (n, L), we have
∫ L

1

P (n, L)dn = 1 − P (0, L) ∼ Lφ−1 (2.45)

Using Eq. (2.27) we have

1

L2δ

∫ L

1

f
( n

Lδ

)
dn ∼ Lφ−1 (2.46)

Defining X = n/Lδ we have

Lδ

L2δ

∫ L1−δ

1/Lδ

f(X)dX ∼ Lφ−1 (2.47)

Using the form f(y) ∼ y−γ we have

∫ L1−δ

1/Lδ

X−γdX ∼ Lφ−1+δ (2.48)

⇒ X−γ+1

−γ + 1

∣∣∣∣
L1−δ

L−δ

∼ Lφ−1+δ (2.49)

⇒ L(1−δ)(−γ+1)

−γ + 1
− L(−δ)(−γ+1)

−γ + 1
∼ Lφ−1+δ (2.50)

If 1 ≥ δ > 0, γ > 1, the second term on the L.H.S. is dominant

⇒ Lδγ−1 ∼ Lφ−1+δ (2.51)

⇒ δγ − δ = φ− 1 + δ (2.52)

⇒ φ = δ(γ − 2) + 1 (2.53)

From our simulations we have β = 1, φ = 1/4, so Eq. (2.53) predicts γ = 5/4, which is

close to the simulation result γ ≈ 1.15.
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2.2.5 Fluctuations and Non Self-averaging

It is known for the problem of hard core particles sliding on fluctuating surfaces [30, 31,

33] that there is a clustering of particles and the clusters are highly dynamic in nature

— they are continuously breaking into smaller clusters and then recombining to form

larger clusters. In fact these fluctuations are so strong that they do not damp down

in the thermodynamic limit, leading to the nomenclature fluctuation dominated phase

ordering (FDPO). The strong clustering state (SCS) in our system also shows strong

fluctuations, which we characterise using the fraction of sites Nn/L with occupancy n.

This fraction fluctuates from sample to sample and has a very broad distribution. Its

mean is given by P (n, L) = 〈Nn〉/L and its variance by

σ2 ≡
〈(Nn

L

)2
〉

−
〈Nn

L

〉2

. (2.54)

We found that if n is held fixed and we take the limit L → ∞, the ratio σ/〈Nn/L〉
approaches a constant (Fig. 2.10). This is to be contrasted with a normal, self-averaging

system where this ratio vanishes in the limit L→ ∞. Thus we see that our steady state

has strong fluctuations and the clusters are not stable objects but break and reform all

the time as the surface evolves.

2.2.6 The strong clustering state (SCS)

The following picture of the steady state emerges from our results. The scaling of the

probability distribution P (n, L) as n/L and the vanishing of the probability of finding

an occupied site (≡ Nocc/L) suggest that a large number of particles (often of the order

of system size) aggregate on a few sites. The scaling of the two-point density-density

correlation function with L implies that the particles are distributed over distances

of the order of L, while the divergence of the scaling function indicates clustering of

large-mass aggregates. Thus the evidence points to a state where the particles form

a few, dense clusters composed of a small number of large mass aggregates and these

clusters are separated on the scale of system size. We choose to call this state as the

Strong Clustering State (SCS). The divergence at the origin of the two-point density-

density correlation function as a function of the separation scaled by the system size,

is its hallmark. The information we get from results on dynamics is that the particles
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Fig 2.10: The figure shows data for the quantity σ/〈Nn/L〉 for 3 values of n, n = 4 (+),
8 (×), 16 (∗). We see that for large L, this quantity approaches a constant, showing
the presence of large fluctuations that do not damp down in the thermodynamic limit.

have a tendency to follow the surface. This is brought out by the fact that the scaling

exponent describing the RMS displacement comes out to be equal to the dynamic

exponent of the KPZ surface.

At this point, we would like to comment on the renormalization group (RG) cal-

culation of Drossel and Kardar [29]. They have tried a perturbative RG approach to

determine the density-density correlation. The answers from their calculation do not

match well with the numerical results, as we have shown in section 2.2.1. The reason,

we believe, lies in the strong clustering feature of the steady state. The crucial point is

that the two point correlation function in the SCS is a function of the system size and

diverges in the thermodynamic limit for any finite value of the separation. This can be

seen by substituting the power law form for Y (y) in Eq. (2.14). The calculation in [29]

assumes a well defined value for the correlation function, for any finite separation, in

the thermodynamic limit. Neglecting this infra-red divergence which is inherent to the

system would lead to incorrect results. The fluctuations in our system diverge with

increasing system size and thus are much stronger than those near a critical point.

Thus the usual renormalization group approach, which is well suited to critical point
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behaviour, is not directly applicable to our system. We have seen that in the steady

state, the particles cluster in a few sites which contain a diverging number of particles

and most of the sites are empty. This state is very far removed from a diffusive state

where the particles are distributed uniformly. Treating the coupling term in the equa-

tion for evolution of the density as a perturbation around the diffusive solution would

then not be expected to yield the correct form of the correlation function.

2.2.7 Variation of ω and K

In this section, we describe our results on how the steady state of the system changes

with a change in the parameters ω and K. To see how the system behaves when we

change the relative speeds of the surface and particle evolution, we vary the parameter

ω ≡ Ns/Np (Ns and Np being respectively the number of successive surface and particle

update attempts) in the range 1/4 ≤ ω ≤ 4. When 0 < ω < 1 (particles faster than the

surface), we regain the scaling form of Eq. (2.14) for the two point correlation function.

The scaling function also diverges with the same exponent. While the probability

distribution for occupancy P (n, L) shows similar scaling with system size as Eq. (2.27),

the scaling function f(y) shows a new feature — it develops a peak at large n (Fig. 2.11).

This peak at large n indicates that the probability of finding nearly all the particles at

a single site is substantial.

A heuristic argument for the appearance of this peak is now given. Consider a

configuration in which a large number of particles (nearly equal to the total number of

particles) reside in a local valley. When this valley is replaced by another one nearby

under surface dynamics , all the particles tend to move to the new one. If the number

of particle updates is greater than surface updates, there is a substantial probability

that all the particles are able to move to the new valley before it is itself replaced

by another one. Thus there is a significant probability of the initial cluster surviving

intact for a fair amount of time. Numerically, we also find that

P (n = N,L)

P (n = N − 1, L)
=

1

ω
(2.55)

As mentioned in the introduction, the case of ω = 0 (with the limit L → ∞ taken

later) is special. In this case, the problem reduces to an equilibrium problem and can

be approached analytically. We will describe the calculations in a separate section
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Fig 2.11: Scaled probability distribution P (n, L) for ω = 1/2, 1, 2 (K = 1). The line is
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below but point out the main result here — the strong clustering state survives for

ω = 0 and the results (scaling exponents, functional forms of the scaling functions)

match very well with our non-equilibrium numerical results for ω = 1. This close

correspondence between a nonequilibrium system and a disordered equilibrium system

is quite unexpected.

For ω > 1, the particles settle down slowly in valleys and τsurf � τpart where τsurf

and τpart are respectively the times between successive surface and particle updates.

Though τsurf � τpart; for large enough L, the survival time of the largest valley ∼
τsurfL

z is always greater than the particle sliding time ∼ τpartL. Thus we expect that

particles will lag behind the freshly formed valleys of small sizes but would manage to

cluster in the larger and deeper valleys, which survive long enough. We thus expect a

clustering of particles and scaling to hold beyond a crossover length scale rc(ω). We

can estimate the crossover length by equating the time scales of surface and particle

rearrangements — τsurfr
z
c(ω) ∼ τpartrc(ω), which yields rc(ω) ∼ ω

1

z−1 . Using z = 3/2,

we have rc ∼ ω2. Numerical simulation results are shown in Fig. 2.13 which shows that

the data deviates from scaling and power law behaviour at small r, due to a crossover
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effect. The data suggests that

G(r, L) ∼∼ 1

Lθ
Y

( r
L

)
g(

r

rc(ω)
) (2.56)

As we can see from Fig. 2.13 (main graph), the curve flattens out at small values of r, so

for y < 1 (r < rc(ω)), the function g(y) in the equation above should follow g(y) ∼ y1.5

while it should go to a constant for y > 1. We can determine rc(ω) from G(r, L) by

separating out the r dependent part; if we scale G(r, L) by L, we obtain the quantity
1
r1.5g(

r
rc(ω

)). We can now determine rc(ω) as the value or r where the scaled data starts

deviating from the power law behaviour r−1.5. From Fig. 2.13, (inset) rc(ω = 2) ' 10.

A similar exercise for ω = 3 leads to rc(ω = 3) ' 20. A clean determination of rc(ω)

for ω > 3 requires data for very large values of system size, beyond the scope of our

computational capabilities.
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Fig 2.12: The main plot shows the scaled two point correlation function for ω = 2,
(K = 1), we see deviation from scaling at small r/L. The inset shows a plot of
G(r, L)/L versus r. The straight line shows depicts the power law with exponent −1.5.
The lattice sizes are L= 512 (+),1024 (×), 2048 (∗).

The probability distribution P (n, L) continues to show the same scaling form (Eq. (2.27))

for ω > 1, but the scaling function f(y) in this case dips at large values of y (Fig. 2.11)
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in contrast to the peak seen for ω < 1. The exponent z describing the RMS dis-

placement of particles remains unchanged under a change in ω, again indicating that

particles follow the movement of valleys on the large scale.

In the limit ω → ∞, the surface movement is much faster than the particle response

time. The valleys evolve quickly and disappear before the particles can cluster in

them, thus, the particles essentially move like random walkers or free particles on a

flat landscape.

The other parameter of interest is K, defined in the section on Monte-Carlo simu-

lations above. When we make a particle update, we move the particle downhill with

probability (1 +K)/2 and uphill with probability (1−K)/2. So far we have discussed

the results for the case K = 1, where particles always move downhill. Decrease in K

reduces the average downhill speed of particles, while the valley evolution rates are

unaffected. Thus decreasing K causes an effect similar to increasing ω and a crossover

length scale is introduced. The particles lag behind the freshly formed local valleys

but settle down in the deeper, longer surviving global valleys. The numerical results

again guide us to the form

G(r, L) ∼ 1

Lθ
Y

( r
L

)
g(

r

rc(K)
) (2.57)

for the correlation function. Analogous to ω > 1 case, we have extracted rc from the

numerical data. We find rc(K = 0.75) ' 10. Values of K lower than 0.75 require data

for system sizes that are beyond our computational limitations.

2.2.8 Tilting the surface

Up till now, we have considered a surface with no average slope and we see that the

steady state is a strong clustering state (SCS) and that this state is robust under

change in various parameters. The question that we will address in this section is —

what happens to the steady state if the surface has an average slope? Addition of

an average slope or tilting the KPZ surface is the same as adding an average velocity

to the Burgers fluid. Thus the transformation v′ = v + v0 leads to the transformed

coupled equations (see Equations (1.11) and (1.13))

∂(v + v0)

∂t
+ λ(v + v0).

∂(v + v0)

∂x
= ν

(
∂(v + v0)

∂x

)2

+
∂ζh(x, t)

∂x
(2.58)
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Fig 2.13: The main plot shows the scaled two point correlation function for K = 0.75
(ω = 1), we see deviation from scaling at small r/L. The inset shows a plot ofG(r, L)/L
versus r. The straight line shows depicts the power law with exponent −1.5. The lattice
sizes are L= 512 (∗),1024 (×), 2048 (+).

The particles respond only to the local velocity, so

dxm
dt

= av|~xm
+ v0 + ζm(t) (2.59)

It can be shown that the Galilean shift x′ = x− λvt and t′ = t will simultaneously

shift the extra term in both the equations above, given λ = 1. In our simulations, we

have λ = 1 (p = 1, q = 0 in Eq. 2.7), thus, the steady state in this case is again an SCS

(Fig. 2.14). Let us contrast this result to the the fluctuation dominated phase ordering

(FDPO) in the hard core particles case. It was seen that FDPO does not survive when

the surface is tilted and the clustering is lost [31]. As the hills and valleys sweep across

at a finite speed, the particles are not able to keep up. Thus, the particles are not able

to cluster in the newly formed valleys and the phase ordering is lost. In our case, the

particles are non interacting and it suffices to consider a single particle, which, as we

have seen above, keeps moving along with the valley.

Thus, to summarise — In this chapter we described our method and results for the

Monte-Carlo simulations of the KPZ advection case. We saw that there is a new kind



CHAPTER 2. KPZ advection, one dimension 42

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001  0.01  0.1

L0.
5 G

(r
,L

)

r/L

Fig 2.14: The plot shows the scaled two point correlation function for a tilted surface
(3 negative slopes per positive slope). We see that the correlation function scales as for
the untilted case.The straight line shows depicts the power law with exponent −1.5.
The lattice sizes are L= 256 (∗), 512 (×), 1024 (+).
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Exponent Related Quantity Definition Scaling relation
G(r, L) G(r, L) ≡ 〈nini+r〉

θ Two point ni → No. of particles G(r, L) ∼ 1
LθY ( r

L
)

density-density correlation at site i

ν G(r, L) Y (y) ∼ y−ν

P (n, L) P (n, L) ≡ 〈Nn/L〉
δ Probability of having Nn → No. of sites P (n, L) ∼ 1

L2δ f
(
n
Lδ

)

occupancy n with occupancy n
Nocc

φ No. of occupied Nocc = (1 − P (0, L))L Nocc ∼ Lφ

sites

R(t) R(t) ≡ 〈(x(t) − x(0))2〉1/2
z RMS displacement of x(t) → Position of R(t) ∼ Lχh

(
t
Lz

)

tagged particle tagged particle at time t

Table 2.1: Table for the various exponents defined in the chapter.

of steady state in this case, called the strong clustering state (SCS). We saw that the

steady state is robust under the change of parameters and the tilting of the surface.

In the next chapter, we will describe our results on the remaining two cases under

consideration — the KPZ anti-advection case and the EW case. We will see that while

the steady state is again an SCS, the details vary from case to case.



CHAPTER 3 44

KPZ anti-advection, EW

We will begin this chapter with a discussion of the KPZ anti-advection dynamics where

the particles and the surface move in opposite directions. Thus, while the particles try

to settle in local valleys, the valleys themselves are unstable, evolving all the time.

This leads to declustering, and the question arises — Do we still have an SCS? The

answer to this question, as we will see, is yes, though the degree of clustering is less

than the KPZ advection case.

The KPZ anti-advection dynamics was first studied by Drossel and Kardar [5, 29].

In [5], they studied a model for the growth of binary films i.e. thin films which are

grown by the deposition of two kinds of materials. The film is composed of regions

or phases consisting of either of the two materials and these regions are separated

from each other by phase boundaries. The phase boundaries are dynamic in nature

and can be thought of as a driven field, the drive being the growth of the film itself.

In a certain region of parameter space, these domain walls behave similarly as the

passive particles in the KPZ anti-advection case. It is to be remembered though, that

unlike our non-interacting passive scalars, these domain boundaries can annihilate each

other on contact or create new boundaries. Thus, the number of boundaries, unlike

our passive scalars, is not conserved. Nevertheless, as a starting point, Drossel and

Kardar [5] considered the noninteracting particle case as a reference. As we proceed,

we will compare our results with results from these papers.

The other dynamics that we will consider in this chapter is one where the particles

are driven by a surface governed by the EW equation. The EW equation is different

from the KPZ equation in that it does not have the symmetry breaking nonlinear term.

We see that the steady state here is again an SCS, the amount of clustering is less than

the KPZ advection case but more than the KPZ anti-advection case. We will end this

chapter with a comparison of results from all the three dynamics considered by us.
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Fig 3.1: Schematic diagram of the surface and non-interacting particles sliding on top
of it. Arrows show possible surface and particles moves. Only the hill to valley move
is allowed for the KPZ anti-advection dynamics.

3.1 KPZ anti-advection

Let us once more consider the coupled pair of equations

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + ζh(~x, t). (3.1)

and

d~xm
dt

= −a∇h|~xm
+ ζm(t), (3.2)

this time with a/λ < 0. As we have seen in the last chapter, λ determines the direction

of average surface motion and a/λ < 0 corresponds to particles moving in the opposite

direction of average surface motion. Again, to solve the above system of equations, we

performed Monte-Carlo simulations with the following rules:

We again have the same kind of lattice as in KPZ advection, with particles residing

on sites and the link between sites have slopes of either 1 (upward slope → /) or

−1 (downward slope → \). We choose a site at random, but instead of considering

hills, we concentrate on local valleys — if the chosen site is on a local valley (\/), we

change the local valley to a local hill (/\) (Fig. 3.1, extreme right), otherwise, we leave

it unchanged. The particles are updated in exactly the same fashion as in the KPZ

advection case — a randomly chosen particle is always attempted to move downwards.

As one can see from the above Monte-Carlo rules, while the particles are trying to

move into local valleys, the valleys are themselves unstable and overturn to form hills.

Thus one expects that there would be less clustering in this case. This is borne out by

our numerical results.



CHAPTER 3. KPZ anti-advection, EW 46

 1

 10

 0.001  0.01  0.1

G
(r

,L
)

r/L

 10

 100  1000

G
(0

,L
)

L

Fig 3.2: The main figure shows G(r, L) versus r/L for the anti-advection case. The
straight line shows a power law with exponent −1/3. The lattice sizes are L= 512 (∗),
1024 (×), 2048 (+). The inset shows G(0, L) versus L and the straight line shows a
power law with exponent 1/3.

3.2 Numerical Results, KPZ anti-advection

We begin with the simplest case ω = K = 1.

3.2.1 Statics

We measured the two point correlation function G(r, L) and obtained a scaling collapse

for data for various values of system size L. Our data suggests that for r > 0, the same

scaling form as for the advection case is valid (Fig. 3.2)

G(r, L) ≡ 〈nini+r〉L ∼ 1

Lθ
Y

( r
L

)
. (3.3)

The value of θ is zero in this case. The scaling function Y (y) again has a power law

divergence Y (y) ∼ y−ν as y → 0, with ν close to 1/3 (see Table 3.1, Fig. 3.2). This

power law behaviour and the value of the exponent ν is in agreement with results

in [5]. However, as we have mentioned before, the scaling with system size has not
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Fig 3.3: The main figure shows P (n, L) versus n/Lδ for the anti-advection case. The
straight line shows a power law with exponent −1.7. The lattice sizes are L= 512 (∗),
1024 (×), 2048 (+). The inset shows (1 − P (0, L))L versus L and the straight line
shows a power law with exponent 0.9.

been mentioned in [5].

Thus, the above results show that there is clustering and the steady state is an

SCS. The value of the exponent ν, which is an indicator of the amount of clustering, is

less in this case (ν ' 0.33) than the value for the advection case (ν ' 1.5) indicating

that there is less clustering. These results again do not match with the results from the

renormalization group calculation in [29] because the steady state, as we have shown

above, is an SCS and the perturbative approach is not expected to work, as discussed

in Section 2.2.6.

The probability P (n, L) of a site having an occupancy n again has a similar scaling

form as in the advection case

P (n, L) ≡ 〈Nn/L〉 ∼
1

L2δ
f

( n

Lδ

)
(3.4)

with δ ' 1/3 (see Table 3.1, Fig. 3.3). We thus see that the relation

δ = ν − θ (3.5)
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is true for anti-advection also. The function f(y) seems to fit a power law y−γ with

γ ' 1.7 (see Table 3.1, Fig. 3.3) for small values of y. The behaviour of the function

at small y describes the distribution of large but finite clusters in the limit of system

size going to infinity (n → ∞, L → ∞, n/Lδ → 0). As in the KPZ advection case,

we can use the scaling form of P (n, L) to show that G(0, L) ∼ Lδ, which, is borne

out independently from the numerics (Fig. 3.2). The singular part P (0, L) satisfies

Nocc ≡ (1−P (0, L))L ∼ Lφ with φ ' 0.9 (Fig. 3.3). Substituting this value of φ in the

scaling relation

φ = δ(γ − 2) + 1 (3.6)

leads to γ ' 1.7, which is the same as the numerical value from direct measurement.

We have explored the ω and K dependence of the above results. For the range

of values studied (1 ≤ K ≤ 0.75, 1/5 ≤ ω ≤ 5), we found the scaling relation and

the values of scaling exponents to be the same as the values for the ω = 1, K = 1

case. There are no significant crossover effects. There is an interesting feature present

in the density-density correlation data for small values of ω; the numerical value of

G(r = 1, L) is less than the value expected from the scaling function Y (y). This is a

feature induced by the lattice model that we are using for the simulations; when a local

hill turns into a local valley, all the particles present inside the local valley slide quickly

to either side, thus decreasing the probability of finding two particles at distance one

from each other.

3.2.2 Dynamics

We measured the RMS displacement R(t) and found that it follows

R(t) ≡ 〈(x(t) − x(0))2〉1/2 = Lχh

(
t

Lz

)
(3.7)

where h(y) ∼ y1/z, with z = 1.75 for small y, and χ = 1. Similarly, the measurements

on autocorrelation function (Fig. 3.4) show that G̃(t, L) has the same form as in the

advection case

G̃(t, L) ≡ 〈ni(0)ni(t)〉L ∼ Ỹ

(
t

Lz

)
(3.8)



CHAPTER 3. KPZ anti-advection, EW 49

 10

 100

 10  100  1000  10000

R
(t

)

t

 1

 10

 1e-04  0.001  0.01  0.1  1

G
(t

,L
)

t/Lz

Fig 3.4: The main figure shows the RMS displacement R(t) versus t for various values
of K. We see that R(t) ∼ t1/z with z = 1.75, 1.82, 1.85 for K = 1, 0.5, 0.25 respectively.
L = 1024 for all the data. The inset shows the autocorrelation function G̃(t, L) versus
t/Lz for L = 256, 512. The straight line shows a power law with exponent −0.19.

with z = 1.75 and Ỹ (ỹ) ∼ ỹ−ψ, ψ = 0.19 (Fig. 3.4). A point to note is the following:

if we substitute r ∼ t1/z in the Equation (3.3) for the static correlation, we get the

autocorrelation scaling form above with the correct scaling exponent ψ = 0.19. We

thus see that a simple scaling picture is valid where one can think of taking a time

correlation measurement as equivalent to a space correlation measurement, provided

distance r scales as t1/z. The value of z obtained from these two measurements is

different from the advection case where it is equal to the dynamic exponent for the

surface, zs = 1.5. Since the surface is the same in both the cases, one would have a

priori expected z to be the same, thus an increase in z is surprising. The reason, we

believe, lies in the dynamics. In the advection case, the dynamics cause the particles

to faithfully follow a deep valley and thus the movements of the valley reflect in the

movement of the particles. In the anti-advection case where the valleys themselves are

unstable, the particles can get distributed into different valleys when the particular

valley they were aggregated in gets destabilised. The particles thus move slower than

the KPZ advection case and the dynamic exponent value is somewhere between the

KPZ surface dynamic exponent value (1.5) and the random walk value (2).
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Fig 3.5: The figure shows R(t)/t1/z (z = 1.75) versus t for K = 1 (+), K = 0.5 (×).
We see that z = 1.75 is indeed the correct exponent for both K values. L = 1024 for
both the data.

We studied the effect of varying the parameter K on the RMS displacement, first

studied in [29]; at first look one sees that z appears to increase continuously as we

decrease K (Fig. 3.4), apparently in accordance with [29]. However, a more careful

look at the data reveals a different picture. If we divide the RMS displacement data

for various values of K by t1/z , where z is taken to be 1.75 (the value for K = 1),

one sees that the curve is indeed flat in the middle region(Fig. 3.5). This shows that

z ' 1.75 is the correct dynamical exponent for the particle motion irrespective of the

value of K. At large times, one sees as expected that due to decorrelation in the

surface and the destruction of the valley in which the particle was originally situated,

the particles show diffusive behaviour. At small times one sees a transient behaviour

due to the increased tendency of the particles to move independently of the surface

slope.

3.3 Edwards-Wilkinson

In this section we will consider a surface evolving according to the Edwards-Wilkinson

(EW) equation as our driving field. The EW equation
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Fig 3.6: Schematic diagram of the surface and non-interacting particles sliding on top
of it. Arrows show possible surface and particles moves. Both the valley to hill and
hill to valley moves are allowed for the EW dynamics.

∂h

∂t
= ν∇2h+ ζh(~x, t) (3.9)

does not contain the nonlinear term λ
2
(∇h)2 present in the KPZ equation above (Eq. (3.1)).

The first thing to note is that the nonlinear term breaks the h→ −h or up-down sym-

metry, thus the removal of the term restores this symmetry. Therefore, the surface

in this case does not have an average motion; we also do not have the advection and

anti-advection cases as in the KPZ advection case since the direction of the gravity

with respect to the surface motion does not matter. These facts will be reflected in our

Monte-Carlo simulation rules. The EW equation, owing to its linear character, can be

solved exactly and the values of the exponents in one dimension are — roughness expo-

nent α = 1/2 and dynamic exponent z = 2. The roughness exponent in one dimension

has the same value as for the KPZ surface, thus the static surface configurations are

statistically the same. The difference in the passive slider steady state is caused by the

dynamics of the surface. Our results show that the steady state for the EW surface is

again an SCS, the amount of clustering is less than the KPZ advection and more than

the KPZ anti-advection dynamics.

The basic Monte-Carlo model and the particle dynamics in this case are the same

as for the KPZ advection and anti-advection cases above; the essential difference lies

in the surface dynamics. Here, we choose a site at random, if the chosen site is on

a local valley (\/), we change the local valley to a local hill (/\) (Fig. 3.6, extreme

right) and if the chosen site is on a local hill (/\), we change it to a local valley (\/)
(Fig. 3.6, extreme left). If the chosen site lies on a slope, we leave it unchanged. Since

the valleys and the hills are treated on the same footing, the surface dynamics respects

the h→ −h symmetry of the EW equation.
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3.3.1 Statics

The two point correlation function G(r, L), for r > 0 has the same scaling form as

Eq. (3.3) with θ = 0 and Y (y) ∼ y−ν as y → 0, ν ' 2/3 (see Table 3.1, Fig. 3.7).

The probability P (n, L) of a site having an occupancy n again has a similar scaling

form as in Eq. (3.4) with δ ' 2/3 (see Table 3.1, Fig. 3.8). For small y, f(y) ∼ y−γ,

γ ' 1.49. We have for P (0, L) — Nocc ≡ (1− P (0, L))L ∼ Lφ with φ ' 0.75 (Fig. 3.8)

and Eq. (3.6) leads to γ ' 1.62, close to our numerical value from the data for P (n, L).

These results are universal in nature and show no significant deviation when the value

of ω and k are varied in the range 1/5 ≤ ω ≤ 5 and 0.75 ≤ K ≤ 1.

3.3.2 Dynamics

As we mentioned above, the value of the dynamic exponent of the EW equation in

one dimension is zS = 2. Our results for the RMS displacement of the tagged particle

and the autocorrelation function show that the z ' 2, thus the particles do follow the

valley movement in this case. The system is similar to KPZ advection in this regard.

Specifically, we observe that the RMS displacement R(t) has the same form as in

Eq. (3.7) with z ' 2. This confirms Gopalakrishnan’s result [37] for the same quantity.

The autocorrelation function again shows the same behaviour as in Eq. (3.8) with z ' 2

and ψ ' 1/3. Regarding the dynamical exponent, Gopalakrishnan [37] suggested that

there might well be two different values of z in the two regimes ω ≤ 1 (z = 2) and

ω > 1 (z < 2), but the possibility remained that this is a crossover effect. In order to

answer this, we performed Monte-Carlo simulations (Fig. 3.9). We conclude that the

apparent change in the dynamic exponent is indeed a transient phenomenon. The inset

in Fig. 3.9 shows that the power law R(t) ∼ t0.6 seems to fit the data well at relatively

low times while the main figure shows that if the data is divided by t1/2, the resulting

curve approaches a flat line at large times indicating that R(t) ∼ t1/2 at large times.
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Fig 3.7: The main figure shows G(r, L) versus r/L for the EW case. The straight line
shows a power law with exponent −2/3. The lattice sizes are L= 512 (∗), 1024 (×),
2048 (+). The inset shows G(0, L) versus L and the straight line shows a power law
with exponent 2/3.
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line shows a power law with exponent −1.49. The lattice sizes are L= 512 (∗), 1024
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line shows a power law with an exponent 0.6. The main figure shows R(t)/t1/2 versus t
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3.4 Comparison

To conclude our results from the simulations in one dimension, we show below a com-

parison of the various dynamics. As we have seen, SCS is the steady state for all three

dynamics — KPZ advection, KPZ anti-advection and EW, showing that the state is

not limited to a particular dynamics and arises under more general conditions. We

have seen that the KPZ advection case, where the valleys are stable, shows the most

clustering while the KPZ anti-advection case, where the valleys are unstable, shows the

least clustering. For the EW surface, the valleys and hills have the same dynamics, and

the clustering lies in between the KPZ advection and anti-advection cases. Figure 3.10

shows a visual confirmation of this picture of clustering. Figure 3.11 compares the

density-density correlation function for the three dynamics, the larger the divergence,

more the clustering. Finally, Table 3.1 below shows the values of the various exponents,

with errors.
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Fig 3.10: Time evolution for the KPZ advection, EW and KPZ anti-advection dynamics
(from left to right). The vertical axis shows time and the horizontal axis shows the one
dimensional lattice, the white spots show presence of particles. The lattice size and
the number of particles are both 256 for all the three cases and so fewer white spots
indicate a higher degree of clustering (fewer but more dense clusters).

δ ν γ

Equilibrium 1 3/2 1 with log
Sinai Limit corrections

KPZ Advection 1 ± 0.07 1.48 ± 0.04 1.15 ± 0.02 or
1.5 (exact) 1 with log corrections

KPZ Anti-Adv 0.33 ± 0.09 0.31 ± 0.02 1.70 ±0.02
EW 0.68 ± 0.08 0.67 ± 0.02 1.49 ± 0.04

Table 3.1: The values of the exponents in one dimension for the three kinds of dynamics
under consideration - KPZ advection, KPZ anti-advection and EW. The first row shows
the values of exponents for the equilibrium Sinai limit of a stationary surface, to be
discussed in the next chapter. For KPZ advection, the exact value for the exponent
ν = 1.5 is the result from Derrida’s model of second class particles in the asymmetric
exclusion process (ASEP).
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IV. Equilibrium, Sinai Limit

In the previous chapters, we described our results on the nonequilibrium problem of

passive particles sliding on fluctuating surfaces. Since the problem is difficult to ap-

proach analytically, we performed Monte-Carlo simulations on a lattice model. Our

numerical results revealed a new kind of steady state — the strong clustering state

(SCS) which we defined using the two point density-density correlation function. We

studied the variation of the steady state with change in ω, which is the ratio of surface

to particle update speeds. When the particles move faster than the surface (ω < 1),

we saw that the SCS persists and the clustering increases. For particles moving slower

than the surface (ω > 1), SCS is again the steady state but there are crossover effects

due to the particles not being able to cluster in the valleys at small time scales.

To shed more light on the problem, let us consider the extreme limits — particles

moving much faster than the surface (ω → 0) and the surface evolution being much

faster than the particle motion (ω → ∞). The ω → ∞ limit is the free particle limit;

the surface fluctuation is so fast that the particles are not able to react. Valleys appear

and disappear before the particles can cluster in them. Thus the particles do not “feel”

the valleys and move like free random walkers. The ω → 0 limit, as we will see below,

is subtle and leads to surprising results.

This chapter is devoted to the extreme limit of passive sliders moving on a static

surface or the ω → 0 limit, for all the three kinds of dynamics under consideration. As

we discussed briefly in the Chapter on KPZ advection, this limit does not commute with

the limit L→ ∞. In the numerical results described in the previous chapters, we have

seen that as we go to smaller values of ω, the steady state remains the nonequilibrium

SCS with the same exponents as for ω = 1. Thus the L → ∞ limit followed by the

ω → 0 leads to the nonequilibrium steady state SCS.

We are now interested in the reverse limit, ω → 0 followed by L → ∞. In this
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limit, the surface is stationary. The particles move on this static surface under the

effect of noise. A typical time scale of particle motion τ ∼ eA
√
L is the time in which

the particles cross the largest hills in the landscape. The problem is now an equilibrium

problem of particles moving in a random potential under the effect of temperature, and

the statistics of the random potential governs the steady state properties. It is well

known that for both the KPZ and the EW surfaces in one-dimension, the distribution

of heights h(r) in the stationary state is described by [1]

Prob[{h(r)}] ∝ exp

[
− ν

2Dh

∫ (
dh(r′)

dr′

)2

dr′

]
(4.1)

Thus, any stationary configuration can be thought of as the trace of a random walker

in space evolving via the equation dh(r)/dr = ξ(r) where the white noise ξ(r) has zero

mean and is delta correlated, 〈ξ(r)ξ(r′)〉 = δ(r−r′). We thus have a problem of random

walkers moving under the effect of gravity and temperature, on a landscape which can

itself be seen as the trace of a random walk. This is a well studied equilibrium problem

known as the Sinai model [46] for random walkers on a random landscape. We will

work with periodic boundary conditions as for the lattice model and without loss of

generality — h(0) = h(L) = 0.

The passive particles moving on this surface, as we remember, move according to

the equation

d~xm
dt

= −a∇h|~xm
+ ζm(t), (4.2)

Since this is an equilibrium situation, 〈ζm(t)ζm(t′)〉 = 2κδ(t − t′) = 2KBTδ(t − t′)

where T is the temperature and KB is the Boltzmann constant. We are interested in

evaluating the same quantities as we did for the nonequilibrium cases — two point

density-density correlation function and the probability of occupancy. Since the par-

ticles in our case are noninteracting, we can as well work with a single particle and

deal with the probability ρ(r)dr that the particle will be located between r and r+ dr

instead of the number of particles nr at a site r.

Before going to the calculations, let us roughly sketch the method we have adopted.

We will average the quantities of interest over all possible configurations of the surface.

As we have said before, the surface configurations are like the trace of a randomly

moving particle; this fact will be used to map our problem to a quantum mechanics



CHAPTER 4. IV. Equilibrium, Sinai Limit 59

problem. In the path integral formulation, the various surface configurations will look

like the various possible paths of a fictitious quantum particle. The Hamiltonian of

the quantum particle will carry information about our passive sliding particles. The

calculation of the quantities of our interest now boils down to evaluating integrals

which contain functions of the Hamiltonian in the integrand. These integrals can

be evaluated by solving the eigenvalue problem for the Hamiltonian. This method

of mapping the Sinai model to a quantum problem was introduced by Comtet and

Texier [38]. We are interested in calculating the two point correlation function and

the probability distribution of the particle density. While the correlation function was

evaluated in [38], Satya Majumdar was the first to evaluate the probability density.

We now return to our calculations. In the long time limit, the passive particle

moving on the surface will reach its thermal equilibrium in the potential h(r) and will

be distributed according to the Gibbs-Boltzmann distribution,

ρ(r) =
e−βh(r)

Z
, (4.3)

where Z =
∫ L

0
dre−βh(r) is the partition function. The probability density ρ(r) in

Eq. (4.3) depends on the realisation of the potential {h(r)} and varies from one reali-

sation to another. Our goal would be to compute the distribution of ρ(r) over different

realisations of the random potential h(r) drawn from the distribution in Eq. (4.1).

Note that the distribution of h(r) in Eq. (4.1) is invariant under the transformation

h(r) → −h(r). In other words, the equilibrium density ρ(r) defined in Eq. (4.3) will

have the same distribution if one changes the sign of h(r) in Eq. (4.3). For later

simplicity, we will make this transformation now and replace ρ(r) by the following

definition

ρ(r) =
eβh(r)

Z
, (4.4)

where the transformed partition function is now given by Z =
∫ L

0
dreβh(r).

4.0.1 The Exact Distribution of the Probability Density

We begin our calculations with the evaluation of the probability density ρ(r). To

calculate the probability of occupancy, our strategy would be to first compute the n-th

moment ρn(r) of ρ(r). We will then use the definition ρn(r) =
∫ ∞
0
ρnP (ρ, L)dρ to
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calculate the probability P (ρ, L). From Eq. (4.4) we have

ρn(r) =
enβh(r)

Zn
=

1

Γ(n)

∫ ∞

0

dy yn−1e−yZ+nβh(r) (4.5)

where we have used the identity
∫ ∞
0
dy yn−1e−yZ = Γ(n)/Zn to rewrite the factor 1/Zn.

Here Γ(n) is the standard Gamma function Γ(n) =
∫ ∞
0
xn−1 exp−x dx, n > 0. We now

make a change of variable in Eq. (4.5) by substituting β2eβu/2 = y. The limits of the

new dummy variable u are −∞ to ∞ corresponding to the limits 0 and ∞ for the

variable y. Making this substitution in Eq. (4.5) we get,

ρn(r) = bn

∫ ∞

−∞
du exp[−β

2

2

{∫ L

0

dx eβ(h(x)+u)

}
+ nβ(h(r) + u)] (4.6)

where we have used the explicit expression of the partition function, Z =
∫ L

0
dreβh(r).

The constant bn = β2n+1/[2nΓ(n)].

We will now average the expression in Eq. (4.6) over all possible realisations of the

random potential h(x) drawn from the distribution in Eq. (4.1). We denote the average

by an overbar. Using Eq. (4.1) we have,

ρn(r) = Abn

∫ ∞

−∞
du

∫ h(L)=0

h(0)=0

Dh(x) exp[−
{∫ L

0

dx

[
1

2

(
dh(x)

dx

)2

+
β2

2
eβ(h(x)+u)

]}

+ nβ(h(r) + u)] (4.7)

The constant A in the above equation will be chosen so as to satisfy the normalisation,
∫ L

0
ρ(r)dr = 1. To get the integral in the above equation in a better form, we shift the

potential by a constant amount u, i.e., we define a new function V (x) = h(x) + u for

all x. Doing this we get

ρn(r) = Abn

∫ ∞

−∞
du

∫ V (L)=u

V (0)=u

DV (x) exp[−
{∫ L

0

dx

[
1

2

(
dV (x)

dx

)2

+
β2

2
eβV (x)

]}

+ nβV (r)] (4.8)

The above expression can be seen as a path integral for a quantum mechanics problem.

One can view V as a space co-ordinate and x as a time co-ordinate. All paths (with

the measure shown above) start from V (0) = u and end at V (L) = u. At the fixed

point r (where we are trying to calculate the density distribution), these paths take
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a value V (r) = V which can vary from −∞ to ∞. Using the quantum mechanical

bra-ket notation we have,

ρn(r) = Abn

∫ ∞

−∞
du

∫ ∞

−∞
dV 〈u|e−Ĥr|V 〉enβV 〈V |e−Ĥ(L−r)|u〉 (4.9)

The Hamiltonian Ĥ in the above equation corresponds to the operator Ĥ ≡ 1
2

(
dV
dx

)2
+

β2

2
eβV (x). If we interpret V (x) to be the “position” of a fictitious particle at the fictitious

“time” x, this operator has a standard kinetic energy term and a potential energy which

is exponential in the “position” V . The first bra-ket inside the integral in Eq. (4.9)

denotes the propagation of paths from the initial value u to V at the intermediate point

r and the second bra-ket denotes the subsequent propagation of the paths from V at r

to the final value u at L. Rearranging the terms in the integral in the above equation

ρn(r) = Abn

∫ ∞

−∞
dV enβV

∫ ∞

−∞
du〈V |e−Ĥ(L−r)|u〉〈u|e−Ĥr|V 〉 (4.10)

Thus,

ρn(r) = Abn

∫ ∞

−∞
dV enβV 〈V |e−ĤL|V 〉 (4.11)

where we have used the completeness condition,
∫ ∞
−∞ du |u〉〈u| = Î with Î being the

identity operator. At this point, it may be helpful and less confusing notationally if we

denote the “position” V of the fictitious quantum particle by a more friendly notation

V ≡ X, which will help us thinking more clearly. We thus have

ρn(r) = Abn

∫ ∞

−∞
dX enβX〈X|e−ĤL|X〉. (4.12)

To evaluate the matrix element in Eq. (4.12), we need to know the eigenstates and

the eigenvalues of the Hamiltonian operator Ĥ. We will work in the “position” basis

X where the eigenfunctions ψE(X) of Ĥ satisfy the standard Schrödinger equation,

−1

2

d2ψE(X)

dX2
+
β2

2
eβXψE(X) = EψE(X), (4.13)

valid in the range −∞ < X <∞. To solve the equation above, we make the transfor-

mation X ′ = 2eβX/2 and get the more familiar form
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X ′2d
2ψE(X ′)

dX ′2
+X ′dψE(X ′)

dX ′
− (X ′2 − 8E

β2
ψE(X ′)) = 0 (4.14)

The solutions of this differential equation are the modified Bessel functions Kν(X
′) and

Iν(X
′), where ν = 8E

β2 . There are two possibilities for the energy E, we can have bound

states E < 0 or scattering states E ≥ 0. For bound states, ν is a real number and

it can be shown using the properties of the modified Bessel functions that while Kν

diverges near the origin in this case, Iν diverges at ∞. Thus the system can not have

bound states. For the other possibility of scattering states (E ≥ 0), ν is an imaginary

number, ν = ik. It can again be shown for this case that Iik diverges at X ′ → ∞ but

Kik is well behaved. Thus we take Kik to be our solution and the eigenfunction ψk(X)

is given by

ψk(X) = akKik

(
2eβX/2

)
, (4.15)

where ak is a constant and we have substituted back X ′ = 2eβX/2. To determine the

constant ak, we examine the asymptotic behaviour of the wavefunction in the regime

X → −∞. Using the asymptotic properties of the Bessel function (when its argument

2eβX/2 → 0), we find that

ψk(X) → ak

[
Γ(ik)

2
e−ikβX/2 − π

2 sin(ikπ)Γ(1 + ik)
eikβX/2

]
. (4.16)

In the same limit X → −∞, the Schrödinger equation (4.13) reduces to a free particle

problem,

−1

2

d2ψk(X)

dX2
=
β2k2

8
ψk(X), (4.17)

which allows plane wave solutions of the form,

ψk(X) ≈
√

β

4π

[
eikβX/2 + r(k)e−ikβX/2

]
. (4.18)

The first term in the bracket eikβX/2 represents the incoming wave from X = −∞ while

the second term e−ikβX/2 represents the reflected wave going back towards X = −∞,

with r(k) being the reflection coefficient. The amplitude
√

β
4π

is chosen such that

the plane waves ψk(X) =
√

β
4π
eikβX/2 are properly orthonormalized so that 〈ψk|ψ′

k〉 =

δ(k− k′), where δ(z) is the Dirac delta function. Comparing Eqs. (4.16) and (4.18) in

the regime X → −∞, we determine the constant ak (up to a phase factor)
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ak =

√
β

π3
sin(ikπ)Γ(1 + ik). (4.19)

The square of the amplitude |ak|2 (which is independent of the unknown phase factor)

is then given by

|ak|2 =
βk sinh(πk)

π2
, (4.20)

where we have used the identity, Γ(1 + ik)Γ(1 − ik) = πk/sinh(πk). We know the

eigenstates of Ĥ, Ĥ|k〉 = β2k2

8
|k〉. The wavefunction in the X basis ψk(X) = 〈k|X〉 is

given by

ψk(X) =

√
βk sinh(πk)

π
Kik(2e

βX/2). (4.21)

Using the above result, we can now evaluate the integral in Eq. (4.12). The matrix

〈X|e−ĤL|X〉 in Eq. (4.12) can be expanded in terms of the eigenbasis |k〉 of Ĥ and we

get

ρn(r) = Abn

∫ ∞

−∞
dX

∫ ∞

0

dk 〈X|k〉〈k|X〉enβX e−β2k2L/8

= Abn

∫ ∞

0

dk e−β
2k2L/8

∫ ∞

−∞
dX|ψk(X)|2enβX . (4.22)

We can evaluate the X integral in the equation above

〈k|enβX̂ |k〉 =

∫ ∞

−∞
dX|ψk(X)|2enβX =

k sinh(πk)

π222n−1

∫ ∞

0

dyy2n−1Kik(y)K−ik(y) (4.23)

where we have substituted the form of ψk(X) from Eq. (4.21). We can use the properties

of the modified Bessel function [47] and perform the integral on the right hand side of

Eq. (4.23) in closed form

〈k|enβX̂ |k〉 =
k sinh(πk)

π222n−1

Γ2(n)

Γ(2n)
Γ(n− ik)Γ(n + ik). (4.24)

Substituting this expression in Eq. (4.22), we get

ρn(r) = A
β2n+1

4π22n
Γ(n)

Γ(2n)

∫ ∞

0

dk k sinh(πk)|Γ(n− ik)|2e−β2k2L/8. (4.25)
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To determine the value of the constant A in the expression above, we use the condition

ρ(r) = 1/L. This can be seen as follows: ρ(r) being a probability density satisfies
∫ L

0
ρ(r)dr = 1. Now, taking the average over disorder and using translational invari-

ance, we have ρ(r) = 1/L. We can solve the integral in Eq. (4.25) for n = 1 using

the identity Γ(1 + ik)Γ((1 − ik) = πk/sinh(πk) and then using the condition on ρ(r),

determine the value of A

A =
√

2πL. (4.26)

One can also check easily that as n→ 0, the right hand side of Eq. (4.25) approaches 1.

This can be verified by using Γ(x) ≈ 1/x as x→ 0 and also the identity, Γ(ik)Γ(−ik) =

π/k sinh(πk). For n > 0, one can make a further simplification of the right hand side of

Eq. (4.25) by using the property of the Gamma function, Γ(x+1) = xΓ(x), recursively.

Thus Γ(n− ik) = (n−1− ik)Γ(n−1− ik) = (n−1− ik)(n−2− ik) . . . (1− ik)Γ(1− ik).
This gives us

Γ(n− ik)Γ(n+ ik) = [(n− 1)2 + k2][(n− 2)2 + k2]...[1 + k2]
πk

sinh(πk)
(4.27)

where we have used the identity, Γ(1 + ik)Γ((1− ik) = πk/sinh(πk). Substituting this

expression in Eq. (4.25) we get

ρn(r) =
√

2πL
β2n+1

4π2n
Γ(n)

Γ(2n)

∫ ∞

0

dk k2[(n− 1)2 + k2][(n− 2)2 + k2] . . .

[1 + k2]e−β
2k2L/8. (4.28)

Making the change of variable β2k2L/8 = z in the integral, we finally obtain the

following expression

ρn(r) =
1

L
√
π

β2n−2

2n−2

Γ(n)

Γ(2n)

∫ ∞

0

dz e−zz1/2

[
12 +

8z

β2L

]

[
22 +

8z

β2L

]
. . .

[
(n− 1)2 +

8z

β2L

]
. (4.29)

Let us consider the specific case n = 2. In this case, the formula in Eq. (4.29) gives

ρ2(r) =
β2

12L

[
1 +

12

β2L

]
, (4.30)
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which is valid for all L and not just for large L. Note that the second term on the right

hand side gives a contribution which is exactly 1/L2. This means that the variance,

ρ2(r)− ρ(r)
2

= β2/[12L] for all L. For arbitrary integer n ≥ 1, taking the large system

size limit L→ ∞ in Eq. (4.29) we get

ρn(r) → 1

L

[
β2n−2

2n−2

Γ3(n)

Γ(2n)

]
. (4.31)

Now that we have an expression ρn(r), we use the definition ρn(r) =
∫ ∞
0
ρnP (ρ, L)dρ

to calculate the probability density P (ρ, L). Note again that the range of ρ is from 0 to

∞ since it is a probability density and not a probability. The factor 1/L on the right

hand side of Eq. (4.31) suggests that P (ρ, L) has the following behaviour for large L,

P (ρ, L) =
1

L
f(ρ), (4.32)

where the function f(y) satisfies the equation,

∫ ∞

0

ynf(y)dy =

[
β2n−2

2n−2

Γ3(n)

Γ(2n)

]
. (4.33)

To determine f(y) from this equation, we first use the identity, Γ(2n) = 22n−1Γ(n)Γ(n+

1/2)/
√
π, known as the doubling formula for the Gamma function. Next we use [48],

∫ ∞

0

xn−1e−axK0(ax)dx =

√
π

(2a)n
Γ2(n)

Γ(n+ 1/2)
. (4.34)

We can identify the right hand side of Eq. (4.34), with a = 2/β2, with the right hand

side of Eq. (4.33). This gives us the exact expression of f(y),

f(y) =
2

β2y
e−2y/β2

K0

(
2y

β2

)
. (4.35)

More cleanly, we can then write that for large L,

P (ρ, L) =
4

β4L
f1

[
2ρ

β2

]
, (4.36)

where the scaling function f1(y) is universal (independent of the system parameter β)

and is given by,

f1(y) =
e−y

y
K0(y). (4.37)

This function has the following asymptotic behaviours,

f1(y) ≈
{ 1

y
[− ln(y/2) + 0.5772 . . .] , y → 0,√
π

2y3
e−2y, y → ∞.

(4.38)
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The scaling form in Eq. (4.36) is valid only when ρ is of order O(1). If the density

is very low and ρ is a number of order O(1/L), the scaling breaks down. This fact

suggests that the correct behaviour of the distribution P (ρ, L) for large L actually has

two parts,

P (ρ, L) ≈
[
1 − ln2(L)

β2L

]
δ(ρ) +

4

β4L
f ′

[
2ρ

β2

]
θ
(
ρ− c

L

)
, (4.39)

where f1(y) is given by Eq. (4.37). This form in Eq. (4.39) is consistent with all

the observed facts. For example, integrating the right hand side, the first term gives

1 − ln2(L)
β2L

(with the convention
∫ ∞
0
δ(y)dy = 1). The second term, when integrated,

gives ln2(L)
β2L

(where we have used the small y behaviour of f1(y) from Eq. (4.38) and kept

only the leading order term for large L) which exactly cancels the identical factor in the

first term to give a total sum 1, as it should. On the other hand, for any finite moment

of order n, the first term does not contribute and only the second term contributes to

give the result in Eq. (4.31).

4.0.2 The Density-Density Correlation Function

We now consider the density-density correlation function between two points r1 and

r2 at equilibrium. The calculation proceeds more or less along the same lines as in the

previous section. The density-density correlation function is defined as

C(r1, r2) = ρ(r1)ρ(r2), (4.40)

and evidently depends only on r = |r1 − r2| due to the translational invariance. Using

Eq. (4.4), we can write

ρ(r1)ρ(r2) =
eβ[h(r1)+h(r2)]

Z2
=

∫ ∞

0

dy ye−yZ+β[h(r1)+h(r2)], (4.41)

where the partition function, Z =
∫ L

0
dreβU(r) and we have used the identity, 1/Z2 =

∫ ∞
0
dy ye−Zy. As in the previous section, we now make a change of variable in Eq. (4.41)

by writing y = β2eβu/2. Then Eq. (4.41) becomes,

ρ(r1)ρ(r2) =
β5

4

∫ ∞

−∞
du exp[−β

2

2

{∫ L

0

dxeβ[h(x)+u]

}
+

β(h(r1) + u+ h(r2) + u)], (4.42)
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where we have used the explicit expression of the partition function, Z =
∫ L

0
dreβh(r).

Averaging over the disorder, we get

ρ(r1)ρ(r2) = B
β5

4

∫ ∞

−∞
du

∫ h(L)=0

h(0)=0

Dh(x) exp[−
{∫ L

0

dx

[
1

2

(
dh(x)

dx

)2

[
1

2

(
dh(x)

dx

)2

+
β2

2
eβ(h(x)+u)

]}

+β(h(r1) + h(r2) + 2u)] (4.43)

where the normalisation constantB will be determined from the condition,
∫ L

0

∫ L

0
C(r1, r2)dr1dr2

= 1 (which follows from the fact that
∫ L

0
ρ(r)dr = 1). Alternatively, one can substitute

r = r2 − r1 = 0 in the expression for the correlation function and then it should be

same as ρ2(r) already computed in the previous subsection.

As before, we next shift the potential, i.e., we define V (x) = U(x) + u for all x.

The Equation (4.43) then simplifies,

ρ(r1)ρ(r2) = B
β5

4

∫ ∞

−∞
du

∫ V (L)=u

V (0)=u

DV (x) exp

[
−

{∫ L

0

dx

[
1

2

(
dV (x)

dx

)2

+

β2

2
eβV (x)

]}
+ β(V (r1) + V (r2))

]
. (4.44)

Thus we have again reduced the problem to a path integral problem. However, unlike

the previous calculation, we now have to divide the paths into three parts: (i) paths

starting at V (0) = u and propagating up to the point r1 where V (r1) = V1 (V1 can

vary from −∞ to ∞), (ii) paths starting at r1 with V (r1) = V1 and propagating up to

r2 with V (r2) = V2 and (iii) paths starting at r2 with V (r2) = V2 and propagating up

to L where V (L) = u. We have assumed r2 ≥ r1 for convenience. Using the bra-ket

notation, we can then re-write Eq. (4.44) as

ρ(r1)ρ(r2) = B
β5

4

∫ ∞

−∞
du

∫ ∞

−∞
dV1

∫ ∞

−∞
dV2

〈u|e−Ĥr1 |V1〉eβV1〈V1|e−Ĥ(r2−r1)|V2〉
eβV2〈V2|e−Ĥ(L−r2)|u〉. (4.45)

The Hamiltonian Ĥ ≡ 1
2

(
dV
dx

)2
+ β2

2
eβV (x) is the same as in the previous section. Using

∫ ∞
−∞ du |u〉〈u| = Î, Eq. (4.45) can be simplified,

ρ(r1)ρ(r2) = B
β5

4

∫ ∞

−∞
dV1

∫ ∞

−∞
dV2 〈V2|e−Ĥ(L−r)|V1〉

〈V1|e−Ĥr|V2〉eβ(V1+V2), (4.46)
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where r = r2 − r1. Note that Eq. (4.46) clearly shows that C(r1, r2, L) = C(r = r2 −
r1, L), which is expected from translational invariance. Furthermore, Eq. (4.46) also

shows that function C(r, L) is symmetric around r = L/2, i.e., C(r, L) = C(L− r, L),

which is expected due to the periodic boundary condition. As before, we change to a

more friendly notation: V1 ≡ X1 and V2 ≡ X2, where X1 and X2 denote the “positions”

of the fictitious quantum particle at ‘times’ r1 and r2. With this notation, Eq. (4.46)

reads,

ρ(r1)ρ(r2) = B
β5

4

∫ ∞

−∞
dX1

∫ ∞

−∞
dX2 〈X2|e−Ĥ(L−r)|X1〉

〈X1|e−Ĥr|X2〉eβ(X1+X2). (4.47)

This can be solved to obtain the correlation function

C(r, L) = B
β5

256

∫ ∞

0

∫ ∞

0

dk1dk2k1k2(k
2
1 − k2

2)
2 sinh(πk1) sinh(πk2)

[cosh(πk1) − cosh(πk2)]2

exp

[
−β

2

8

(
k2

1(L− r) + k2
2r

)]
. (4.48)

For r = 0, it is possible to perform the double integral in Eq. (4.48) and comparing

the results with the expression of ρ2(r) in Eq. (4.30) of the previous subsection, we

can evaluate the normalisation constant B =
√

2πL. This exact expression of the

correlation function was first derived by Comtet and Texier [38] in the context of a

localisation problem in disordered supersymmetric quantum mechanics.

To extract the asymptotic behaviour for large L, we rescale k1

√
L− r = x1 and

k2

√
L = x2 in Eq. (4.48), then expand the sinh’s and the cosh’s for small arguments,

perform the resulting double integral (which becomes simple after the expansion) and

finally get for L→ ∞ and r > 0,

C(r, L) =
1√

2πβ2L5/2[x(1 − x)]3/2
, (4.49)

where x = r/L is the scaling variable.

To compare the above results for P (ρ, L) and C(r, L) with our nonequilibrium

results, we will shift to the multiparticle language. The probability density ρ can be

identified with n/L. Using this, we can identify the expressions for P (ρ) and C(r, L)

with the corresponding equilibrium quantities — P (n, L) = 1
L
P (ρ) and G(r, L) =

L2C(r, L). So, for n ≥ 1 and r ≥ 1
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P (n, L) =
4

β4L2
f1

[
2n

β2L

]
, (4.50)

where f1(y) is given in Eq. (4.37), and

G(r, L) =
1√

2πβ2L1/2[x(1 − x)]3/2
. (4.51)

4.0.3 SCS, Agreement with KPZ advection

The primary result to emerge from the analytic results above is that the equilibrium

state again is an SCS. The second and surprising result is that the above results describe

very well, the numerical data for the KPZ advection case. A fit to the functional

forms shows that these equilibrium results reproduce quite well the scaling exponents

and scaling functions for G(r, L) and P (n, L) for n ≥ 1 obtained numerically for the

nonequilibrium KPZ advection case with ω = K = 1. This can be seen in Figs. 4.1 and

4.2. However, the values of β required to fit the two quantities G(r, L) and P (n, L)

are different. The correlation function matches with β ' 4 while β ' 2.3 describes

the probability density of occupancy data. However, P (0, L) (and thus Nocc) does not

agree closely in the two cases. Also, as we can see in Fig. 4.2, the equilibrium and

nonequilibrium results for P (n, L) do not match very well for large values of n/L and

the correspondence does not work well in this limit.

The equilibrium case can also be used to shed light on the dynamical properties

of the nonequilibrium steady state for KPZ advection. We compared our results for

G̃(t, L) with the density-density autocorrelation function in the adiabatic Sinai limit

ω → 0. Though the equilibrium problem itself does not have any dynamics apart

from fluctuations, we deduced the autocorrelation function using equilibrium calcula-

tions in the following way. We simulated a surface with height field h(r, t) evolving

according to KPZ dynamics, and evaluated the density using the equilibrium weight

ρ(r, t) = e−βh(r,t)/Z for every configuration. As shown in Fig. 4.3, the results with

β = 4 agree with the autocorrelation function in the nonequilibrium system, apart

from an overall prefactor.

It is surprising that results in this equilibrium limit describe the non-equilibrium

state so well. A partial explanation is as follows. In the nonequilibrium case, the driv-



CHAPTER 4. IV. Equilibrium, Sinai Limit 70

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1

L0.
5  G

(r
,L

)

r/L

Fig 4.1: The two point scaled density correlation function G(r, L) (advection) for
K = 1, ω = 1. The line is a plot of Eq. (4.51) with β = 4. We can see that there
is a very good agreement of the nonequilibrium Monte-Carlo data with the analytic
equilibrium result. The lattice sizes are L = 512 (+), 1024 (×) and 2048 (∗).
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Fig 4.2: The scaled probability distribution P (n, L) data for the KPZ advection case,
for K = 1, ω = 1, shown by (+) for system size L = 2048 and (×) for system size
L = 1024. The equilibrium prediction in Eq. 4.50 with β = 2.3 is shown by the dotted
line.
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Fig 4.3: Scaled density-density autocorrelation function G̃(t, L) for the nonequilibrium
KPZ advection and the equilibrium (adiabatic Sinai limit) cases. The dashed line
shows y ∼ x−2/3. The lattice sizes are L=256 (2, ×), 512 (∗, +).

ing force behind particle motion and clustering is the surface fluctuation; the values of

the dynamic exponents of the surfaces under consideration are greater than one and

thus the large valleys survive for a long enough time for the particles to cluster. In

the equilibrium case the drive for particle motion is provided by the temperature. The

common feature in both the cases is the exploration of the surface terrain. Thus, in

some region of parameter space the surface motion mimics temperature and causes the

particles to redistribute in a certain way. Why the equivalent temperature for various

quantities is different is not clear and deserves further study. As we have mentioned

before, the steady state height distribution for both the KPZ and EW surfaces are

the same and so the the Sinai limit is the adiabatic limit for all the three kinds of

dynamics under consideration, KPZ advection, KPZ anti-advection and EW dynam-

ics. However only the KPZ advection results are well described by the equilibrium limit.
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Two dimensions

Our studies till now have focussed on the problem of passive sliding particles on a one

dimensional surface. We have seen that the steady state SCS describes all the three

kinds of dynamics under consideration — KPZ advection and anti-advection, and EW

dynamics. The question we would like to address in this chapter is — what happens

to the steady state in higher dimensions, specifically, in two dimensions? It is known

that the exponents characterising the surface vary with the dimension of the surface

and we expect that this will have an effect on the clustering of the particles. Also,

in two dimensions, we can have structures like saddle points which look like valleys

in one direction and hills in the other. These kind of structures may also affect the

dynamics of the particles. Thus one does not know a priori what to expect for the

passive particles in two dimensions. We will describe below the model that we have

used to approach the problem and our results, but before that we will describe the

general properties of the KPZ and the EW surfaces in two dimensions.

As we mentioned earlier, the EW equation being linear, can be solved exactly

and the results are known for all dimensions. The roughness exponent is known to

be (2 − d)/2 [1] where d is the spatial dimension. In two dimensions, the surface is

only logarithmically rough [1, 49]. For the KPZ surface, the exponents are not known

exactly. Renormalisation group calculations show that d = 2 is special dimension

for the KPZ surface. For d < 2 the surface has a stable fixed point at finite value

of the coupling constant and an unstable fixed point at zero, thus any finite value of

nonlinearity λ leads to a rough surface and the exponents can be determined exactly [50,

51]. For d > 2, there exist stable fixed points at zero and a finite value of the coupling

constant, separated by an unstable fixed point. The stable fixed point at zero is the

EW fixed point, this means that at small values of λ, the nonlinear term is irrelevant

and there is no roughening (EW surface is not rough for d > 2). The stable fixed point

at finite λ is the strong coupling fixed point and the surface shows roughening [50, 51].
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Thus when one passes a specific value of λ, one sees a transition from a non-roughening

to a roughening behaviour. For d > 2, the values of the strong coupling exponents

cannot be determined by perturbative calculations and one has to rely on numerical

methods. The case of d = 2, which is of interest to us, shows a behaviour similar to

d < 2, there is a stable strong coupling fixed point and a small enough nonlinearity leads

to a rough surface, but like the d > 2 case, the values of the roughness and dynamic

exponent cannot be determined from the perturbative calculations. The numerical

values from various simulation approaches [1] point to the approximate value of the

roughness exponent being nearly equal to 0.4 while the dynamic exponent z ' 1.6.

Keeping these in mind, we return to the discussion of our coupled problem. Our

Monte-Carlo simulation data shows that even in two dimensions, the steady state is

an SCS and the quantities characterising the clustering behave similarly to the one di-

mensional case. As in one dimension, the amount of clustering is different for the three

kinds of dynamics and we see that KPZ advection dynamics shows the most clustering,

followed by KPZ anti-advection and then the EW dynamics. This is in contrast to our

results in one dimension where EW dynamics shows better clustering than the KPZ

anti-advection dynamics. This can be ascribed to the fact that the surface roughness

is much less for a two dimensional EW surface (χ = 0) than for a strong-coupling KPZ

surface (χ ' 0.4).

5.1 Lattice Model in Two Dimensions

We consider a square lattice where the particles reside on sites and the links or bonds

between successive lattice sites in the x and y directions are dynamical variables which

denote local slopes of the surface as in one dimension. The total number of particles

N which is taken to be equal to the total number of sites, is L2. Each link takes

either of the values +1 (upward slope → /) or −1 (downward slope → \). A local hill

in this case is a site which is at a height one unit higher than all four of its nearest

neighbours. In terms of slopes, one would see the configuration (/\) in both the x and

y directions. Similarly a local valley is a site which is at a height one unit lower than

all four of its nearest neighbours. The rules for the surface evolution are similar to the

one dimensional ones and are based on the solid-on-solid (SOS) algorithm [52]. A site

is chosen at random and if it is on a local hill, we change it to a local valley for KPZ
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advection dynamics. KPZ anti-advection dynamics only allows the valley to hill move

and the EW dynamics allows both the moves with equal probabilities.

The particle moves are as follows. We choose a particle at random and then find out

the directions which are favourable for movement i.e. have a downward slope; we then

move the particle in one of these directions chosen randomly. As before, Np particle

updates are made after every Ns surface moves and ω ≡ Ns/Np.

5.2 Results

We will start with results on KPZ advection dynamics and then describe the results

for the KPZ anti-advection and EW cases.

5.2.1 KPZ advection

We define the two point density-density correlation function as

G(~r, L) ≡ 〈n(~x)n(~x + ~r)〉L (5.1)

where ~r can have any direction. In our measurements, we computed the correlation

along the directions of θ = 0, π/6, π/4 and found that the results were independent of

direction (Fig. 5.1) for small values of r. For r > 0, the correlation function scales as

G(~r, L) ∼ Y2

( r
L

)
, (5.2)

the subscript 2 in Y2 indicating two dimensions. We see that G(~r, L) decays as a power

law Y2(y) ∼ y−ν2 with ν2 ' 1.4 (Fig. 5.1, Table. 5.1). Thus we find that SCS is the

steady state in two dimensions as well.

We have also measured the probability distribution of occupancy P (n, L). Before

describing our results, we would like to mention again that we have worked with particle

density equal to one, thus total number of particles is N = L2 for two dimensions (L×L
lattice). We find that for n > 0, P (n, L) scales as
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P (n, L) ∼ 1

L2δ2
f2

( n

Lδ2

)
, (5.3)

with δ2 ' 1.4 (Fig. 5.2, Table 5.1). The scaling function behaves as f2(y) ∼ y−γ2

with γ2 ' 1.38 (Fig. 5.2, Table 5.1). We can define the number of occupied sites as

Nocc = (1 − P (0, L))L2 ∼ Lφ2 and our data for P (0, L) suggests φ2 ' 1.37 (Fig. 5.3,

Table 5.1).

As in the case of one dimension, the exponents ν2, δ2, γ2 and φ2 can be connected

to each other by scaling relations. We can show that δ2 = ν2 arguing similarly as in

one dimension; in two dimensions N = L2 and

∫ 2π

0

∫ L

0

〈n(0)n(r)〉rdrdθ = L2 (5.4)

where we have made use of the rotational invariance and written the surface integral

in polar co-ordinates. We thus have

〈n(0)2〉 +

∫ 2π

0

∫ L

1

〈n(0)n(r)〉rdrdθ = L2. (5.5)

Exactly as in one dimension, it can be shown that 〈n(0)2〉 ∼ Lδ2 , thus

∫ 2π

0

∫ L

1

〈n(0)n(r)〉rdrdθ = L2 − aLδ2 (5.6)

where a is a positive constant. Substituting the form in Eq. (5.2)

∫ 2π

0

∫ L

1

Y2

( r
L

)
rdrdθ = L2 − aLδ2 . (5.7)

Substituting the power law form Y2(y) ∼ y−ν2 and performing the integration, we have

bL−ν2+2

(−ν2 + 2)L−ν2
− c

(−ν2 + 2)L−ν2
= L2 − aLδ2 (5.8)

where b and c are positive constants. One can see from the above expression that

ν2 = δ2, which agrees with our numerical result (see Table 5.1).
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We can also show that φ2, δ2 and γ2 are related by φ2 = δ2(γ2 − 2) + 2, as below.

The normalisation condition

P (0, L) +

∫ L2

1

P (n, L)dn = 1 (5.9)

implies

∫ L2

1

P (n, L)dn = 1 − P (0, L) ∼ Lφ2−2. (5.10)

If we substitute the scaling form of Eq. (5.3) and the power law form for the scaling

function f2(y), we get after integrating

L(2−δ2)(−γ2+1)

−γ2 + 1
− L(−δ2)(−γ2+1)

−γ + 1
= 1 − P (0, L) ∼ Lφ2−2+δ2 . (5.11)

Using our knowledge of the numerical values for δ2 (' 1.4) and γ2 (' 1.38), we can see

that the first term on the LHS will decay to zero in the limit of L → ∞. We thus get

the relation

φ2 = δ2(γ2 − 2) + 2 (5.12)

by equating the powers on both sides. Substituting the numerical values of φ2 and δ2

in the above equation, we obtain γ2 ' 1.51 which is slightly larger than the value of γ2

obtained from the numerical data.

5.2.2 KPZ anti-advection and EW

Our numerical results show that the results are independent of the angle of measure-

ment for the KPZ anti-advection and the EW cases as well. For the anti-advection case,

the two-point correlation function follows the same form as Eq. (5.2) above and the

scaling function is a power law with ν2 ' 0.44 (Fig. 5.4, Table 5.1). The probabilty dis-

tribution function also scales similarly as Eq. (5.3) above and we have δ2 = ν2 ' 0.44

(Fig. 5.4, Table 5.1). Fitting a power law to the scaling function gives γ2 ' 1.78

(Fig. 5.4, Table 5.1). The data for P (0, L) gives us the value of φ2 ' 1.93 (Fig. 5.5,
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Fig 5.1: KPZ advection: The inset shows G(r, L) versus r for different directions of
measurement in two dimensions. The directions are characterised by the angle Θ which
is measured with respect to the x-axis. Θ = 0, π/2 (2), π/4 (∗), π/6 (+), π/3 (×). We
see that G(~r, L) is independent of the direction of measurement. The main plot shows
the scaling collapse when r is scaled with L. The straight line shows a power law with
exponent −1.4. The lattice sizes are L = 256 (∗), 128 (×), 64 (+).
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Fig 5.2: KPZ advection: The plot shows L2δ2P (n, L) plotted versus n/Lδ2 for various
values of L in two dimensions. The value of δ2 is 1.4. The lattice sizes are L= 256 (∗),
128 (×), 64 (+). The straight line shows a power law with exponent −1.38.

Table 5.1) which when used in Eq. (5.12) gives γ2 = 1.84. This value is slightly larger

than the value from direct numerical fitting.
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Fig 5.3: KPZ advection: The main plot shows the data for (1 − P (0, L))L2 plotted
versus L, the dotted line shows a power law with exponent 1.37 (see Table 5.1). The
inset shows G(0, L) plotted versus L and the dotted line shows that G(0, L) ∼ Lδ2 , the
value of δ2 being 1.4.
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Fig 5.4: KPZ anti-advection: The main plot shows G(r, L) plotted versus r/L for
various values of L. The straight line shows a power law with exponent −0.44. The
inset shows L2δ2P (n, L) plotted versus n/Lδ2 for various values of L. The straight line
shows a power law with exponent −1.78. The lattice sizes for both plots are L = 256
(∗), 128 (×), 64 (+).

The EW dynamics again shows similar behaviour as the KPZ advection and anti-

advection cases above and the steady state is an SCS though, as we have mentioned
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Fig 5.5: KPZ anti-advection: The main plot shows the data for (1−P (0, L))L2 plotted
versus L, the dotted line shows a power law with exponent 1.93 (see Table 5.1). The
inset shows G(0, L) plotted versus L and the dotted line shows that G(0, L) ∼ Lδ2 , the
value of δ2 being 0.44.

above, the surface is only logarithmically rough. We see that ν2 = δ2 = 0.3 (Fig. 5.6,

Table 5.1). We also find that γ2 ' 1.7 (Fig. 5.6, Table 5.1) and φ2 ' 1.94 (Fig. 5.7,

Table 5.1). Using the values of φ2 and δ2 in Eq. (5.12) gives φ2 = 1.8, which is slightly

larger than the value from direct numerical evaluation.

ν2 δ2 γ2 φ2

KPZ Advection 1.40 ± 0.06 1.4 ± 0.2 1.38 ± 0.03 1.37 ± 0.03
KPZ Anti-Adv 0.44 ± 0.02 0.44 ± 0.06 1.78 ± 0.06 1.93 ± 0.03

EW 0.30 ± 0.03 0.3 ± 0.15 1.7 ± 0.2 1.94 ± 0.03

Table 5.1: The values of the exponents in two dimensions for the three kinds of dy-
namics under consideration — KPZ advection, KPZ anti-advection and EW.
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Fig 5.6: EW: The main plot shows G(r, L) plotted versus r/L for various values of L.
The straight line shows a power law with exponent −0.3. The inset shows L2δ2P (n, L)
plotted versus n/Lδ2 for various values of L. The straight line shows a power law with
exponent −1.7. The lattice sizes for both plots are L = 256 (∗), 128 (×), 64 (+).
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Fig 5.7: EW: The main plot shows the data for (1 − P (0, L))L2 plotted versus L, the
dotted line shows a power law with exponent 1.94 (see Table 5.1). The inset shows
G(0, L) plotted versus L and the dotted line shows that G(0, L) ∼ Lδ2 , the value of δ2
being 0.3.
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Conclusions

In this thesis, we have studied the problem of passive, non-interacting particles sliding

on fluctuating surfaces which evolve according to the Kardar-Parisi-Zhang (KPZ) and

Edwards-Wilkinson (EW) equations. Our results show that the systems under consid-

eration have a new kind of steady state — the Strong Clustering State (SCS), where

the passive particles aggregate strongly. This state is characterised by the properties

of the two point density-density correlation function G(r, L); we find that G(r, L) is a

function of distance r divided by the system size L and shows a divergence at small

r/L. The divergence of the scaling function shows a tendency of the particles to form

clusters and the scaling with L shows the presence of more than one cluster which are

separated from each other at the length scale of the system size.

The KPZ equation breaks the up-down symmetry and in this case, the coupled

problem has two sub-cases depending on the relative direction of the surface and par-

ticle motion. The sub-case of KPZ advection describes particles and surface moving

in the same direction while the KPZ anti-advection sub-case describes particles and

surface moving in opposite direction with respect to each other. We have considered

both these cases in our work. We have studied the problem in one and two dimensions

and also studied the change in the steady state properties under change in relative

update speeds and the noise parameter. Our results show that SCS is not limited to

a specific dynamics but describes the steady state for a more general set of driving

dynamics. We found that the steady state is robust and the exponents are found to be

universal within each class of dynamics, e.g. KPZ advection in one dimension.

As described in the introduction, the KPZ equation can be mapped to the Burgers

equation in fluid dynamics and our problem is equivalent to that of passive scalars

driven by a highly compressible fluid. Thus in the fluid context, our results show that

passive scalars driven by a compressible fluid would cluster very strongly in contrast to



CHAPTER 6. Conclusions 82

the intermittent mixing seen in ink particles in incompressible fluids like water. While

this general result agrees with previous work [10, 27, 29], we have been able to obtain

a detailed picture of the steady state. While the compressibility of the fluid is an

important ingredient for clustering, we should remember that it is the noninteracting

nature of the particles that causes the extreme clustering seen in our problem. Our

results are to be compared to previous work on a similar problem where the particles

interact with each other via hard core repulsion [30, 31]. The steady state in this case is

the fluctuation dominated phase ordered (FDPO) state. As the name suggests, there is

a phase ordering which is characterised by the cuspy decay of the correlation function.

The other important feature of this steady state is the presence of strong fluctuations

that persist in the thermodynamic limit. While the cuspy decay is weaker than the

power law decay in our case indicating less clustering, the feature of strong fluctuations

is a common feature of both the steady states.

In one dimension, we have been able to obtain exact analytic results in the adiabatic

limit of a stationary surface with particles moving on it under the effect of temperature.

This is an equilibrium problem well known as the Sinai model. We found that even in

this equilibrium limit, the state is an SCS and surprisingly, the results match very well

with the KPZ advection case.

Our simulations for the problem in two dimensions show that the steady state is

again an SCS with the difference that the ordering for the amount of clustering is

different from that in one dimension. In one dimension, the KPZ advection case shows

the most clustering, followed by the KPZ anti-advection and then the EW case. In two

dimensions, the KPZ anti-advection and the EW cases reverse places; the EW surface

being only logarithmically rough, shows the least clustering.

6.1 One Dimension

6.1.1 KPZ advection

In the case of KPZ advection in one-dimension, we verified that our result for the two

point density-density correlation agrees with the exact result by Derrida [45] on the

related problem of second class particles in an ASEP. These second class particles, in

the low density regime, behave like our passive sliders and their separation probability

goes as r−3/2 (r being the separation), the same as for passive sliders in our case. We
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varied the values of the parameter ω which characterises the relative update speed of

the surface and the particles, and the parameter K which characterises the random

noise acting on the particles; we found that SCS continues to be the steady state.

Moreover, the values of the exponents characterising the clustering remain the same.

For values of ω smaller than one (particles moving faster than the surface), we saw that

the probability of a large cluster being present in the system increases; the increased

update rate of the particles ensures that they recluster quickly in newly formed valleys.

We also found that for the KPZ advection case, the tilting of the surface does not make

any difference to the results. This reflects the fact that the extra term which enters due

to the tilt, can be simultaneously shifted away from the dynamical equations which

govern the dynamics of the surface and the passive particles.

We also compared our results to those by Drossel and Kardar [29], who were the

first to study this problem. We found that the form of the correlation function G(r, L)

depends strongly on the system size L, a feature not reported in [29]. This scaling

with system size affects other results, for example, the form of G(r, L) proposed by us

describes the numerical data for the quantity N(l, L) (number of particles in a bin of

size l) much better than the l−independent form proposed in [29].

Scaling arguments and dimensional analysis are important tools in fluid dynamics

which help in deducing various scaling exponents from general considerations and thus

provide an understanding of the physics of the problem. A famous example is the

Kolmogorov scaling argument [14] which is used to estimate the values of some of the

correlation exponents for Navier-Stokes turbulence. Similar arguments have been used

for the study of the Burgers turbulence [14, 53], and also for the study of passive scalar

turbulence in incompressible fluids [9]. It would be interesting to see if it is possible to

formulate similar arguments for passive scalars in compressible fluids, specifically the

Burgers fluid, and compare the results with our numerical results.

6.1.2 KPZ anti-advection

For the KPZ anti-advection case, we found that the steady state is again an SCS and

clustering is less than the KPZ advection case. The particles tend to cluster in the local

valleys and the local valleys in this case are highly dynamic, causing declustering. We

found that the variation of ω and K again does not change the exponents characterising

clustering.
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Drossel and Kardar [29] have suggested that the dynamical exponent, which char-

acterises the motion of the particles, varies continuously as a function of K. Our

numerical evidence suggests that there is in fact a single value of z describing the RMS

displacement data for various values of K.

6.1.3 EW dynamics

In case of the driving surface being governed by the EW equation, we found that the

steady state, as in the above two cases, is an SCS and the amount of clustering is less

than the KPZ advection but more than the KPZ anti-advection case. We again found

that a change in ω does not affect the clustering properties of the particles.

Gopalakrishnan [37] has suggested that the dynamical exponent might have two

different values depending on whether the particles move faster than the surface or

vice-versa. We found by a careful analysis of the numerical data that the dynamical

exponent does not change under the variation of the ratio of particle and surface update

speeds; rather, there is a slow crossover which might come across as an apparent change

in exponent.

6.2 Equilibrium Sinai limit

We have seen that the extreme limit of ω → 0 does not commute with the limit of

L → ∞. While the limit ω → 0 followed by L → ∞ leads to a nonequilibrium SCS

with increased clustering of particles, the reverse limit leads to the equilibrium limit

of particles moving on a stationary surface under the effect of noise. This equilibrium

limit is the well known Sinai model of random walkers moving on a random landscape.

Since we are considering a stationary surface, the only important quantity is the static

distribution of heights. In one dimension, the KPZ and the EW surface have the same

distribution of heights in the steady state and thus the equilibrium limit is the same

for both of them. The relevant time scale for this equilibrium problem is τ ∼ eA
√
L —

the time it would take the particles to cross the largest hills in the landscape.

The distribution of the passive particles moving on the surface under the effect

of temperature t is governed by the Gibbs-Boltzmann distribution ρ(r) = e−βh(r)/Z,

where Z is the partition function. To calculate the relevant quantities, we took an

average over all possible configurations of the stationary surface. In our calculations,
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we followed the approach of Comtet and Texier of mapping the problem to a quantum

mechanics problem. The various surface configurations for the Sinai model map to

various possible paths of a quantum particle in the new problem. Using this mapping,

we were able to obtain exact analytic results for the quantities of our interest — the

correlation function G(r, L) and the probability distribution P (n, L). We found that

not only do these functions follow the same scaling form but the scaling functions also

match very well with our results from the KPZ advection problem. The temperature is

a free parameter in the equilibrium Sinai problem and can be chosen to fit our numerical

results. We found that the two quantities G(r, L) and P (n, L) fit the numerical data

for different values of the temperature. A heuristic argument for the agreement of the

results is that the temperature has a similar effect on the particles in the case of the

Sinai problem as the surface fluctuations in the case of the KPZ surface.

To summarise, we found that the exact results for the equilibrium Sinai limit of a

stationary surface show a remarkable similarity to the nonequilibrium KPZ advection

case results. This study throws open further questions — While the Sinai limit is

common to the KPZ advection, anti-advection and the EW dynamics, why do the

results agree for only the KPZ case? Why are different temperature values needed to

fit different quantities?

6.3 Two dimensions

We performed Monte-Carlo simulations on a two dimensional lattice version of the

problem and our results show that SCS is the steady state of the problem, even in two

dimensions. As expected, the amount of clustering in two dimensions is less than that

in one dimension. As mentioned above, the EW surface is only logarithmically rough

in two dimensions and thus the EW case shows the least clustering.

6.4 Relevance, possibilities

As we have mentioned in the Introduction chapter, Burgers equation is a simplified

approach to modeling fluids and may not be of direct use in practical applications. The

purpose of our work is to use this comparatively simple model and bring out aspects of

passive scalar clustering caused by compressibility. We thus cannot provide a precise

scenario where experimental measurements might show an SCS kind of steady state.
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Rather, we can speculate about possible scenarios where our study might be relevant

in providing a general understanding. At this concluding stage, we would also like

to make connections of the important features of our strong clustering state (SCS) to

other systems where those features are present.

The Burgers equation provides a simple model for systems as diverse as road traffic

to the early universe [11]. In the context of cosmology and the early universe, one

is interested in the formation of structures, beginning from a random distribution

of particles. Simulations using the low viscosity limit of the Burgers equation show

formation of structures that are very similar to those obtained from other, more realistic

models, involving gravitation interactions between particles. These models consider the

universe to be composed of a single kind of particle for the simplicity of modeling. One

can consider a more complicated model where one can have more than one kind of

particle. One set of particles interact via gravity and cluster by forming structures,

these particles can be thought of as the fluid. There can be another set of particles

which are like passive scalar particles and interact with the “fluid” particles via short

range interactions. One would expect that the dynamics of these passive particles

would reveal features similar to our passive scalars. In the context of particles driven by

fluctuating surfaces, we have mentioned that the motivation of Drossel and Kardar [5]

to study this problem was to develop a model for growing binary films. It is expected

that in some region of the parameter space, the domain walls between two kinds of

materials might behave like the passive scalars in our system. Although the number of

domain walls is not conserved in the dynamics of binary films, it would be interesting

to study their properties and compare them with our results.

While we are interested in a specific problem in the general area of coupled systems,

the phenomena of clustering and strong fluctuations are seen in more general scenarios.

It would be interesting to contrast and compare our system with others which possess

these general features. One of the examples we would like to consider is clustering in

granular systems. Consider a system of granular particles which have been provided

with some initial kinetic energy and are distributed homogeneously in space. Due to

the presence of inelastic interaction, the particles will lose energy as time progresses.

It has been observed that while these particles lose energy, the spatial homogeneity of

the system gives way to a state in which particles form clusters, and with an increase in

energy loss, these clusters “cool down” and become more and more dense [54, 55, 56].

The clustering in this system is different from our system in that it is caused by energy
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loss and not by correlations which have developed due to a driving field. Also in the

granular case, the system under study is relaxing towards a steady state while our

studies have focussed on the steady state properties. It would be interesting to study

in our case, the evolution towards a clustered steady state from a homogeneous initial

state and compare the results to those from granular systems. One expects that with

better imaging techniques, it would be possible to perform measurements in the above

granular system experimentally and study the correlations. It would be interesting to

compare our results with results from such experiments.

Another important feature of our steady state is the presence of strong fluctuations.

As we have discussed in the first chapter, fluctuations that do not damp down in

the thermodynamic limit are also seen when the passive particles interact via hard

core repulsion [30, 31, 33]. Recent work by Ramaswamy et. al. [57] and Mishra and

Ramaswamy [58] has shown that this feature of strong fluctuations is also present in a

system of rod like particles in a driven, nematic steady state. The system they consider

is that of rod like particles spread on a two dimensional surface which is being shaken

to constantly provide energy to the particles and keep them in a driven state. This

system can be modeled using an equivalent description of passive particles (the rods

themselves) driven by a stochastic field (the alignment of the rods) [58]. The particles

show nematic ordering, aligning parallel to each other lengthwise and also show phase

separation with clustering of particles. These clusters are highly dynamic in nature

and show strong fluctuations similar to those in the FDPO steady state. In [58], the

authors have also suggested possible experiments where these fluctuations might be

observed. It would be most interesting to see this aspect of driven, phase separated

states being realised physically.

To conclude, in this thesis, we have reported our results on a specific problem

belonging to the area of coupled driven diffusive systems. We have studied in detail, the

steady state, and found that it shows a strong clustering of particles, and fluctuations

that do not damp in the thermodynamic limit. We hope that through our studies

on the model system of sliding particles on fluctuating surfaces, we have been able to

provide an understanding of some general aspects of similar systems. We also hope

that future experiments and observations might be able to show specific features of the

SCS steady state.
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