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1 Synopsis

1.1 Motivation

Our understanding of the physical world relies greatly on the various pathbreaking experi-

mental discoveries and the deep mathematical structures which have been uncovered in the

quest to understand those observations. In this way, a variety of physical phenomena have

received their common explanation through a minimal set of theoretical tools. It is espe-

cially exhilarating for a theoretical physicist to find apparently unrelated phenomena unified

this way under common insights. A pertinent example in this regard is the way the theory

of quantum fields has been used to explore a wide range of phenomena cutting across the

conventional borders which separate the various fields of physics.

In a similar vein, it has been realised that string theory, a set of ideas that had originally

originated in the experimental studies of gauge theories, also provides a natural framework

to address an entirely different question altogether - that of constructing quantum theories

of gravity. This realisation has over the past few decades led string theorists to a theoretical

structure which seamlessly interweaves some of the central ideas of theoretical physics - from

quantum mechanics to gauge theories, from general relativity to supersymmetry apart from

opening up many new avenues in mathematical physics.

Notable in this regard is the way string theory incorporates and extends the idea of duality

in the space of theories. Since duality will be a crucial theme of the work that is reported in

this synopsis, it is essential that we briefly review the idea of duality at this point. Duality is

a phenomenon in quantum theories whereby two theories which are classically distinct lead

to the same theory after quantisation. The simplest and oft-used example of duality is the

fact that a quantum theory of a many-particle system is identical to a theory of quantum

fields despite the fact that a classical many particle system and a classical field theory are

very different as physical systems.

Over the last century, many such dualities have been discovered and they have served as a

rich source of insights whenever they are applicable. A non-exhaustive list of such field theo-

retical dualities include Kramers-Wannier duality in the Lattice Ising theory, the phenomenon

of bosonisation in various 1+1d systems, Seiberg dualities of the N = 1 superconformal fixed

points, various N = 2 dualities inspired by the pioneering solution of Seiberg and Witten

and the Montonen-Olive duality in N = 4 supersymmetric Yang-Mills theory. String theory

incorporates and extends various such dualities in its deep structure resulting in a rich web of

string-string dualities connecting various string theories. More surprisingly, about a decade

ago, it was realised that there are dualities which connect certain string theories on one side to

field theories on the other side thus supporting the idea that the study of a particular corner

in the space of all non-gravitational field theories leads one irrevocably into string theory and

quantum gravity.

That one needed an apparently unrelated quest towards a quantum theory of gravity

to lead us to such a statement about ordinary quantum field theories is itself revealing.

More than anything else, it is humbling for a physicist to realise that our understanding of
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strongly coupled field theories is so rudimentary that some of the deepest statements about

field theories in the last few decades has been discovered by pursuing an esoteric quest that

according to naive intuition, seems far removed from such questions.

We live in very interesting times - despite the fact that physics has made enormous

progress in understanding the many aspects of reality, there is still an enormous sea of chal-

lenging questions which are yet to be answered. These questions take various forms - what are

the possible behaviours that are possible in a given system ? What is the most efficient way

to understand such a behaviour ? What mathematical patterns underlie these behaviours ?

It is fair to say that in many physical systems we are far away from answering these questions

comprehensively. Our obstacles are many - there is no foolproof way to isolate the right

degrees of freedom to describe a particular situation in physics except for symmetry consid-

erations and prior experience. The most obvious variables are often the least useful because

the phenomenon we are interested in arises out of strong interactions between the obvious

degrees of freedom. Dualities, when present, give a rare window into these questions. In fact,

it can be argued that almost everything that we analytically know about non-trivial quantum

systems can be attributed to symmetries along with various exact and approximate dualities

exhibited by the system (especially notable in this regard is the role of effective field theories

which are essentially approximate dualities at the low-energy regime).

In this synopsis, we will describe a particular example of such a duality and its useful-

ness in answering questions about certain strongly coupled model field theories. These are

questions regarding the transport phenomena in these systems which at the outset appear

to be theoretically intractable, but we will take recourse to the symmetries and dualities to

make progress. These dualities will lead us into the study of what naively appears to be an

unrelated set of questions about black holes, black branes and their long-time evolution and

at the end of it all, we will discover some very interesting transport phenomena which were

discovered through the methods that are outlined in this synopsis.

1.2 Hydrodynamic description

How does a physicist proceed when confronted with a strongly coupled system ? Our first

instinct is to ask for the basic symmetries that govern the system under study. Often strongly

coupled field theories have spacetime symmetries of translations, rotations and boosts along

with other global symmetries. Although exceptions to this statement (which involve spatially

modulated and/or orientationally ordered phases of matter where these symmetries are spon-

taneously broken) are of great interest1, we wish to focus on phases where these symmetries

serve as good guides to the dynamics of the system2. In a relativistic theory, these symmetries

1After all, some of the most studied models in physics including solids, magnets and liquid crystals fall into

this category.
2It would be an interesting exercise to generalise the methods detailed below to cover such ordered

phases.There have been many attempts to apply holographic methods to spatially modulated phases but

a general theory of the kind we describe below is yet to be developed.
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guarantee the conservation of the energy-momentum tensor3 ∇µTµν = 0 and conservation of

the charge current ∇µJµi = 0.

To begin with, we will look for a sector where the dynamics is essentially captured by

the dynamics of the energy-momentum and charge flow. This in particular means that if

there are other macroscopic degrees of freedom in the system, we are assuming that there is

a sector where their dynamics can be decoupled and hence ignored. We do not know how

generic the presence of such a sector is in strongly coupled systems4 , but later on we will

present examples where such a truncation to just the conserved charges can be justified at

strong coupling.

Having said that, we should also add that the statics of many interacting systems have

a thermodynamic limit where the conserved charges (along with entropy given as a function

of these conserved charges) capture the essential physics. So, it is not entirely unnatural to

expect that if we introduce a slow time-dependence with small spatial gradients such that

local patches of the system are in thermodynamic equilibrium (and assuming we are able to

introduce these spatial gradients without exciting the other macroscopic degrees of freedom),

then the dynamics of the conserved quantities continues to be an effective way to describe

the dynamics of the system.

Having convinced ourselves that this should be the case, we however face a conundrum

- the energy momentum tensor Tµν in d dimensions is a symmetric rank two tensor with

d(d+ 1)/2 components and the d equations ∇µTµν = 0 simply are not enough to determine

the dynamics of all these components5 ! Similarly, for the ith charge we have a single equation

∇µJµi = 0 which is not enough to determine the dynamics of d components of Jµi . This in

turn implies that either we should give up on treating each and every component of Tµν and

Jµi as independent or we should add more dynamical equations to the set of conservation

laws.

We will again be guided by our thermodynamic intuition - a static thermodynamic equi-

librium state in a field theory often has a rest frame (specified by a unit time-like vector

uµ ) which we can think of as a frame where there is no energy flow - more precisely, uµ

can be thought of as the time-like eigenvector of the energy momentum tensor Tµν . Such a

state is characterised by its rest frame energy density ε ≡ Tµνuµuν and the rest frame charge

density ni ≡ −Jµi uµ (where we have crucially used our assumption that all other macroscopic

degrees of freedom can be ignored). This fact combined with our physical intuition derived

from various real systems leads us to the basic idea that resolves our problem - if we treat

3In a quantum field theory, a precise way to state the conservation laws is to invoke the Ward identities

satisfied by arbitrary n-point functions of energy-momentum operator T̂µν and the current operator Ĵµi . In our

present discussion, we will focus mainly on the one-point functions Tµν and Jµi ignoring admittedly interesting

questions about the hydrodynamic fluctuations.
4What we do know is that phases with macroscopic degrees of freedom that are not conserved can exhibit

qualitatively new features.
5Unless d(d+ 1)/2 = d whose only non-trivial solution is d = 1. We may try to save ourselves specialising

to conformal field theories where the trace degree of freedom Tµµ is removed, in which case we have enough

equations only when d(d+ 1)/2− 1 = d or d = 2.
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uµ, ε and ni as our basic variables in terms of which Tµν and Jµi are specified, then we have

as many variables as there are conservation laws resulting in a consistent dynamical system.

When the macroscopic behaviour of a quatum field theory - strongly coupled or otherwise

reduces to such a system, we say that we have a hydrodynamic description emerging out of

that particular quantum field theory.

Given the argument above, one can ask whether there are actually calculable model

quantum field theories in which such an emergence of hydrodynamic description can actually

be exhibited and the corresponding Tµν and Jµi be calculated as functions of uµ, ε and ni.

This question leads us into the field of transport phenomena in various field theories where for

weakly coupled field theories, there are by now various well-developed perturbative formalisms

in non-equilibrium statistical physics to answer this question. In case of strongly coupled field

theories, there is no general approach except numerical studies and studying transport in

quantum field theories is still a computationally expensive proposition. So, it would appear

that to exhibit the emergence of hydrodynamic behaviour in a strongly coupled system is

for all practical purposes an intractable problem. While this pessimistic assertion may be

justified in general, as we have mentioned before, there are strongly coupled systems which

can be made tractable by using dualities and string theory with its cornucopia of dualities is

an apt place to look for such model systems.

1.3 Gauge-Gravity duality and Supersymmetric Yang-Mills

In this synopsis, we will be focusing on a particular duality called gauge-gravity duality in

string theory and ask what can it tell us about transport in strongly coupled field theories.

For reasons of tractability, we will focus on a strongly coupled but a conformal quantum

field theory which has no dimensionful quantity in its microscopic description 6. Further, all

the field theories we will consider have a parameter N characterising the number of degrees

of freedom and we will be working in a large N limit. In higher dimensions, most known

examples of strongly interacting conformal field theories happen to be supersymmetric, but

supersymmetry will not play a direct role in our subsequent discussion.

A particularly good example of the kind of models under consideration is the SU(N)

supersymmetric gauge theory in 3+1 dimensions with a four-fold supersymmetry. Since we

will later be discussing the transport properties in this model in some detail, we will briefly

review the main features of this model. It has the following field content

• An SU(N) gauge-field Aaµ where µ = 0, 1, 2, 3 denotes that it is a spacetime vector field

and the index a = 1, . . . , N2−1 runs over the adjoint representation of the gauge group

SU(N).

6Note however that a conformal field theory at a finite temperature equilibrium state has a macroscopic scale

- the temperature which is a characteristic of that state. Similar statements can be made about hydrodynamic

states with a given energy density ε or charge density n.
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• Four chiral fermions ψαAa charged under the adjoint representation of SU(N) where

α = 1, 2 denotes that it is a chiral fermion field and A = 1, . . . 4 is the flavor index. The

complex conjugate of ψαAa is an anti-chiral spinor denoted as ψ̄α̇Aa = (ψαAa )∗

• Six real scalars ΦAB
a = (ΦaAB)∗ = −ΦBA

a charged under the adjoint representation of

SU(N). It is convenient to define Φ̄AB via the relation

ΦAB
a ≡ 1

2
εABCDΦ̄a

CD

The theory is defined by the Lagrangian density[1]

−L =
1

4
F aµνF

µν
a − (DµΦ̄AB)a(D

µΦAB)a + iψαAa σµαα̇(Dµψ̄
α̇
A)a+

+ g2fabcΦAB
b ΦCD

c fadeΦ̄d
ABΦ̄e

CD + g
√

2fabc
[
ψαAa Φ̄b

ABψ
cB
α + ψ̄aα̇AΦAB

b ψ̄α̇cB

]
where fabc are the structure constant of the gauge group SU(N), g is the gauge-coupling

and Dµ is the covariant derivative appropriate to the gauge group. This theory is among the

very few interacting conformal field theories known in 3 + 1 dimensions. In particular, the

coupling g in the above lagrangian does not run with scale and the classical scale-invariance

of the above lagrangian is continued to be preserved by the quantum fluctuations.

This theory is manifestly invariant under a SU(4) flavor symmetry (often called the

R-symmetry of this theory) under which the different fields transform as

ψAα → UABψ
B
α ψ̄α̇A → (U∗) B

A ψ̄α̇B

and

ΦAB → UACΦCD(UT ) B
D Φ̄AB → (U∗) C

A Φ̄CD(U †)DB

where U is a 4 × 4 unitary matrix with (UU † = 1). This classical global symmetry is

continued to be respected by the quantum fluctuations and hence we have quantum global

SU(4) symmetry in our theory with the corresponding Noether currents. For reasons that

will become clearer later, it is especially convenient to focus on the transport of the Noether

charge associated with a U(1) subgroup of SU(4) made up of Us of the form

U =


eiθ 0 0 0

0 eiθ 0 0

0 0 eiθ 0

0 0 0 e−3iθ

 ∈ SU(4)

One of the main results of the work presented here would be the claim(that we hope to

substantiate by the end of this synopsis) that in an appropriate limit, using gauge-gravity

duality, we can precisely argue for the existence of certain novel phenomena in the transport

of this charge and compute the corresponding transport coefficients.
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The study of this conformal field theory can be simplified further by taking the number

of colors N in this theory to be large. Following ‘t Hooft, to get a sensible limit we should

keep the ‘t Hooft coupling λ ≡ g2N fixed as N is taken to infinity. Such a limit gives us

an interacting theory whose interactions are governed by the parameter λ. This then is a

precise model system, where the questions of the previous subsection can be asked - what

are the transport properties of this model when λ is very large ? Are they even calculable ?

Can one see the emergence of hydrodynamic behaviour in the macroscopic dynamics of this

model ? The answer to these apparently intractable questions about an interacting theory

is surprisingly in affirmative because of the gauge-gravity duality. A variety of transport

phenomena in this strongly interacting theory using the gauge-gravity duality have been by

now well-studied by various authors. In the course of this synopsis, we will describe only

the studies to which I have contributed and briefly review those parts of other works which

provide the necessary background.

1.4 Weyl Covariance and Hydrodynamics

Before applying gauge-gravity duality to derive the hydrodynamics emerging out of an under-

lying conformal theory, it is worthwhile to understand the structure of such a hydrodynamic

description7. The fact that the microscopic theory is devoid of scales imposes strict constraints

on the kind of transport that can occur in the macroscopic description. We will summarise in

this subsection, a formalism developed in [2] to naturally incorporate these constraints into

the hydrodynamic description.

A conformal field theory living on a d dimensional spacetime M with a metric gµν is

by definition a theory which is covariant (upto quantum Weyl anomalies) under the Weyl

transformation which replaces the old metric gµν with g̃µν given by

gµν = e2φ(x)g̃µν ; gµν = e−2φ(x)g̃µν (1.1)

In some sense, these theories are naturally thought of (again upto Weyl anomalies) as living

on a spacetime M which has a class of metrics Cg which are related to our original metric

by a Weyl transformation. We will henceforth refer to the fluid which emerges out of such a

conformal field theory at a finite temperature as a conformal fluid.

The conformal fluid which emerges out of a conformal field theory inherits Weyl-covariance

from its microscopic theory. The question that we wish to answer is how this Weyl-covariance

manifests itself at the level of hydrodynamics and how does one go about constructing Weyl-

covariant quantities in hydrodynamics. Let uµ be the unit time-like vector describing the

fluid motion. Using gµνu
µuν = g̃µν ũ

µũν = −1, we get the Weyl transformation of the velocity

uµ = e−φũµ. Now, we can go ahead and construct various derivatives of this velocity field,

provided we have a way of differentiating fields in a Weyl-covariant way.

7This subsection is based on the work that was done by the author and presented in the form of the paper

[2].
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To see how this might be possible, we begin with the Weyl-transformation of the Christof-

fel symbols

Γλµ
ν = Γ̃λµ

ν + δνλ∂µφ+ δνµ∂λφ− g̃λµg̃νσ∂σφ (1.2)

from which it follows that

Aν ≡ uµ∇µuν −
∇µuµ

d− 1
uν = Ãν + ∂νφ. (1.3)

This transformation means that hydrodynamics provides a natural ‘gauge field’ for Weyl

transformations which can be used to construct a Weyl-covariant derivative. We define a

Weyl covariant derivative D such that, if a tensorial quantity Qµ...ν... obeys Qµ...ν... = e−wφQ̃µ...ν... ,

then Dλ Qµ...ν... = e−wφD̃λQ̃µ...ν... where

Dλ Qµ...ν... ≡ ∇λ Qµ...ν... + w AλQµ...ν...

+
[
gλαAµ − δµλAα − δ

µ
αAλ

]
Qα...ν... + . . .

− [gλνAα − δαλAν − δανAλ]Qµ...α... − . . .
(1.4)

Note that the above covariant derivative is metric compatible (Dλgµν = 0). In mathematical

terms, what we have done is to use the additional mathematical structure provided by a fluid

background (namely a unit time-like vector field with conformal weight w = 1) to define what

is known as a Weyl connection over (M, Cg) where M is the spacetime manifold with the

conformal class of metrics Cg .

A torsionless connection ∇weyl is called a Weyl connection (see for example, [3] and

references therein) if for every metric in the conformal class Cg there exists a one form Aµ
such that ∇weylµ gνλ = 2Aµgνλ . Having a fluid over the manifold provides us a natural one

form Aµ (see below), which can in turn be used to define a Weyl connection. The ‘prolonged’

covariant derivative D is related to this Weyl connection via the relation Dµ = ∇weylµ +wAµ .

In terms of this covariant derivative, the condition for Weyl connection is just the statement

of metric compatibility (Dλgµν = 0) and the one-form Aµ is uniquely determined by requiring

that the covariant derivative of uµ be transverse (uλDλuµ = 0) and traceless (Dλuλ = 0).

We can define a curvature associated with the Weyl-covariant derivative by the usual

procedure of evaluating the commutator between two covariant derivatives. For a covariant

vector field Vµ = e−wφṼµ , we get

[Dµ,Dν ]Vλ = w Fµν Vλ +Rµνλα Vα with

Fµν = ∇µAν −∇νAµ

Rµνλσ = Rµνλσ − δα[µgν][λδ
β
σ]

(
∇αAβ +AαAβ −

A2

2
gαβ

)
+ Fµνgλσ

(1.5)
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where we have introduced two new Weyl-invariant tensors Fµν = F̃µν andRµνλα = R̃µνλα and

B[µν] ≡ Bµν −Bνµ indicates antisymmetrisation8. Since these Weyl-covariant counterparts of

curvature tensors will play a useful role in the formulation of conformal hydrodynamics, we

will briefly describe their properties9.

We can write down similar expressions involving Ricci tensor, Ricci scalar and Einstein

tensor.

Rµν ≡ Rµανα = Rµν + (d− 2)
(
∇µAν +AµAν −A2gµν

)
+ gµν∇λAλ + Fµν = R̃µν

R ≡ Rαα = R+ 2(d− 1)∇λAλ − (d− 2)(d− 1)A2 = e−2φR̃

Gµν ≡ Rµν −
R
2
gµν = Gµν + (d− 2)

[
∇µAν +AµAν −

(
∇λAλ −

d− 3

2
A2

)
gµν

]
+ Fµν

(1.7)

These curvature tensors obey various Bianchi identities 10

Rµνλα +Rλ[µν]
α = 0

DλFµν +D[µFν]λ = 0

DλRµναβ +D[µRν]λα
β = 0

(1.8)

and various reduced Bianchi identities11

R[µν] = Rµναα = d Fµν
D[µRν]λ +DσRµνλσ = 0

Dλ
(
Gµλ −Fµλ

)
= 0

(1.9)

The tensor Rµνλσ does not have the same symmetry properties as that of the usual Riemann

tensor. For example,

Rµνλσ +Rµνσλ = 2 Fµνgλσ
Rµνλσ −Rλσµν = −δα[µgν][λδ

β
σ]Fαβ + Fµνgλσ −Fλσgµν

RµανβV αV β −RναµβV αV β = Fµν V αVα

(1.10)

The conformal tensors of the underlying spacetime manifold appear in the above formal-

ism as a subset of conformal observeables in hydrodynamics. These conformal tensors are

8As is evident from the notation above, we use calligraphic alphabets to denote the Weyl-covariant coun-

terparts of the usual curvature tensors. Our notation for the usual Riemann tensor is defined by the relation

[∇µ,∇ν ]Vλ = Rµνλ
σVσ. (1.6)

Note that the curvature tensors used in this synopsis are negative of those employed in [2].
9Note that these curvature tensors are essential even if one is in a flat spacetime, since most of these

Weyl-covariant curvatures do not vanish for a general velocity configuration in flat spacetime.
10These identities can be derived from the Jacobi identity for the covariant derivative - [D[µ, [Dν],Dλ] +

[Dλ, [Dµ,Dν ]] = 0
11These identities are obtained from the Bianchi identities by contractions.

– 9 –



the Weyl-covariant tensors that are independent of the background fluid velocity. The Weyl

curvature Cµνλσ is a well-known example of a conformal tensor. We have

Cµνλσ ≡ Rµνλσ + δα[µgν][λδ
β
σ]Sαβ = Cµνλσ + Fµνgλσ = e2φC̃µνλσ (1.11)

where the Schouten tensor Sµν is defined as

Sµν ≡
1

d− 2

(
Rµν −

Rgµν
2(d− 1)

)
= Sµν +

(
∇µAν +AµAν −

A2

2
gµν

)
+
Fµν
d− 2

= S̃µν (1.12)

From equation (1.11), it is clear that Cµνλσ = Cµνλσ − Fµνgλσ is clearly a conformal

tensor. Such an analysis can in principle be repeated for the other known conformal tensors

in arbitrary dimensions.

The Weyl Tensor Cµνλσ has the same symmetry properties as that of Riemann Tensor

Rµνλσ.

Cµνλσ = −Cνµλσ = −Cµνσλ = Cλσµν

and Cµαλ
α = 0

(1.13)

From which it follows that Cµανβu
αuβ is a symmetric traceless and transverse tensor - a fact

which will turn out to be important later in our discussion of conformal hydrodynamics.

Now, we turn to the study of how various quantities of relevance to hydrodynamics can

be constructed in this formalism. The Weyl-covariant derivative of the velocity field naturally

breaks up into a symmetric part and an antisymmetric part

Pµν ≡ gµν + uµuν

Dµuν = ∇µuν + uµ(u.∇)uν − ∇.u
d− 1

Pµ
ν = σµ

ν + ωµ
ν = e−φD̃µũν ,

σµν ≡ 1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
− ∇.u
d− 1

Pµν =
1

2
(Dµuν +Dνuµ) = e−3φσ̃µν ,

ωµν ≡ 1

2

(
Pµλ∇λuν − P νλ∇λuµ

)
=

1

2
(Dµuν −Dνuµ) = e−3φω̃µν .

(1.14)

The shear strain rate σµν is a symmetric traceless tensor which tells us the rate at which the

fluid element around a point is sheared whereas the vorticity ωµν is an antisymmetric tensor

that roughly tells us how fast the fluid is swirled around a point. Other important quantities

in hydrodynamics are the energy density ε, pressure p, entropy density s, temperature T ,

conserved charge density ni and corresponding chemical potentials µi. The scaling properties

of these thermodynamic quantities is directly determined by the naive dimensional analysis

ε = e−dφε̃ , p = e−dφp̃ , s = e−(d−1)φs̃ ,

T = e−φT̃ , ni = e−(d−1)φñi , µi = e−φµ̃i .
(1.15)

We now turn to the Weyl-transformation of the conserved currents Tµν and Jµi . The

scaling of Jµi is again fixed by naive dimensional analysis Jµi = e−dφJ̃µi . It is easily shown
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that for such a Jµi , we have DµJµi = ∇µJµi so that statement that it is conserved is consistent

with Weyl-invariance.

We now turn to Tµν - here we face a subtlety due to quantum anomalies in the Weyl

transformation. If we ignore it, and use naive dimensional analysis to fix its scaling as

Tµνclassical = e−(d+2)φT̃µνclassical then we get

DµTµνclassical = ∇µTµνclassical +AνTµµ classical

so we recover the familiar statement that for the conservation of classical energy momentum

to be consistent with the Weyl-covariance, we should also impose that the classical energy

momentum tensor be traceless. Now, we turn to the actual quantum theory - the Weyl

transformation of Tµν in quantum theories is non-trivial because of the presence of Weyl

anomaly - a quantum obstruction to the existence of a tensor which is both conserved and

Weyl-covariant. This in turn means that T λλ = W[g] where W[g] is the trace contribution

due to the Weyl anomaly and it depends only on the microscopic field content and the

ambient spacetime in which the conformal fluid lives and is independent of the state under

consideration.

Often there exists another symmetric traceless tensor Tµνconf which is not conserved, but

is Weyl-covariant.

Tµνconf ≡ T
µν − Tµνanom[g] = e−(d+2)φT̃µνconf

where Tµνanom[g] characterises the contribution due to Weyl anomaly which depends only on the

background spacetime and the field content. We will assume from now on that this indeed the

case for the models under consideration. In this case, one can show that the transformation

of the energy-momentum tensor is such that the quantity

DµTµν ≡ ∇µTµν +Aν(Tµµ −W[g]) = e−(d+2)φD̃µT̃µν

is Weyl-covariant. This in turn implies that the two statements of the conservation of Tµν
and freezing the trace of Tµν to the Weyl-anomaly of the microscopic theory together can

be packaged into a Weyl-covariant statement DµTµν = 0. Since we have shown that the

basic equations of conformal hydrodynamics are Weyl-covariant, the only constraint on the

hydrodynamics coming from the underlying conformal field theory is that Tµνconf and Jµi be

Weyl-covariant functionals of the basic hydrodynamic variables. This constraint is easily

implemented by working within the manifestly Weyl-covariant formalism that we have just

outlined. This then completes our programme to formulate hydrodynamics in a manifestly

Weyl-covariant way.

We can now use this Weyl-covariant derivative to enumerate all the Weyl-covariant

scalars, transverse vectors (i.e, vectors that are everywhere orthogonal to the fluid veloc-

ity field uµ) and the transverse traceless tensors in the charged hydrodynamics that involve

no more than second order derivatives. We will do this enumeration ‘on-shell’, i.e., we will

enumerate those quantities which remain linearly independent even after the equations of

motion are taken into account.
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The basic fields in the charged hydrodynamics are the fluid velocity uµ with weight unity,

the fluid temperature T with with weight unity and the chemical potentials µi with weight

unity. This implies that an arbitrary function of µi/T is Weyl-invariant and hence one could

always multiply a Weyl-covariant tensor by such a function to get another Weyl-covariant

tensor. Hence, in the following list only linearly independent fields appear. To make contact

with the conventional literature on hydrodynamics we will work with the charge densities ni
(with weight d − 1) rather than the chemical potentials µi. For simplicity, we will confine

ourselves to the case where there is only one charge.

At one derivative level,

• Weyl invariant scalars : None

• Weyl invariant transverse vector : n−1P νµDνn.

In d=4 , we also have lα ≡ εµνλαuµ∇νuλ .

• Weyl-invariant symmetric traceless transverse tensors : Tσµν

At the two derivative level,

• Weyl invariant scalars :

T−2σµνσ
µν , T−2ωµνω

µν , T−2R,
T−2n−1PµνDµDνn and T−2n−2PµνDµnDνn

(1.16)

In d=4 ,

T−2n−1lµDµn

• Weyl-invariant transverse vectors :

T−1P νµDλσνλ, T−1P νµDλωνλ,
T−1n−1σµ

λDλn and T−1n−1ωµ
λDλn

(1.17)

In d=4 ,

T−1σµν l
ν

.

• Weyl-invariant symmetric traceless transverse tensors : “

Cµανβu
αuβ, uλDλσµν ,

ωµ
λσλν + ων

λσλµ, σµ
λσλν −

Pµν
d− 1

σαβσ
αβ, ωµ

λωλν +
Pµν
d− 1

ωαβω
αβ,

n−1 Παβ
µν DαDβn, n−2 Παβ

µν Dαn Dβn.

(1.18)

In d=4,

1

4
εαβλµ ε

γθσ
νCαβγθ uλuσ,

1

2
εαβλ(µC

αβ
ν)σu

λuσ, D(µlν),

n−1Παβ
µν lαDβn, n−1εαβλ(µσν)λuαDβn.

(1.19)
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where we have introduced the projection tensor Παβ
µν which projects out the transverse trace-

less symmetric part of second rank tensors

Παβ
µν ≡

1

2

[
Pαµ P

β
ν + Pαν P

β
µ −

2

d− 1
PαβPµν

]
These invariants can now be used to write down the most general Tµν and Jµi consistent

with Weyl-covariance. The energy-momentum tensor and the charged currents of the fluid

are usually divided into a zero-derivative part and a part involving at least one derivative

Tµνconf = p (gµν + d uµuν) + πµν

Jµi = ρiu
µ + νµi

(1.20)

where we can take the visco-elastic stress πµν to be transverse (uµπ
µν = 0) and traceless

(πµµ = 0) and the diffusion current νµi to be transverse (uλν
λ
i = 0). Hence, πµν and νµi

are linear combination of transverse traceless Weyl-covariant tensors and transverse Weyl-

covariant vectors of appropriate weight.

1.5 Derivative expansion in gauge-gravity duality

In order to obtain the explicit forms of Tµν and Jµi , we have to ‘solve’ for the transport

phenomenon in the strongly coupled field theory. As advertised before, this can be achieved

by using gauge-gravity duality to reformulate this into a tractable problem. In this subsection,

we will very quickly review the basic ideas behind this reformulation.

We begin with the interesting idea that large-N interacting field theories can often be

rewritten in terms of a ‘Master field’ which is not really a single field in the same spacetime as

the field theory but actually a collection of single-trace degrees of freedom that dominate the

dynamics in the large-N limit. Often it is convenient to think of these degrees of freedom as

living in an abstract space, their dynamics being governed in the Large-N limit by classical

equations in that space. It is in this sense that large-N limit can be thought of as a classical

limit. In practice however , with most field theories, it is almost impossible to guess the

correct way to reformulate the large-N degrees of freedom and check whether this idea holds

true for the model under consideration. This is one of the main reasons why large-N QCD

remains an unsolved problem.

In a now celebrated work[4, 5], Juan Maldacena argued that for many quantum field

theories, string theory gives a way out by providing us with a duality called gauge-gravity

duality using which the large-N degrees of freedom and their dynamics are easily identified

and tackled. In particular, he conjectured that the the 3+1 dimensional SU(N) gauge theory

with fourfold supersymmetry is dual to a particular kind of a 9 + 1 dimensional string theory

called the Type IIB string theory quantised with an AdS5× S5 boundary condition.

In this dual description, taking the large-N limit is same as taking the classical limit of

the string theory and the relevant degrees of freedom and their dynamics in this limit are

completely captured by the classical IIB string theory. Further taking the ‘t Hooft coupling
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large is equivalent in the dual description to making the typical mass of a massive string

excitation very large so that only the massless degrees of freedom of the IIB string survive.

The massless degrees of freedom of IIB string theory contains a dynamical metric inter-

acting with the other massless matter fields. Hence, we get the remarkable statement that

under the gauge-gravity duality, large-N dynamics of the strongly coupled field theory gets

mapped to a classical gravitational theory with an appropriate matter fields.

The fact that we get a metric in the gravity description indicates that the total energy-

momentum survives as a good degree of freedom in the large-N dynamics of the strongly

coupled field theory. In a similar way, the survival of the charge as a degree of freedom in

the gauge theory side is encoded by the presence of a massless vector field on the gravity

side. In particular, according to the gauge-gravity duality, the dynamics of these degrees of

freedom are well-captured by the Einstein and Maxwell equations with the appropriate source

terms. In a similar vein, one can now read off the other relevant degrees of freedom at strong

coupling and their interactions directly from the low-energy lagrangian of the type IIB theory.

Thus, Einstein equations in particular and gravitational dynamics in general emerge out of

the large-N limit of an ordinary gauge theory and they serve as an effective way to encode

the dynamics of the ‘master field’.

Conversely, the classical gravitational dynamics in any gravity theory in d+1 dimensions

with matter when studied with AdSd+1 boundary conditions mimics the dynamics of the

‘master field’ for a large-N conformal field theory in d dimensions. Given this fact, we will in

the rest of the synopsis (except for the last few subsections) work in a general gravity theory

in d+1 dimensions with the understanding that putting d = 3+1 = 4 will give us the answers

for the 3 + 1 dimensional SU(N) gauge theory with the fourfold supersymmetry.

It is a fact in classical gravity that any two derivative gravity theory having AdS as a

solution and having no particles with spin> 2 has a consistent truncation to a sector with

just gravity and a negative cosmological constant. Such a sector has an action

S =
1

16πGAdS

∫
dd+1x

√
gd+1 [R+ d(d− 1)]

This implies that at least within the class of strongly coupled field theories whose large-N

description takes the form of a gravitational theory, it is quite generic to have a sector where

we can focus on the dynamics of energy and momentum alone without worrying about exciting

other modes. This statement justifies our assumption at the beginning of the synopsis where

we chose to focus on a sector with only conserved charges excited.

There are no results of similar generality once we try to truncate to a sector keeping only

the metric and a massless vector field in the bulk. Generically, there exists other excitations

which do not decouple, but in special cases, we can achieve a consistent truncation. To be

concrete we will look at the IIB gravity compactified on an S5. In particular, there exists a

consistent truncation consisting of just the metric and a U(1) gauge field - this happens in

the sector which is equally charged under all the three cartans of SO(6). We can write down
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a truncated action of the form

S =
1

16πGAdS

∫ [√
−g5(R+ 12)− 1

2
F ∧ ∗5F +

2κ

3
A ∧ F ∧ F

]
=

1

16πGAdS

∫ √
−g5

[
R+ 12− 1

4
FABF

AB +
κ

6
εPQRSTAPFQRFST

] (1.21)

with κ = (2
√

3)−1 for the IIB gravity. The SO(6) massless vector fields in the gravity

theory encode the SU(4) ∼= SO(6) charge current degrees of freedom and working through

the duality in detail, one concludes that there exists a sector in the hydrodynamics of the

gauge theory where we can decouple all excitations except the energy-momentum and a U(1)

charge associated with the subgroup

U =


eiθ 0 0 0

0 eiθ 0 0

0 0 eiθ 0

0 0 0 e−3iθ

 ∈ SU(4)

that we had introduced before. As we will see by the end of this synopsis, this particular

sector exhibits some very interesting transport phenomena.

We will now go on to describe how we can use the duality to study the non-equilibrium

dynamics of the field theory under consideration. We begin with the equilibrium configu-

rations in the field theory at a given temperature and chemical potentials which are dual

to equilibrium black-brane configurations in gravity at the same temperature and chemical

potentials. These black-brane configurations are gravitational configurations with a planar

horizon and by various semiclassical arguments due to Bekenstein and Hawking, they are

known to exhibit thermodynamic properties like entropy and temperature.

For example, when all the chemical potentials are turned off, the black-brane solution at

rest takes the form

ds2 = 2dvdr − r2[1− (br)−d]dv2 + r2dx2
d−1 (1.22)

in the ingoing Eddington-Finkelstein co-ordinates. No matter fields other than the metric

are excited in these solutions. In general, a uniformly moving black-brane solution with a

constant velocity uµ is given by

ds2 = −2uµdx
µdr + r2ηµνdx

µdxν + r2(br)−duµuνdx
µdxν (1.23)

The thermodynamic properties of this solution are

ε =
(d− 1)

16πGAdSbd
, p =

1

16πGAdSbd
, s =

1

4GAdSbd
, T =

d

4πb
,

ni = 0 , µi = 0 .

(1.24)
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Hence, this solution that we have written down describes thermal state in the corresponding

conformal field theory. In the same vein, one can construct thermal states with chemical

potentials turned on by looking for charged black-brane solutions solving Einstein-Maxwell

equations with the appropriate sources.

Having understood the equilibrium configurations, we can then set up a systematic ex-

pansion where we allow the the thermodynamic quantities to slowly vary and find the cor-

responding time-dependent gravitational configurations. We will just review the setting up

of this expansion in the zero chemical potential case - this method has been generalised to

the finite chemical potential case, which while technically intricate is nevertheless straightfor-

ward. The logic behind - and the method of implementation of - this perturbative procedure

have been described in detail in [6]. Further it was described in [6], how this perturbative

procedure establishes a map between solutions of fluid dynamics and regular long wavelength

solutions of Einstein gravity with a negative cosmological constant.

We start with the ansatz

gMN = g
(0)
MN + εg

(1)
MN + ε2g

(2)
MN + . . .

Here g
(0)
MN is given by (1.23), ε is the small parameter of the derivative expansion, and g

(k)
MN

are the corrections to the bulk metric that we will determine with the aid of the bulk Einstein

equation. In implementing our perturbative procedure we adopt a choice of gauge. As in all

the metrics described above, we use the coordinates r, xµ for our bulk spaces. We use xµ as

coordinates that parameterise the boundary and r is a radial coordinate. In order to give

precise meaning to our coordinates we need to adopt a choice of gauge-we choose the gauge

grr = 0 together with grµ = −uµ.

The Bulk Einstein equations decompose into ‘constraints’ on the boundary hydrodynamic

data and ‘dynamical equations’ for the bulk metric along the tubes which are solved order by

order in the derivative expansion. The dynamical equations determine the corrections that

should be added to our initial metric to make it a solution of the Einstein equations. At each

order, we get inhomogeneous linear equations -but, with the same homogeneous parts. These

inhomogeneous linear equations obtained from Einstein equations can be solved order by order

by imposing regularity at the zeroth order future horizon and appropriate asymptotic fall off

at the boundary.These boundary conditions - together with a clear definition of velocity,

which fixes the ambiguity of adding zero modes - give a unique solution for the metric, as a

function of the original boundary velocity and temperature profile inputted into the metric

g
(0)
MN - order by order in the boundary derivative expansion.

Now, we turn to the ‘constraints’. The ‘constraints’ on the boundary data can be shown

to be equivalent to the requirement of the conservation of the boundary stress tensor. Recall

that we have already used the dynamical Einstein equations to determine the full bulk metric

- and hence the boundary stress tensor - as a function of the input velocity and temperature

fields. It follows that the constraint Einstein equations reduce simply to the equations of

fluid dynamics, i.e. the requirement of a conserved stress tensor which, in turn, is a given
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function of temperature and velocity fields. In the next few subsections, we will detail the

results obtained by performing such a boundary derivative expansion.

1.6 Hydrodynamics from gravity in arbitrary dimensions

Before presenting the metric that is dual to a given hydrodynamic state, we will pause to

ask how the Weyl covariance of the hydrodynamic state gets encoded in the metric12. Let

us begin by performing the boundary Weyl-transformation in the boosted black-brane metric

(1.23)

uµ = eφũµ, ηµν = e2φg̃µν and b = eφb̃

where the transformation of b can be fixed by its relation to the thermodynamic quantities.

Further, since for a constant velocity uµ, the Weyl connection Aµ = 0 we also have 0 =

Ãµ + ∂µφ

Under such a transformation, the metric becomes

ds2 = −2ũµdx
µ(dr̃ + r̃Ãνdxν) + r̃2g̃µνdx

µdxν + r̃2(b̃r̃)−dũµũνdx
µdxν (1.25)

where we have defined r̃ via r = e−φr̃. We note that written in this form the black-brane

metric is form-invariant under the boundary Weyl-transformations ! This is a particular

example of the general principle that the boundary Weyl-transformations get realised in the

gravity theory as a specific set of diffeomorphisms that redefine the radial slicing. The fact

that different slicings of the same gravity solution may in fact be interpreted as states of

the same theory in distinct though Weyl equivalent background metrics, reflects the Weyl

invariance of the dual field theory.

To make this more precise, any metric that obeys that gauge choice g
(d+1)
r r = 0 and

g
(d+1)
r µ = −uµ can be put in the form

ds2 = −2uµ(x)dxµ(dr + Vν(r, x)dxν) + Gµν(r, x)dxµdxν (1.26)

where Gµν is transverse, i.e., uµGµν = 0. 13

Consider now a bulk-diffeomorphism of the form r = e−φr̃ along with a scaling in the

temperature of the form b = eφb̃ where we assume that φ = φ(x) is a function only of the

boundary co-ordinates. The metric components transform as

Vµ = e−φ
[
Ṽµ + r̃ ∂µφ

]
, uµ = eφũµ and Gµν = G̃µν (1.28)

Recall however that, within our procedure, the quantities Gµν and Vµ are each functions of

uµ and b. Now uµ and b each pick up a factor of eφ under the same diffeomorphism. We

12In this subsection, we summarise the work that was first presented in the paper[7]
13All the Greek indices are raised and lowered using the boundary metric gµν defined by

gµν = lim
r→∞

r−2 [Gµν − u(µVν)

]
(1.27)

and uµ is the unit time-like velocity field in the boundary, i.e., gµνuµuν = −1.
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conclude that consistency demands that Vµ and Gµν are functions of b and uµ that transform

like a connection and remain invariant under boundary Weyl transformation respectively. It

follows immediately that, for instance Gµν is a linear sum of the Weyl invariant forms listed

before, with coefficients that are arbitrary functions of br. Similarly, Vµ− rAµ is a linear sum

of Weyl-covariant vectors (both transverse and non-transverse) with weight unity. Symmetry

requirements do not constrain the form of these coefficients, which have to be determined via

direct calculation.

Using a Weyl-covariant form of the procedure outlined in [6], we find that the final metric

for the zero chemical potential case in arbitrary dimensions can be written in a Weyl-covariant

form (with only terms involving no more than two derivatives shown)

ds2 = −2uµdx
µ (dr + r Aνdx

ν) +
[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+
1

(br)d
(r2 − 1

2
ωαβω

αβ)uµuνdx
µdxν + 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
dxµdxν

− 2(br)2

[
K1(br)

σαβσ
αβ

d− 1
Pµν +K2(br)

uµuν
(br)d

σαβσ
αβ

2(d− 1)
− L(br)

(br)d
u(µP

λ
ν)Dασ

α
λ

]
dxµdxν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
]
dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
dxµdxν + . . .

(1.29)

The various functions appearing in the metric are defined by the integrals

F (br) ≡
∫ ∞
br

yd−1 − 1

y(yd − 1)
dy

H1(br) ≡
∫ ∞
br

yd−2 − 1

y(yd − 1)
dy

H2(br) ≡
∫ ∞
br

dξ

ξ(ξd − 1)

∫ ξ

1
yd−3dy

[
1 + (d− 1)yF (y) + 2y2F ′(y)

]
=

1

2
F (br)2 −

∫ ∞
br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−2 − 1

y(yd − 1)
dy

K1(br) ≡
∫ ∞
br

dξ

ξ2

∫ ∞
ξ

dy y2F ′(y)2

K2(br) ≡
∫ ∞
br

dξ

ξ2

[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+
(

2(d− 1)ξd − (d− 2)
)∫ ∞

ξ
dy y2F ′(y)2

]
L(br) ≡

∫ ∞
br

ξd−1dξ

∫ ∞
ξ

dy
y − 1

y3(yd − 1)

We have checked using Mathematica upto d = 10 that the above metric solves Einstein

equations with negative cosmological constant provided the velocity uµ satisfies the hydrody-
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Value of τω/b for various dimensions

d Value of τω/b =
∫∞

1
yd−2−1
y(yd−1)

dy τω/b (Numerical)

3 1
2

(
Log 3− π

3
√

3

)
0.247006. . .

4 1
2Log 2 0.346574. . .

5 1
4

(
Log 5 + 2π

5

√
1− 2√

5
− 2√

5
ArcCoth

√
5
)

0.396834. . .

6 1
4

(
Log 3 + π

3
√

3

)
0.425803. . .

namic equations. The above formula hence gives a map from the solutions of hydrodynamic

equations to the solutions of Einstein equations thus connecting two widely different fields of

classical physics !

The dual stress tensor corresponding to this metric is given by

T conf
µν = p (gµν + duµuν)− 2ησµν

− 2ητω

[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
+ 2ηb

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
] (1.30)

with

p =
1

16πGAdSbd
, η =

s

4π
=

1

16πGAdSbd−1
and τω = b

∫ ∞
1

yd−2 − 1

y(yd − 1)
dy (1.31)

This result is a generalisation to the fluid dynamical stress tensor on an arbitrary curved

manifold in general dimension d reported in [2, 6, 8–11] for special values of d and most

recently by [12] for flat space in arbitrary dimensions. The values of τω for some of the lower

dimensions is shown14 in the table 5.3.2. The way the various Weyl-covariant terms combine

together in the energy-momentum tensor is intriguing - in fact, it can be shown[14] that

there are universal relations between the second-order transport coefficients that come out of

gravity.

These perturbative solutions of Einstein equations can be compared against a class of

exact solutions of Einstein’s equations. This class of solutions is the set of rotating black

holes in the global AdS spaces. The dual boundary stress tensor to these solutions varies

on the length scale unity (if we choose our boundary sphere to be of unit radius). On the

other hand the temperature of these black holes may be taken to be arbitrarily large. It

14More generally, the integral appearing in the expression for τω can be evaluated in terms of the derivative of

the Gamma function or more directly in terms of ‘the harmonic number function’ with the fractional argument

(as was noted in [13])

τω = − b
d

[
γE +

d

dz
Log Γ(z)

]
z=2/d

= − b
d

Harmonic[2/d− 1]

For large d, τω has an expansion of the form τω/b = 1/2− π2/(3d2) + . . ..
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follows that, in the large temperature limit, these black holes are dual to ‘slowly varying’

field theory configurations that should be well described by fluid dynamics. All of these

remarks, together with nontrivial evidence for this expectation was described in [15]. In fact,

we can go further[7] and complete the programme initiated in [15] for uncharged blackholes

by demonstrating that the full bulk metric of these high temperature rotating black holes

agrees in detail with the 2nd order bulk metric determined by our analysis earlier . This

exercise was already carried out in [11] for the special case d = 4.

Consider the AdS-Kerr BHs in arbitrary dimensions - exact solution for the rotating

blackholes in general AdSd+1 in different coordinates is derived in reference [16]. Following

[16], we begin by defining two integers n and ε via d = 2n + ε with ε = d mod 2. We can

then parametrise the d + 1 dimensional AdS Kerr solution by a radial co-ordinate r, a time

co-ordinate t̂ along with d− 1 = 2n+ ε− 1 spheroidal co-ordinates on Sd−1. We will choose

these spheroidal co-ordinates to be n+ε number of direction cosines µ̂i (obeying
∑n+ε

k=1 µ̂
2
k = 1

) and n + ε azimuthal angles ϕ̂i with ϕ̂n+1 = 0 identically. The angular velocities along the

different ϕ̂is are denoted by ai (an+1is taken to be zero identically).

In this ‘altered’ Boyer-Lindquist co-ordinates, AdS Kerr metric assumes the form (See

equation (E.3) of the [16])

ds2 = −W (1 + r2)dt̂2 +
Fdr2

1− 2M/V
+

2M

V F

(
Wdt̂−

n∑
i=1

aiµ̂
2
i dϕ̂i

1− a2
i

)2

+
n+ε∑
i=1

r2 + a2
i

1− a2
i

[
dµ̂2

i + µ̂2
i dϕ̂

2
i

]
− 1

W (1 + r2)

(
n+ε∑
i=1

r2 + a2
i

1− a2
i

µ̂idµ̂i

)2
(1.32)

where

W ≡
n+ε∑
i=1

µ̂2
i

1− a2
i

; V ≡ rd (1 +
1

r2
)

n∏
i=1

(1 +
a2
i

r2
) and F ≡ 1

1 + r2

n+ε∑
i=1

r2µ̂2
i

r2 + a2
i

(1.33)

This expression can be further simplified[7] and the AdS Kerr metric in arbitrary dimen-

sions can be rewritten in the form

ds2 = −2uµdx
µ (dr + r Aνdxν) +

[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+
r2uµuν

bddet [r δµν − ωµν ]
dxµdxν

(1.34)

where the determinant of a tensor Mλ
σ is defined by

εµν...M
µ
αM

ν
β . . . = det

[
Mλ
σ

]
εαβ...

We have checked this form explicitly using Mathematica upto d = 8. It is easily checked

that this metric agrees (upto second order in boundary derivative expansion) with the metric
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presented in (5.23) upon inserting the velocity and temperature fields as

uµ∂µ ≡ ∂t + ai∂ϕi , Aµ = 0 , b ≡ (2M)−1/d

gµν ≡W

[
−dt2 +

∑
i

(
dµ2

i + µ2
i dϕ

2
i

)] (1.35)

The exact energy momentum tensor for the AdS Kerr Black Hole described can be com-

puted

Tµνconf = p(gµν + duµuν) with p =
1

16πGAdSbd
(1.36)

which is consistent with (5.26) if we take into account the fact that σµν = 0 in these configu-

rations.

1.7 Global Charge transport in N = 4 SYM

In the previous subsection, we presented our calculation of various transport coefficients in the

simplest sector of hydrodynamics where the entire dynamics is that of the energy-momentum

transport. In this subsection, we will turn to a slightly more complicated sector where there

is an interplay between charge transport and energy transport. This in the gravity language

translates to the study of Einstein-Maxwell system with appropriate sources.

As we had emphasised before, given a generic gravitational theory describing the large N

behaviour of a strongly coupled CFT, we are not guaranteed to find a truncation to just the

Einstein-Maxwell system. In the field theory language, it implies that at least in these class

of systems it is very difficult to disentangle the charge dynamics from the dynamics of the

other long wavelength modes. We had already mentioned that there do exist theories where

such a truncation is achievable and we gave an example of a sector in the supersymmetric

gauge theory where this happens- this is IIB gravity compactified on an S5 with a consistent

truncation consisting of just the metric and a U(1) gauge field in the sector which is equally

charged under all the three cartans of SO(6).

We can repeat the derivative expansion to solve the Einstein-Maxwell system with a

Chern-Simons term order by order for the metric and the gauge field. This was done in [17]

and the expressions that we finally get for the metric and the gauge field are complicated and

we will refer the reader to [17] for the full expressions. In turn, the energy momentum and

charge transport upto second order in the boundary derivative expansion could be computed

from that metric and gauge field and this gives us many new transport coefficients in the

supersymmetric gauge theory. We again refer the reader to [17] (and [18] which appeared

independently with similar results ) for the detailed expressions . But in this synopsis, we

will try to focus on an interesting result that comes out of these expressions.

To see this very clearly, it is useful to focus our attention on a known exact solution

of the Einstein-Maxwell-Chern-Simons system which describes a charged rotating blackhole.

– 21 –



We begin with a truncated action of the form

S =
1

16πGAdS

∫ [√
−g5(R+ 12)− 1

2
F ∧ ∗5F +

2κ

3
A ∧ F ∧ F

]
=

1

16πGAdS

∫ √
−g5

[
R+ 12− 1

4
FABF

AB +
κ

6
εPQRSTAPFQRFST

] (1.37)

with κ = (2
√

3)−1 for the IIB gravity.

This action has many known blackhole solutions. The general blackhole solutions which

solves the equations coming out of this action was found in [19]. Their solution is given by15

ds2 = −
(
r2 + 1

)
∆Θdt1

2

(1− ω1
2) (1− ω2

2)
+

2(m− qω1ω2)

ρ2
− q2

ρ4

+
(dψ1 + dt1ω2)2

(
r2 + ω2

2
)

cos2 Θ

1− ω2
2

+
(dφ1 + dt1ω1)2

(
r2 + ω1

2
)

sin2 Θ

1− ω1
2

+
ρ2dr2r2

q2 − 2ω1ω2q − 2mr2 + (r2 + 1) (r2 + ω1
2) (r2 + ω2

2)

+
ρ2dΘ2

∆Θ
+

2q

ρ2

(
ω1(dψ1 + dt1ω2) cos2 Θ + (dφ1 + dt1ω1)ω2 sin2 Θ

)
×
[

∆Θdt1
(1− ω1

2) (1− ω2
2)
− ω2(dψ1 + dt1ω2) cos2 Θ

1− ω2
2

− ω1(dφ1 + dt1ω1) sin2 Θ

1− ω1
2

]
A = −

√
3q

ρ2

[
∆Θdt1

(1− ω1
2) (1− ω2

2)
− ω2(dψ1 + dt1ω2) cos2 Θ

1− ω2
2

− ω1(dφ1 + dt1ω1) sin2 Θ

1− ω1
2

]
(1.38)

where we use the definitions

ρ2 ≡ r2 + ω1
2 cos2 Θ + ω2

2 sin2 Θ

∆Θ ≡ 1− ω1
2 cos2 Θ− ω2

2 sin2 Θ
(1.39)

After some manipulations (which closely follow the methods outlined in [7, 11]) , we find

that the final metric and the gauge field can be written in a manifestly Weyl-covariant form

ds2 = −2uµdx
µ (dr + r Aνdxν) +

[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+

[(
2m

ρ2
− q2

ρ4

)
uµuν +

q

2ρ2
u(µlν)

]
dxµdxν

A =

√
3q

ρ2
uµdx

µ ; ρ2 ≡ r2 +
1

2
ωαβω

αβ ; lµ ≡ εµνλσuνωλσ

(1.40)

with

Tµν = p(gµν + 4uµuν) + 2κl(µJν) +
1

64πGAdS

(
RαβRαµβν −

R2

12
gµν

)
Jµ = nuµ where lµ ≡ εµνλσuνωλσ ; p ≡ m

8πGAdS
and n ≡

√
3q

8πGAdS

(1.41)

15Note that the parameter q here is the negative of the one used in [19].
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We note that when the bulk Chern-Simons coupling κ is non-zero, apart from the con-

ventional diffusive transport, there is an additional non-dissipative contribution to the energy

current which is proportional to the vorticity of the fluid. To the extent we know of, this is

a hitherto unknown effect in the hydrodynamics which is exhibited by the conformal fluid

made of N = 4 SYM matter. This new non-dissipative transport can be traced back to

the Chern-Simons term in the gravity theory which according to the gauge-gravity duality,

encodes the information about the global anomalies in the field theory. This suggests that

this transport is closely related to the U(1)3 global anomaly in the field theory.

It would be interesting to find a direct boundary reasoning that would lead to the presence

of such a term - however, as of yet, we do not have such an explanation. However, an

indirect explanation was provided by the authors of [20], where they give a clever entropic

argument which relates this coefficient to the anomaly. This suggests the possibility that such

a transport is universal,i.e., it is present in any field theory which has global anomalies and

it would be useful to explicitly check whether this is the case by calculating this transport

coefficient in a calculable model - say a spin model.

The presence of such an effect was indirectly observed by the authors of [15] where they

noted a discrepancy between the thermodynamics of charged rotating AdS blackholes and

the fluid dynamical prediction with the third term in the charge current absent. We have

verified that this discrepancy is resolved once we take into account the effect of the third term

in the thermodynamics of the rotating N = 4 SYM fluid. In fact, one could go further and

compare the first order metric obtained in [17, 18] with the rotating blackhole metric written

in an appropriate gauge. We have done this comparison up to first order and we find that

the metrics agree up to that order.

1.8 Conclusion

In this synopsis, we have tried to summarise some of our work on the hydrodynamics that

emerges out of an underlying strongly coupled conformal field theory at a finite temperature

and chemical potentials. The hydrodynamic transport in such theories can be studied using

the methods of gauge-gravity duality which reformulate the questions about transport into

questions in a classical gravity theory interacting with matter. Further, we have seen that

the underlying Weyl covariance of the conformal field theory finds a natural expression both

in hydrodynamics and in gravity.

Our study has thrown up very interesting questions about the hydrodynamic transport -

we have already remarked on the apparent universality of second order transport coefficients

from gravity which is puzzling. We can also enquire as to whether there is a clever way by

which such universal relations can be derived at all orders in derivative expansion.

A more intriguing phenomenon is the novel kind of non-dissipative transport in the

hydrodynamics which seems to be driven by an underlying anomaly. As we had already

remarked‘, it will be worthwhile look for a solvable model where this kind of transport is

present. Given the possibility that it is a universal effect, there is a slim hope that there

might be experimental systems where such a transport can be measured.
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We have in this synopsis derived an expression which provides a metric solution to Ein-

stein equations for a give hydrodynamic state. This immediately raises the possibility that

a transition to turbulence in the hydrodynamics is accompanied by a turbulence like phe-

nomenon in gravity. It would be interesting to see whether we can develop a detailed phe-

nomenology of such a transition in gravity.
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3 Scale Invariance in Hydrodynamics

We now turn to a more detailed description of various topics discussed above. We will begin

by reviewing the Weyl-covariant formalism introduced by the author in [2] which would be

then used throughout the rest of the thesis.

Before applying gauge-gravity duality to derive the hydrodynamics emerging out of an

underlying conformal theory, it is worthwhile to understand the structure of such a hydrody-

namic description16. The fact that the microscopic theory is devoid of scales imposes strict

constraints on the kind of transport that can occur in the macroscopic description. We will

summarise in this subsection, a formalism developed in [2] to naturally incorporate these

constraints into the hydrodynamic description.

The plan of this chapter is as follows - In §3.1, we introduce a manifestly Weyl-covariant

derivative especially suited to the study of conformal fluids and list the various conformal

observables that occur in fluid mechanics. Since, we are interested in conformal fluids on

arbitrary spacetimes, we describe in some detail the various curvature related observables

that occur in conformal hydrodynamics. This is followed by the section §3.2, where the

equations of fluid mechanics are formulated in a conformally covariant way. We end §3.2 by

writing down the derivative expansion for a conformal fluid exact up to second derivative

terms.

Next, we proceed in section §3.3 to find a derivative expansion of the local entropy current

for a conformal fluid which obeys the second law of thermodynamics. We make a proposal for

the entropy current of a conformal fluid living in arbitrary spacetimes (with d > 3). Next,in

section §3.4, we turn to the specific case of N = 4 SYM and find the corresponding expression

for the entropy flux.

This is followed by the section §3.5 where we compare the method adopted in this chapter

with the existing theories of relativistic hydrodynamics. In the final section, we discuss future

directions and conclude. In appendix (3.6.1) , we prove some very useful identities that were

used in the body of the paper. This is followed by appendix (3.6.2) where we discuss the

various terms that can in principle occur in the energy-momentum tensor of a conformal fluid.

3.1 Conformal Tensors In Hydrodynamics

A conformal field theory living on a d dimensional spacetime M with a metric gµν is by

definition a theory which is covariant (upto quantum Weyl anomalies) under the Weyl trans-

formation which replaces the old metric gµν with g̃µν given by

gµν = e2φ(x)g̃µν ; gµν = e−2φ(x)g̃µν (3.1)

In some sense, these theories are naturally thought of (again upto Weyl anomalies) as living

on a spacetime M which has a class of metrics Cg which are related to our original metric

16This subsection is based on the work that was done by the author and presented in the form of the paper

[2].
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by a Weyl transformation. We will henceforth refer to the fluid which emerges out of such a

conformal field theory at a finite temperature as a conformal fluid.

The conformal fluid which emerges out of a conformal field theory inherits Weyl-covariance

from its microscopic theory. The question that we wish to answer is how this Weyl-covariance

manifests itself at the level of hydrodynamics and how does one go about constructing Weyl-

covariant quantities in hydrodynamics. Let uµ be the unit time-like vector describing the

fluid motion. Using gµνu
µuν = g̃µν ũ

µũν = −1, we get the Weyl transformation of the velocity

uµ = e−φũµ. Now, we can go ahead and construct various derivatives of this velocity field,

provided we have a way of differentiating fields in a Weyl-covariant way.

To see how this might be possible, we begin with the Weyl-transformation of the Christof-

fel symbols

Γλµ
ν = Γ̃λµ

ν + δνλ∂µφ+ δνµ∂λφ− g̃λµg̃νσ∂σφ (3.2)

from which it follows that

Aν ≡ uµ∇µuν −
∇µuµ

d− 1
uν = Ãν + ∂νφ. (3.3)

This transformation means that hydrodynamics provides a natural ‘gauge field’ for Weyl

transformations which can be used to construct a Weyl-covariant derivative. We define a

Weyl covariant derivative D such that, if a tensorial quantity Qµ...ν... obeys Qµ...ν... = e−wφQ̃µ...ν... ,

then Dλ Qµ...ν... = e−wφD̃λQ̃µ...ν... where

Dλ Qµ...ν... ≡ ∇λ Qµ...ν... + w AλQµ...ν...

+
[
gλαAµ − δµλAα − δ

µ
αAλ

]
Qα...ν... + . . .

− [gλνAα − δαλAν − δανAλ]Qµ...α... − . . .
(3.4)

Note that the above covariant derivative is metric compatible (Dλgµν = 0). In mathematical

terms, what we have done is to use the additional mathematical structure provided by a fluid

background (namely a unit time-like vector field with conformal weight w = 1) to define what

is known as a Weyl connection over (M, Cg) where M is the spacetime manifold with the

conformal class of metrics Cg .

A torsionless connection ∇weyl is called a Weyl connection (see for example, [3] and

references therein) if for every metric in the conformal class Cg there exists a one form Aµ
such that ∇weylµ gνλ = 2Aµgνλ . Having a fluid over the manifold provides us a natural one

form Aµ (see below), which can in turn be used to define a Weyl connection. The ‘prolonged’

covariant derivative D is related to this Weyl connection via the relation Dµ = ∇weylµ +wAµ .

In terms of this covariant derivative, the condition for Weyl connection is just the statement

of metric compatibility (Dλgµν = 0) and the one-form Aµ is uniquely determined by requiring

that the covariant derivative of uµ be transverse (uλDλuµ = 0) and traceless (Dλuλ = 0).

We can define a curvature associated with the Weyl-covariant derivative by the usual

procedure of evaluating the commutator between two covariant derivatives. For a covariant
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vector field Vµ = e−wφṼµ , we get

[Dµ,Dν ]Vλ = w Fµν Vλ +Rµνλα Vα with

Fµν = ∇µAν −∇νAµ

Rµνλσ = Rµνλσ − δα[µgν][λδ
β
σ]

(
∇αAβ +AαAβ −

A2

2
gαβ

)
+ Fµνgλσ

(3.5)

where we have introduced two new Weyl-invariant tensors Fµν = F̃µν andRµνλα = R̃µνλα and

B[µν] ≡ Bµν − Bνµ indicates antisymmetrisation17. Since these Weyl-covariant counterparts

of curvature tensors will play a useful role in the formulation of conformal hydrodynamics,

we will briefly describe their properties18.

We can write down similar expressions involving Ricci tensor, Ricci scalar and Einstein

tensor.

Rµν ≡ Rµανα = Rµν + (d− 2)
(
∇µAν +AµAν −A2gµν

)
+ gµν∇λAλ + Fµν = R̃µν

R ≡ Rαα = R+ 2(d− 1)∇λAλ − (d− 2)(d− 1)A2 = e−2φR̃

Gµν ≡ Rµν −
R
2
gµν = Gµν + (d− 2)

[
∇µAν +AµAν −

(
∇λAλ −

d− 3

2
A2

)
gµν

]
+ Fµν

(3.7)

These curvature tensors obey various Bianchi identities 19

Rµνλα +Rλ[µν]
α = 0

DλFµν +D[µFν]λ = 0

DλRµναβ +D[µRν]λα
β = 0

(3.8)

and various reduced Bianchi identities20

R[µν] = Rµναα = d Fµν
D[µRν]λ +DσRµνλσ = 0

Dλ
(
Gµλ −Fµλ

)
= 0

(3.9)

17As is evident from the notation above, we use calligraphic alphabets to denote the Weyl-covariant coun-

terparts of the usual curvature tensors. Our notation for the usual Riemann tensor is defined by the relation

[∇µ,∇ν ]Vλ = Rµνλ
σVσ. (3.6)

Note that the curvature tensors used in this synopsis are negative of those employed in [2].
18Note that these curvature tensors are essential even if one is in a flat spacetime, since most of these

Weyl-covariant curvatures do not vanish for a general velocity configuration in flat spacetime.
19These identities can be derived from the Jacobi identity for the covariant derivative - [D[µ, [Dν],Dλ] +

[Dλ, [Dµ,Dν ]] = 0
20These identities are obtained from the Bianchi identities by contractions.
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The tensor Rµνλσ does not have the same symmetry properties as that of the usual Riemann

tensor. For example,

Rµνλσ +Rµνσλ = 2 Fµνgλσ
Rµνλσ −Rλσµν = −δα[µgν][λδ

β
σ]Fαβ + Fµνgλσ −Fλσgµν

RµανβV αV β −RναµβV αV β = Fµν V αVα

(3.10)

The conformal tensors of the underlying spacetime manifold appear in the above formal-

ism as a subset of conformal observeables in hydrodynamics. These conformal tensors are

the Weyl-covariant tensors that are independent of the background fluid velocity. The Weyl

curvature Cµνλσ is a well-known example of a conformal tensor. We have

Cµνλσ ≡ Rµνλσ + δα[µgν][λδ
β
σ]Sαβ = Cµνλσ + Fµνgλσ = e2φC̃µνλσ (3.11)

where the Schouten tensor Sµν is defined as

Sµν ≡
1

d− 2

(
Rµν −

Rgµν
2(d− 1)

)
= Sµν +

(
∇µAν +AµAν −

A2

2
gµν

)
+
Fµν
d− 2

= S̃µν (3.12)

Often in the study of conformal tensors , it is useful to rewrite other curvature tensors

in terms of the Schouten and the Weyl curvature tensors-

Rµνλσ = Cµνλσ − δα[µgν][λδ
β
σ]Sαβ, R = 2(d− 1)Sλλ

Rµν = (d− 2)Sµν + Sλλgµν , Gµν = (d− 2)(Sµν − Sλλgµν)
(3.13)

From equation (3.11), it is clear that Cµνλσ = Cµνλσ − Fµνgλσ is clearly a conformal

tensor. Such an analysis can in principle be repeated for the other known conformal tensors

in arbitrary dimensions.

The Weyl Tensor Cµνλσ has the same symmetry properties as that of Riemann Tensor

Rµνλσ.

Cµνλσ = −Cνµλσ = −Cµνσλ = Cλσµν

and Cµαλ
α = 0

(3.14)

From which it follows that Cµανβu
αuβ is a symmetric traceless and transverse tensor - a fact

which will turn out to be important later in our discussion of conformal hydrodynamics.

Now, we turn to the study of how various quantities of relevance to hydrodynamics can

be constructed in this formalism. The Weyl-covariant derivative of the velocity field naturally

breaks up into a symmetric part and an antisymmetric part

Pµν ≡ gµν + uµuν

Dµuν = ∇µuν + uµ(u.∇)uν − ∇.u
d− 1

Pµ
ν = σµ

ν + ωµ
ν = e−φD̃µũν ,

σµν ≡ 1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
− ∇.u
d− 1

Pµν =
1

2
(Dµuν +Dνuµ) = e−3φσ̃µν ,

ωµν ≡ 1

2

(
Pµλ∇λuν − P νλ∇λuµ

)
=

1

2
(Dµuν −Dνuµ) = e−3φω̃µν .

(3.15)
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The shear strain rate σµν is a symmetric traceless tensor which tells us the rate at which the

fluid element around a point is sheared whereas the vorticity ωµν is an antisymmetric tensor

that roughly tells us how fast the fluid is swirled around a point. Other important quantities

in hydrodynamics are the energy density ε, pressure p, entropy density s, temperature T ,

conserved charge density ni and corresponding chemical potentials µi. The scaling properties

of these thermodynamic quantities is directly determined by the naive dimensional analysis

ε = e−dφε̃ , p = e−dφp̃ , s = e−(d−1)φs̃ ,

T = e−φT̃ , ni = e−(d−1)φñi , µi = e−φµ̃i .
(3.16)

3.2 Conformal hydrodynamics

In this section, we reformulate the fundamental equations of fluid mechanics in a Weyl-

covariant form. The basic equations of fluid mechanics are the conservation of energy-

momentum and various other charges -

∇µTµν = 0 and ∇µJµ = 0 (3.17)

But, these equations are not manifestly Weyl-covariant. To cast them into a manifestly

Weyl-covariant form, we need the transformation of the stress tensor and the currents -

Tµν = e−(d+2)φT̃µν + . . . and Jµ = e−wφJ̃µ respectively (where . . . denotes the contributions

due to the Weyl anomaly T λλ = W. The Weyl Anomaly W only on the microscopic field

content and the ambient spacetime in which the conformal fluid lives.). Then, we can impose

a manifestly Weyl covariant21 set of equations

DµTµν = ∇µTµν +Aν(Tµµ −W) = 0

DµJµ = ∇µJµ + (w − d)AµJµ = 0
(3.18)

These equations coincide with (3.17) provided Tµν is a traceless tensor of conformal weight

d + 2 apart from the anomalous contribution and the conformal weight w of the conserved

current is equal to the number of dimensions of the spacetime. The second condition is same

as requiring that the charge associated with the charge currents be a dimensionless scalar.

The entropy current JµS of the fluid also has a conformal weight equal to the spacetime

dimensions. This means that we can write the statement of the second law in a manifestly

conformal way as

DµJµS = ∇µJµS ≥ 0 (3.19)

21The Weyl transformation of the stress tensor in quantum theories is non-trivial because of the presence of

Weyl anomaly . The situation is simplified if we assume that there exists a symmetric tensor Tµνconf = Tµν −
Wµν [g] = e−(d+2)φT̃µνconf whereWµν [g] characterizes the contribution due to Weyl anomaly which depends only

on the background spacetime and the field content. In that case, though Tµν does not transform homogeneously

under the Weyl transformations, one can show that DµTµν = e−(d+2)φD̃µT̃µν with DµTµν defined as above.

This shows that the contributions due to Weyl anomaly can be taken into account with slight modifications.

In what follows, we will ignore such subtleties due to Weyl anomaly - we will just assume that the energy-

momentum tensor is traceless with the presumption that the statements we make can always be suitably

modified once trace anomaly is taken into account.

– 31 –



Similarly, the first law of thermodynamics T uλ∇λs = (d−1)uλ∇λp−µiuλ∇λρi can be written

in a conformal form

T uλDλs = (d− 1)uλDλp− µiuλDλρi (3.20)

where (d− 1)p is the energy density of the conformal fluid. 22

The fluid mechanics is completely specified once the expressions of the energy momentum

tensor, the charged currents and the entropy current in terms of the velocity, temperature

and the chemical potentials. The conventional discussion on relativistic hydrodynamics(say

as given by Landau and Lifshitz[21]) can be adopted to the case of conformal fluids with

the additional condition that the energy momentum tensor of a conformal fluid is traceless.

The energy-momentum tensor, the charged currents and the entropy current of the fluid are

usually divided into a non-dissipative part and a dissipative part.

Tµν = p (gµν + d uµuν) + πµν

Jµi = ρiu
µ + νµi

JµS = suµ + JµS,diss

(3.21)

where we take the visco-elastic stress πµν to be transverse (uµπ
µν = 0) and traceless (πµµ = 0)

and the diffusion current νµi to be transverse (uλν
λ
i = 0). This in turn implies the following

equations

0 = −uνDµTµν = (d− 1)uλDλp+ πµνσµν

0 = DλJλi = uλDλρi +Dλνλi
(3.22)

We can now use the first law of thermodynamics (3.20) to conclude

T DµJµS = −πµνσµν + µiDλνλi + T DµJµS,diss ≥ 0 (3.23)

Now we can write down the most general form of the dissipative currents confining our-

selves to no more than second derivatives in velocity.23 For simplicity, we will consider here

the case when no charges are present - the generalization to the case when there are conserved

charges is straightforward. Hence, a general derivative expansion for the energy-momentum

tensor Tµν is given by

Tµν = η0T d(gµν + duµuν)

+ η1T d−1σµν

+ η2T d−2 uλDλσµν + η3 T d−2[ωµλσ
λν + ωνλσ

λµ]

+ η4 T d−2[σµλσ
λν − Pµν

d− 1
σαβσαβ] + η5 T d−2[ωµλω

λν +
Pµν

d− 1
ωαβωαβ]

− η6 T d−2Cµα
ν
βu

αuβ

(3.24)

22Note that the additional terms that appear when one converts ∇ to D in (3.20) cancel out because of

Gibbs-Duhem Relation T s = (d− 1)p+ p− µiρi where (d− 1)p is the energy density of the conformal fluid.
23Given the fact that for a conformal fluid p ∼ T d and the equation of motion uλDλp ∼ πµνσµν we conclude

that wherever a single derivative of T occurs, it can be replaced by a term involving two or more derivatives

of the fluid velocity. Hence, for the sake of counting, one derivative of T should be counted as equivalent to

two derivatives of uµ.
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where the first line denotes the non-dissipative part(with the conformal equation of state

p = η0T d) and the rest denote the visco-elastic stress πµν . We show in the appendix (3.6.2)

that no more terms appear at this order in the derivative expansion. This derivative expansion

in terms of conformally covariant terms was first analyzed in [8] and our discussion here closely

parallels theirs.24.

3.3 Entropy current in Conformal hydrodynamics

Now we can write down the expression for the second law by restricting (3.23) to the case

where there are no charges, and then substituting for πµν from (3.24)

T DµJµS = T DµJµS,diss − η1T d−1σµνσµν − η2T d−2σµν u
λDλσµν

− η4 T d−2σµνσ
µ
λσ

λν − η5 T d−2σµνω
µ
λω

λν

+ η6 T d−2σµνCµανβu
αuβ

(3.25)

Now we invoke two identities(see appendix 3.6.1 for the proofs)

σµνωµ
αωαν = Dλ

[
ωµνωµν

4
uλ +

Dνωλν

2(d− 3)

]
−σµνCµανβuαuβ = σµνσµ

ασαν +Dλ
[

2σµνσµν + ωµνωµν
4

uλ +
uµ(−Gµλ + Fµλ)

d− 2
+

3Dνωλν

2(d− 3)

]
(3.26)

to write

T DµJµS = −η1T d−1σµνσµν − (η4 + η6) T d−2σµνσ
µ
λσ

λν + T DµJµS,diss

− T d−2Dλ
[(

2(η2 + η6) σµνσµν + (η5 + η6) ωµνωµν
4

)
uλ

+
η6 uµ(−Gµλ + Fµλ)

d− 2
+

(η5 + 3η6)

2(d− 3)
Dνωλν

] (3.27)

We now want to propose an expression for the dissipative entropy flux such that the total

entropy obeys the second law of thermodynamics. In this chapter, we give a specific proposal

for this entropy current which is consistent with the second law.25 Taking the dissipative

entropy flux as

JλS,diss =

(
2(η2 + η6)T d−3 σµνσµν + (η5 + η6)T d−3 ωµνωµν

4

)
uλ

+
η6T d−3 uµ(−Gµλ + Fµλ)

d− 2
+

(η5 + 3η6)T d−3

2(d− 3)
Dνωλν

(3.28)

24Refer §3.4 to see how our notation is related to that of [6] and [8].
25Note that, the second law alone does not determine the entropy flux uniquely - for example, an additional

term with positive divergence can always be added to the dissipative entropy flux without violating the second

law. Given this fact, it is important to emphasize that what is being proposed here is just one possible

definition of the entropy current.
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and keeping only terms with three derivatives or less of velocity26

T DµJµS = −η1T d−1σµνσµν − (η4 + η6) T d−2σµνσ
µ
λσ

λν

= −η1T d−1

[
σµν +

η4 + η6

2η1T
σµλσ

λν

] [
σµν +

η4 + η6

2η1T
σµ

ασαν

]
(3.29)

from which we conclude that

η1 ≤ 0 (3.30)

along with a dissipative current of the form given in equation(3.28) is sufficient to ensure that

the conformal fluid obeys the second law27

T DµJµS = −η1T d−1

[
σµν +

η4 + η6

2η1T
σµλσ

λν

] [
σµν +

η4 + η6

2η1T
σµ

ασαν

]
≥ 0 (3.31)

Hence for a general energy-momentum tensor of the form

Tµν = p(gµν + duµuν)

− 2η
[
σµν − τπ uλDλσµν + τω(ωµλσ

λν + ωνλσ
λµ)
]

+ ξσ[σµλσ
λν − Pµν

d− 1
σαβσαβ] + ξC Cµανβu

αuβ

+ ξω[ωµλω
λν +

Pµν

d− 1
ωαβωαβ]

(3.32)

where we have defined

p = η0T d, −2η = η1T d−1, 2ητπ = η2T d−2

−2ητω = η3T d−2, ξσ = η4T d−2, ξC = −η6T d−2, ξω = η5T d−2
(3.33)

the proposed expression for the entropy current is

Jλs = suλ + JλS,diss

=

(
s− 2(ξC − 2ητπ) σµνσµν + (ξC − ξω) ωµνωµν

4T

)
uλ

− ξCuµ(−Gµλ + Fµλ)

(d− 2)T
− (3ξC − ξω)

2(d− 3)T
Dνωλν

with T DµJµS = 2η

[
σµν +

ξC − ξσ
4η

σµλσ
λν

] [
σµν +

ξC − ξσ
4η

σµ
ασαν

]
≥ 0

(3.34)

26Since we are working with the divergence of quantities accurate up to second derivatives of velocity,

consistency demands that we keep terms involving three derivatives or less. Further, as before, we use the

equations of motion to replace a derivative of T by a term involving two or more derivatives of the fluid

velocity.
27This section has greatly benefited from my discussions with Shiraz Minwalla regarding the validity of

second law for the entropy flux proposed above. I would also like to thank Veronica Hubeny, Giuseppe

Policastro, Mukund Rangamani, Dam Thanh Son and Misha Stephanov for commenting on an earlier version

of this section.
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These expressions completely determine the dynamics of a conformal fluid up to second

derivatives in the derivative expansion. We now proceed to apply the above formalism to the

constitutive relations of N = 4 SYM fluid derived recently using AdS/CFT correspondence.

3.4 N = 4 SYM fluid : Energy-momentum and Entropy current

A prominent example of a conformal fluid in four dimensions is the fluid made out of the

matter content in N = 4 supersymmetric Yang-Mills theory. The flat spacetime stress tensor

for the four dimensional conformal fluids with AdS duals (which in particular includes N = 4

SYM fluid in the four dimensional Minkowski spacetime) has been calculated recently via

AdS/CFT upto second derivative terms [6]. Independently, in [8], its authors wrote down

the general derivative expansion for a conformal fluid and determined some of the coefficients

occurring in that expansion. In this section, we relate the work done in above references to

the formalism developed here.

The expression for the energy-momentum tensor derived in [6] is

Tµν = p (gµν + 4uµuν)

− 2 η σµν + 2 η
(ln 2)Tµν2a + 2 Tµν2b + (2− ln 2)

[
1
3T

µν
2c + Tµν2d + Tµν2e

]
2πT

(3.35)

where

p =
N2
c

8π2
(πT )4; η =

N2
c

8π2
(πT )3

ϑ = ∇λuλ ; aµ = uλ∇λuµ; lµ = εαβγµu
αωβγ ;

σµν = PµαP νβ
(
∇αuβ +∇βuα

2

)
− Pµν∇αu

α

3
;

Tµν2a =
εαβγµuαlβσγ

ν + εαβγνuαlβσγ
µ

2
;

Tµν2b = σµασνα −
Pµν

3
σβασαβ;

Tµν2c = ϑσµν ; Tµν2d = aµaν − aλaλ
Pµν

3
;

Tµν2e = PµαP νβuλ∇λ
(
∇αuβ +∇βuα

2

)
− Pµν

3
P βγuλ∇λ (∇βuγ) ;

(3.36)

where ε0123 = −ε0123 = 1 and we are working in flat co-ordinates of the Minkowski spacetime.

The above expression can be rewritten in terms of manifestly conformal observables as follows.

Tµν2a = −ωµλσλν − ωνλσλµ , Tµν2b = σµασα
ν − Pµν

3
σβασαβ

1

3
Tµν2c + Tµν2d + Tµν2e = PµαP νβuλ∇λσαβ +

ϑ

d− 1
σµν = PµαP νβuλDλσαβ = uλDλσµν

(3.37)
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The stress tensor becomes

Tµν = p (gµν + 4uµuν)

− 2 η

[
σµν − (2− ln 2)

2πT
uλDλσµν +

(ln 2)

2πT
(ωµλσ

λν + ωνλσ
λµ)

]
+

4 η

2πT
[σµλσλ

ν − Pµν

3
σαβσαβ]

(3.38)

This expression matches28 with the expression in (3.32) provided we take

p =
N2
c

8π2
(πT )4 ; η =

N2
c

8π2
(πT )3 ;

τπ =
2− ln 2

2πT
; τω =

ln 2

2πT
; ξσ = ξC =

4 η

2πT
; ξω = 0 .

(3.39)

where we have also included the value of the curvature coupling ξC which was calculated by

the authors of [8].

Now, we proceed to compare the results of [8] to the results derived here. Translated into

notations of this chapter29 their expression (See Eqn.(3.11) of [8]) reads

πµν =− 2ησµν + 2ητπ u
λDλσµν − κ[PµλP νσRλσ + (d− 2)PµλP νσRλασβu

αuβ

− Pµν

d− 1
(P λσRλσ + (d− 2)P λσRλασβu

αuβ)]

+ 4λ1(σµλσ
λν − Pµν

d− 1
σαβσαβ) + 4λ2(ωµλσ

λν + ωνλσ
λµ)

+ λ3(ωµλω
λν +

Pµν

d− 1
ωαβωαβ)

(3.40)

with

p =
N2
c

8π2
(πT )4 ; η =

N2
c

8π2
(πT )3 ; τπ =

2− ln 2

2πT
; λ1 =

η

2πT
; κ =

η

πT
;

and the parameters λ2,3 were left undetermined in [8]. By inspection, we conclude that the

above expression satisfies30 the conditions we laid down in (3.30).The above expression is

completely consistent with the coefficients we derived above in (3.39). Hence, the second-

order hydrodynamics of N = 4 SYM fluid is completely summarized by (3.39).

28Note that the calculation in [6] was done for flat spacetime and hence the curvature term does not appear

in their derivation.
29Note that the σµν of [8] is twice that of ours and their curvature tensors are negative of the curvature

tensors defined in this chapter.
30 We have invoked the identity (which follows by applying projection operators to the the definition of Weyl

tensor in (3.11))

PµλP νσRλσ + (d− 2)PµλP νσRλασβu
αuβ − Pµν

d− 1
(PλσRλσ + (d− 2)PλσRλασβu

αuβ)

= (d− 2)Cµανβu
αuβ
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Now, we can use the discussion in our previous section to calculate the entropy current

for N = 4 SYM fluid. Using the equation of state T s = p d = 4p = 4πηT for a conformal

fluid and (3.34) we get

Jλs = 4πη

[
uλ − [(ln 2)σµνσµν + ωµνωµν ]uλ + 2uµ(Gµλ + Fµλ) + 6Dνωλν

8(πT )2

]
.

with T DµJµS = 2ησµνσµν ≥ 0

(3.41)

This expression gives the the next to leading order corrections to the holographic result

Jλs = 4πηuλ of Kovtun, Son and Starinets[22].

Note that our proposal for the entropy current was motivated in an indirect way - by first

finding the holographic energy-momentum tensor and then guessing the entropy current from

it by demanding second law. It would be interesting to do a direct gravity computation of

the entropy current that checks this proposal. Further, the rate of entropy production takes a

very simple form in the case of N = 4 SYM fluid - the total entropy production is completely

given by a term quadratic in shear strain rate σµν and there is no contribution at the next

order. This fact can be traced to an interesting fact that ξσ = ξC for N = 4 SYM.

We would now like to give a heuristic reason for why we might expect the entropy

production to take such a simpler form. Notice that the additional contribution to the entropy

production(over and above the standard shear viscosity part) comes from a viscoelastic stress

of the form πµν ∼ σµλσλν . The rate of energy transfer by such a stress is σµνπ
µν ∼ σµνσµλσλν

. If this energy transfer was irreversible, this would contribute to an entropy production

−T −1σµνπ
µν which is precisely the term which we arrived at in the last section.

However, the energy transfer by a stress of the form π ∼ σσ is reversible - in particular,

for such a stress, the rate of work done πσ reverses sign if we reverse the fluid flow. If we

assume that such a reversible energy transfer cannot contribute to entropy production, then

either such a term can be absorbed into a redefinition of the JµS,diss or the coefficient of such a

contribution should vanish. The second possibility immediately yields the condition ξσ = ξC .

This, however is a very heuristic line of reasoning and it would be interesting to know how far

it is valid. In principle, it should be possible to extend the holographic calculation of ξC and

ξσ to arbitrary dimensional AdS gravity and check whether the relation ξc = ξσ continues to

hold.

In the next section, we compare and contrast the formalism used in this chapter with the

conventional theories of relativistic hydrodynamics. In particular, we would be interested in

comparison with the conventional Israel-Stewart formalism.

3.5 Israel-Stewart formalism

In this section, we give an extremely brief and non-exhaustive review of the conventional

theories of relativistic hydrodynamics [23, 24] and discuss how the work presented in this

chapter fits into that framework.
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The first theories of relativistic viscous hydrodynamics are due to Eckart[25], Landau and

Lifshitz [21]. These classical theories which are simple generalizations of their non-relativistic

counterparts, assume a linear constitutive relation between the viscous stress πµν and the

strain rate σµν . This linear approximation (called the Newtonian approximation) is the most

familiar model in dissipative hydrodynamics and the fluids which obey such a relation are

called Newtonian fluids.

Such a linear theory, however, leads to parabolic equations for the dissipative fluxes

and predict very large speeds of propagation in situations with steep gradients, in contradic-

tion with relativity and causality. It was noticed by many authors including Grad, Muller,

Israel[26] and Stewart[27, 28] that one can easily solve this problem by including terms involv-

ing higher derivative corrections to the constitutive relations.31 The most simple extension is

to add a non-zero relaxation time in the equation thus converting the problem into a hyper-

bolic system of equations. 32 The resultant theory is called as causal viscous hydrodynamics

or Extended Irreversible Thermodynamics(EIT) or just Israel-Stewart theory.33

This approach outlined above differs from the approach adopted here and elsewhere[6, 8]

in the holographic studies of N = 4 SYM. In particular, some of the terms appearing in the

general derivative expansion of conformal fluids are absent in the conventional Israel-Stewart

formalism34.

One way of formulating Israel-Stewart theory is to consider dissipative fluxes like viscous

stress and heat flow as new thermodynamic variables and treat entropy as a function of these

new variables. In particular, one formulates the dynamics of such fluxes in a way that is

consistent with the second law of thermodynamics. For a conformal fluid with no conserved

charges, the viscoelastic stress in Israel-Stewart theory obeys an equation of the form35

πµν + τπu
λDλπµν = −2 η σµν + τω(ωµλπ

λν + ωνλπ
λµ) (3.42)

31Many authors including Geroch[29] have argued that the large speeds of propagation might not be a

problem if the gradients required to produce them are so steep that they are beyond the domain of validity

of hydrodynamics (We remind the reader that the hydrodynamics ceases to be valid if the ratio of mean free

path to the length scale at consideration (i.e., the Knudsen number) is larger than one). But, this argument

might not apply to all fluids - see [30, 31] for further discussion of this issue.
32If one is interested in rotational flows, one can further add other terms involving vorticity ωµν and cross

terms involving other hydrodynamic variables.
33Note that, there are other alternative solutions to the problem of causality in Newtonian hydrodynamics.

One such class of models termed divergence type theories were discussed by Geroch and Lindblom[32] and

under quite general conditions, these class of theories exhibit finite speeds of propagation[33].
34Further, the authors of the reference [8] argue that some of these terms would be absent even in a systematic

derivation of Israel-Stewart formalism from Relativistic Kinetic theory via moment closures.
35Note that often in the literature, τω is taken to be equal to τπ. We refrain from making such an identification

here in order to facilitate easy comparison.
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so that one can prove a version of the second law

Jλs =

(
s− τπ

4ηT
πµνπµν

)
uλ

DλJλs =
πµνπµν

2ηT
≥ 0

(3.43)

There is now a wide literature devoted to the analysis of the equations above and this for-

malism has been recently applied to the phenomenology of heavy-ion collisions.36

We can take the above equations and eliminate πµν in favor of σµν . We get the following

expression which is exact up to second derivatives

πµν = −2 η
[
σµν − τπuλDλσµν + τω(ωµλσ

λν + ωνλσ
λµ)
]

(3.44)

Comparing the equations so obtained with the equation(3.32) , it is clear that an Israel-

Stewart conformal fluid is a fluid with ξσ, ξC and ξω set to zero. Using the above expression,

following the method employed in §3.3, we can define an entropy current associated with this

fluid obeying the second law.37

However, as the previous sections make it clear, the Israel-Stewart conformal fluids form

only a subset of conformal fluids. And more importantly, N = 4 SYM fluid lies outside

the subset since it has ξσ = ξC 6= 0 . N = 4 SYM fluid has a shear-shear coupling (and a

coupling to the Weyl curvature) which is absent in the conventional Israel Stewart formalism.

Hence, the approach developed in the study of N = 4 SYM fluid should be looked upon as a

generalization of the Israel Stewart formalism and the entropy current in the equation(3.34)

should be treated as a generalization of the Israel-Stewart expression in the equation(3.43).

The main difference between the two formalisms lies in the way the viscoelastic stress is

treated. As far as the contribution of the viscoelastic stress to the entropy current is con-

cerned, Israel-Stewart formalism takes an extended thermodynamic point of view by assuming

that all sources of viscoelastic stress contribute equally to the entropy current, whereas the

entropy current proposed in this chapter treats different sources of visco-elastic stress differ-

ently. Rather than assuming that the entropy density is solely a function of πµν , the entropy

current is allowed to be a general function of the fluid velocity and its derivatives. Note

that, despite going out of Israel Stewart formalism, we have succeeded in defining an entropy

current which is consistent with the second law. 38

3.6 Appendices

3.6.1 Some useful identities

In this appendix, we prove some identities that were used in the main body of this chapter.

In particular, we want to sketch the proof of the equations quoted in equation(3.26).

36A non-exhaustive list of references include [34–40]
37Note however that the Jλs,diss so obtained is the negative of what would be naively expected from equa-

tion(3.43). This apparent discrepancy can be traced to the ambiguity in the definition of JλS,diss.
38The author thanks Shiraz Minwalla for pointing out this distinction and for discussions about related

issues.
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First, we use the definition of Rµανλ in terms of the commutator to write

uα(Rµανλuλ + Fµαuν) = −uα[Dµ,Dα]uν

= −Dµ(uαDαuν) + (Dµuα)(Dαuν) + uαDα(Dµuν)

= σµ
ασαν + σµ

αωαν − σναωαµ + ωµ
αωαν + uαDα(σµν + ωµν)

(3.45)

Next, we multiply the expression above with σµν and ωµν respectively, and simplify the

resulting expressions using the curvature identities in §3.1 to get

σµνCµανβu
αuβ − σµνSµν = σµνσµ

ασαν + σµνωµ
αωαν + σµνuαDασµν

−1

2
ωµνFµν = −2σµ

αωανω
νµ + ωµνuαDαωµν

(3.46)

The next step is to derive another identity which directly follows from the reduced Bianchi

identity (See (3.9) )

Dλ
[
uµ(Gµλ + Fµλ)

d− 2

]
=

(Dλuµ)(Gµλ + Fµλ)

d− 2

=
(Dλuµ)(Gµλ + d

2F
µλ − d−2

2 F
µλ)

d− 2

=
σλµ(Gµλ + d

2F
µλ)

d− 2
− 1

2
ωλµFµλ

= σµνSµν +
1

2
ωµνFµν

(3.47)

where we have used the fact that Gµλ + d
2F

µλ is a symmetric tensor.

We will need one more identity to finish the proof.

Dµ
[
Dνωµν

d− 3

]
=

1

2(d− 3)
[Dµ,Dν ]ωµν

=
3Fµνωµν +R[µν]ω

µν

2(d− 3)
= −1

2
Fµνωµν

(3.48)

Using the above identities, it is now straightforward to get the equations quoted in (3.26).

σµνωµ
αωαν = Dλ

[
ωµνωµν

4
uλ +

Dνωλν

2(d− 3)

]
σµνCµανβuαuβ = σµνσµ

ασαν +Dλ
[

2σµνσµν + ωµνωµν
4

uλ +
uµ(Gµλ + Fµλ)

d− 2
+

3Dνωλν

2(d− 3)

]
(3.49)

3.6.2 Conformal Energy-Momentum tensor

In this appendix, we list all the terms that can appear in the energy-momentum tensor of a

conformal fluid and show that only a few of them are linearly independent.
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In order to write down the most general derivative expansion of the viscoelastic stress πµν ,

we list below all the Weyl- covariant second- rank tensors which are symmetric, transverse

and traceless.

σµν , uλDλσµν , [ωµλσ
λν + ωνλσ

λµ],

[σµλσ
λν − Pµν

d− 1
σαβσαβ] , [ωµλω

λν +
Pµν

d− 1
ωαβωαβ],

Cµανβu
αuβ, [PµλP νσ(Rλσ +

d

2
Fλσ)− Pµν

d− 1
P λσRλσ],

[PµλP νσ(Rλασβuαuβ −
1

2
Fλσ)− Pµν

d− 1
P λσRλασβuαuβ]

(3.50)

Note that, the different terms appearing above are not all independent .

To show that we take the relation

−uα[Dµ,Dα]uν = −uαDµDαuν + uαDαDµuν = (Dµuα)(Dαuν) + uαDα(Dµuν)

and project out out the symmetric traceless transverse part to get

[PµλP νσ(Rλασβuαuβ −
1

2
Fλσ)− Pµν

d− 1
P λσRλασβuαuβ]

= [σµλσ
λν − Pµν

d− 1
σαβσαβ] + [ωµλω

λν +
Pµν

d− 1
ωαβωαβ] + uλDλσµν

(3.51)

Further, if we denote by the subscript TT the transverse traceless part, then we have

using (3.13)

[Rλσ + (d− 2)Rλασβuαuβ]TT = [Rλσ + (d− 2)Rλασβu
αuβ]TT = (d− 2)Cλασβu

αuβ

Hence, the independent terms that occur in a derivative expansion are

σµν , uλDλσµν , [ωµλσ
λν + ωνλσ

λµ],

[σµλσ
λν − Pµν

d− 1
σαβσαβ] , [ωµλω

λν +
Pµν

d− 1
ωαβωαβ],

Cµανβu
αuβ

(3.52)

and so we obtain the derivative expansion in (3.24).

3.7 Classification

We can now use this Weyl-covariant derivative to enumerate all the Weyl-covariant scalars,

transverse vectors (i.e, vectors that are everywhere orthogonal to the fluid velocity field uµ)

and the transverse traceless tensors in the charged hydrodynamics that involve no more than

second order derivatives. We will do this enumeration ‘on-shell’, i.e., we will enumerate those

quantities which remain linearly independent even after the equations of motion are taken

into account.

– 41 –



The basic fields in the charged hydrodynamics are the fluid velocity uµ with weight unity,

the fluid temperature T with with weight unity and the chemical potentials µi with weight

unity. This implies that an arbitrary function of µi/T is Weyl-invariant and hence one could

always multiply a Weyl-covariant tensor by such a function to get another Weyl-covariant

tensor. Hence, in the following list only linearly independent fields appear. To make contact

with the conventional literature on hydrodynamics we will work with the charge densities ni
(with weight d − 1) rather than the chemical potentials µi. For simplicity, we will confine

ourselves to the case where there is only one charge.

At one derivative level,

• Weyl invariant scalars : None

• Weyl invariant transverse vector : n−1P νµDνn.

In d=4 , we also have lα ≡ εµνλαuµ∇νuλ .

• Weyl-invariant symmetric traceless transverse tensors : Tσµν

At the two derivative level,

• Weyl invariant scalars :

T−2σµνσ
µν , T−2ωµνω

µν , T−2R,
T−2n−1PµνDµDνn and T−2n−2PµνDµnDνn

(3.53)

In d=4 ,

T−2n−1lµDµn

• Weyl-invariant transverse vectors :

T−1P νµDλσνλ, T−1P νµDλωνλ,
T−1n−1σµ

λDλn and T−1n−1ωµ
λDλn

(3.54)

In d=4 ,

T−1σµν l
ν

.

• Weyl-invariant symmetric traceless transverse tensors : “

Cµανβu
αuβ, uλDλσµν ,

ωµ
λσλν + ων

λσλµ, σµ
λσλν −

Pµν
d− 1

σαβσ
αβ, ωµ

λωλν +
Pµν
d− 1

ωαβω
αβ,

n−1 Παβ
µν DαDβn, n−2 Παβ

µν Dαn Dβn.

(3.55)

In d=4,

1

4
εαβλµ ε

γθσ
νCαβγθ uλuσ,

1

2
εαβλ(µC

αβ
ν)σu

λuσ, D(µlν),

n−1Παβ
µν lαDβn, n−1εαβλ(µσν)λuαDβn.

(3.56)
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where we have introduced the projection tensor Παβ
µν which projects out the transverse trace-

less symmetric part of second rank tensors

Παβ
µν ≡

1

2

[
Pαµ P

β
ν + Pαν P

β
µ −

2

d− 1
PαβPµν

]
These invariants can now be used to write down the most general Tµν and Jµi consistent

with Weyl-covariance. The energy-momentum tensor and the charged currents of the fluid

are usually divided into a zero-derivative part and a part involving at least one derivative

Tµνconf = p (gµν + d uµuν) + πµν

Jµi = ρiu
µ + νµi

(3.57)

where we can take the visco-elastic stress πµν to be transverse (uµπ
µν = 0) and traceless

(πµµ = 0) and the diffusion current νµi to be transverse (uλν
λ
i = 0). Hence, πµν and νµi

are linear combination of transverse traceless Weyl-covariant tensors and transverse Weyl-

covariant vectors of appropriate weight.
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4 Hydrodynamics and Large Rotating Blackholes in AdS

We will turn to the study of large rotating black holes in global AdSD spaces - which seems

like a distinct subject from the CFTs and their hydrodynamic description. As will see in

this chapter, there are deep relations between hydrodynamics of CFTs and the blackhole

solutions in AdS. We will use the AdS/CFT correspondence to argue that large rotating black

holes in global AdSD spaces are dual to stationary solutions of the relativistic Navier-Stokes

equations on SD−2. Reading off the equation of state of this fluid from the thermodynamics

of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid

mechanics that are dual to rotating black holes. In all known examples, the thermodynamics

and the local stress tensor of our solutions are in precise agreement with the thermodynamics

and boundary stress tensor of the spinning black holes.

Our fluid dynamical description applies to large non-extremal black holes as well as a

class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric

black holes. Our results will yield predictions for the thermodynamics of all large black holes

in all theories of gravity on AdS spaces, for example, string theory on AdS5 × S5 and M

theory on AdS4 × S7 and AdS7 × S4.

The material for this chapter is drawn from the paper[15] written by the author in

collaboration with Sayantani Bhattacharyya, Subhaneil Lahiri and Shiraz Minwalla.

4.1 Introduction

In this chapter, we predict certain universal features in the thermodynamics and other classical

properties of large rotating black holes in global AdSD spaces for arbitrary D. Our analysis

applies to black holes in any consistent theory of gravity that admits an AdSD background;

for example, IIB theory on AdS5 × S5 or M theory on AdS7 × S4 or AdS4 × S7.

All theories of gravity on an AdSD background are expected to admit a dual description

as a quantum field theory on SD−2× time [4, 41]. Moreover, it is expected to be generally true

that quantum field theories at sufficiently high energy density admit an effective description

in terms of fluid dynamics. Putting together these facts, we propose that large, rotating

black holes in arbitrary global AdSD spaces admit an accurate dual description as rotating,

stationary configurations of a conformal fluid on SD−2.

Assuming our proposal is indeed true, we are able to derive several properties of large

rotating AdS black holes as follows: We first read off the thermodynamic equation of state of

the dual ‘fluid’ from the properties of large, static, non-rotating AdS black holes. Inputting

these equations of state into the Navier-Stokes equations, we are then able to deduce the

thermodynamics of rotating black holes. In the rest of this introduction, we will describe our

proposal and its consequences, including the tests it successfully passes, in more detail.

Consider a theory of gravity coupled to a gauge field (based on a gauge group of rank c) on

AdSD. In an appropriate limit, the boundary theory is effectively described by conformal fluid

dynamics with c simultaneously conserved, mutually commuting U(1) charges Ri (i = 1 . . . c).

Conformal invariance and extensivity force the grand canonical partition function of this fluid
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to take the form
1

V
lnZgc = T d−1 h(ζ/T ) , (4.1)

where ζ represents the set of the c chemical potentials conjugate to the U(1) charges of the

fluid, V and T represent the volume and the overall temperature of the fluid respectively and

d = D − 1 is the spacetime dimensions of the boundary. As we have explained above, the as

yet unknown function h(ζ/T ) may be read off from the thermodynamics of large, charged,

static black holes in AdS.

The thermodynamic equation of state described above forms an input into the relativistic

Navier-Stokes equations that govern the effec tive dynamics of the boundary conformal fluid.

The full equations of fluid dynamics require more data than just the equation of state; f or

example we need to input dissipative parameters like viscosity. However, fluid dynamics on

Sd−1 admits a distinguished c+ n+ 1 parameter set of stationary solutions (the parameters

are their energy E, c commuting charges Ri and n = rank(SO(d)) =
[
d
2

]
commuting angular

momenta39 on Sd−1). These solutions are simply the configurations into which any fluid

initial state eventually settles down in equilibrium. They have the feature that their form

and properties are independent of the values of dissipative parameters.

Although these solutions are nonlinear (i.e. they cannot be thought of as a small fluc-

tuation about a uniform fluid configuration), it turns out that they are simple enough to be

determined explicitly. These solutions turn out to be universal (i.e. they are independent of

the detailed form of the function h(ζ/T )). Their thermodynamics is incredibly simple; it is

summarised by the partition function

lnZgc = ln Tr exp

[
−(H − ζiRi − ΩaLa)

T

]
=
VdT

d−1h(ζ/T )∏n
a=1(1− Ω2

a)
, (4.2)

where H,La and Ωa represent the energy, angular momenta and the angular velocities of the

fluid respectively and Vd = Vol(Sd−1) is the volume of the sphere Sd−1.

We now turn to the gravitational dual interpretation of the fluid dynamical solutions we

have described above. A theory of a rank c gauge field, interacting with gravity on AdSD,

possesses a c+ n+ 1 parameter set of black hole solutions, labelled by the conserved charges

described above. We propose that these black holes (when large) are dual to the solutions

of fluid dynamics described in the previous paragraph. Our proposal yields an immediate

prediction about the thermodynamics of large rotating black holes: the grand canonical

partition function of these black holes must take the form of (4.2).

Notice that while the dependence of the partition function (4.2) on ζ/T is arbitrary, its

dependence on Ωa is completely fixed. Thus, while our approach cannot predict thermody-

namic properties of the static black holes, it does allow us to predict the thermodynamics of

large rotating black holes in terms of the thermodynamics of their static counterparts.40 Fur-

39Here, we use the notation [x] to denote the integer part of the real number x.
40 The analogue of our procedure in an asymptotically flat space (which we unfortunately do not have)

would be a method to deduce the thermodynamics and other properties of the charged Kerr black hole, given

the solution of static charged black holes.
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ther, our solution of fluid dynamics yields a detailed prediction for the boundary stress tensor

and the local charge distribution of the corresponding black hole solution, which may be

compared with the boundary stress tensor and currents calculated from black hole solutions

(after subtracting the appropriate counterterms [42–49]).

Our proposal is highly reminiscent of the membrane paradigm in black hole physics (see,

for instance, [50, 51]). However, we emphasise that our fluid dynamical description of black

holes is not a guess; our proposal follows directly from the AdS/CFT correspondence in a

precisely understood regime (see [5] for a review of AdS/CFT correspondence).41

We have tested the thermodynamical predictions described above on every class of black

hole solutions in AdSD spaces that we are aware of. These solutions include the most general

uncharged rotating black holes in arbitrary AdSD space [16, 52, 53], various classes of charged

rotating black holes in AdS5 × S5 [19, 54–56], in AdS7 × S4 and in AdS4 × S7 [57–59]. In

the strict fluid dynamical limit, the thermodynamics of each of these black holes exactly

reproduces42 (4.2). In all the cases we have checked, the boundary stress tensor and the

charge densities of these black holes (read off from the black hole solutions using the AdS/CFT

dictionary) are also in perfect agreement with our fluid dynamical solutions. The agreement

described in this paragraph occurs only when one would expect it to, as we now explain in

detail.

Recall that the equations of fluid mechanics describe the evolution of local energy den-

sities, charge densities and fluid velocities as functions of spatial position. These equations

are applicable only under certain conditions. First, the fluctuations about mean values (of

variables like the local energy density) must be negligible. In the situations under study in

this chapter, the neglect of fluctuations is well justified by the ‘large N ’ limit of the field

theory, dual to the classical limit of the gravitational bulk.

Second, the equations of fluid mechanics assume that the fluid is in local thermodynamic

equilibrium at each point in space, even though the energy and the charge densities of the

fluid may vary in space. Fluid mechanics applies only when the length scales of variation of

thermodynamic variables - and the length scale of curvatures of the manifold on which the

fluid propagates - are large compared to the equilibration length scale of the fluid, a distance

we shall refer to as the mean free path lmfp.

The mean free path for any fluid may be estimated as [60] lmfp ∼ η
ρ where η is the shear

viscosity and ρ is the energy density of the fluid. For fluids described by a gravitational

dual, η = s
4π where s is the entropy density [60]. Consequently, for the fluids under study

in this chapter, lmfp ∼ s
4πρ . As we will see in §§4.3.7, the most stringent bound on lmfp, for

the solutions presented in this chapter, comes from requiring that lmfp be small compared to

the radius of the Sd−1, which we set to unity. Consequently, fluid dynamics should be an

41Alternatively, one could regard the agreement between fluid dynamics and gravity described below as a

test of the AdS/CFT correspondence (provided we are ready to assume in addition the applicability of fluid

mechanics to quantum field theories at high density).
42See, however, §§4.6.10 for a puzzle regarding the first subleading corrections for a class of black holes in

AdS5.
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accurate description for our solutions whenever s
4πρ � 1. In every case we have studied, it

turns out that this condition is met whenever the horizon radius, RH , of the dual black hole

is large compared to the AdS radius , RAdS. Black holes that obey this condition include

all black holes whose temperature is large compared to unity, but also includes large radius

extremal black holes in AdS5 × S5, AdS7 × S4 and AdS4 × S7. It, however, never includes

supersymmetric black holes in the same backgrounds, whose horizon radii always turn out to

be of the same order as the AdS radius.

It follows that we should expect the Navier-Stokes equations to reproduce the thermo-

dynamics of only large black holes. In all the cases we have studied, this is indeed the case.

It is possible to expand the formulae of black hole thermodynamics (and the stress tensor

and charge distribution) in a power series in RAdS/RH . While the leading order term in this

expansion matches the results of fluid dynamics, we find deviations from the predictions of

Navier-Stokes equations at subleading orders.

Starting with the work of Policastro, Son and Starinets [61], there have been several

fascinating studies over the last few years, that have computed fluid dynamical dissipative

and transport coefficients from gravity (see the review [60] and the references therein). The

work reported in this chapter differs from these analyses in several ways. Firstly, the solutions

of fluid mechanics we study are nonlinear; in general they cannot be thought of as small

fluctuations about the uniform fluid configuration dual to static black holes. Second, all our

solutions are stationary: dissipative parameters play no role in our work.

Indeed our work rather follows the same line of investigation as the one applied to plas-

maballs and plasmarings in [62, 63]. These investigations used the boundary fluid dynamics

to make detailed predictions about the nature and phase structure of the black holes and

black rings in Scherk-Schwarz compactified AdS spaces. The predictions of these papers have

not yet been quantitatively verified as the corresponding black hole and black ring solutions

have not yet been constructed. The perfect agreement between fluid dynamics and gravity in

the simpler and better studied context of this chapter lends significant additional support to

those predictions of [62, 63] that were made using fluid mechanics.

While in this chapter we have used fluid dynamics to make predictions for black hole

physics, the reverse view point may also prove useful. Existing black hole solutions in AdS

spaces provide exact equilibrium solutions to the equations of fluid dynamics to all orders

in lmfp. A study of the higher order corrections of these solutions (away from the lmfp → 0

limit) might yield useful information about the nature of the fluid dynamical approximation

of quantum field theories.

The plan of this chapter is as follows - In §4.2, we set up the basic fluid mechanical

framework necessary for our work. It is followed by §4.3 in which we consider in detail a

specific example of rigidly rotating fluid - a conformal fluid in S3 × R. A straightforward

generalisation gives us a succinct way of formulating fluid mechanics in spheres of arbitrary

dimensions in §4.4.

We proceed then to compare the fluid mechanical predictions with various types of black

holes in arbitrary dimensions. First, we consider uncharged rotating black holes in arbitrary
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dimensions in §4.5. Their thermodynamics, stress tensors and charge distributions are com-

puted and are shown to exactly match the fluid mechanical predictions. In §4.6, we turn

to the large class of rotating black hole solutions in AdS5 × S5. Many different black holes

with different sets of charges and angular momenta are considered in the large horizon radius

limit and all of them are shown to fit exactly into our proposal in the strict fluid dynamical

limit. However we also find deviations from the predictions of the Navier-Stokes equations

at first subleading order in lmfp for black holes with all SO(6) Cartan charges nonzero (these

deviations vanish when the angular velocities, or one of the SO(6) charges is set to zero).

This finding is at odds with naive expectations from fluid dynamics, which predict the first

deviations from the Navier-Stokes equations to occur at O(l2mfp) and is an as yet unresolved

puzzle.

This is followed by §4.7, dealing with large rotating black holes in AdS4×S7 and AdS7×
S4 backgrounds which are dual to field theories on M2 and M5 branes respectively. The

thermodynamics of the rotating black hole solutions in these spaces are derived from their

static counterparts using the duality to fluid mechanics and it is shown how the known

rotating black hole solutions agree with the fluid mechanical predictions in the large horizon

radius limit. In each of these cases, the formulae of black hole thermodynamics deviate

from the predictions of the Navier-Stokes equations only at O(l2mfp) in accord with general

expectations. In the final section, we conclude our work and discuss further directions.

In appendix 4.9.1, we discuss the constraints imposed by conformal invariance on the

equations of fluid mechanics. In appendix 4.9.2, we discuss the thermodynamics of free

theories on spheres. In appendix 4.9.3, we present our computations of the boundary stress

tensor for two classes of black holes in AdS spaces.

4.2 The equations of fluid mechanics

4.2.1 The equations

The fundamental variables of fluid dynamics are the local proper energy density ρ, local charge

densities ri and fluid velocities uµ = γ(1, ~v). Assuming local thermodynamic equilibrium, the

rest frame entropy density s, the pressure P, the local temperature T and the chemical

potentials µi of the fluid can be expressed as functions of ρ and ri using the equation of state

and the first law of thermodynamics, as in §§4.2.5, §§4.2.6 below. In what follows, we will

often find it convenient to express the above thermodynamic quantities in terms of T and µi
rather than as functions of ρ and ri.

The equations of fluid dynamics are simply a statement of the conservation of the stress

tensor Tµν and the charge currents Jµi .

∇µTµν = ∂µT
µν + ΓµµλT

λν + ΓνµλT
µλ = 0 ,

∇µJµi = ∂µJ
µ
i + ΓµµαJ

α
i = 0 .

(4.3)
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4.2.2 Perfect fluid stress tensor

The dynamics of a fluid is completely specified once the stress tensor and charge currents are

given as functions of ρ, ri and uµ. As we have explained in the introduction, fluid mechanics

is an effective description at long distances (i.e, it is valid only when the fluid variables vary

on distance scales that are large compared to the mean free path lmfp). As a consequence

it is natural to expand the stress tensor and charge current in powers of derivatives. In this

subsection we briefly review the leading (i.e. zeroth) order terms in this expansion.

It is convenient to define a projection tensor

Pµν = gµν + uµuν . (4.4)

Pµν projects vectors onto the 3 dimensional submanifold orthogonal to uµ. In other words,

Pµν may be thought of as a projector onto spatial coordinates in the rest frame of the fluid.

In a similar fashion, −uµuν projects vectors onto the time direction in the fluid rest frame.

To zeroth order in the derivative expansion, Lorentz invariance and the correct static

limit uniquely determine the stress tensor, charge and the entropy currents in terms of the

thermodynamic variables. We have

Tµνperfect = ρuµuν + PPµν ,

(Jµi )perfect = riu
µ,

(JµS )perfect = suµ,

(4.5)

where ρ = ρ(T , µi) is the rest frame energy density, s = s(T , µi) is the rest frame entropy

density of the fluid and µi are the chemical potentials. It is not difficult to verify that

in this zero-derivative (or perfect fluid) approximation, the entropy current is conserved.

Entropy production (associated with dissipation) occurs only at the first subleading order in

the derivative expansion, as we will see in the next subsection.

4.2.3 Dissipation and diffusion

Now, we proceed to examine the first subleading order in the derivative expansion. In the

first subleading order, Lorentz invariance and the physical requirement that entropy be non-

decreasing determine the form of the stress tensor and the current to be (see, for example,

§§14.1 of [24])

Tµνdissipative = −ζϑPµν − 2ησµν + qµuν + uµqν ,

(Jµi )dissipative = qµi ,

(JµS )dissipative =
qµ − µiqµi
T

.

(4.6)

– 49 –



where

aµ = uν∇νuµ,
ϑ = ∇µuµ,

σµν =
1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
− 1

d− 1
ϑPµν ,

qµ = −κPµν(∂νT + aνT ) ,

qµi = −DijP
µν∂ν

(µj
T

)
,

(4.7)

are the acceleration, expansion, shear tensor, heat flux and diffusion current respectively.

These equations define a set of new fluid dynamical parameters in addition to those

of the previous subsection: ζ is the bulk viscosity, η is the shear viscosity, κ is the thermal

conductivity andDij are the diffusion coefficients. Fourier’s law of heat conduction ~q = −κ~∇T
has been relativistically modified to

qµ = −κPµν(∂νT + aνT ) , (4.8)

with an extra term that is related to the inertia of flowing heat. The diffusive contribution

to the charge current is the relativistic generalisation of Fick’s law.

At this order in the derivative expansion, the entropy current is no longer conserved;

however, it may be checked [24] that

T ∇µJµS =
qµqµ
κT

+ T (D−1)ijqµi qjµ + ζθ2 + 2ησµνσ
µν . (4.9)

As qµ, qµi and σµν are all spacelike vectors and tensors, the RHS of (4.9) is positive provided

η, ζ, κ and D are positive parameters, a condition we further assume. This establishes that

(even locally) entropy can only be produced but never destroyed. In equilibrium, ∇µJµS must

vanish. It follows that, qµ, qµi , θ and σµν each individually vanish in equilibrium.

From the formulae above, we see that the ratio of Tµνdissipative to Tµνperfect is of the order

η/(Rρ) where η is the shear viscosity, ρ is the rest frame energy density and R is the typical

length scale of the flow under consideration. Consequently, the Navier-Stokes equations may

be thought of as the first term in a series expansion of the microscopic equations in lmfp/R ,

where lmfp ∼ η
ρ . In this sense, lmfp plays a role analogous to the string scale in the derivative

expansion of the effective action in string theory. This length scale may plausibly be identified

with the thermalisation length scale of the fluid.43

When studying fluids on curved manifolds (as we will proceed to do in this chapter),

one could add generally covariant terms, built out of curvatures, to the stress tensor. For

instance, we could add a term proportional to Rµν to the expression for Tµν . We will ignore

all such terms in this chapter for a reason we now explain. In all the solutions of fluid

mechanics that we will study, the length scale over which fluid quantities vary is the same

43This may be demonstrated within the kinetic theory, where lmfp is simply the mean free path of colliding

molecules, but is expected to apply to more generally to any fluid with short range interactions.
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as the length scale of curvatures of the manifold. Any expression built out of a curvature

contains at least two spacetime derivatives of the metric; it follows that any contribution to

the stress tensor proportional to a curvature is effectively at least two orders subleading in the

derivative expansion, and so is negligible compared to all the other terms we have retained

in this chapter.

4.2.4 Conformal fluids

We will now specialise our discussion to a conformal fluid – the fluid of the ‘stuff’ of a

conformal field theory in d dimensions. Conformal invariance imposes restrictions on both

the thermodynamics of the fluid and the derivative expansion of the stress tensor discussed

in the previous subsection.

To start with, conformal invariance requires that the stress tensor be traceless.44 This re-

quirement relates the pressure of a conformal fluid to its density as P = ρ
d−1 (this requirement

may also be deduced from conformal thermodynamics, as we will see in the next subsection)

where d is the dimension of the spacetime in which the fluid lives. Further, the tracelessness

of the stress tensor also forces the bulk viscosity, ζ, to be zero.

It is easy to verify that these constraints are sufficient to guarantee the conformal in-

variance of the fluid dynamical equations listed above. Consider a conformal transformation

gµν = e2φg̃µν under which fluid velocity, temperature, rest energy density, pressure, entropy

density and the charge densities transform as

uµ = e−φũµ,

T = e−φT̃ ,

ρ = e−dφρ̃ , P = e−dφP̃ ,

s = e−(d−1)φs̃ ,

ri = e−(d−1)φr̃i .

It is easy to verify that these transformations induce the following transformations on

the stress tensors and currents listed in the previous subsection45

Tµν = e−(d+2)φT̃µν ,

Jµi = e−dφJ̃µi ,

JµS = e−dφJ̃µS .

(4.10)

These are precisely the transformation properties that ensure the conformal invariance of the

conservation equations (4.3). See appendix 4.9.1 for more details.

44More accurately, conformal invariance relates the nonzero trace of the stress tensor to certain curvature

forms; for example, in two dimension Tµµ = c
12
R where R is the scalar curvature. However, as we have described

above, curvatures are effectively zero in the one derivative expansion studied in this chapter. All formulae

through the rest of this chapter and in the appendices apply only upon neglecting curvatures. We thank

R. Gopakumar for a discussion of this point.
45Note that under such a scaling, the viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃,

µi = e−φµ̃i and Dij = e−(d−2)φD̃ij .
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4.2.5 Conformal thermodynamics

In this subsection, we review the thermodynamics of the conformal fluids we discuss below.

The notation set up in this subsection will be used through the rest of this chapter.

Define the thermodynamic potential

Φ = E − T S − µiRi . (4.11)

for which the first law of thermodynamics reads

dΦ = −SdT − PdV −Ridµi . (4.12)

Let us define νi = µi/T . It follows from conformal invariance and extensivity that

Φ = −V T dh(ν) , (4.13)

where h(ν) is defined by this expression. All remaining thermodynamic expressions are easily

determined in terms of the function h(νi)

ρ = (d− 1)P = (d− 1)T dh(ν) ,

ri = T d−1hi(ν) ,

s = T d−1(dh− νihi) ,
(4.14)

where

hi =
∂h

∂νi

denotes the derivative of h with respect to its ith argument.

4.2.6 A thermodynamic identity

We will now derive a thermodynamic identity that will be useful in our analysis below. Define

Γ = E − T S + PV − µiRi = Φ + PV , (4.15)

the first law of thermodynamics implies that

dΓ = −SdT + V dP −Ridµi . (4.16)

Consider scaling the system by a factor (1+ ε). Under such a scaling, extensivity implies that

dΓ = εΓ , dT = dP = dµi = 0 ,

which when substituted into (4.16) tells us that Γ = 0. Then we can divide (4.15) and (4.16)

by V to get

ρ+ P = sT + µiri ,

dP = sdT + ridµi .
(4.17)
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4.3 Equilibrium configurations of rotating conformal fluids on S3

In this section and in the next, we will determine the equilibrium solutions of fluid dynamics

equations for conformal fluids on spheres of arbitrary dimension. In this section, we work out

the fluid dynamics on S3 plus a time dimension in detail.46 In the next section, we generalise

the results of this section to spheres of arbitrary dimension.

4.3.1 Coordinates and conserved charges

Consider a unit S3 embedded in R4 as

x1 = sin θ cosφ1

x2 = sin θ sinφ1

x3 = cos θ cosφ2

x4 = cos θ sinφ2

(4.18)

with θ ∈ [0, π2 ], φa ∈ [0, 2π). The metric of the spacetime S3 × R is

ds2 = −dt2 + dθ2 + sin2 θ dφ2
1 + cos2 θ dφ2

2 . (4.19)

This gives the following non-zero Christoffel symbols:

Γθφ1φ1
= −Γθφ2φ2

= − cos θ sin θ , Γφ1

θφ1
= Γφ1

φ1θ
= cot θ , Γφ2

θφ2
= Γφ2

φ2θ
= − tan θ . (4.20)

For the stationary, axially symmetric configurations under consideration, ∂tT
µν = ∂φaT

µν =

0. Using (4.20), (4.3) becomes

0 = ∇µTµt = ∂θT
θt + (cot θ − tan θ)T θt, (4.21)

0 = ∇µTµθ = ∂θT
θθ + (cot θ − tan θ)T θθ + cos θ sin θ

(
T φ1φ1 − T φ2φ2

)
, (4.22)

0 = ∇µTµφ1 = ∂θT
θφ1 + (cot θ − tan θ)T θφ1 + 2 cot θ T θφ1 , (4.23)

0 = ∇µTµφ2 = ∂θT
θφ2 + (cot θ − tan θ)T θφ2 − 2 tan θ T θφ2 . (4.24)

The Killing vectors of interest are ∂t (Energy) and ∂φa (SO(4) Cartan angular momenta).

Using the formula for the related conserved charge,
∫

d3x
√
−g T 0µgµνk

ν , we get:

E =

∫
dθdφ1dφ2 cos θ sin θ T tt,

L1 =

∫
dθdφ1dφ2 cos θ sin3 θ T tφ1 ,

L2 =

∫
dθdφ1dφ2 cos3 θ sin θ T tφ2 .

(4.25)

46In this case, the dimensions of the spacetime in which the fluid lives is d = 3 + 1 = 4. The number

of mutually commuting angular momenta is n = 2. The black hole dual lives in AdS space of dimensions

D = d+ 1 = 5.
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Assuming qµ = qµi = 0 (as will be true for stationary solutions we study in this chapter), the

entropy and the R-charges corresponding to the currents in (4.5) are given as

S =

∫
dθdφ1dφ2 cos θ sin θ γs ,

Ri =

∫
dθdφ1dφ2 cos θ sin3 θ γri .

(4.26)

4.3.2 Equilibrium solutions

As we have explained in the §§4.2.3, each of the three quantities σµν , qµ, qµi must vanish on any

stationary solution of fluid dynamics. The requirement that σµν = 0 has a unique solution -

the fluid motion should be just a rigid rotation. By an SO(4) rotation we can choose the two

orthogonal two planes of this rotation as the (1-2) and (3-4) planes (see (4.18)). This implies

that uµ = γ(1, 0, ω1, ω2) (where we have listed the (t, θ, φ1, φ2) components of the velocity)

with γ =
(
1− v2

)−1/2
and v2 = ω2

1 sin2 θ + ω2
2 cos2 θ, for some constants ω1 and ω2.

Our equilibrium fluid flow enjoys a symmetry under translations of t, φ1 and φ2; conse-

quently all thermodynamic quantities are functions only of the coordinate θ.

Evaluating the tensors in (4.7), we find

aµ = (0,−∂θ ln γ, 0, 0),

ϑ = 0,

σµν = 0,

qµ = −κγ
(

0,
d

dθ

[
T
γ

]
, 0, 0

)
,

qµi = −Dij

(
0,

d

dθ

[µj
T

]
, 0, 0

)
.

(4.27)

The requirement that qµ and qµi vanish forces us to set

T = τγ , µi = T νi , (4.28)

for constant τ and νi. These conditions completely determine all the thermodynamic quan-

tities as a function of the coordinates on the sphere. We will now demonstrate that this

configuration solves the Navier-Stokes equations.

First note that for an arbitrary rigid rotation, the dissipative part of the stress tensor

evaluates to

Tµνdissipative = −κγ2


0 1 0 0

1 0 ω1 ω2

0 ω1 0 0

0 ω2 0 0

 d

dθ

[
T
γ

]
, (4.29)
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an expression which simply vanishes once we impose (4.28). Consequently, all nonzero con-

tributions to the stress tensor come from the ‘perfect fluid piece’ and are given by

Tµνperfect = γ2


(ρ+ v2P) 0 ω1(ρ+ P) ω2(ρ+ P)

0 γ−2P 0 0

ω1(ρ+ P) 0 ω2
1ρ+ (csc2 θ − ω2

2 cot2 θ)P ω1ω2(ρ+ P)

ω2(ρ+ P) 0 ω1ω2(ρ+ P) ω2
2ρ+ (sec2 θ − ω2

1 tan2 θ)P

 .

(4.30)

The only non-trivial equation of motion, (4.22), can be written as

dP
dθ
− ρ+ P

γ

dγ

dθ
= 0 . (4.31)

Now using the thermodynamic identity (4.17) we may recast (4.31) as

γs
d

dθ

[
T
γ

]
+ γri

d

dθ

[
µi
γ

]
= 0 , (4.32)

an equation which is automatically true from (4.28). Consequently, rigidly rotating configu-

rations that obey (4.28) automatically obey the Navier-Stokes equations.

In a similar fashion, it is easy to verify that all nonzero contributions to the charge

currents come from the perfect fluid piece of that current, and that the conservation of these

currents holds for our solutions.

In summary the 3 + c parameter set of stationary solutions to fluid mechanics listed in

this subsection (the parameters are τ, ωa and νi where i = 1 . . . c ) constitute the most general

stationary solutions of fluid mechanics.

4.3.3 Stress tensor and currents

Using the equations of state (4.14), we find that

ρ = 3P = 3τ4γ4h(ν),

s = τ3γ3[4h(ν)− νihi(ν)],

ri = τ3γ3hi(ν).

(4.33)

The stress tensor is

Tµν = τ4Aγ6


3 + v2 0 4ω1 4ω2

0 1− v2 0 0

4ω1 0 3ω2
1 + csc2 θ − ω2

2 cot2 θ 4ω1ω2

4ω2 0 4ω1ω2 3ω2
2 + sec2 θ − ω2

1 tan2 θ

 . (4.34)

Charge and entropy currents are given by

Jµi = τ3γ4Ci(1, 0, ω1, ω2) ,

JµS = τ3γ4B(1, 0, ω1, ω2) ,
(4.35)
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where we have defined

A = h(ν) ,

B = 4h(ν)− νihi(ν) ,

Ci = hi(ν) =
∂h

∂νi
.

(4.36)

4.3.4 Charges

The energy, angular momentum, entropy and R-charges may now easily be evaluated by

integration: we find

E =
V4τ

4A

(1− ω2
1)(1− ω2

2)

[
2ω2

1

1− ω2
1

+
2ω2

2

1− ω2
2

+ 3

]
,

L1 =
V4τ

4A

(1− ω2
1)(1− ω2

2)

[
2ω1

1− ω2
1

]
,

L2 =
V4τ

4A

(1− ω2
1)(1− ω2

2)

[
2ω2

1− ω2
2

]
,

S =
V4τ

3B

(1− ω2
1)(1− ω2

2)
,

Ri =
V4τ

3Ci
(1− ω2

1)(1− ω2
2)
,

(4.37)

where V4 = Vol(S3) = 2π2 is the volume of S3. These formulae constitute a complete

specification of the thermodynamics of stationary rotating conformal fluids on S3.

4.3.5 Potentials

In the previous subsection we have evaluated all the thermodynamic charges of our rotating

fluid solutions. It is also useful to evaluate the chemical potentials corresponding to these

solutions. To be specific we define these chemical potentials via the grand canonical partition

function defined in the introduction

Zgc = Tr exp

(
1

T
(−H + ΩaLa + ζiRi)

)
= exp

(
−E − TS − ΩaLa − ζiRi

T

)
, (4.38)

where the last expression applies in the thermodynamic limit. In other words

T =

(
∂E

∂S

)
Lb,Rj

, Ωa =

(
∂E

∂La

)
S,Lb,Rj

, ζi =

(
∂E

∂Ri

)
S,Lb,Rj

. (4.39)

It is easy to verify that47

T = τ , Ωa = ωa , ζi = τνi . (4.40)

47We can express dE− τdS−ωadLa− τνidRi in terms of dτ, dωa, dνi and check that it vanishes, or we can

check the Legendre transformed statement d(E − τS − ωaLa − τνiRi) = −Sdτ − Ladωa −Rid(τνi).
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Note that T , Ωa and ζi are distinct from T , ωa and µi. While the former quantities

are thermodynamic properties of the whole fluid configuration, the latter quantities are local

thermodynamic properties of the fluid that vary on the S3. In a similar fashion, the energy

E of the solution is, of course, a distinct concept from the local rest frame energy density ρ

which is a function on the sphere. In particular, E receives contributions from the kinetic

energy of the fluid as well as its internal energy, E .

4.3.6 Grand canonical partition function

The grand canonical partition function (4.38) is easily computed; we find

lnZgc =
V4T

3h(ζ/T )

(1− Ω2
1)(1− Ω2

2)
, (4.41)

where V4 = V (S3) = 2π2 is the volume of S3.

In other words, the grand canonical partition function of the rotating fluid is obtained

merely by multiplying the same object for the non-rotating fluid by a universal angular

velocity dependent factor.

4.3.7 Validity of fluid mechanics

A systematic way to estimate the domain of validity of the Navier-Stokes equations would

be to list all possible higher order corrections to these equations, and to check under what

circumstances the contributions of these correction terms to the stress tensor and currents are

small compared to the terms we have retained. Rather than carrying out such a detailed (and

worthwhile) exercise, we present in this section a heuristic physical estimate of the domain of

validity of fluid dynamics.

Consider a fluid composed of a collection of interacting ‘quasiparticles’, that move at an

average speed vp and whose collisions are separated (on the average) by the distance lmfp

in the fluid rest frame. Consider a particular quasiparticle that undergoes two successive

collisions: the first at the coordinate location x1 and subsequently at x2. In order for the

fluid approximation to hold, it must be that

1. The fractional changes in thermodynamic quantities between the two collision points

(e.g. [T (x1) − T (x2)]/T (x1)) are small. This condition is necessary in order for us to

assume local thermal equilibrium.

2. The distance between the two successive collisions is small compared to the curva-

ture/compactification scales of the manifold on which the fluid propagates. This approx-

imation is necessary, for example, in order to justify the neglect of curvature corrections

to the Navier-Stokes equations.

Let us now see when these two conditions are obeyed on our solutions. Recall that the

local temperatures in our solutions take the form T = Tγ where T is the overall temperature

– 57 –



of the solution. If we treat the free path lmfp as a function of temperature and chemical

potentials, conformal invariance implies that

lmfp(T , νi) =
1

γ
lmfp(T, νi) .

Hence, the first condition listed above is satisfied when the fractional variation in (say)

the temperature is small over the rest frame mean free path lmfp(T , νi), i.e. provided

lmfp(T, νi)

γ
� γ

(
∂γ

∂θ

)−1

, (4.42)

which must hold for all points of the sphere.48 The strictest condition one obtains from this

is

lmfp(T, νi)�
1∣∣∣√1− ω2

1 −
√

1− ω2
2

∣∣∣ . (4.43)

It turns out that the second condition listed above is always more stringent, especially

when applied to fluid quasiparticles whose rest frame motion between two collisions is in the

same direction as the local fluid velocity. It follows from the formulae of Lorentz transforma-

tions that the distance on the sphere between two such collisions is lmfp(T , νi)γ(1 + v/vp) =

lmfp(T, νi)(1 + v/vp), where vp is the quasiparticle’s velocity in the rest frame of the fluid and

v the fluid velocity. As the factor (1+v/vp) is bounded between 1 and 2, we conclude that the

successive collisions happen at distances small compared to the radius of the sphere provided

lmfp(T, νi)� 1 . (4.44)

Hence, we conclude that the condition (4.44) (which is always more stringent than (4.43))

is the condition for the applicability of the equations of fluid mechanics.

Of course the model (of interacting quasiparticles) that we have used to obtain (4.44)

need not apply to the situations of our interest. However the arguments that led to (4.44) were

essentially kinematical which leads us to believe that the result will be universal. Nonetheless,

it would be useful to verify this result by performing the detailed analysis alluded to at the

beginning of this subsection.

4.4 Rotating fluids on spheres of arbitrary dimension

We now generalise the discussion of the previous section to the study of conformal fluids on

spheres of arbitrary dimension.

48Recall that all variations in the temperature are perpendicular to fluid velocities, so that the typical scale

of variation in both the rest frame and the lab frame coincide.
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Let us embed S2n in R2n+1 as

x2a−1 =

(
a−1∏
b=1

cos θb

)
sin θa cosφa ,

x2a =

(
a−1∏
b=1

cos θb

)
sin θa sinφa ,

x2n+1 =

(
n∏
b=1

cos θb

)
,

(4.45)

Where θn ∈ [0, π], all other θa ∈ [0, π2 ] and φa ∈ [0, 2π). Any products with the upper limit

smaller than the lower limit should be set to one. Although we appear to have specialised to

even dimensional spheres above, we can obtain all odd dimensional sphere, S2n−1, simply by

setting θn = π/2 in all the formulae of this section.

The metric on S2n× time is given by

ds2 = −dt2 +
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
dθ2

a +
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
sin2 θadφ

2
a . (4.46)

We choose a rigidly rotating velocity

ut = γ uθa = 0 uφa = γωa

γ = (1− v2)−1/2 v2 =
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
sin2 θaω

2
a

(4.47)

As in §§4.3.2, the equations of motion are solved, without dissipation, by setting

T
γ

= τ = constant,
µi
T

= νi = constant, (4.48)

which gives the densities

ρ = (d− 1)P = (d− 1)τdγdh(νi),

s = τd−1γd−1[dh(ν)− νihi(ν)],

ri = τd−1γd−1hi(ν),

(4.49)

This gives a stress tensor

T tt = τdA(dγd+2 − γd) T tφa = T φat = τdAdγd+2ωa

T θaθa = τdAγd

(
a−1∏
b=1

sec2 θb

)

T φaφa = τdA

[
dγd+2ω2

a + γd

(
a−1∏
b=1

sec2 θb

)
csc2 θa

]
T φaφb = τdAdγd+2ωaωb

(4.50)
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and currents
J tS = τd−1Bγd JθaS = 0 JφaS = τd−1Bγdωa ,

J ti = τd−1Ciγ
d Jθai = 0 Jφai = τd−1Ciγ

dωa ,
(4.51)

where

A = h(ν) ,

B = dh(ν)− νihi(ν) ,

Ci = hi(ν) .

(4.52)

Integrating these gives49

E =
Vd τ

d h(ν)∏
b(1− ω2

b )

[
2
∑
a

ω2
a

1− ω2
a

+ d− 1

]
,

S =
Vd τ

d−1[dh(ν)− νihi(ν)]∏
b(1− ω2

b )
,

La =
Vd τ

d h(ν)∏
b(1− ω2

b )

[
2ωa

1− ω2
a

]
,

Ri =
Vd τ

d−1 hi(ν)∏
b(1− ω2

b )
,

(4.53)

where

Vd = Vol(Sd−1) =
2·πd/2

Γ(d/2)
.

Differentiating these gives

T = τ Ωa = ωa ζi = τνi . (4.54)

and the grand partition function

lnZgc =
Vd T

d−1 h(ζ/T )∏
b(1− Ω2

b)
. (4.55)

As in the previous subsection, the fluid dynamical approximation is expected to be valid

provided lmfp(T, νi)� 1.

In appendix 4.9.2, we have computed the thermodynamics of a free charged scalar field

on a sphere, and compared with the general results of this section.

4.5 Comparison with uncharged black holes in arbitrary dimensions

In the rest of this chapter, we will compare the predictions from fluid dynamics derived above

with the thermodynamics, stress tensors and charge distributions of various classes of large

rotating black hole solutions in AdS spaces. We start with uncharged rotating black holes on

D dimensional AdS spaces (where D is arbitrary), which are dual to rotating configurations

of uncharged fluids on spheres of dimension (D − 2).

49In deriving these formulae we have ‘conjectured’ that
∫
Sd−1 γ

d = Vd∏[d/2]
b=1

(1−ω2
b
)
. It is easy to derive this

formula for odd spheres. We have also analytically checked this formula for S2 and S4. We are ashamed,

however, to admit that we have not yet found an analytic derivation of this integral for general even spheres.
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4.5.1 Thermodynamics and stress tensor from fluid mechanics

In case of uncharged fluids the function h(ν) in the above section is a constant h(ν) = h.

Therefore hi(ν) = ∂h(ν)
∂νi

are all equal to zero. It follows from equations (4.53) and (4.54) that

E =
Vd T

d h∏
b(1− Ω2

b)

[∑
a

2Ω2
a

1− Ω2
a

+ d− 1

]
,

S =
Vd T

d−1hd∏
b(1− Ω2

b)
,

La =
Vd T

d h∏
b(1− Ω2

b)

[
2Ωa

1− Ω2
a

]
,

Ri = 0 .

(4.56)

The partition function is given by

lnZgc =
Vd T

d−1 h∏
b(1− Ω2

b)
. (4.57)

The stress tensor becomes

T tt = hT d(dγd+2 − γd) T tφa = T φat = hT ddγd+2Ωa

T θaθa = hT dγd

(
a−1∏
b=1

sec2 θb

)

T φaφa = hT d

[
dγd+2Ω2

a + γd

(
a−1∏
b=1

sec2 θb

)
csc2 θa

]
T φaφb = hT ddγd+2ΩaΩb .

(4.58)

The mean free path in fluid dynamics can be estimated by taking the ratio of shear

viscosity to energy density. As mentioned in the introduction, for fluids with gravity duals we

can equivalently estimate lmfp by taking the ratio of entropy to 4π times the energy (because

of the universal relation s = 4πη).

lmfp(T, ν)|Ω=0 ∼
[
S

4πE

]
Ω=0

=
d

4πT (d− 1)
. (4.59)

Consequently the expansion in lmfp translates simply to an expansion in inverse powers of the

temperature of our solutions.

4.5.2 Thermodynamics from black holes

The most general solution for uncharged rotating black holes in AdSD was obtained in [16, 53].

These solutions are labelled by the n+ 1 parameters50 ai and r+ (these are related to the n

50Recall that n denotes the number of commuting angular momenta and is given by the expression n =

rank [SO(D − 1)] on AdSD.
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angular velocities and the horizon radius (or equivalently the mass parameter) of the black

holes). The surface gravity κ and the horizon area A of these black holes are given by51

κ =


r+(1 + r2

+)
n∑
i=1

1

r2
+ + a2

i

− 1

r+
when D = 2n+ 1 ,

r+(1 + r2
+)

n∑
i=1

1

r2
+ + a2

i

−
1− r2

+

2r+
when D = 2n+ 2 ,

A =


Vd
r+

n∏
i=1

r2
+ + a2

i

1− a2
i

when D = 2n+ 1 ,

Vd

n∏
i=1

r2
+ + a2

i

1− a2
i

when D = 2n+ 2 .

(4.60)

We will be interested in these formulae in the limit of large r+. In this limit the parameter

m (which appears in the formulae of [16, 53]) and the temperature T = κ/2π are given as

functions of r+ by

T =

[
(D − 1)r+

4π

] (
1 +O(1/r2

+)
)
,

2m = rD−1
+

(
1 +O(1/r2

+)
)
.

(4.61)

From these equations, it follows that the parameter m is related to the temperature T as

2m = TD−1

[
4π

D − 1

]D−1 (
1 +O(1/T 2)

)
. (4.62)

To leading order in r+, the thermodynamic formulae take the form

Ωi = ai ,

E =
VD−1T

D−1

16πGD
∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1
[

n∑
i=1

2a2
i

1− a2
i

+D − 2

]
,

Li =
VD−1T

D−1

16πGD
∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1 [ 2ai
1− a2

i

]
,

S =
VD−1T

D−2(D − 1)

16πGD
∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1

,

Ri = 0 ,

(4.63)

where VD−1 is the volume of SD−2 and GD is Newton’s constant in D dimensions. The

corrections to each of these expressions are suppressed by factors of O(1/r2
+) = O(1/T 2)

51In the expression of κ for even dimension, the sign inside the second term in equation (4.7) of [53] is

different form the sign given in equation (4.18) of [16]; we believe the latter sign is the correct one.
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relative to the leading order results presented above (i.e. there are no next to leading order

corrections).

These thermodynamic formulae listed in (4.63) are in perfect agreement with the fluid

mechanics expressions in (4.56) upon making the following identifications: the spacetime

dimensions of the boundary theory d = D−1, the black hole angular velocities ai are identified

with Ωa and the constant h is identified as

h =
1

16πGD

[
4π

D − 1

]D−1

. (4.64)

In the next subsection, we will see that this agreement goes beyond the global thermodynamic

quantities. Local conserved currents are also in perfect agreement with the black hole physics.

4.5.3 Stress tensor from rotating black holes in AdSD

The uncharged rotating black holes both in odd dimensions (D = 2n+1) and even dimensions

(D = 2n + 2) are presented in detail in [16], equation (E-3) and [53], equation (4.2) . After

performing some coordinate transformations (see appendix 4.9.3) that take the metric of that

paper to the standard form of AdSD at the boundary, we have computed the stress tensor of

this solution.

Our calculation, presented in appendix 4.9.3 uses the standard AdS/CFT dictionary. In

more detail, we foliate the solution in boundary spheres, compute the extrinsic curvature Θµ
ν

of these foliations near the boundary, subtract off the appropriate counter terms contributions

[42–49], and finally multiply the answer by the rD−1 to obtain the stress tensor on a unit

sphere.

We find that the stress tensor so calculated takes the form (see appendix 4.9.3)

Πtt =
2m

16πGD
[(D − 1)γD+1 − γD−1]

Πφaφa =
2m

16πGD
[(D − 1)γD+1ω2

a + γD−1µ−2
a ]

Πtφa = Πφat =
2m

16πGD
(D − 1)γD+1ωa

Πφaφb = Πφbφa =
2m

16πGD
γD+1ωaωb

Πθaθa =
2m

16πGD
γD−1

(
a−1∏
b=1

sec2 θb

)
.

(4.65)

Here γ−2 = 1−
∑n

a=1 ω
2
aµ

2
a where µa =

(∏a−1
b=1 cos θb

)
sin θa.

Note that the functional form of these expressions (i.e. dependence of various components

of the stress tensor on the coordinates of the sphere) agrees exactly with the predictions of

fluid dynamics even at finite values of r+. In the large r+ limit (using (4.62) and (4.64)) , we
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further have

Ωa = ωa ,

D − 1 = d ,

2m

16πGD
= T dh .

With these identifications, (4.65) coming from gravity agrees precisely with (4.58) from fluid

mechanics.

We proceed now to estimate the limits of validity of our analysis above. From the black

hole side, since we have expanded the formulae of black hole thermodynamics in 1/r+ to match

them with fluid mechanics, this analysis is valid if r+ is large. From the fluid mechanics side,

we expect corrections of the order of lmfp. To estimate lmfp in this case, we substitute (4.61)

into (4.59) to get

lmfp ∼
1

r+(d− 1)
� 1 .

Hence, we see that the condition from fluid mechanics is exactly the same as taking large

horizon radius limit: the expansion of black hole thermodynamics in a power series in 1
r+

appears to be exactly dual to the fluid mechanical expansion as a power series in lmfp.

4.6 Comparison with black holes in AdS5 × S5

Large N , N = 4 Yang-Mills, at strong ’t Hooft coupling on S3×R, is dual to classical gravity

on AdS5× S5. Hence, we can specialise the general fluid dynamical analysis presented above

to the study of equilibrium configurations of the rotating N = 4 plasma on S3 and then

compare the results with the physics of classical black holes in AdS5 × S5.

Large black holes in AdS5×S5 are expected to appear in a six parameter family, labelled

by three SO(6) Cartan charges (c = 3), two SO(4) rotations (n = 2) and the mass. While

the most general black hole in AdS5 × S5 has not yet been constructed, several sub-families

of these black holes have been determined.

In this section, we will compare the thermodynamic predictions of fluid mechanics with

all black hole solutions that we are aware of and demonstrate that the two descriptions agree

in the large horizon radius limit. For one class of black holes we will also compare black hole

stress tensor and charge distributions with that of the fluid mechanics and once again find

perfect agreement (in the appropriate limit).

We begin this section with a review of the predictions of fluid mechanics for strongly

coupled N = 4 Yang-Mills on S3. Note that this is a special case of the conformal fluid

dynamics of previous sections with d = D − 1 = 4.

4.6.1 The strongly coupled N = 4 Yang-Mills Plasma

The gravity solution for SO(6) charged black branes (or, equivalently, large SO(6) charged

but non-rotating black holes in AdS5 × S5) has been used to extract the equation of state
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of N = 4 Yang-Mills (see [64, §2] for the thermodynamic expressions in the infinite radius

limit).

Rather than listing all the thermodynamic variables, we use the earlier parametrisation

of (4.14) to state our results. The thermodynamics of the N = 4 Yang-Mills is described by

the following equations52

h(ν) =
P
T 4

= 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

νi =
µi
T

=
2π
∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

) √κi
1 + κi

,

hi(ν) =
ri
T 3

=
2πN2

∏
j(1 + κj)

2(
2 +

∑
j κj −

∏
j κj

)3

√
κi .

(4.66)

where the auxiliary parameters κi have a direct physical interpretation in terms of entropy

and charge densities (see §2 of [64]) -

κi =
4π2R2

i

S2
. (4.67)

κi are constrained by κi ≥ 0 and by the condition53

2 +
∑

j κj −
∏
j κj∏

j(1 + κj)
=

∑
j

1

1 + κj
− 1

 ≥ 0.

It follows from (4.67) that κi is finite for configurations with finite charge and non-zero

entropy. The configurations with κi → ∞ (for any i) are thermodynamically singular, since

in this limit, the ith charge density is much larger than the entropy density. Hence, in the

following, we shall demand that κi be finite.

The general analysis presented before now allows us to construct the most general sta-

tionary solution of the N = 4 fluid rotating on a 3-sphere. The thermodynamic formulae and

currents of these solutions follow from (4.35), (4.34) and (4.37) upon setting

A = h(ν) = 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

B = 4h(ν)− νihi(ν) = 4π2N2

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

Ci = hi(ν) = 2πN2√κi

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

(4.68)

52Note that our convention for the gauge field differs from [64, §2] by a factor of
√

2.
53Which is obtained by requiring that the temperature T ≥ 0 in the expression for T in [64, §2].
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which leads to

ζi =
2πT

∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

) √κi
1 + κi

, (4.69)

and

lnZgc =
2π2N2V4T

3
∏
j(1 + κj)

3

(1− Ω2
1)(1− Ω2

2)
(

2 +
∑

j κj −
∏
j κj

)4 , (4.70)

where we have used the notation V4 = Vol(S3) = 2π2 as before.

As before, the mean free path in fluid mechanics can be estimated as

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
2 +

∑
j κj −

∏
j κj

)
6πT

∏
j(1 + κj)

=
1

6πT

∑
j

1

1 + κj
− 1

 . (4.71)

4.6.2 The extremal limit

The strongly coupled N = 4 Yang-Mills plasma has an interesting feature; it has interesting

and nontrivial thermodynamics even at zero temperature. In this subsection, we investigate

this feature and point out that it implies the existence of interesting zero temperature solutions

of fluid dynamics which will turn out to be dual to large, extremal black holes.

Thermodynamics In the above section, we presented the thermodynamics of strongly

coupled N = 4 Yang-Mills plasma in terms of the parameters κi. These parameters are

constrained by the conditions κi ≥ 0 and
∑

i
1

1+κi
≥ 1 with κi finite. In order to visualise the

allowed range over which the variables κi’s can vary, it is convenient to define a new set of

variables

Xi =
1

1 + κi
, Xi = X, Y, Z,

χ =
T

X + Y + Z − 1
.

(4.72)

The constraints κi ≥ 0 and
∑

i
1

1+κi
≥ 1 with κi finite translate into the constraints

0 < Xi ≤ 1 and X + Y + Z ≥ 1 . Geometrically, this is just the statement that Xi’s can lie

anywhere inside the cube shown in fig.1, away from the planes Xi = 0 and on or above the

plane X + Y + Z = 1.

The energy density, the entropy density and the charge densities of the Yang-Mills plasma

may be rewritten as a function of X,Y, Z and χ as

ρ = 6π2N2XY Zχ4, s = 4π2N2XY Zχ3,

ri = 2πN2XY Zχ3

√
1−Xi

Xi
.

(4.73)
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The condition for the validity of fluid mechanics becomes

lmfp ∼
1

6πχ
� 1 or χ� 1 . (4.74)

Z

Y

X

O

A

B

C

P

Q

R

S

Figure 1. The space of allowed κi’s. The axes correspond to X = 1
1+κ1

, Y = 1
1+κ2

and Z = 1
1+κ3

.

The Xi’s can lie anywhere in the cube outside the “extremal” plane X + Y + Z = 1.

Consider now the case in which χ is large, but finite and X,Y, Z take values close to the

interior of the triangle ABC in fig.1. From (4.72) and (4.73), it is evident that this is equivalent

to taking an extremal limit T → 0 with appropriate chemical potentials. All thermodynamic

quantities listed above are smooth in this limit and the fluid mechanics continues to be valid.

The N = 4 Yang-Mills plasma with three nonzero R-charges always has a nonsingular

extremal limit. In the case that one of the charges say r3 is zero, then we are constrained to

move on the X3 = 1 plane in the space of Xi’s. Hence, we can never approach the ‘extremal

triangle’ X + Y + Z = 1.54 Thus, we have no nonsingular extremal limit if any one of the

three R-charges is zero. By a similar argument, no nonsingular extremal limit exists if two of

the R-charges were zero.

We note that Gubser and Mitra have previously observed that charged black branes near

extremality are sometimes thermodynamically unstable [65]. Although we have not performed

a careful analysis of the thermodynamic stability of the charged fluids we study in this chapter

(see however [64]), we suspect that these fluids all have Gubser-Mitra type thermodynamic

instabilities near extremality. If this is the case, the near extremal fluid solutions we study

in this section and the next – and the black holes that these are dual to – are presumably

unstable to small fluctuations. Whether stable or not, these configurations are valid solutions

of fluid dynamics. We postpone a serious discussion of stability to future work.55

54Remember that we have already excluded, on physical grounds, the point X1 = X2 = 0, X3 = 1 which

lies in the intersection of X3 = 1 plane and the extremal plane X + Y + Z = 1.
55We thank Sangmin Lee for discussion of these issues.
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Fluid mechanics The thermodynamic expressions for the charges of a rotating Yang-Mills

plasma take the form

E =
2π2N2XY ZV4

(1− ω2
1)(1− ω2

2)

[
2ω2

1

1− ω2
1

+
2ω2

2

1− ω2
2

+ 3

] [
T

X + Y + Z − 1

]4

,

L1 =
2π2N2XY ZV4

(1− ω2
1)(1− ω2

2)

[
2ω1

1− ω2
1

] [
T

X + Y + Z − 1

]4

,

L2 =
V4τ

4A

(1− ω2
1)(1− ω2

2)

[
2ω2

1− ω2
2

] [
T

X + Y + Z − 1

]4

,

S =
4π2N2XY ZV4

(1− ω2
1)(1− ω2

2)

[
T

X + Y + Z − 1

]3

,

Ri =
2πN2XY ZV4

(1− ω2
1)(1− ω2

2)

[
T

X + Y + Z − 1

]3√1−Xi

Xi
,

(4.75)

and the mean free path

lmfp ∼
X + Y + Z − 1

6πT
� 1 . (4.76)

We see that all thermodynamical charges of our rotating fluid configurations are nonsingular,

and that fluid mechanics is a valid approximation for these solutions, in the extremal limit

described in the previous subsection, provided only that χ� 1.56

The solution so obtained describes a rotating fluid whose local temperature vanishes

everywhere, but whose rest frame charge density is a function of location on the S3 (it scales

like γ3). As we will see below these extremal configurations of rotating fluid on S3 are exactly

dual to large, rotating, extremal black holes in AdS5.

4.6.3 Predictions from fluid mechanics in special cases

As mentioned in the beginning of this section, the most general black hole in AdS5 × S5 has

not yet been constructed, but several subfamilies of these black holes are known. To facilitate

the comparison between fluid mechanics on S3 on one hand and these subfamilies of black

holes on the other, in this subsection, we specialise the general predictions of the previous

subsection to various specific cases.

All SO(6) charges equal: arbitrary angular velocities Consider first the case of a

fluid with equal SO(6) charges (with the rotational parameters arbitrary). That is we set

κ1 = κ2 = κ3 = κ in the general formulae above. Noting that (2 + 3κ− κ3) = (κ+ 1)2(2− κ)

56In greater generality, in order for fluid mechanics to be a valid approximation for our solutions it is

necessary that either T � 1 (which is by itself sufficient) or that X + Y + Z − 1→ 0 (under which condition

the ratio χ of the previous section must be large and (conservatively) none of X, Y or Z be very small).
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we find that the stress tensor and currents are given by (4.34) and (4.35) with

A =
2π2N2(1 + κ)

(2− κ)4
,

B =
4π2N2

(2− κ)3
,

Ci =
2πN2√κ
(2− κ)3

.

(4.77)

The thermodynamics can be summarised by

ζi =
2πT
√
κ

(2− κ)
, lnZgc(T,Ω, ζ) =

2π2N2V4T
3(1 + κ)

(1− Ω2
1)(1− Ω2

2)(2− κ)4
. (4.78)

The formula for mean free path (4.71) reduces to

lmfp ∼
1

6πT

[
2− κ
1 + κ

]
. (4.79)

Let us specialise the extremal thermodynamics of N = 4 Yang-Mills fluid presented

before to this case. In terms of the variables introduced in §§4.6.2, we have X = Y = Z

which is a straight line in the Xi space. The extremal limit is obtained when this line cuts

the extremal plane X + Y +Z = 1 , i.e, at the point X = Y = Z = 1/3. This corresponds to

the extremal limit κ→ 2.

More explicitly, in the extremal limit

T → 0 , (2− κ) =
T

χ
, (4.80)

with χ large but finite. The thermodynamic quantities obtained by differentiating the grand

partition function (4.93),

S =
2N2π2V4T

3

(2− κ)3

1

(1− a2)(1− b2)

L1 =
4N2π2V4T

4(1 + κ)

(2− κ)4

a

(1− a2)2(1− b2)

L2 =
4N2π2V4T

4(1 + κ)

(2− κ)4

b

(1− a2)(1− b2)2

R =
2πN2V4T

3√κ
(2− κ)3

1

(1− a2)(1− b2)

E =
2π2N2V4T

4(1 + κ)

(2− κ)4

[4− (1 + a2)(1 + b2)]

(1− a2)2(1− b2)2
,

(4.81)

are all smooth; and they describe a fluid configuration whose energy, angular momentum,

charge and entropy scale as N2χ4, N2χ4, N2χ3 and N2χ3 respectively.
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Independent SO(6) charges: equal rotations Consider the special case ω1 = ω2 = Ω

(the three SO(6)) chemical potentials are left arbitrary). The stress tensor and currents are

given by (4.34) and (4.35) with

A = 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

B = 4π2N2

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

Ci = 2πN2√κi

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

γ =
1√

1− Ω2
, v = Ω .

(4.82)

The thermodynamics can be summarised by

ζi =
2πT

∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

) √κi
1 + κi

, lnZgc =
2π2N2V4T

3
∏
j(1 + κj)

3

(1− Ω2)2
(

2 +
∑

j κj −
∏
j κj

)4 . (4.83)

The expression for mean free path (4.71) reduces to

lmfp ∼
1

6πT

∑
j

1

1 + κj
− 1

 . (4.84)

The extremal limit
∑

j(1 + κj)
−1 → 1 with all κi kept finite, is nonsingular, and yields

solutions that are well described by fluid dynamics when lmfp is small.

Two equal nonzero SO(6) charges: arbitrary angular velocities Consider now the

case when κ1 = κ2 = κ, κ3 = 0. We find that the stress tensor and currents are given by

(4.34) and (4.35) with

A =
π2N2(1 + κ)2

8
,

B =
π2N2(1 + κ)

2
,

C1 = C2 =
πN2√κ(1 + κ)

4
,

C3 = 0 .

(4.85)

The thermodynamics can be summarised by

ζ1 = ζ2 = πT
√
κ , lnZgc(T,Ω, ζ) =

π2N2V4T
3(1 + κ)2

8(1− Ω2
1)(1− Ω2

2)
. (4.86)

The expression for mean free path, from (4.71), is

lmfp ∼
1

3πT (1 + κ)
. (4.87)
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It follows from (4.87) that fluid mechanics is a good approximation when T is large. Though

this equation would appear to suggest that the fluid dynamical approximation is also valid

(for instance) at fixed T and large κ, we have emphasised before, the limit of large κ is

thermodynamically suspect. Conservatively, thus, fluid mechanics applies only at large tem-

peratures.

A single nonzero charge: arbitrary angular velocities We now set κ1 = κ, κ2 = κ3 =

0 leaving angular velocities arbitrary. The stress tensor and currents are given by (4.34) and

(4.35) with

A =
2π2N2(1 + κ)3

(2 + κ)4
,

B =
4π2N2(1 + κ)2

(2 + κ)3
,

C1 =
2πN2√κ(1 + κ)2

(2 + κ)3
,

C2 = C3 = 0 .

(4.88)

The thermodynamics can be summarised by

ζ =
2πT
√
κ

(2 + κ)
, lnZgc(T,Ω, ζ) =

2π2N2V4T
3(1 + κ)3

(1− Ω2
1)(1− Ω2

2)(2 + κ)4
. (4.89)

The mean free path, from (4.71) is given by

lmfp ∼
1

6πT

[
2 + κ

1 + κ

]
. (4.90)

As in the previous subsection, this particular case does not admit thermodynamically

nonsingular zero temperature (or extremal) configurations.

4.6.4 Black holes with all R-charges equal

Having derived the fluid mechanics predictions for various different black holes, we now pro-

ceed to examine the black hole solutions. First, we will focus on the case of black holes with

arbitrary angular momenta in AdS5 but equal SO(6) charges. The relevant solution has been

presented in [19].

Thermodynamics The black holes presented in [19] are labelled by two angular velocities

a, b, and three more parameters q,m and r+. These five parameters are not all independent;

they are constrained by one equation relating horizon radius to the parameter m (∆r = 0 in

that paper). We thus have a four parameter set of black holes.57

57We work in conventions in which the AdS radius and hence the parameter g of [19] is set to unity.
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The relatively complicated black hole thermodynamic formulae of [19] simplify if the

parameter r+ (which may be interpreted as the horizon radius) is taken to be large. In

particular, consider the limit

r+ � 1 and y = q/r3
+ fixed. (4.91)

In this limit, to leading order,we have

T =
r+

2π
(2− y2) ,

2m = r4
+(1 + y2) .

(4.92)

From the positivity of T and r+ it follows immediately that 0 ≤ y2 ≤ 2.

Multiplying all thermodynamic integrals in [19] by
R3

AdS
G5

= 2N2

π and noting that our charge

R is equal to their Q/
√

3, the black hole thermodynamic formulae reduce to (to leading order

in r+)

Ω1 = a ,

Ω2 = b ,

ζi =
2πyT

(2− y2)
,

lnZgc =
2π2N2(1 + y2)

(2− y2)4

[
V4T

3

(1− Ω2
1)(1− Ω2

2)

]
.

(4.93)

Once we identify the black hole parameter y2 with the fluid parameter κ, these formula take

precisely the form of fluid mechanics formulae (4.78) with the equation of state coming from

(4.77).58

We can now compute the fluid mechanical mean free path lmfp as a function of bulk black

hole parameters. From equations (4.92) and (4.79), we find (assuming that r+ is large)

lmfp ∼
1

3r+(1 + κ)
.

As 1+κ = 1+y2 is bounded between 1 and 2, it appears from this equation that the expansion

in powers of 1/r+ is simply identical to the fluid dynamical expansion in powers of lmfp. This

explains why black hole thermodynamics agrees with the predictions of the Navier-Stokes

equations when (and only when) r+ is large.

58 The functions h(ν) and its derivatives have simple expressions as functions of bulk parameters. Comparing

with (4.64) we find

h(ν) =
2N2

π

[
2m

16πT 4

]
=

m

8πG5T 4

hi(ν) =
2N2

π

q

8πT 3
=

q

8πG5T 3

(4.94)
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Stress tensor and charge currents In appendix 4.9.3, we have computed the boundary

stress tensor corresponding to this black hole solution (by foliating the space into S3 ’s at

infinity, computing the extrinsic curvature of these sections, and subtracting the appropriate

counterterms). At leading order in 1
r+

Πtt =
m

8πG5
γ4(4γ2 − 1)

Πφφ =
m

8πG5
γ4

(
4γ2a2 +

1

sin2 θ

)
Πψψ =

m

8πG5
γ4

(
4γ2a2 +

1

cos2 θ

)
Πtφ = Πφt =

4m

8πG5
aγ6

Πtψ = Πψt =
4m

8πG5
bγ6

Πφψ = Πψφ =
4m

8πG5
abγ6

Πθθ =
m

8πG5
γ4.

(4.95)

In a similar fashion, the charge currents on S3 may be computed from Jµi = −r4gµνAν |r→∞
where the indices µ, ν are tangent to the S3× time foliations and and the bulk gauge field Aν
is given in the equation (2) of [19]. We find

J t1 = J t2 = J t3 =
q

8πG5
γ4

Jθ1 = Jθ2 = Jθ3 = 0

Jφ1 = Jφ2 = Jφ3 =
q

8πG5
γ4a

Jψ1 = Jψ2 = Jψ3 =
q

8πG5
γ4b .

(4.96)

Using (4.94), it is evident that the expressions in (4.96) are in precise agreement with the

predictions (4.51) of fluid dynamics.

4.6.5 Black holes with independent SO(6) charges and two equal rotations

The most general (five parameter) black hole solutions with the two angular velocities set

equal can be found in [54]. The thermodynamics of these black holes was computed in [59].

The black hole solutions depend on the parameters δ1, δ2, δ3, a,m, r+ that are related by

the equation Y (r) = 0. The thermodynamics of these black holes simplify in the limit

r+ � 1 ,
2ms2

i

r2
+

= Hi − 1 fixed.

Then solving the equation Y = 0 in this limit, one can express m as

2m =
(H1H2H3)r4

+

(1− a2)
.
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The various thermodynamic quantities in this limit59 (after multiplying integrals by
R3

AdS
G5

=
2N2

π ) can be summarised by

Ω1 = Ω2 = a , T =
r+

√
1− a2

2π

∑
j

H−1
j − 1

∏
j

√
Hj ,

ζi = r+

√
1− a2

(√
Hi − 1

Hi

)∏
j

√
Hj =

2πT∑
j H
−1
j − 1

(√
Hi − 1

Hi

)
,

lnZgc =
πN2r3

+

2
√

1− a2

( ∏
j

√
Hj∑

j H
−1
j − 1

)
=

4π4N2T 3

(1− Ω2)2
(∏

j Hj

)(∑
j H
−1
j − 1

)4

(4.97)

These expressions match with (4.83) if κi is identified with Hi − 1, demonstrating perfect

agreement between black hole and fluid dynamical thermodynamics.

Translating the estimate for the mean free path into the black hole variables, we find

lmfp ∼
1

3r+
∏
j

√
Hj

� 1 ,

(an equation that is valid only in the large r+ limit). Notice that lmfp is automatically small

in the large r+ limit, explaining why black hole thermodynamics agrees with the predictions

of the Navier-Stokes equations in this limit.

Notice that the fluid mechanical expansion parameter lmfp appears to differ from the ex-

pansion parameter of black hole thermodynamics used above, 1/r+, by a factor of 1/
√∏

iHi.

When the three charges of the black hole are in any fixed ratio a : b : c, with none of a, b or

c either zero or infinity, it may easily be verified that this additional factor is bounded be-

tween a nonzero number (which depends on a, b, c) and unity. In this case the two expansion

parameters - lmfp and 1/r+ - are essentially the same.

However when one of the black hole charges (say R1) vanishes H2 and/or H3 can formally

take arbitrarily large values. In this extreme limit lmfp appears to differ significantly from

the bulk expansion parameter 1/r+. However large Hi implies large κi, a limit that we have

argued above to be thermodynamically singular. Keeping away from the suspicious large κi
limit, it is always true that lmfp is essentially identical 1/r+, the parameter in which we have

expanded the formulas of black hole thermodynamics.

Finally we emphasise that the black hole studied in this subsection include a large class

of perfectly nonsingular zero temperature or extremal black holes with finite κi and large r+

which perfectly reproduce the predictions of extremal fluid mechanics of §§4.6.2.

59We believe that [59] has a typo: (3.10) should read Φi = 2m
r2Hi

(sici + 1
2
aΩ(cisjsk − sicjck)). Note that

they also use coordinates ψ = φ1 + φ2 and ϕ = φ1 − φ2 so that Ω∂ψ = Ω
2
∂φ1 + Ω

2
∂φ2 so that Ωa = Ω

2
.
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In more detail, the thermodynamical quantities of a general solution in this subsection is

given in terms of X,Y, Z (defined as in (4.72)) as

S =
N2πr3

+√
XY Z(1− a2)

,

E =
N2r4

+(3 + a2)

4XY Z(1− a2)
,

L =
N2r4

+a

2XY Z(1− a2)
,

Ri =
N2r3

+

2
√
XY Z(1− a2)

√
1−Xi

Xi
,

ζi = r+

√
Xi(1−Xi)(1− a2)

XY Z
.

(4.98)

From these expressions, together with the formula for temperature in (4.97) it follows that

the limit X + Y + Z → 1 (with none of X,Y, Z zero) is extremal (the temperature goes

to zero) and non-singular (all thermodynamic quantities are finite and well defined). Note

that r+ is an arbitrary parameter for these extremal black holes. When r+ is large the fluid

dynamical description is valid. The black holes so obtained are exactly dual to the extremal

fluid configurations described in §§4.6.2.

4.6.6 Black holes with two equal large R-charges and third R-charge small

Chong et al. [55] have determined a class of black hole solutions with two SO(6) charges held

equal, while the third charge is varied as a function of these two equal charges. In the large

radius limit, it turns out that this third charge is negligible compared to the first two, so for

our purposes these solutions can be thought of as black holes with two equal SO(6) charges,

with arbitrary rotations and the third SO(6) charge set to zero. The parameters of this black

hole solution are a, b,m, r+, s, which are related by the equation X(r+) = 0.

Black hole formulae simplify in the limit

r+ � 1 and k =
2ms2

r2
+

fixed,

in units where the inverse AdS radius g = 1, which leads to

2m = r4
+(1 + k)2 .

Multiplying all thermodynamic integrals in [55] by
R3

AdS
G5

= 2N2

π , in this limit, the ther-

modynamics can be summarised by

Ω1 = a , Ω2 = b , T =
r+

π
,

ζ1 = ζ2 = πT
√
k , ζ3 ∼ O

(
1

r2
+

)
,

lnZgc =
π2N2V4T

3(1 + k)2

8(1− a2)(1− b2)
.

(4.99)
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Note that ζ3 and R3 are subleading in r+. These formulae are in perfect agreement with

(4.86) if we identify

κ = k .

From the expression for the temperature, it follows that all extremal or zero temperature

black holes have r+ = 0. Consequently all extremal black holes (of the class of black holes

described in this subsection) are singular, dual to the fact that the fluid mechanics has no

thermodynamically nonsingular zero temperature solutions.

Translating the estimate for the fluid dynamical mean free path into the black hole

variables we find (assuming r+ � 0)

lmfp ∼
1

3r+(1 + κ)
.

It follows that the fluid dynamical expansion parameter is essentially the same as 1/r+,

provided we stay away from the thermodynamically suspect parameter regime of large κ .

4.6.7 Black holes with two R-charges zero

The solution for the most general black hole with two R-charges set to zero relevant solution

has was presented in [56]. The parameters of this black hole are x0,m, δ, a, b related by

X(x0) = 0.

The thermodynamics of these black holes simplifies in the limit

x0 � 1 , y =
√
x0δ fixed,

in units where g = 1, which leads to

2m =
x2

0

(1− y2)
.

This gives an upper bound on y: y ≤ 1.

Multiplying all thermodynamic integrals in [56] by
R3

AdS
G5

= 2N2

π , in this limit, the ther-

modynamic formulae can be summarised by

Ω1 = a , Ω2 = b ,

T =

√
x0(2− y2)

2π
√

1− y2
, ζ =

√
x0y =

2πTy
√

1− y2

2− y2
,

lnZgc =
x

3/2
0 πN2

2
√

1− y2(2− y2)(1− a2)(1− b2)
=

4π4N2T 3(1− y2)

(1− Ω2
1)(1− Ω2

2)(2− y2)4

(4.100)

Upon identifying κ = y2

1−y2 , we find perfect agreement with (4.89). Under this identification,

the expression for temperature becomes

T =

√
x0(2 + κ)

2π
√

1 + κ
.
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As in the subsection above, it follows immediately from this equation that the black hole

temperature vanishes only for the singular black holes with x0 = 0. This matches with the

fact that there are no nonsingular extremal fluid dynamical solutions in this case.

The fluid dynamical mean free path may be evaluated as a function of bulk parameters

as

lmfp ∼
1

3
√
x0(1 + κ)

.

Note that lmfp is small whenever
√
x0 = r+ is large, an observation that explains the

agreement of black hole thermodynamics in the large r+ limit with the Navier-Stokes equa-

tions. In more generality we see that lmfp is essentially the same as 1/r+, provided we keep

away from the thermodynamically suspicious parameter regime of κ large.

4.6.8 Extremality and the attractor mechanism

As discussed in the previous subsections, there exists a duality between extremal large rotating

AdS black holes on one hand and the extremal configurations of the fluid dynamics on the

other. This implies that the thermodynamic properties of these large rotating extremal black

holes are completely determined by the corresponding properties of large static extremal

black holes. As an application of this observation, let us recall the suggestion [66–68] that

the attractor mechanism for black holes implies the non-renormalisation of the entropy of all

extremal configurations, as a function of the ’t Hooft coupling λ. It follows immediately from

the fluid mechanical description at large charges, that were any such non-renormalisation

theorem be proved for static extremal configurations, it would immediately imply a similar

result for rotating extremal configurations.

4.6.9 BPS bound and supersymmetric black holes

All solutions of IIB supergravity on AdS5 × S5, and all configurations of N = 4 Yang-Mills

on S3 obey the BPS bound

E ≥ L1 + L2 +
∑
i

Ri = L1 + L2 + 3R . (4.101)

Within the validity of the fluid dynamical approximation, described in this chapter,

E − L1 − L2 = 2π2T 4A
3 + ω1 + ω2 − ω1ω2

(1 + ω1)(1 + ω2)
; (4.102)

notice that the RHS of this equation is positive definite. The BPS bound is obeyed provided

τA
3 + ω1 + ω2 − ω1ω2

(1 + ω1)(1 + ω2)
≥ Ci . (4.103)

Plugging in the explicit expressions for A and Ci from (4.77), we find this condition is satisfied

provided

r+ =
2πT

2− κ
≥

√
κ(1 + ω1)(1 + ω2)

(1 + κ)(3 + ω1 + ω2 − ω1ω2)
. (4.104)
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The RHS of (4.104) is of order unity. It follows that (4.104) is saturated only when r+ of unit

order. It follows that when r+ � 1 (so that fluid dynamics is a valid approximation) the BPS

bound is always obeyed as a strict inequality. Supersymmetric black holes are never reliably

described within fluid mechanics.60 The extremal black holes with large horizon radius, that

are well described by fluid mechanics61 (see the previous subsection) are always far from

supersymmetry.

We have noted above that a large class of extremal configurations in strongly interacting

Yang-Mills – all those that admit a fluid dynamic description – are not BPS. This is in sharp

contrast with the results of computations in free Yang-Mills theory, in which all extremal

configurations are supersymmetric [69]. This difference is related to the fact, noted previously,

the divergent mean free path prevents a fluid mechanical description from applying to free

theories. A practical manifestation of this fact is that the function h(ν), which appears in the

analysis of free Yang-Mills in equation (5.2) of [69], and plays the role of r+ in our discussion

here, is always of order unity for all allowed values of the chemical potential, and so can never

become large.

4.6.10 Fluid dynamics versus black hole physics at next to leading order

As we have explained above, the formulae for all thermodynamic charges and potentials of

black holes of temperature T and chemical potentials νi, in AdS5×S5, may be expanded as a

Taylor series in 1/r+ ∼ lmfp(T, νi). As we have verified above, for every known family of large

AdS black holes, the leading order results in this expansion perfectly match the predictions

of the Navier-Stokes equations. Higher order terms in this expansion represent corrections to

Navier-Stokes equations. In this subsection we investigate the structure of these corrections.

Let us first investigate the case of black holes with at least one SO(6) charge set equal to

zero (the black holes studied in §§4.6.6 and §§4.6.7). It is not difficult to verify that the first

deviations from the large radius thermodynamics of these black holes occur at O(1/r2
+) ∼

l2mfp. This result is in perfect accord with naive expectations from fluid mechanics. As we

have explained above, the fluid dynamical configurations presented in this chapter are exact

solutions to the equations of fluid mechanics with all one derivative terms, i.e. to the first

order in lmfp. In general we would expect our solutions (and their thermodynamics) to be

modified at O(l2mfp), exactly as we find from the black hole formulae.

However when we turn our attention to black holes with all three SO(6) charges nonzero

we run into a bit of a surprise. It appears that the thermodynamics (and stress tensor and

charge currents) of these black holes receives corrections at order O(1/r+) ∼ lmfp. This result

60Although it is possible to make the energy of supersymmetric black holes parametrically larger than their

entropy, this is achieved by scaling either ω1 or ω2 to unity with r+ kept at unit order. It is easy to verify that

in this limit the local, rest frame mean free path of the fluid is of unit order in regions of the S3 and so fluid

mechanics may not be used to describe these configurations.
61Note that the ‘physical’ radius (Area)1/3 of the black hole is distinct from the parameter r+ which de-

termines the validity of fluid dynamics. The physical radius can be made arbitrarily large, nevertheless fluid

mechanics is only valid if r+ is large.
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is a surprise because, for the reason we have explained in the previous paragraph, we would

have expected the first corrections to our fluid mechanical configuration to occur at O(l2mfp).

We do not have a satisfactory resolution to this puzzle. In this subsection we will simply

present the expressions for the first order corrections to black hole thermodynamics in a

particular case (the case of black holes with all SO(6) charges equal), and leave the explanation

of these formulae to future work.

As we have mentioned above, the thermodynamics of a charged rotating black hole in

AdS5×S5 with three equal charges and two different angular momenta can be found in [19].

To calculate next to leading order (NLO) corrections to the thermodynamics of large black

holes, we systematically expand the thermodynamic quantities.

We find it convenient to shift to a new parametrisation in which there are no NLO

corrections to the intensive quantities. This allows us to cast the NLO corrections entirely in

terms of the intensive quantities. The parameters we choose are related to the parameters in

[19] in the following way

a = ωa −
√
κ(1− ω2

a)ωb
`

,

b = ωb −
√
κ(1− ω2

b )ωa
`

,

r+ = ` +
√
κωaωb ,

q =
√
κ`3 + 3κ`2ωaωb .

(4.105)

In terms of these parameters, the intensive quantities can be written as

Ωa = ωa +O
[

1

`2

]
,

Ωb = ωb +O
[

1

`2

]
,

T =

[
2− κ

2π

]
`+O

[
1

`

]
,

ν =
2π
√
κ

2− κ
+O

[
1

`2

]
,

(4.106)

where we have calculated up to NLO and confirmed that the intensive quantities do not get

corrected in this order.

This in turn means that the new parameters can be directly interpreted in terms of the

intensive quantities.

ωa = Ωa +O
[
l2mfp

]
, ωb = Ωb +O

[
l2mfp

]
,

where lmfp ∼ 2−κ
T .

` = T

[√
π2 + 2ν2 + π

2

]
+O

[
1

T 2

]
,

√
κ =

√
π2 + 2ν2 − π

ν
+O

[
1

T 2

]
.
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Now, we calculate NLO corrections to the extensive quantities in terms of the new pa-

rameters.

2m = (1 + κ)`4 + 4
√
κ(1 + κ)ωaωb`

3 +O[`2] ,

S =
T 3

G5(1− ω2
a)(1− ω2

b )

[
4π5

(2− κ)3
+O

[
1

T 2

]]
,

La =
T 4

G5(1− ω2
a)(1− ω2

b )

[
2ωa

1− ω2
a

[
2π5(1 + κ)

(2− κ)4

]
− πν3ωb

4T

[
1 + ω2

a

1− ω2
a

]
+O

[
1

T 2

]]
,

Lb =
T 4

G5(1− ω2
a)(1− ω2

b )

[
2ωb

1− ω2
b

[
2π5(1 + κ)

(2− κ)4

]
− πν3ωa

4T

[
1 + ω2

b

1− ω2
b

]
+O

[
1

T 2

]]
,

R =
T 3

G5(1− ω2
a)(1− ω2

b )

[
2π4√κ

(2− κ)3
− πν2

4T
ωaωb +O

[
1

T 2

]]
,

E =
T 4

G5(1− ω2
a)(1− ω2

b )

[
2π5(1 + κ)

(2− κ)4

[
2

1− ω2
a

+
2

1− ω2
b

− 1

]
−πν

3ωaωb
4T

[
2

1− ω2
a

+
2

1− ω2
b

]
+O

[
1

T 2

]]
,

(4.107)

where G5 = πR3
AdS/(2N

2) is the Newton’s constant in AdS5.

In particular, the subleading terms can be isolated and written as

∆S = 0 ,

∆E = − πζ3ωaωb
4G5(1− ω2

a)(1− ω2
b )

[
2

1− ω2
a

+
2

1− ω2
b

]
,

∆La = − πζ3ωb(1 + ω2
a)

4G5(1− ω2
a)

2(1− ω2
b )
,

∆Lb = −
πζ3ωa(1 + ω2

b )

4G5(1− ω2
a)(1− ω2

b )
2
,

∆R = − πζ2ωaωb
4G5(1− ω2

a)(1− ω2
b )
,

∆ lnZgc =
πζ3ωaωb

4G5T (1− ω2
a)(1− ω2

b )
.

(4.108)

4.7 Comparison with black holes in AdS4 × S7 and AdS7 × S4

In this section we compare solutions of rotating fluids of the M5 or M2 brane conformal

field theory on S2 or S5 to the classical physics of black holes in M theory on AdS4 × S7

and AdS7 × S5 respectively. Our results turn out to be qualitatively similar to those of the

previous section with one difference: the puzzle regarding the next to leading order agreement

between fluid dynamics and black hole physics seems to be absent in this case.

4.7.1 Predictions from fluid mechanics

The equations of state of the strongly coupled M2 and M5 brane fluids were computed from

spinning brane solutions in [70]. Our parameters are related to theirs by κi = l2i /r
2
H .
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M2 branes We define our R-charges to be half of the angular momenta of [70] to agree

with gauged supergravity conventions. The equation of state is

h(ν) =
4π2(2N)3/2

∏
j(1 + κj)

5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
,

νi =
4π
∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
π(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2

√
κi ,

(4.109)

where i, j, k = 1 . . . 4.

The stress tensor and currents are given by (4.50) and (4.51) with

A =
4π2(2N)3/2

∏
j(1 + κj)

5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
,

B =
4π2(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2
,

Ci =
π(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2

√
κi .

(4.110)

The thermodynamics can be summarised by

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
16π3(2N)3/2T 2

∏
j(1 + κj)

5/2

3(1− Ω2)(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
.

(4.111)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
3 + 2

∑
j κj +

∑
j<k κjκk −

∏
j κj

)
8πT

∏
j(1 + κj)

=
1

8πT

∑
j

1

1 + κj
− 1

 . (4.112)

This simplifies when the charges are pairwise equal, κ3 = κ1 and κ4 = κ2. In this case,

with i = 1, 2:

ζi =
4πT

∏
j(1 + κj)

(3 +
∑

j κj −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
16π3(2N)3/2T 2

∏
j(1 + κj)

2

3(1− Ω2)(3 +
∑

j κj −
∏
j κj)

3
.

(4.113)
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and the mean free path becomes

lmfp ∼

(
3 +

∑
j κj −

∏
j κj

)
8πT

∏
j(1 + κj)

=
1

8πT

[∑
i

2

1 + κi
− 1

]
. (4.114)

It is evident that the thermodynamic equations of state listed above allow a set of extremal

fluid configurations very similar to those discussed in §§4.6.2. The analysis of §§4.6.2 can be

easily extended to fluids on S2.

M5 branes We define our R-charges to be twice the angular momenta of [70] to agree with

gauged supergravity conventions. The equation of state is

h(ν) =
64π3N3

∏
j(1 + κj)

4

3(3 +
∑

j κj −
∏
j κj)

6
,

νi =
2π
∏
j(1 + κj)

(3 +
∑

j κj −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
128π2N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

√
κi ,

(4.115)

where i = 1, 2.

The stress tensor and currents are given by (4.50) and (4.51) with

A =
64π3N3

∏
j(1 + κj)

4

3(3 +
∑

j κj −
∏
j κj)

6
,

B =
128π3N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

Ci =
128π2N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

√
κi .

(4.116)

The thermodynamics can be summarised by

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
64π6N3T 5

∏
j(1 + κj)

4

3
∏
a(1− Ω2

a)(3 +
∑

j κj −
∏
j κj)

3
.

(4.117)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
3 +

∑
j κj −

∏
j κj

)
10πT

∏
j(1 + κj)

=
1

10πT

∑
j

2

1 + κj
− 1

 . (4.118)
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In the case that the three rotation parameters are equal, Ω1 = Ω2 = Ω3 = Ω, we have

γ = (1− Ω2)−1/2 and

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
64π6N3T 5

∏
j(1 + κj)

4

3(1− Ω2)3(3 +
∑

j κj −
∏
j κj)

3
.

(4.119)

It is evident that the thermodynamic equations of state listed above allow a set of extremal

fluid configurations very similar to those discussed in §§4.6.2. The analysis of §§4.6.2 can be

easily extended to fluids on S5.

4.7.2 Black holes in AdS4 with pairwise equal charges

The relevant solution was found in [58]. Its thermodynamics have been computed in [59]. We

consider the limit of large r+ with
2ms2i
r+

= ki fixed. In this limit m can be written as

m =
r3

+

2
(1 + k1)2(1 + k2)2,

and therefore si ∼ 1
r+

.

After multiplying integrals by
R2

AdS
G4

= (2N)3/2

3 , the thermodynamic quantities can be

expressed as

T =
r+(3 +

∑
j kj −

∏
j kj)

4π
, Ω = a ,

ζ1 = ζ3 = 4πT
(1 + k2)

√
k1

(3 +
∑

j kj −
∏
j kj)

, ζ2 = ζ4 = 4πT
(1 + k1)

√
k2

(3 +
∑

j kj −
∏
j kj)

,

lnZgc =
16π3(2N)3/2T 2

3

( ∏
j(1 + kj)

2

(3 +
∑

j kj −
∏
j kj)

3

)
1

1− a2
.

(4.120)

If one identifies κi = ki, then these formulae match with (4.113). It is not difficult to verify

that the first corrections to the thermodynamical equations above occur at O(1/r2
+).

It is clear from (4.120) that the black holes of this subsection admit a zero temperature

(extremal) limit with nonsingular thermodynamics at any every value of r+. These extremal

black holes are dual to extremal solutions of fluid dynamics analogous to those described in

the previous section in the context of N = 4 Yang-Mills.

The fluid dynamical mean free path may easily be computed as a function of black hole

parameters. From (4.114) we find

lmfp ∼
1

2r+
∏
j(1 + κj)

.

As in the previous section, the lmfp ∼ 1/r+ away from thermodynamically suspect limits of

parameters.
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4.7.3 Black holes in AdS7 with equal rotation parameters

The relevant solution was found in [57]. Its thermodynamics have been computed in [59].62

We set the parameter g in [59] to be unity and consider the limit

ρ+ � 1 , and Hi = 1 +
2ms2

i

ρ6
+

fixed,

where i=1,2. In this limit, the parameter m is given by

2m = ρ6
+H1H2 .

In this limit, after multiplying integrals by
R5

AdS
G7

= 16N3

3π2 , the thermodynamics can be

summarised by

Ω = a , T =
ρ+

2π

(
2
∑

j Hj −
∏
j Hj∏

j

√
Hj

)
,

ζ1 = 2πT
H2

√
H1 − 1

2
∑

j Hj −
∏
j Hj

, ζ2 = 2πT
H1

√
H2 − 1

2
∑

j Hj −
∏
j Hj

,

lnZgc =
64π6N3T 5

3(1− Ω2)3

( ∏
j H

4
j

(2
∑

j Hj −
∏
j Hj)6

)
.

(4.121)

These formulae agree with (4.119) upon identifying κi = Hi − 1. The first corrections to

these thermodynamical formulae occur at O(1/r2
+). Using this identification we can rewrite

the expression for the temperature as

T =
ρ+
∏
j

√
1 + κj

2π

∑
j

2

1 + κj
− 1

 .

It follows that the black holes studied in this subsection admit smooth extremal limits at any

value of ρ+. Extremal black holes with large ρ+ (and with no κi arbitrarily large) are dual

to extremal solutions of fluid mechanics.

Expressing the fluid mechanical mean free path (4.118) as a function of black hole pa-

rameters we find

lmfp ∼
1

5ρ+
∏
j

√
1 + κj

.

Once again lmfp ∼ 1/r+, away from thermodynamically suspect limits.

62We believe that [59] has the following typos: equation (4.7) should read

S =
π3(r2 + a2)

√
f1

4Ξ3
T =

Y ′

4πr(r2 + a2)
√
f1

Φi =
2msi
ρ4ΞHi

[Ξ−αi + βi(Ω− g)] .
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4.8 Discussion

As we have explained in this chapter, the classical properties of large black holes in AdS

spaces enjoy a large degree of universality, summarised by (4.2). However the reasoning that

led to (4.2) applies equally to all classical theories of gravity, not just to those theories that

are governed by the two derivative effective action. For instance, N = 4 Yang-Mills theory

at finite λ is dual to IIB theory on AdS5 × S5 of finite radius in string units. Even though

thermodynamics of black holes in this background will receive contributions from each of the

infinite sequence of α′ corrections to the Einstein action, we expect (4.2) to be exact in the

large horizon radius limit.63

We find it particularly interesting that (at least in several particular contexts) our fluid

dynamical picture applies not just to non-extremal black holes but also to large radius ex-

tremal black holes. This fact might allow us to make connections between our approach and

the interesting recent investigations of the properties of extremal black holes. In particular,

Astefanesei, Goldstein, Jena, Sen and Trivedi [68] have recently argued that the attractor

mechanism applies to rotating extremal black holes, and have derived a differential equation

that determines the attractor geometry (and gauge field distribution, etc.) of the near horizon

region of such black holes. It would be very i nteresting to investigate the connection, if any,

between these rotating attractor equations and our equations of rotating fluid dynamics.

In the next chapter, we will explain purely in bulk terms, why our calculations in this

chapter works. Roughly speaking, we will show that the metric of a black hole in global AdS

and in the large radius limit, as a superposition of patches of the metric of black branes of

various different temperatures and moving at various different velocities, where the temper-

atures and velocities are given by the solutions to the fluid dynamical equations presented in

this chapter.

4.9 Appendices

4.9.1 Conformal fluid mechanics

Consider a conformal fluid in d dimensions. We seek the conformal transformations of various

observables of such a fluid. USing the results from the previous chapter, we can derive the

transformation of various hydrodynamic quantities

ϑ = ∇µuµ = e−φ
[
ϑ̃+ (d− 1)ũσ∂σφ

]
,

aν = uµ∇µuν = e−2φ
[
ãν + P̃ νσ∂σφ

]
,

σµν =
1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
− 1

d− 1
ϑPµν = e−3φσ̃µν ,

ωµν =
1

2

(
Pµλ∇λuν − P νλ∇λuµ

)
= e−3φω̃µν .

(4.122)

63Away from the supergravity limit, the mean free path lmfp = ν/ρ is expected to be given by f(λ)s/ρ where

f(λ) is a monotonically decreasing function that interpolates between infinity at λ = 0 to unity at infinite

lambda. Thus the condition for the validity of fluid mechanics is modified at finite λ; in the uncharged case,

for instance, it is T � f(λ).
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Further, the transformation of the temperature and the chemical potential can be written as

T = e−φT̃ and µ = e−φµ̃. The transformation of spatial gradient of temperature (appearing

in the Fourier law of heat conduction) is

Pµν(∂νT + aνT ) = e−3φP̃µν(∂ν T̃ + ãν T̃ ) .

The viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃, µi = e−φµ̃i and

Dij = e−(d−2)φD̃ij .

For a fluid with c charges, there are 2c + 2 vector quantities involving no more than a

single derivative which transform homogeneously64. They are

uµ, ∂µνi, ∂µT +

(
aµ −

ϑ

d− 1
uµ

)
T , uµuσ∂σνi and

(
uσ∂σT +

ϑ

d− 1
T
)
uµ.

In the kind of solutions we consider in this chapter, all of them vanish except uµ.

The transformation of the stress tensor is Tµν = e−(d+2)φT̃µν , from which it follows that

∇µTµν = e−(d+2)φ(∇̃µT̃µν − g̃λσT̃ λσ g̃νσ∂σφ) .

So, for the stress tensor to be conserved in both the metrics, it is necessary that Tµν is

traceless.

To consider the possible terms that can appear in the stress tensor, we should look at

the traceless symmetric second rank tensors which transform homogeneously. The tensors

formed out of single derivatives which satisfy the above criterion are easily enumerated. For

a fluid with c charges, there are 2c+ 4 such tensors and they are

uµuν +
1

d
gµν , σµν , qµuν + qνuµ,

(
uσ∂σT +

ϑ

d− 1
T
)(

uµuν +
1

d
gµν
)
,

1

2

(
uµ∂λνi + uλ∂µνi

)
− gµν

d
uσ∂σνi and uσ∂σνi

(
uµuν +

1

d
gµν
)
.

(4.123)

Among these possibilities, the stress tensor we employ just contains the tensors in the first

line. It can be shown that the other tensors which appear in the above list can be removed by

a redefinition of the temperature etc. Even if they were to appear in the stress tensor, for the

purposes of this chapter, it suffices to notice that all such tensors except uµuν + 1
dg

µν vanish

on our solutions. Hence, they would not contribute to any of the thermodynamic integrals

evaluated on our solutions.

4.9.2 Free thermodynamics on spheres

In (4.55) above, we have presented a general expression for the grand canonical partition

function for any conformal fluid on a sphere. In this appendix , we compare this expression

with the conformal thermodynamics of a free complex scalar field on a sphere.

64In the following analysis, we will neglect pseudo-tensors which can be formed out of εµν.... Additional

tensors appear if such pseudo-tensors are included in the analysis.
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Strictly speaking, the fluid dynamical description never applies to free theories on a

compact manifold, as the constituents of a free gas have a divergent mean free path (they never

collide). Nonetheless, as we demonstrate in this subsection, free thermodynamics already

displays some of the features of (4.55) - in its dependence on angular velocities, for example

- together with certain pathologies unique to free theories.

Consider a free complex scalar field on Sd−1× time. This system has a U(1) symmetry,

under which φ has unit charge and φ∗ has charge minus one. We define the ‘letter partition

function’ [71] Zlet as Tr exp [−βH + νR+ βΩaLa] evaluated over all spherical harmonic modes

of the scalar field

Zlet = (eν + e−ν)e−β
d−2

2

(
1− e−2β∏n

a=1(1− e−β−βΩa)(1− e−β+βΩa)

)
(4.124)

(this formula, and some of the others in this section, are valid only for even d; the gen-

eralisation to odd d is simple). We will now examine the high temperature limit of the

grand-canonical partition function separately for ν = 0 and ν 6= 0.

Zero chemical potential: (ν = 0) case The second quantised partition function, Zgc for

the scalar field on the sphere is given by

Zgc = exp

(∑
N

Zlet(Nβ,Nν,Ωa)

N

)
. (4.125)

For small β, we have

Zlet ≈
4

βd−1
∏
a(1− Ω2

a)
.

It follows that65

lnZgc =
4ζ(d)

βd−1
∏
a(1− Ω2

a)
. (4.126)

Upon identifying Vdh|ν=0 = 4ζ(d), we find that (4.125) is in perfect agreement with (4.55).

Nonzero chemical potential: (ν 6= 0) case The high temperature limit of the thermody-

namics of a free, charged, massless field is complicated by the occurrence of Bose condensation.

This phenomenon occurs already when ωa = 0; this is the case we first focus on.

It is useful to rewrite the letter partition function as

Zlet = (2 cosh ν) e−β
d−2

2

∑
N

m(N)e−βN , (4.127)

where m(N) ≈ 2Nd−2/(d − 2)! for N � 1. The logarithm of the grand canonical partition

function may then be written as a sum over Bose factors (one per ‘letter’)

lnZgc = −
∑
N

m(N)
[
ln(1− e−β(N+(d−2)/2)+ν) + ln(1− e−β(N+(d−2)/2)−ν)

]
. (4.128)

65This formula has been derived before in many contexts, for example [72] have derived this in d = 4 and

compared it with the thermodynamics of black holes in AdS5.
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The total charge in this ensemble is given by

R =
∂

∂ν
lnZgc =

∑
N

m(N)

(
1

eβ(N+(d−2)/2)−ν − 1
− 1

eβ(N+(d−2)/2)+ν − 1

)
. (4.129)

In order to compare with fluid dynamics, we should take β to zero while simultaneously

scaling to large R as R = q
βd−1 with q held fixed. As we will see below, in order to make

the total charge R large, we will have to choose the chemical potential to be large. However

it is clear from (4.128) that |ν| < β(d − 2)/2. Consequently, the best we can do is to set

ν = β((d − 2)/2) − ε where ε will be taken to be small. We are interested in the limit when

β is also small. We may approximate (4.129) by

q

βd−1
=

1

ε
− 1

eβ(d−2)−ε − 1
+
∞∑
N=1

(
1

eβN+ε − 1
− 1

eβ(N+(d−2))−ε − 1

)
. (4.130)

The only solution to (4.130) is

ε =
βd−1

q
(1 +O(β)) .

Substituting this solution into the partition function, we find

lnZq =
4ζ(d)

βd−1
(1 +O(β)) . (4.131)

Consequently, to leading order the partition function is independent of the charge q ! What

is going on here is that almost all of the charge of the system resides in a Bose condensate of

the zero mode of the field φ. This zero mode contributes very little entropy or energy to the

system at leading order in β.66 At high temperatures, the zero mode is simply a sink that

absorbs the system charge, leaving the other thermodynamic parameters unaffected.

Upon generalising our analysis to include angular velocities, we once again find that the

leading order partition function (in the limit of high temperatures and a charge R = q/βd−1)

is independent of q and in fact is given by (4.126). Consequently, there is a slightly trivial

(or pathological) sense in which the thermodynamics of a free charged scalar field agrees with

the predictions of fluid mechanics - we find agreement upon setting h(ν) to a constant.

4.9.3 Stress tensors from black holes

According to the usual AdS/CFT dictionary, the boundary stress tensor on Sd−1, corre-

sponding to any finite energy solution about an AdSD background of gravity may be read off

from the metric near the boundary, using the following procedure [42–49]. First we foliate

the spacetime near the boundary into a one parameter set of d geometries, each of which is

metrically conformal to Sd−1 ×R, to leading order in deviations from the boundary. We will

66In particular, the contribution of the zero mode to the energy is proportional to the charge, which is

suppressed by a factor of β relative to the contribution to the energy from nonzero modes.

– 88 –



find it convenient to use coordinates such that the leading order metric in the neighbourhood

of the boundary takes the form

ds2 = −r2dt2 + r2dΩ2
d−1 +

dr2

r2
(4.132)

(here r =∞ is the boundary; this metric has corrections at subleading orders in 1
r2 ).

In these coordinates, our foliation surfaces are simply given by r = const. We next

compute the extrinsic curvature Θν
µ = −∇µnν on these surfaces, where nν is the unit outward

normal to these surfaces. The boundary stress tensor for the dual field theory on a unit sphere

is given by [42–49] as67

Πµ
ν = lim

r→∞

rD−1

8πGD
(Θµ

ν − δµνΘ) , (4.133)

where the coordinates µ, ν go over time and the angles on SD−1.

The stress tensor as defined above will contain some terms which are independent of mass

and charge of the black hole. These are the terms that are nonzero even on the vacuum AdS

background and they diverge in the limit r → ∞. These terms are all precisely cancelled,

up to a zero point Casimir energy, by counter terms presented in §2 of [42]. We will simply

ignore all such terms below; consequently, the stress tensors we present in this chapter should

be thought of as the field theory stress tensors with the contribution from the Casimir energy

subtracted out.68

In order to compute the stress tensor in (4.133), we must retain subleading corrections

to the metric in (4.132). However, only those corrections that are subleading at O( 1
rD−1 )

(relative to the leading order metric in (4.132)) contribute to (4.133).

In order to compute the stress tensor corresponding to two classes of black hole solutions

below, we adopt the following procedure. First, we find a coordinate change that casts the

metric at infinity in the form (4.132) at leading order. Next we compute all the subleading

corrections to the metric at order O( 1
rD−1 ). Finally, we use these corrections to compute the

extrinsic curvature Θµ
ν and then Πµ

ν using (4.133).

Stress tensor from rotating uncharged black holes in AdSD

D = 2n+ 1 The most general rotating black hole in an odd dimensional AdS space is given

by equation (E.3) of [16] (we specialise to odd dimensions by setting the parameter ε in that

equation to zero). The metric presented in [16] uses as coordinates

1. The n Killing azimuthal angles φi along which the black hole rotates. These may be

identified with the coordinates φi in §4.4 of this chapter.

67We rescale the stress tensor of [42] by a factor of 1
8πGD

in order that the energy of our solutions is given

by
∫ √

γ Π0
0 with no extra normalisation factor.

68Recall that the full stress tensor of a general d dimensional conformal field theory is not traceless on an

arbitrary manifold; however the trace is given by a function of the manifold curvature independent of the field

theory configuration. It follows that our stress tensor with Casimir contribution subtracted must be traceless,

as indeed it will turn out to be.
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2. n other unspecified variables (called ‘direction cosines’) µi subject to the constraint∑
i µ

2
i = 1. These may be thought of as the remaining n− 1 coordinates on S2n−1.

3. The radial variable r and timelike variable t.

In order to cast the metric of [16] into the form (4.132) near the boundary, we perform

the following change of coordinates

r̃2 =
n∑
i=1

(r2 + a2
i )µ

2
i

1− a2
i

, r̃2µ̃2
i (1− a2

i ) = (r2 + a2
i )µ

2
i . (4.134)

Note that
n∑
i=1

µ2
i =

n∑
i=1

µ̃2
i = 1 .

This equation may be solved by writing µ̃i as functions of the n− 1 variables θj (which may

then be identified with the coordinates used in §4.4)

µ̃i =

i−1∏
j=1

cos2 θj

 sin2 θi .

In these coordinates, the metric in the neighbourhood of r →∞ becomes

ds2 = −(1 + r̃2)dt2 +
dr̃2

1 + r̃2
+ r̃2

n∑
i=1

(dµ̃2
i + µ̃2

i dφ
2
i )

+
2m

r̃2n−2
γ2(n+1)dt2 +

2m

r̃2n+2
γ2ndr̃2

−
n∑
i=1

4maiµ̃
2
i

r̃2n−2
γ2(n+1)dtdφi +

n∑
i=1,j=1

2maiajµ̃
2
i µ̃

2
j

r̃2n−2
γ2(n+1)dφidφj ,

(4.135)

where we have retained all terms that are subleading up to O( 1
r̃D−1 ) compared to the metric

of pure AdS. Here γ−2 = 1 −
∑n

i=1 a
2
i µ̃

2
i and

∑n
i=1 µ̃

2
i dµ̃

2
i =

∑n−1
i=1

(∏i−1
j=1 cos2 θj

)
dθ2

i as in

(4.46).

Note that this metric separates into two parts; the first piece (on the first line of (4.135))

is the metric of pure AdS space while the terms of the remaining lines represent correction

proportional to the mass m.

The normal vector is given by nr̃ = 1√
gr̃r̃

(with all other components zero). As our metric

contains no terms that mix r with other coordinates at leading order, this is the same as

nr̃ =
1
√
gr̃r̃

= r̃

(
1 +

1

r̃2

) 1
2 [

1− m

r̃2n
γ2n
]
.

Since the normal vector has only the r̃ component and since the component is a function of

r̃ only, to compute the extrinsic curvature tensor Θν
λ one needs only those components of Γ
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that are of the form Γνλr̃. The Christoffel symbols (that are relevant for the calculation of the

stress-tensor) as calculated from this metric up to the first subleading term in r̃ are given by

Γttr̃ =
r̃

r̃2 + 1

(
1 +

2nm

r̃2n
γ2(n+1)

)
Γφitr̃ =

2nmai
r̃2n+1

γ2(n+1)

Γtφir̃ =− 2nmaiµ̃
2
i

r̃2n+1
γ2(n+1) Γφiφj r̃ =

1

r̃

(
δij −

2nmaiajµ̃j
r̃2n

γ2(n+1)

)
Γθθr̃ =

1

r̃
.

(4.136)

The extrinsic curvature Θν
λ in this case is given by

Θν
λ = −Γνλr̃n

r̃ +O
(

1

r̃2n+1

)
.

Ignoring all terms in Θν
µ that are independent of mass (for the reasons explained in the

introduction to this appendix) we find

Θt
t = −mγ

D+1

r̃D−1
(D − 1− γ−2) Θφi

φi
=
mγD+1

r̃D−1

(
(D − 1)a2

i µ̃
2
i + γ−2

)
Θt
φi

=
(D − 1)mγD+1

r̃D−1
aiµ̃

2
i Θφi

φj
=

(D − 1)mγD+1

r̃D−1
aiajµ̃

2
j (i 6= j)

Θφi
t = −(D − 1)mγD+1

r̃D−1
ai Θθi

θi
=
mγ(D−1)

r̃D−1
.

(4.137)

Here the n has been replaced by D−1
2 . It may easily be verified that Θν

λ is traceless and

therefore the stress tensor is also traceless according to the definition (4.133). Raising one

index in Θ by asymptotic AdS metric, normalising it appropriately and then taking the large

r̃ limit one can derive the stress tensor as given in (4.65).

D = 2n+ 2 The computation of the boundary stress tensor for the most general uncharged

rotating black hole in even dimensional AdS spaces is almost identical to the he analysis

presented in the previous subsection. Once again the metric is given in equation (E-3) of

[16], where we must set ε to 1 to specialise to even dimensions. The coordinates of the black

hole solution are similar to those described in the previous subsection, except that there are

n+ 1 coordinates µi restricted by a single equation
∑

a µ
2
i = 1. Repeating the computations

described in the previous subsection, our final result is once again simply (4.137). In summary

(4.137) is correct no matter whether D is odd or even.

Black holes in AdS5 with all R-charges equal In this subappendix, we compute the

boundary stress tensor for a class of charged black holes, namely for black holes in AdS5 with

all three R-charges equal. Our computation will verify the striking prediction of §4.3 that

the functional form of this stress tensor is independent of the black hole charge in the fluid

dynamical limit.
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The metric for rotating black holes with all R-charges equal is given by (equation (1) of

[19])

ds2 = −
∆θ̃[(1 + y2)ρ2dt+ 2qν]dt

ΣaΣbρ2
+

2qνω

ρ2
+
f

ρ4

(
∆Θdt

ΣaΣb
− ω

)2

+
ρ2dy2

∆y

+
ρ2dθ̃2

∆θ̃

+
y2 + a2

Σa
sin2 θ̃dφ2 +

y2 + b2

Σb
cos2 θ̃dψ2,

(4.138)

where

∆y =
(y2 + a2)(y2 + b2)(1 + y2) + q2 + 2abq

y2
− 2m,

ρ2 =y2 + a2 cos2 θ̃ + b2 sin2 θ̃ ,

∆θ̃ =1− a2 cos2 θ̃ − b2 sin2 θ̃ ,

Σa =1− a2,

Σb =1− b2,
f =2mρ2 − q2 + 2abqρ2,

ν =b sin2 θ̃dφ+ a cos2 θ̃dψ ,

ω =a sin2 θ̃
dφ

Σa
+ b cos2 θ̃

dψ

Σb
.

(4.139)

This metric takes the form (4.132) near the boundary, once we perform the change of coor-

dinates

r2 =
y2(1− a2 cos2 θ̃ − b2 sin2 θ̃) + a2 sin2 θ̃ + b2 cos2 θ̃ − a2b2

ΣaΣb
,

r2 sin2 θ =
(y2 + a2) sin2 θ̃

Σa
,

r2 cos2 θ =
(y2 + b2) cos2 θ̃

Σb
.

(4.140)

Retaining corrections only to order O(1/r4) relative to the leading order metric (4.132), the

metric in our new coordinates becomes69

ds2 =− (1 + r2)dt2 +
dr2

1 + r2
+ r2(dθ2 + cos2 θdψ2 + sin2 θdφ2) +

2m

r6∆2
θ

dr2 +
2(m+ abq)

r2∆3
θ

dt2

−2(2am+ bq) sin2 θ

r2∆3
θ

dtdφ− 2(2bm+ aq) cos2 θ

r2∆3
θ

dtdψ +
(2ma2 + 2bq) sin4 θ

r2∆3
θ

dφ2

+
(2mb2 + 2aq) cos4 θ

r2∆3
θ

dψ2 +
2(2abm+ a2q + b2q) sin2 θ cos2 θ

r2∆3
θ

dψdφ ,

(4.141)

69The leading behaviour at large r of the pure AdS metric given in terms of dr
r

and rdα where α represents

the coordinates θ, φ, ψ, t. In the expression below, we have retained all coefficient terms of these ‘forms’ that

are at most of order 1
r4

.
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where ∆θ = γ−2 = 1− a2 sin2 θ − b2 cos2 θ. with γ as in §§4.3.2.

The unit normal vector to constant r slices is given by nr = 1√
grr

(with all other com-

ponents zero). As our metric contains no terms that mix r with other coordinates at leading

order , this is the same as nr = 1√
grr

.

The Christoffel symbols (that are relevant for the calculation of the stress-tensor) as

calculated from this metric up to the first subleading term (i.e. up to O( 1
r4 ) terms) in r are

given by

Γttr =
r

r2 + 1

(
1 +

4(m+ abq)

r4(1− a2 sin2 θ − b2 cos2 θ)3

)
Γφtr =

2(2am+ bq)

r5(1− a2 sin2 θ − b2 cos2 θ)3

Γψtr =
2(2bm+ aq)

r5(1− a2 sin2 θ − b2 cos2 θ)3
Γtφr =− 2(2am+ bq) sin2 θ

r5(1− a2 sin2 θ − b2 cos2 θ)3

Γφφr =
1

r

(
1− 4(a2m+ abq) sin2 θ

r4(1− a2 sin2 θ − b2 cos2 θ)3

)
Γtψr =− 2(2bm+ aq) cos2 θ

r5(1− a2 sin2 θ − b2 cos2 θ)3

Γψψr =
1

r

(
1− 4(b2m+ abq) cos2 θ

r4(1− a2 sin2 θ − b2 cos2 θ)3

)
Γθθr =

1

r

Γφψr =− (2abm+ a2q + b2q) cos2 θ

r5(1− a2 sin2 θ − b2 cos2 θ)3
Γψφr =− (2abm+ a2q + b2q) sin2 θ

r5(1− a2 sin2 θ − b2 cos2 θ)3
.

(4.142)

The extrinsic curvature, Θν
µ, is given by

Θt
t = −

(
1 +

1

r2

)− 1
2
(

1 +
mγ6

r4
(3 + a2 sin2 θ + b2 cos2 θ)

)
− 4abqγ6

r4

Θφ
φ = −

√
1 + 1/r2

(
1− mγ6

r4
(3a2 sin2 θ − b2 cos2 θ + 1)

)
+

4abqγ6 sin2 θ

r4

Θψ
ψ = −

√
1 + 1/r2

(
1− mγ6

r4
(3b2 cos2 θ − a2 sin2 θ + 1)

)
+

4abqγ6 cos2 θ

r4

Θt
φ =

2(2am+ bq)γ6 sin2 θ

r4
Θφ
t = −2(2am+ bq)γ6

r4

Θt
ψ =

2(2bm+ aq)γ6 cos2 θ

r4
Θψ
t = −2(2bm+ aq)γ6

r4

Θψ
φ =

2(2abm+ b2q + a2q)γ6 sin2 θ

r4
Θφ
ψ =

2(2bam+ b2q + a2q)γ6 cos2 θ

r4

Θθ
θ =

mγ4

r4
,

(4.143)

where γ2 = 1
1−a2 sin2 θ−b2 cos2 θ

. Therefore

Θ = Θα
α = 4 +

1

r2
.

It is easily verified that Θβ
α is traceless when the r dependent divergent terms are cancelled

by the counter terms at the limit r going to infinity. After cancelling the divergent terms and

– 93 –



then normalising it according to (4.133) the stress tensor is given by

Πtt =
m

8πG5

(
γ6(3 + a2 sin2 θ + b2 cos2 θ)− 4abq

m
γ6

)
=

m

8πG5

(
γ4(4γ2 − 1)− 4abq

m
γ6

)
Πφφ =

m

8πG5

(
γ6

(
3a2 sin2 θ − b2 cos2 θ + 1

sin2 θ

)
− 4abq

m
γ6

)
=

m

8πG5

(
γ4

(
4γ2a2 +

1

sin2 θ

)
− 4abq

m
γ6

)
Πψψ =

m

8πG5

(
γ6

(
3b2 cos2 θ − a2 sin2 θ + 1

cos2 θ

)
− 4abq

m
γ6

)
=

m

8πG5

(
γ4

(
4γ2a2 +

1

cos2 θ

)
− 4abq

m
γ6

)
Πtφ = Πφt =

(
4m

8πG5

)(
a− 2bq

m

)
γ6 Πtψ = Πψt =

(
4m

8πG5

)(
b− 2aq

m

)
γ6

Πφψ = Πψφ =

(
4m

8πG5

)(
ab− 2(a2 + b2)q

m

)
γ6 Πθθ =

m

8πG5
γ4.

(4.144)

As we have explained in §§4.6.4, q/m ∼ 1/r+, and so all terms proportional to q in the

equation above are subdominant compared to terms proportional to m in the fluid mechanical

limit r+ → ∞. Dropping all q dependent terms, we find (4.144) matches perfectly with the

stress tensor as derived in (4.30) and (4.34) upon identifying (φ1, φ2) = (φ, ψ), (ω1, ω2) = (a, b)

and using (4.94).
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5 Fluid Gravity Correspondence in Arbitrary Dimensions

In this chapter, we will do an explicit bulk construction of the metric duals to hydrodynamics,

thus sharpening the results of the previous chapter. The aim of this chapter is to construct a

map from the conformal Navier Stokes equations with holographically determined transport

coefficients, in d spacetime dimensions, to the set of asymptotically locally AdSd+1 long

wavelength solutions of Einstein’s equations with a negative cosmological constant, for all

d > 2.

We will find simple explicit expressions for the stress tensor, the full dual bulk metric and

an entropy current of this strongly coupled conformal fluid, to second order in the derivative

expansion, for arbitrary d > 2. We also rewrite the well known exact solutions for rotating

black holes in AdSd+1 space in a manifestly fluid dynamical form, generalizing earlier work

in d = 4. To second order in the derivative expansion, this metric agrees with our general

construction of the metric dual to fluid flows.

The material for this chapter is drawn from the paper [7] written by the author in collab-

oration with Sayantani Bhattacharyya, Ipsita Mandal, Shiraz Minwalla and Ankit Sharma.

5.1 Introduction

The AdS/CFT correspondence establishes a deep connection between quantum field theories

and theories of gravity. At generic values of parameters both sides of this equivalence are

complicated quantum theories. However, every known example of the AdS/CFT duality

admits a large N limit in which the gravitational theory turns classical, and a simultaneous

strong ‘t Hooft coupling limit that suppresses α′ corrections to gravitational dynamics. In this

limit the AdS/CFT correspondence asserts the equivalence between the effectively classical

large N dynamics of the local single trace operators ρn = N−1TrOn of gauge theory and the

classical two derivative equations of Einstein gravity interacting with other fields.

The usual rules of the AdS/CFT correspondence establish a one to one map between the

bulk fields and the single trace field theory operators; for instance, the bulk Einstein frame

graviton maps to the field theory stress tensor. Given a solution of the bulk equations, the

evolution of any given trace operator ρn(xµ) may be read off from the normalizable fall off

‘at infinity’ of the corresponding bulk field. This dictionary allows us to translate the local

and relatively simple bulk equations into unfamiliar and extremely nonlocal equations for

the boundary trace operators ρn(x). The equations for ρn(x) are nonlocal in both space and

time; indeed the data for the classical evolution of ρn includes an infinite number of time

derivatives of ρn on an initial slice. Given the complicated and unfamiliar nature of these

equations, it is difficult to use our knowledge of bulk dynamics to directly gain intuition for

boundary trace dynamics. It would clearly be useful to identify a simplifying limit in order

to train intuition.

Some simplification of trace dynamics is achieved by focusing on a universal subsector of

gravitational dynamics [6] . We focus on two derivative bulk theories of gravity that admit

AdSd+1×MI as a solution (here MI is any internal manifold whose character and properties
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will be irrelevant for the rest of this chapter). It is easy to convince oneself that every such

theory admits a consistent truncation to the Einstein equations with a negative cosmological

constant. The only fluctuating field under this truncation is the Einstein frame graviton; all

other bulk fieldsare simply set to their background AdSd+1 ×MI values. This observation

implies the existence of a sector of decoupled and universal dynamics of the stress tensor in

the corresponding dual field theories. The dynamics is decoupled because all ρn(x) other than

the stress tensor may consistently be set to zero as the stress tensor undergoes its dynamics,

and this dynamics is universal because the evolution of the stress tensor is governed by the

same equations of motion in each of these infinite class of strongly coupled CFTs.

While the universal stress tensor dynamics described above is clearly simpler than a

general evolution of ρn(x) in the dual theory, it is still both complicated and nonlocal. It is

useful to take a further limit; to focus on boundary configurations in which the local stress

tensor varies on a length scale that is large, at any point, compared to a local equilibration

length scale (intuitively, ‘mean free path’) which is set by the ‘rest frame’ energy density at the

same point (we will make this more precise below). Local field theory intuition suggests that

boundary configurations that obey this slow variation condition should be locally thermalized,

and consequently well described by the equations of boundary fluid dynamics. Hence, we

expect the complicated nonlocal Tµν dynamics to reduce to the familiar boundary Navier

Stokes equations of fluid dynamics in this long wavelength limit.

All the expectations spelt out above have been demonstrated to be true for d = 4, 5 from

a direct analysis of the Einstein equations (See [2, 6, 9, 11, 73, 74]). This analysis has also

been generalized to a large extent for general d in a recent paper by Haack and Yarom [12].

In this chapter we continue and complete the analysis of [12] in explicating the connection

between the Einstein equations and fluid equations in arbitrary dimensions .

In particular, we implement the programme initiated in [6] to explicitly compute the

bulk metric dual to an arbitrary fluid flow (accurate to second order in a boundary derivative

expansion). We verify the expressions for the second order stress tensor dual to these flows

which was recently derived in [12], study the causal structure of the solutions we derive,

determine their event horizons at second order in the derivative expansion, and determine an

entropy current for these fluid flows. Further, we compare our results to exact solutions for

rotating black holes in global AdSd+1 and find perfect match to the expected order. In the

rest of this introduction we will more carefully review some of the closely related previous

work on this subject in order to place the new results of this chapter in its proper context70.

The authors of [6] developed a procedure to construct a large class of asymptotically AdS5

long wavelength solutions to Einstein’s equations with a negative cosmological constant. The

solutions in [6] were worked out order by order in a boundary derivative expansion, and were

parameterized by a four velocity field uµ(xµ) and a temperature field T (xµ). These velocity

70Our main aim here is to provide the appropriate background for our work rather than to review the

complete expanse of the literature relating hydrodynamics to holography. However, we have included a non-

exhaustive list of references pertaining to hydrodynamics in the context of holography in the References section

at the end of this chapter.
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and temperature fields are further constrained to obey the four dimensional generalized Navier

Stokes equations ∇µTµν = 0 where the stress tensor Tµν(xµ) is a local functional of the

velocity and the temperature fields. The form of Tµν(xµ) was explicitly determined in [6]

to second order in a boundary derivative expansion (Some terms in the stress tensor were

independently determined by the authors of [8]. Especially notable in this regard are the

pioneering work in [75–77].) . Consequently, the construction of [6] may be thought of as an

explicit map from the space of solutions of a distinguished set of Navier Stokes equations in

d = 4 to the space of long wavelength solutions of asymptotically AdSd+1 gravity.

The spacetimes derived in [6] were subsequently generalized and studied in more detail.

In particular, it was demonstrated in [73] that, subject to mild assumptions, these spacetimes

have regular event horizons. In the same paper, the location of this event horizon in the ‘radial’

direction of AdS5 was explicitly determined to second order in the derivative expansion and

it was found to depend locally on the fluid data at the boundary (via a natural boundary

to horizon map generated by ingoing null geodesics). The authors of [73] also constructed a

local fluid dynamical ‘entropy current’ utilizing the pullback of the area form on the horizon

onto the boundary. The classic area increase theorem of general relativity was then used to

demonstrate the local form of the second law of thermodynamics (i.e., the point wise non

negativity of the divergence of this entropy current). On a related note, in [2], a formalism

was developed for conformal hydrodynamics which describes the long wavelength limit of a

CFT. Using this manifestly Weyl-covariant formalism, many results of [6] and [73] could be

cast into a simpler form and Weyl covariance could be used as a powerful tool in classifying

the possible forms of the metric, energy momentum tensor and the entropy current.

In [11], the construction of [6] was generalized to spacetimes that are only locally asymp-

totically AdS5, i.e. that asymptote to

ds2
5 =

1

z2

[
dz2 + ds2

3,1

]
(5.1)

where ds2
3,1 is an arbitrary slowly varying boundary metric, at small z. It is expected that,

under the AdS/CFT correspondence, such solutions are a universal subsector of the solution

space of the relevant CFTs on the Lorentzian base manifold M3,1 with the metric ds2
3,1. In

agreement with this expectation [11] demonstrated that long wavelength solutions of gravity

with asymptotics given by (5.1) were parameterized by a velocity and temperature field on the

manifold M3,1, subject to a covariant form of the Navier Stokes equations. As an example of

this construction, the authors of [11] were able to rewrite the exact asymptotically global AdS5

Kerr black hole solutions in a very simply manifestly fluid dynamical form, and demonstrate

that the expansion of this metric to second order in the derivative expansion is in perfect

agreement with the general construction of the metrics dual to fluid dynamics at second

order 71.

71The authors of [11] also considered the coupling of a slowly varying dilaton to the metric. It would be

an interesting exercise to consider generalizing the results of this chapter to a bulk spacetime with dilaton

dynamics. However, in this chapter, we will confine ourselves to the case where the dilaton is set to its
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All of the results described above were originally worked out for the special case d = 4,

but some of these results and constructions have since been further generalized. In an early

paper Van Raamsdonk [9] generalized the construction of the full second order bulk metric to

an arbitrary fluid flow on a flat boundary to d = 3 and also computed the holographic fluid

dynamical stress tensor to second order in boundary derivatives. Some terms in the second

order stress tensor for the uncharged conformal fluid in arbitrary dimensions were calculated

using different methods by [10, 78]. Further, 1/λ and 1/Nc corrections to some coefficients

have been computed in [74, 79–82].

More recently, Haack and Yarom [12] partially constructed the second order bulk metric

to an arbitrary fluid flow in a flat d dimensional boundary (for arbitrary d) and fully computed

the dual second order fluid dynamical stress tensor for a flat boundary. In this chapter, we

continue the study of Haack and Yarom [12] to generalize all of the work on solutions of pure

gravity duals to arbitrary fluid flows in d = 4 dimensions (reviewed above) to arbitrary d > 2.

This chapter is organized as follows. In section §5.2 below, we begin by briefly explaining

the logic of our construction of long wavelength bulk solutions dual to fluid dynamics in the

Weyl covariant notation. This is followed by section §5.3 below we present explicit solutions

to Einstein equations to second order in the boundary derivative expansion. Our solutions

asymptote at small z to

ds2
d+1 =

1

z2

[
dz2 + ds2

d−1,1

]
(5.2)

where ds2
d−1,1 is the arbitrarily specified weakly curved metric on the boundary. Our solutions

are parameterized by a boundary d-velocity field uµ(x) and a temperature field T (x) where

xµ are the boundary coordinates. These velocity and temperature fields are constrained to

obey the d dimensional Navier Stokes equations, ∇µTµν = 0 where Tµν is a local functional

of the velocity and temperature fields. We also present explicit expressions for the boundary

stress tensor Tµν dual to our solutions. Our answer can be expressed in an especially simple

and manifestly Weyl-covariant form

Tµν = p (gµν + duµuν)− 2ησµν

− 2ητω

[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
+ 2ηb

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
] (5.3)

with

b ≡ d

4πT
; p =

1

16πGAdSbd
;

η =
s

4π
=

1

16πGAdSbd−1
and τω = b

∫ ∞
1

yd−2 − 1

y(yd − 1)
dy

background value. On a related note , we should also mention two recent papers[17, 18] which appeared while

this chapter was nearing completion in which the fluid gravity correspondence was extended to a class of

charged black holes in AdS5 with flat boundary.

– 98 –



where p is the pressure, T is the temperature, s is the entropy density and η is the viscosity

of the fluid. τω denotes a particular second-order transport coefficient of the fluid, σµν is

the shear strain rate , ωµν is the vorticity and Cµναβ is the Weyl Tensor of the spacetime in

which the fluid lives. Note that our result for the stress tensor agrees with those of Haack

and Yarom[12] when restricted to a flat boundary manifold, but also includes an additional

term proportional to boundary curvature that vanishes in flat space.

In section §5.4 below , we demonstrate that our solutions all have a regular event horizon,

and find an expression for the radial location of that event horizon upto second order in the

derivative expansion. We also construct a boundary entropy current JS that is forced by the

area increase theorem of general relativity to obey the equation ∇µJµS ≥ 0. This is followed

by section §5.5 where we rewrite the exactly known rotating black hole solutions in global

AdSd+1 in a manifestly fluid dynamical form. These solutions turn out to be dual to rigid

fluid flows on Sd−1,1 (see [15] for earlier work). These initially complicated looking blackhole

metrics admit a rewriting in a rather simple form in the fluid dynamical gauge and variables

used in this chapter. In appropriate co-ordinates, the general AdS-Kerr metric 72 assumes

the form

ds2 =− 2uµdx
µ (dr + r Aνdxν) +

[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+
r2uµuν

bddet [r δµν − ωµν ]
dxµdxν

(5.4)

where Aµ is the fluid dynamical Weyl-connection and Sµν is the Weyl-covariantized

Schouten tensor introduced in [2]. We demonstrate that the expansion of these solutions

to second order in the derivative expansion agrees with our general construction of metrics

dual to fluid dynamics. We end this chapter with a discussion of our results and possible

generalizations.

5.2 Perturbative Construction of Solutions

In this section, we will briefly review the basic logic that underlies the construction of gravity

solutions dual to arbitrary fluid flows. The methodology employed in this chapter is an almost

direct generalization of the techniques used in [2, 6, 9, 11, 12, 73, 74]. Consequently in this

chapter we will describe the logic of our construction and the details of implementation only

briefly, referring the reader to the references above for more details.

5.2.1 Equations of motion and uniform brane solutions

In this chapter we develop a systematic perturbative expansion to solve Einstein’s equations

with a negative cosmological constant

GAB −
d(d− 1)

2
GAB = 0, M,N = 1 . . . d+ 1 (5.5)

72Note in particular that for d = 2, σµν = ωµν = 0 and Sµν term is absent in which case we get the BTZ

blackhole in AdS3 as shown in[12].
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where GAB denotes the Einstein tensor of the bulk metric GAB.

One solution of these equations is AdS spacetime of unit radius

ds2 =
dr2

r2
+ r2 (ηµνdx

µdxν) , µ, ν = 1 . . . d (5.6)

Other well known solutions to these equations include boosted black branes which we write

here in Schwarzschild like coordinates

ds2 =
dr2

r2f(r)
+ r2 (−f(r)uµuνdx

µdxν + Pµνdxµdxν)

f(r) = 1− 1

(br)d
, gµνu

µuν = −1, Pµν = gµν + uµuν , b =
d

4πT

(5.7)

gµν in (5.7) is an arbitrary constant boundary metric of signature (d− 1, 1), while uµ in the

same equation is any constant unit normalized d velocity. Of course any constant metric of

signature (d−1, 1) can be set to ηµν by an appropriate linear coordinate transformation xµ →
Λµνxν , and uµ can subsequently be set to (1, 0 . . . 0) by a boundary Lorentz transformation.

Further b in (5.7) may also be set to unity by a coordinate change; a uniform rescaling of

boundary coordinates coupled with a rescaling of r. Thus the d(d + 3)/2 parameter set of

metrics (5.7) are all coordinate equivalent. Nonetheless we will find the general form (5.7)

useful below; indeed we will find it useful to write (5.7) in an even more general coordinate

redundant form. Consider

ds2 =
(dr̃ + r̃Aνdxν)2

r̃2f(r)
+ r̃2

(
−f(b̃r̃)ũµũνdx

µdxν + P̃µνdxµdxν
)

(5.8)

where

g̃µν = e2φ(xµ)gµν , ũµ = eφ(xµ)uµ, b̃ = eφ(xµ)b, (5.9)

φ(xµ) is an arbitrary function and gµν , uµ, and b are as defined in the previous equation. This

metric is coordinate equivalent to (5.7) under the variable transformation r̃ 7→ e−φr. Con-

sequently, the whole function worth of spacetimes (5.8) (taken together with the restrictions

(5.9)) are all exact solutions to Einstein’s equations and are all coordinate equivalent.

While the metrics (5.8) all describe the same bulk geometry, in this chapter we will give

these spacetimes distinct though Weyl equivalent boundary interpretations by regulating them

inequivalently near the boundary. We will choose to regulate the spacetimes (5.8) on slices

of constant r̃ and consequently regard them as states in a conformal field theory on a space

with metric g̃µν(x). With this convention, (the non-anomalous part of) the boundary stress

tensor dual to (5.8) is given by

Tµν =
1

16πGAdSb̃d
(g̃µν + dũµũν) (5.10)

which shows that the metric in the Equation(5.8) is dual to a conformal fluid with a pressure

p = 1/(16πGAdSb
d) and without any vorticity or shear strain rate. Of course the boundary
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configurations dual to (5.8) with equal gµν , u
µ, b but different values of φ are related to each

other by boundary Weyl transformations.

Notice that

Tµν u
ν =

K

bd
uµ, K = − (d− 1)

16πGAdS
(5.11)

In other words the velocity field is the unique time like eigenvector of the stress tensor, and

the inverse temperature field b is simply related to its eigenvalue. We will use this observation

in the next subsection.

5.2.2 Slow variation and bulk tubes and our zero order ansatz

Consider an arbitrary locally asymptotically AdSd+1 solution to Einstein’s equations (5.5)

whose dual boundary stress tensor everywhere has a unique timelike eigenvector. Let this

eigenvector (after unit normalization) be denoted by uµ(x) and the corresponding eigenvalue

by K
bd

. We define uµ(x) to be the d velocity field dual to our solution, and also define b(x) to

be the inverse temperature field dual to our solution.

Let δx(y) denote smallest length scale of variation of the stress tensor of the corresponding

solution at the point y. We say that the solution is ‘slowly varying’ if everywhere δx(y)� b(y).

(As will be apparent from our final stress tensor below, b(y) may be interpreted as the effective

length scale of equilibration of the field theory at y). Similarly, we say that the boundary

metric is weakly curved if b(y)2R(y)� 1 (whereR(y) is the curvature scalar, or more generally

an estimate of the largest curvature scale in the problem).

In the previous section we described uniform brane solutions of Einstein’s equations. In

the appropriate Weyl frame the temperature, velocity, boundary metric and hence the stress

tensor of those configurations was constant in boundary spacetime. These configurations are

exact solutions to Einstein’s equations. We will now search for solutions to Einstein equations

with slowly varying (rather than constant) boundary stress tensors on a boundary manifold

that has a weakly curved (rather than flat) boundary metric. From field theory intuition

we expect all such boundary configurations to be locally patchwise equilibriated (but with

varying values of the boundary temperature and velocity fields). This suggests that the

corresponding bulk solutions should approximately be given by patching together tubes of

the uniform black brane solutions. We expect these tubes to start along local patches on the

boundary and then extend into the bulk following an ingoing ‘radial’ curve. However this

expectation leaves open an important question: what is the precise shape of the radial curves

that our tubes follow?

One guess might be that the tubes follow the lines xµ =constant in the Schwarzschild

coordinates we have employed so far. According to this guess, the bulk metric dual to slowly

varying boundary stress tensors and boundary metric is approximately given by

ds2 =
(dr̃ + r̃Aνdxν)2

r̃2f(r)
+ r̃2

(
−f(b̃r̃)ũµũνdx

µdxν + P̃µνdxµdxν
)

(5.12)

where

g̃µν = e2φgµν , ũµ = eφuµ, b̃ = eφb, (5.13)
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where gµν(x) is a weakly curved boundary metric, and uµ(x) and b(x) are slowly varying

boundary functions.

Although this guess seems natural, we believe it is wrong. The technical problem with

this guess is that the metric of (5.12) does not in general have a regular future horizon[83]

(for particular examples of similar metrics that do not have a regular future horizon see

[81, 84, 85].The last two references show a boost-invariant expansion that develops a singular

future horizon). In this chapter we will be interested only in regular solutions of Einstein

equations; solutions whose (future) singularities are all shielded from the boundary of AdS

by regular event horizons. As any perturbation to (5.12) that turns it into a regular space

must necessarily be large in the appropriate sense, it follows that (5.12) is not a good starting

point for a perturbative expansion of the solutions we wish to find.

There is another more intuitive problem with the proposal that the ansatz (5.12) is dual

to boundary fluid dynamics. It is an obvious fact about fluid dynamical evolution that the

initial conditions of a fluid may be chosen independent of any ‘kick’ (forcing) one may choose

to apply to the fluid at a later time. It seems reasonable to expect the same property of the

bulk solutions dual to fluid dynamics. 73 Now consider kicking a fluid in an arbitrary motion

at the point yµ. The future evolution of the fluid is affected only in the ‘fluid causal future’ -

of yµ. We call this region C(yµ). Note that C(yµ) lies within the future boundary light cone

of yµ 74. Now consider the bulk region B(y(µ) that consists of the union of all the tubes,

referred to above, that originate in the boundary region C(yµ). Clearly B(yµ) is the part of

the bulk spacetime that is affected by our kick at yµ. Bulk causality implies that B(yµ) must

lie entirely within the future bulk light cone of yµ.

This requirement is not met if we generate B(yµ) with our tubes that run along lines of

constant xµ in Schwarzschild coordinates. However it is met in a particularly natural way

(given the massless nature of the graviton) if our tubes are chosen to run along ingoing null

geodesics. 75

With this discussion in mind, let us consider the ansatz

ds2 = −2uµdx
µ (dr + r Aνdxν) + r2gµνdx

µdxν +
r2

(br)d
uµuνdx

µdxν (5.14)

where once again

g̃µν = e2φgµν(x), ũµ = eφuµ(x), b̃ = eφb(x), (5.15)

and gµν(x) is a weakly curved boundary metric, and uµ(x) and b(x) are slowly varying bound-

ary functions. When gµν uµ and b are all constant, (5.14) is once again simply the uniform

brane solution, rewritten in Eddington Finkelstein coordinates; i.e. when gµν uµ and b are all

constant (5.14) and (5.8) are coordinate equivalent(via large co-ordinate transformations).

73In our set up we can kick our fluid at yµ by varying the boundary metric at yµ (this induces an effective

force on the fluid).
74This is strictly true only if we sum all orders in the fluid expansion. Truncation at any finite order could

lead to apparent violations of causality over length scales of order 1/T .
75For a related discussion on the desirability of using ingoing null geodesic tubes vis a vis causality violating

tubes, see [86, 87].
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Figure 2. Penrose diagram of the uniform black brane illustrating the causal Eddington-Finkelstein

tubes running along ingoing null geodesics . The tubes with xµSchwarzschild=constant are also shown.

Note that we have suppressed the other regions of the penrose diagram not germane to the discussion

in this chapter.

However when gµν uµ and b are functions of xµ (5.14) and (5.12) are inequivalent and in

fact differ qualitatively. As we will demonstrate below, under mild assumptions the metric in

(5.14) has a regular event horizon that shields all the boundary from all future singularities in

this space. Consequently, this space may (unlike the spacetime in (5.8)) legitimately be used

as the first term in the perturbative expansion of a regular solution of Einstein’s equations.

Moreover the space described in (5.14) approximates the uniform brane solution along tubes

of constant xµ in (5.14); such tubes approximately follow null ingoing geodesics in this space.

For all these reasons, in the rest of this chapter we will use (5.14) as the first term

in a systematic perturbative expansion of a regular solution to Einstein’s equations. The

perturbative expansion parameter is 1
bδx (we assume that the curvature scale in the metric is

of the same order as 1/δx). We emphasize that the solutions we find could not be obtained

in a legitimate perturbation expansion, starting from (5.8). Several authors have attempted

to obtain the bulk metric dual to a ‘boost invariant Bjorken fluid flow’ starting with the zero

order solution described by Janik and Peschanski[75], and correcting it in an expansion in

1/δxb (that turns into an expansion in 1/τ
2
3 for those particular solutions). As pointed out in
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[86, 87], however, the zeroth order solution of Janik and Peschanski is precisely (5.8) for the

particular case of boost invariant flow. Consequently, while the approach of the current work

and [6, 9, 11, 12, 74] are similar in spirit to the perturbation procedure initiated by Janik

and Peschanski, we differ at a crucial point. While those authors effectively adopt (5.8) as

the starting point of their perturbation theory (for the single solution they consider), in our

work we adopt the inequivalent and qualitatively different space (5.14) as the starting point

of our perturbative expansion.

5.2.3 Perturbation theory at long wavelengths

The logic behind - and the method of implementation of - this perturbative procedure have

been described in detail in [6] and also in [9, 11, 12, 74]. It has also been described in those

papers how this perturbative procedure establishes a map between solutions of fluid dynam-

ics and regular long wavelength solutions of Einstein gravity with a negative cosmological

constant. The discussion in the cited references applies almost without modification to the

current work, so we describe it only very briefly.

We start with the ansatz gMN = g
(0)
MN + εg

(1)
MN + ε2g

(2)
MN + . . .. Here g

(0)
MN is given by

(5.14), ε is the small parameter of the derivative expansion, and g
(k)
MN are the corrections to

the bulk metric that we will determine with the aid of the bulk Einstein equation.

In implementing our perturbative procedure we adopt a choice of gauge. As in all the

metrics described above, we use the coordinates r, xµ for our bulk spaces. We use xµ as

coordinates that parameterize the boundary and r is a radial coordinate. In order to give

precise meaning to our coordinates we need to adopt a choice of gauge. In this chapter we

choose the gauge grr = 0 together with grµ = −uµ. The geometrical implication of this gauge

choice was discussed in [11], where it was explained that with this choice lines of constant xµ

are ingoing null geodesics along each of which r is an affine parameter. Note that the gauge

choice described in this chapter is different in detail from that employed in [6] and also in

[9, 11, 12, 74].

The Bulk Einstein equations decompose into ‘constraints’ on the boundary hydrodynamic

data and ‘dynamical equations’ for the bulk metric along the tubes which are solved order by

order in the derivative expansion. The dynamical equations determine the corrections that

should be added to our initial metric to make it a solution of the Einstein equations. At each

order, we get inhomogeneous linear equations -but, with the same homogeneous parts. These

inhomogeneous linear equations obtained from Einstein equations can be solved order by order

by imposing regularity at the zeroth order future horizon and appropriate asymptotic fall off

at the boundary.These boundary conditions - together with a clear definition of velocity,

which fixes the ambiguity of adding zero modes - give a unique solution for the metric, as a

function of the original boundary velocity and temperature profile inputted into the metric

g
(0)
MN - order by order in the boundary derivative expansion.

Now, we turn to the ‘constraints’. The ‘constraints’ on the boundary data can be shown

to be equivalent to the requirement of the conservation of the boundary stress tensor. Recall

that we have already used the dynamical Einstein equations to determine the full bulk metric

– 104 –



- and hence the boundary stress tensor - as a function of the input velocity and temperature

fields. It follows that the constraint Einstein equations reduce simply to the equations of fluid

dynamics, i.e. the requirement of a conserved stress tensor which, in turn, is a given function

of temperature and velocity fields.

It may be worthwhile to reiterate that, as expected from fluid-gravity correspondence,

metric duals which solve Einstein equations can be constructed only for those fluid config-

urations which solve the hydrodynamic equations. In the next section, we will present the

metric which is obtained by adopting this procedure.

5.2.4 Weyl Covariance

In this subsection we explain that the bulk metrics dual to fluid dynamics must transform

covariantly under boundary ‘Weyl’ transformations. See [11] for a more detailed explanation

of this fact.

To start with we note that our bulk gauge choice (described in the previous subsection)

is Weyl covariant. Any metric that obeys that gauge choice can be put in the form

ds2 = −2uµ(x)dxµ(dr + Vν(r, x)dxν) + Gµν(r, x)dxµdxν (5.16)

where Gµν is transverse, i.e., uµGµν = 0. 76

For later purposes, we note that the inverse of this bulk metric takes the form

uµ [(∂µ − Vµ∂r)⊗ ∂r + ∂r ⊗ (∂µ − Vµ∂r)]
+ (G−1)µν(∂µ − Vµ∂r)⊗ (∂ν − Vν∂r)

(5.18)

where the symmetric matrix (G−1)µν is uniquely defined by the relations uµ(G−1)µν = 0 and

(G−1)µλGλν = δµν + uµuν ≡ Pµν .

Consider now a bulk-diffeomorphism of the form r = e−φr̃ along with a scaling in the

temperature of the form b = eφb̃ where we assume that φ = φ(x) is a function only of the

boundary co-ordinates. The metric and the inverse metric components transform as

Vµ = e−φ
[
Ṽµ + r̃ ∂µφ

]
, uµ = eφũµ, Gµν = G̃µν and (G−1)µν = (G̃−1)µν (5.19)

Recall however that, within our procedure, the quantities Gµν and Vµ are each functions of

uµ and b. Now uµ and b each pick up a factor of eφ under the same diffeomorphism (the

transformation of b is determined by examining the action of the diffeomorphism on (5.14)).

We conclude that consistency demands that Vµ and Gµν are functions of b and uµ that respec-

tively transform like a connection/remain invariant under boundary Weyl transformation. It

follows immediately that, for instance Gµν is a linear sum of the Weyl invariant forms listed

76All the Greek indices are raised and lowered using the boundary metric gµν defined by

gµν = lim
r→∞

r−2 [Gµν − u(µVν)

]
(5.17)

and uµ is the unit time-like velocity field in the boundary, i.e., gµνuµuν = −1.
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in section 2, with coefficients that are arbitrary functions of br. Similarly, Vµ−rAµ is a linear

sum of Weyl-covariant vectors(both transverse and non-transverse) with weight unity.

Symmetry requirements do not constrain the form of these coefficients, which have to be

determined via direct calculation. In the next section we simply present the results of such a

calculation.

5.3 The bulk metric and boundary stress tensor to second order

5.3.1 The metric dual to hydrodynamics

Using a Weyl-covariant form of the procedure outlined in [6], we find that the final metric

can be written in the form

ds2 = −2uµdx
µ (dr + r Aνdx

ν) +
[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+
1

(br)d
(r2 − 1

2
ωαβω

αβ)uµuνdx
µdxν + 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
dxµdxν

− 2(br)2

[
K1(br)

σαβσ
αβ

d− 1
Pµν +K2(br)

uµuν
(br)d

σαβσ
αβ

2(d− 1)
− L(br)

(br)d
u(µP

λ
ν)Dασ

α
λ

]
dxµdxν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
]
dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
dxµdxν

(5.20)

We have checked using Mathematica that the above metric solves Einstein equations upto

d = 10.

The various functions appearing in the metric are defined by the integrals

F (br) ≡
∫ ∞
br

yd−1 − 1

y(yd − 1)
dy

H1(br) ≡
∫ ∞
br

yd−2 − 1

y(yd − 1)
dy

H2(br) ≡
∫ ∞
br

dξ

ξ(ξd − 1)

∫ ξ

1
yd−3dy

[
1 + (d− 1)yF (y) + 2y2F ′(y)

]
=

1

2
F (br)2 −

∫ ∞
br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−2 − 1

y(yd − 1)
dy

K1(br) ≡
∫ ∞
br

dξ

ξ2

∫ ∞
ξ

dy y2F ′(y)2

K2(br) ≡
∫ ∞
br

dξ

ξ2

[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+
(

2(d− 1)ξd − (d− 2)
)∫ ∞

ξ
dy y2F ′(y)2

]
L(br) ≡

∫ ∞
br

ξd−1dξ

∫ ∞
ξ

dy
y − 1

y3(yd − 1)

(5.21)
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Later in this chapter, we will find it convenient to work with other equivalent forms of

the above metric. Using

Sµλuλ = − 1

d− 2
Dλωλµ +

1

d− 2
Dλσλµ −

R
2(d− 1)(d− 2)

uµ + . . . (5.22)

we can write

ds2 = −2uµdx
µ (dr + r Aνdx

ν) + r2gµνdx
µdxν

−
[
ωµ

λωλν +
1

d− 2
Dλωλ(µuν) −

1

d− 2
Dλσλ(µuν) +

R
(d− 1)(d− 2)

uµuν

]
dxµdxν

+
1

(br)d
(r2 − 1

2
ωαβω

αβ)uµuνdx
µdxν + 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
dxµdxν

− 2(br)2

[
K1(br)

σαβσ
αβ

d− 1
Pµν +K2(br)

uµuν
(br)d

σαβσ
αβ

2(d− 1)
− L(br)

(br)d
u(µP

λ
ν)Dασ

α
λ

]
dxµdxν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
]
dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν − σµλωλν
]
dxµdxν

(5.23)

or alternatively the metric can be written in the form (5.16)

ds2 = −2uµdx
µ(dr + Vνdxν) + Gµνdx

µdxν with

Vµ = rAµ − Sµλuλ −
2L(br)

(br)d−2
P νµDλσλν

− uµ
2(br)d

[
r2(1− (br)d)− 1

2
ωαβω

αβ − (br)2K2(br)
σαβσ

αβ

d− 1

]
+ . . .

= rAµ +
1

d− 2

[
Dλωλµ −Dλσλµ +

R
2(d− 1)

uµ

]
− 2L(br)

(br)d−2
P νµDλσλν

− uµ
2(br)d

[
r2(1− (br)d)− 1

2
ωαβω

αβ − (br)2K2(br)
σαβσ

αβ

d− 1

]
+ . . .

Gµν = r2Pµν − ωµλωλν

+ 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
− 2(br)2K1(br)

σαβσ
αβ

d− 1
Pµν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
]

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
+ . . .

(5.24)
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Using (5.18), the inverse metric can be calculated . The tensor (G−1)µν occurring in the

inverse metric can be calculated as

(G−1)µν =
1

r2
Pµν +

1

r4
ωµλωλ

ν

− 2b2

r2
F (br)

[
1

b
σµν − F (br)σµλσ

λν

]
+

2b2

r2
K1(br)

σαβσ
αβ

d− 1
Pµν

+
2b2

r2
H1(br)

[
uλDλσµν + σµλσ

λν −
σαβσ

αβ

d− 1
Pµν + Cµανβuαuβ

]
− 2b2

r2
H2(br)

[
uλDλσµν + ωµλσ

λν + ωνλσ
µλ
]

+ . . .

(5.25)

We have checked that results of this subsection agree with the hydrodynamic metric

duals for d = 4 derived by the authors of [6] and the d = 3 metric derived in [9] (in order

to match our results with older work that was performed in different gauges we implemented

the necessary gauge transformations). In the next subsection, we proceed to derive the stress

tensor dual to this metric and compare it against the results available in the literature.

5.3.2 Energy momentum tensor of fluids with metric duals

The dual stress tensor corresponding to the metric in the previous subsection is given by

Tµν = p (gµν + duµuν)− 2ησµν

− 2ητω

[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
+ 2ηb

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ
] (5.26)

with

b =
d

4πT
; p =

1

16πGAdSbd

η =
s

4π
=

1

16πGAdSbd−1
and τω = b

∫ ∞
1

yd−2 − 1

y(yd − 1)
dy

(5.27)

This result is a generalization to the fluid dynamical stress tensor on an arbitrary curved

manifold in general dimension d reported in [2, 6, 8–11] for special values of d and most

recently by [12] for flat space in arbitrary dimensions. The values of τω for some of the lower

dimensions is shown77 in the table 5.3.2.

77More generally, the integral appearing in the expression for τω can be evaluated in terms of the derivative

of the Gamma function or more directly in terms of ‘the harmonic number function’ with the fractional

argument(as was noted in [13])

τω = − b
d

[
γE +

d

dz
Log Γ(z)

]
z=2/d

= − b
d

Harmonic[2/d− 1]

For large d, τω has an expansion of the form τω/b = 1/2− π2/(3d2) + . . ..
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The energy momentum tensor of a general conformal fluid configuration to second order

in derivative expansion should assume the form [2, 8]

Tµν = p(gµν + duµuν)

− 2η
[
σµν − τ1 u

λDλσµν + τ2(ωµλσ
λν + ωνλσ

λµ)
]

+ ξσ[σµλσ
λν − Pµν

d− 1
σαβσαβ] + ξC Cµανβu

αuβ

+ ξω[ωµλω
λν +

Pµν

d− 1
ωαβωαβ] + . . .

(5.28)

where Weyl-covariance demands that

p ∝ b−d , η ∝ b1−d , τ1,2 ∝ b , ξσ,C,ω ∝ b2−d (5.29)

Thus, we get

ξσ = ξC = 2η(τ1 + τ2) = 2ηb , τ2 = τω and ξω = 0 (5.30)

Note that these relations between ξσ, ξC , τ1 and τ2 quoted above are universal in the sense that

they hold true for uncharged fluids in arbitrary dimensions with the gravity duals. It would

be interesting to check whether these relations between the transport coefficients continue to

hold against various possible generalizations including the generalization to fluids with one

or more global conserved charge.78

Now, we proceed to compare our results against the results already available in the

literature. Until now, we have found it convenient to closely follow the parametrisation of

the stress tensor in [2]. An alternative parametrisation of the energy-momentum tensor was

presented in the section 3.1 of [8] - the parameters τΠ , λ1,2,3 and κ defined there can be related

to our parameters via the relations

τ1 = τΠ , τ2 = −λ2

2η
, ξσ = 4λ1 , ξC = κ(d− 2) and ξω = λ3 (5.31)

which in turn gives the value of the transport coefficients as

τΠ = b− τω , λ1 =
ηb

2
, λ2 = −2ητω , λ3 = 0 and κ =

2ηb

d− 2
(5.32)

which agrees with all the previous results in the literature [9, 10, 12].

78In this context, we would like to note that in the presence of a charge, there are more than one natural

convention for the definition of the velocity - velocity can be defined as the unit time-like eigenvector of the

energy-momentum tensor (as we have done in the chargeless case) or can be defined alternatively to be the

unit time-like vector along the charge current. The former is called the Landau frame velocity and the latter

is termed the velocity in the Eckart frame. The transport coefficients defined above can depend crucially on

which of these definitions are used.

While this work was nearing completion, the authors of [18] and [17] reported independently the transport

coefficients for a particular class of charged black brane configurations with flat boundaries. Interestingly, their

coefficients continue to obey ξσ = 2η(τ1 + τ2) (or equivalently 4λ1 + λ2 = 2ητΠ) in the Landau frame. As far

as we know, the charge dependence of ξC is not known yet. Authors of [18] and [17] report ξω 6= 0 for the

charged case in the Landau frame.
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Value of τω/b for various dimensions

d Value of τω/b =
∫∞

1
yd−2−1
y(yd−1)

dy τω/b (Numerical)

3 1
2

(
Log 3− π

3
√

3

)
0.247006. . .

4 1
2Log 2 0.346574. . .

5 1
4

(
Log 5 + 2π

5

√
1− 2√

5
− 2√

5
ArcCoth

√
5
)

0.396834. . .

6 1
4

(
Log 3 + π

3
√

3

)
0.425803. . .

5.4 Causal structure and the local entropy current

5.4.1 The event horizon of our solutions

Although our assumptions can almost certainly be greatly relaxed, for the purposes of this

section we specialize to boundary metrics that settle down, at late times to either the flat

metric on Rd−1,1 or the flat metric on Sd−1× time and to fluid flows that settle down at late

times to uniform brane configurations on Rd−1,1 or stationary rotating black holes (studied in

greater detail ahead) on Sd−1× time. See [73] for a discussion on how the dissipative nature

of fluid dynamics makes the last assumption less restrictive than it naively seems.

Now the event horizon of our spacetimes is simply the unique null hypersurface that

tends, at late times, to the known event horizons of the late time limit of our solutions.

In this subsection we will explain how this clear characterization may be translated into an

explicit and local mathematical formula for the event horizon within the derivative expansion.

Recall that our bulk metric is written in the gauge grr = 0, grµ = −uµ, and consequently

takes the form

ds2 = −2uµdx
µ(dr + Vνdxν) + Gµνdx

µdxν (5.33)

where we remind the reader that Gµν is transverse and all the Greek indices are raised using

the boundary metric gµν . As we have explained before Vµ transforms like a connection and

Gµν is invariant under boundary Weyl transformations.

Let us suppose that the event horizon is given by the equation S ≡ r − rH (x) = 0. The

normal vector ξA to this hypersurface is simply the one-form dS = ξAdy
A = dr − ∂µrHdxµ.

This one-form - and its dual normal vector - can be written in a manifestly Weyl covariant

(if slightly complicated) form as follows

ξAdy
A = dS = (dr + Vλdxλ)− κµdxµ

ξA∂A = GAB∂AS∂B = nµ(∂µ − Vµ∂r)− uµκµ∂r
= nµ [∂µ + ∂µrH∂r] = nµ [∂µ]r=r

H

(5.34)

where we have introduced two new Weyl-covariant vectors κµ = e−φκ̃µ and nµ = e−φñµ

defined via

κµ ≡ ∂µrH + VµH and

nµ ≡ uµ − (G−1
H )µνκν

(5.35)
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We use the subscript H to denote that the functions are to be evaluated at the event-horizon.

If we adopt the boundary co-ordinates xµ as the co-ordinates on the event horizon, the

induced metric on the horizon can be written as

ds2
H =

[
GAB(y)dyAdyB

]
r=r

H
(x)
≡ Hµν(x)dxµdxν (5.36)

with

Hµν = Gµν − u(µκν) (5.37)

and the null-condition on the horizon, [GAB]Hξ
AξB = Hµνnµnν = 0 translates to

(G−1)µνκµκν = 2uµκµ (5.38)

We now follow [11] to compute the event horizon of our solutions in the derivative ex-

pansion. We start from a Weyl-covariant derivative expansion for rH given by

rH =
1

b
+ b

(
h1σαβσ

αβ + h2ωαβω
αβ + h3R

)
+ . . .

= r(0)
H

+ r(2)
H

+ . . .
(5.39)

Note that, since there is no first order Weyl-covariant scalar,79 there are no corrections to rH
at the first order in the derivative expansion.

We first compute κµ

κµ = Dµb−1 − Sµλuλ − 2LHP
ν
µDλσλν

+ uµ

[
1

4
ωαβω

αβ +
K2H

2(d− 1)
σαβσ

αβ +
d

2b
r(2)
H

]
+ . . .

(5.40)

Substituting the above into (5.38), we get

r(2)
H

=
2b

d

[
uµ(Dµb−1 − Sµνuν)− 1

4
ωαβω

αβ − K2H

2(d− 1)
σαβσ

αβ

]
(5.41)

To bring this to the form (5.39), we use (5.75) and (5.22) to write

Dµb−1 − Sµνuν =

(
2

d
− 1

d− 2

)
Dλσλµ +

Dλωλµ
d− 2

− 2

d− 1
σαβσ

αβuµ +
Ruµ

2(d− 1)(d− 2)
+ . . .

and

LH =

∫ ∞
1

ξd−1dξ

∫ ∞
ξ

dy
y − 1

y3(yd − 1)
=

1

2d
(5.42)

79See [11] for a classification of the possible Weyl-covariant tensors.
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which gives us the position of the event horizon as

rH =
1

b
+ b

(
h1σαβσ

αβ + h2ωαβω
αβ + h3R

)
+ . . . (5.43)

where

h1 =
2(d2 + d− 4)

d2(d− 1)(d− 2)
− K2H

d(d− 1)

h2 = − d+ 2

2d(d− 2)
and h3 = − 1

d(d− 1)(d− 2)

with K2H =

∫ ∞
1

dξ

ξ2

[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+2
(

(d− 1)ξd − (d− 2)
)∫ ∞

ξ
dy y2F ′(y)2

]
(5.44)

5.4.2 Entropy current as the pullback of Area form

Once the event-horizon is obtained, one can compute an area form on the horizon which

when pulled-back to boundary along the ingoing null geodesics gives the entropy current.This

general prescription by [73] translates into the following expression for the boundary entropy

current80

JµS =

√
det

(n)
d−1H

4GAdS
nµ

=

√
det

(n)
d−1H

4GAdS

[
uµ − (G−1

H )µνκν
] (5.45)

where we will define det
(n)
d−1H in the following.

To define det
(n)
d−1H we will split the boundary co-ordinates xµ to (v, xi) and we continue

to use the same co-ordinates also on the event horizon. Under this split, the components of

the nµ also spilt into (nv, ni). We will denote the d − 1 dimensional induced metric on the

constant v submanifolds of the event horizon by hij .Then, we define√
det

(n)
d−1H =

√
detd−1h

nv
√
−detg

(5.46)

where gµν is the boundary metric and the expression on the right hand side has been assumed

to be pulled back from the horizon to the boundary via the ingoing null-geodesics. Though

we have used a particular split to define det
(n)
d−1H, it can be shown that the answer that

we get in the end is independent of the split(See section 3.3 of [73]). Hence,the expression

in (5.45) constitutes a specific proposal for what the entropy current of the boundary fluid

80A more detailed justification of this formula can be found in [73]
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should be. This construction has the advantage that the second law in the boundary theory

is automatically guaranteed by the area increase theorem in the bulk.81

By following the procedure just outlined, the dual entropy current of the conformal fluid

can be calculated. We get

4GAdSb
d−1JµS = uµ + b2uµ

[
A1 σαβσ

αβ +A2 ωαβω
αβ +A3 R

]
+ b2

[
B1 Dλσµλ +B2 Dλωµλ

]
+ . . .

(5.47)

with

A1 =
2

d2
(d+ 2)− K1Hd+K2H

d
, A2 = − 1

2d
, B2 =

1

d− 2

B1 = −2A3 =
2

d(d− 2)

(5.48)

where K1Hd+K2H is given by the integral

K1Hd+K2H =

∫ ∞
1

dξ

ξ2

[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+2
(

(d− 1)ξd + 1
)∫ ∞

ξ
dy y2F ′(y)2

] (5.49)

5.4.3 Second law and the Rate of entropy production

In the absence of a clear field theoretic microscopic definition, it may be pragmatic to re-

gard the entropy current of fluid dynamics as any local functional of the fluid dynamical

variables whose divergence is non negative on every solution to the equations of motion of

fluid dynamics, and which integrates to the thermodynamic notion of entropy in equilibrium.

According to this characterization the entropy current is any local Boltzmann H function,

whose monotonic increase characterizes the dissipative irreversibility of fluid flows.

In the previous subsection we have used the dual bulk description to give a ‘natural’ bulk

definition of the entropy current that satisfies all these properties. However, at least at the

two derivative level, the construction of the previous subsection is not the unique construction

that satisfies the requirements spelt out in the paragraph above.

In this subsection we will take a purely algebraic approach to determine the most general

Weyl covariant two derivative entropy current that has a non negative divergence, given the

equations of motion derived above. The entropy current of the previous section will turn out

to be one of a 4-parameter class of solutions to this constraint.

81The Area increase theorem states that under appropriate assumptions the area of a blackhole can never

decrease. This statement was proved by Hawking for the case of asymptotically flat spacetimes and is by now

standard text book material (see e.g. [88, 89]). This theorem has since been extended to black holes in more

general spacetimes (see e.g. [90–92]), including asymptotically AdS spaces (see [93] and references therein for

a clear statement to this effect).
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The most general entropy current consistent with Weyl covariance82 can be written as

4GAdSb
d−1JµS = uµ + b2uµ

[
A1σαβσ

αβ +A2ωαβω
αβ +A3R

]
+ b2

[
B1Dλσµλ +B2Dλωµλ

]
+ . . .

(5.50)

Since we want to constrain the entropy current upto second order we will need to calculate

the divergence of this current. In order to perform the calculation in a Weyl covariant fashion

we note that the ordinary divergence ∇µJµS can be replaced by the Weyl-covariant divergence

DµJµS with

DµJµS ≡ ∇µJ
µ
S + (w − d)AµJµS (5.51)

as the conformal weight of any entropy current must be d.

Let us now take the divergence of (5.50). We find

4GAdSb
d−1DµJµS = (d− 1) b uµDµb−1 + b2uµDµ

[
A1σαβσ

αβ +A2ωαβω
αβ +A3R

]
+ b2Dµ

[
B1Dλσµλ +B2Dλωµλ

]
+ . . .

(5.52)

which can in turn be evaluated using the following identities:83

(d− 1) b uµDµb−1 = −σµνT
µν

pd

uµDµ
[
σαβσ

αβ
]

= 2σµνu
λDλσµν

uµDµ
[
ωαβω

αβ
]

= 4σµνω
µλωλ

ν + ωµνFµν

uµDµR = −2σµνRµν + ωµνFµν + 2DµDνσµν − 2(d− 2)Dµ [uνFµν ]

= −2(d− 2)σµν
[
σµ

λσλν + ωµλω
λ
ν + uλDλσµν + Cµανβu

αuβ
]

+ ωµνFµν + 2DµDνσµν − 2(d− 2)Dµ [uνFµν ]

DµDνωµν = −(d− 3)

2
ωµνFµν

(5.53)

Substituting for the energy-momentum tensor from (5.26) and keeping only those terms

82 We assume that there are no pseudo-vector contributions to the entropy current which can possibly appear

only in the case of d = 4. See [11] for an analysis in d = 4 including pseudovectors.
83The first of these identities is just the re-statement of energy conservation uµDνTµν = 0. The rest of

them can be obtained by exploiting the properties of various Weyl-covariant quantities which are detailed in

[2]. Note however that the curvature tensors used here are the negative of those appearing in [2].
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which contain no more than three derivatives, we get84

4GAdSb
d−1DµJµS =

2b

d
σµν

[
σµν − bd(d− 2)

(
A3 −

2A2

d− 2

)
ωµλω

λ
ν

− bd(d− 2)

(
A3 +

1

d(d− 2)

)(
σµ

λσλν + uλDλσµν + Cµανβu
αuβ

)
+ (A1bd+ τω)uλDλσµν

]
+ b2(B1 + 2A3)DµDνσµν + . . .

(5.54)

We rewrite the above expression in a more useful form by isolating the terms that are

manifestly non-negative (keeping terms containing no more than three derivatives):

4GAdSb
d−1DµJµS =

2b

d

[
σµν −

bd(d− 2)

2

(
A3 −

2A2

d− 2

)
ωµλω

λ
ν

− bd(d− 2)

2

(
A3 +

1

d(d− 2)

)(
σµ

λσλν + uλDλσµν + Cµανβu
αuβ

)
+

1

2
(A1bd+ τω)uλDλσµν

]2

+ b2(B1 + 2A3)DµDνσµν + . . .

(5.55)

The second law requires that the right hand side of the above equation be positive semi-

definite at every point on the boundary. This gives us the single constraint :

B1 + 2A3 = 0 (5.56)

Equation (5.56) is the main result of this subsection. Any Weyl covariant entropy current

that obeys the constraint spelt out in (5.56) has a manifestly non negative divergence of the

entropy current, keeping only terms to the order of interest.

A particular example of such a current was constructed in [2]. The entropy current

proposed in [2] is equivalent to the following proposal for the coefficients

Ã1 = −τω
bd

, Ã2 = − 1

2d
, B̃2 =

1

d− 2
, B̃1 = −2Ã3 =

2

d(d− 2)
(5.57)

which yields a simple manifestly non-negative formula for the rate of entropy production

TDµJ̃µS = 2η σµνσ
µν + . . ..

Another example of an entropy current whose divergence is non-negative is the entropy

current derived from gravity in the previous section using the coefficients appearing in the

equation (5.48). Since the values of A3 and B1 appearing in (5.48) satisfy the constraint

(5.56), we conclude that the entropy current constructed in the previous subsection satisfies

the second law. More explicitly, by substituting the values of A and B coefficients from (5.47),

we get the rate of entropy production as

DµJµS =
2η

T

[
σµν +

1

2
(A1bd+ τω)uλDλσµν

]2

+ . . . (5.58)

84Note, in particular, that Fµν is zero on-shell upto second order in the derivative expansion(See (5.77)).
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where A1 and τω have been defined in equations (5.47) and (5.27) respectively.

5.5 Black Holes in AdS

5.5.1 AdS Kerr metrics as fluid duals

In the previous sections, we have found the bulk dual to arbitrary fluid dynamical evolutions

on the boundary, to second order in the derivative expansion. In this section, we now proceed

to test our results against a class of exact solutions of Einstein’s equations.

This class of solutions is the set of rotating black holes in the global AdS spaces. The dual

boundary stress tensor to these solutions varies on the length scale unity (if we choose our

boundary sphere to be of unit radius). On the other hand the temperature of these black holes

may be taken to be arbitrarily large. It follows that, in the large temperature limit, these black

holes are dual to ‘slowly varying’ field theory configurations that should be well described by

fluid dynamics. All of these remarks, together with nontrivial evidence for this expectation

was described in [15]. In this subsection, we will complete the programme initiated in [15] for

uncharged blackholes by demonstrating that the full bulk metric of these high temperature

rotating black holes agrees in detail with the 2nd order bulk metric determined by our analysis

earlier in this chapter. This exercise was already carried out in [11] for the special case d = 4.

Consider the AdS-Kerr BHs in arbitrary dimensions - exact solution for the rotating

blackholes in general AdSd+1 in different coordinates is derived in reference [16]. Following

[16], we begin by defining two integers n and ε via d = 2n + ε with ε = d mod 2. We can

then parametrise the d + 1 dimensional AdS Kerr solution by a radial co-ordinate r, a time

co-ordinate t̂ along with d− 1 = 2n+ ε− 1 spheroidal co-ordinates on Sd−1. We will choose

these spheroidal co-ordinates to be n+ε number of direction cosines µ̂i (obeying
∑n+ε

k=1 µ̂
2
k = 1

) and n + ε azimuthal angles ϕ̂i with ϕ̂n+1 = 0 identically. The angular velocities along the

different ϕ̂is are denoted by ai (an+1is taken to be zero identically).

In this ‘altered’ Boyer-Lindquist co-ordinates, AdS Kerr metric assumes the form (See

equation (E.3) of the [16])

ds2 = −W (1 + r2)dt̂2 +
Fdr2

1− 2M/V
+

2M

V F

(
Wdt̂−

n∑
i=1

aiµ̂
2
i dϕ̂i

1− a2
i

)2

+

n+ε∑
i=1

r2 + a2
i

1− a2
i

[
dµ̂2

i + µ̂2
i dϕ̂

2
i

]
− 1

W (1 + r2)

(
n+ε∑
i=1

r2 + a2
i

1− a2
i

µ̂idµ̂i

)2
(5.59)

where

W ≡
n+ε∑
i=1

µ̂2
i

1− a2
i

; V ≡ rd (1 +
1

r2
)

n∏
i=1

(1 +
a2
i

r2
) and F ≡ 1

1 + r2

n+ε∑
i=1

r2µ̂2
i

r2 + a2
i

(5.60)

We first perform a co-ordinate transformation of the form

dt̂ = dt− dr

(1 + r2) (1− 2M/V )
; dϕ̂i = dϕi −

aidr(
r2 + a2

i

)
(1− 2M/V )

(5.61)
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followed by another transformation of the form

µ2
i ≡

1

W

(
µ̂2
i

1− a2
i

)
with W =

1

1−
∑

i a
2
iµ

2
i

, F = W

∑
i

µ2
i

1 +
a2
i
r2

− 1

1 + 1
r2

 (5.62)

to get

ds2 = −2uµdx
µ(dr + rAνdxν) +

[
r2gµν + Σµν

]
dxµdxν +

uµuν
V Fbd

dxµdxν (5.63)

where

uµ∂µ ≡ ∂t + ai∂ϕi , Aµ = 0 , b ≡ (2M)−1/d

gµν ≡W

[
−dt2 +

∑
i

(
dµ2

i + µ2
i dϕ

2
i

)]

Σµν ≡W

−dt2 +
∑
i

a2
i

(
dµ2

i + µ2
i dϕ

2
i

)
+

(∑
i

a2
iµidµi

)2


(5.64)

This expression can be further simplified using the following identities

Σµν = u(µSν)λu
λ − ωµλωλν

r2V F = det [r δµν − ωµν ]
(5.65)

where the determinant of a tensor Mλ
σ is defined by

εµν...M
µ
αM

ν
β . . . = det

[
Mλ
σ

]
εαβ...

Hence, we conclude that the AdS Kerr metric in arbitrary dimensions can be rewritten

in the form

ds2 = −2uµdx
µ (dr + r Aνdxν) +

[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+
r2uµuν

bddet [r δµν − ωµν ]
dxµdxν

(5.66)

We have checked this form explicitly using Mathematica till d = 8.

This metric can also be written in the form

ds2 = −2uµdx
µ (dr + r Aνdxν) + r2gµνdx

µdxν

−
[
ωµ

λωλν +
1

d− 2
Dλωλ(µuν) +

1

(d− 1)(d− 2)
Ruµuν

]
dxµdxν

+
r2uµuν

bddet [r δµν − ωµν ]
dxµdxν

(5.67)
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or alternatively

ds2 = −2uµdx
µ(dr + Vνdxν) + Gµνdx

µdxν with

Vµ = rAµ − Sµλuλ −
r2uµ

2bddet [r δµν − ωµν ]

(5.68)

Gµν = r2Pµν − ωµλωλν

It is easily checked that this metric agrees(upto second order in boundary derivative

expansion) with the metric presented in (5.23) in section 4 of this chapter, upon inserting the

velocity and temperature fields listed in (5.64).

5.5.2 The Energy momentum tensor and the Entropy Current for the AdS Kerr

Black Hole

The exact energy momentum tensor for the AdS Kerr Black Hole described can be computed

using the standard counterterm methods. The non-anomalous part of the energy momentum

tensor is given by

Tµν = p(gµν + duµuν) with p =
1

16πGAdSbd
(5.69)

which is consistent with (5.27) if we take into account the fact that σµν = 0 in these configu-

rations.

The equation for the event horizon of the AdS Kerr Black Hole is given by V = 2M or

1

bd
= rd

H
(1 +

1

r2
H

)
n∏
i=1

(1 +
a2
i

r2
H

)

= rd
H

[
1 +

1 +
∑

i a
2
i

r2
H

+ . . .

] (5.70)

which can be solved for rH to give

rH =
1

b

[
1− b2

d

(
1 +

∑
i

a2
i

)
+ . . .

]

=
1

b
− d+ 2

2d(d− 2)
b ωµνωµν −

b R
d(d− 2)(d− 1)

+ . . .

(5.71)

which agrees with the expression for the event horizon in (5.43) upon inserting the velocity

and temperature field configurations (5.64).
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The entropy current for the AdS Kerr blackhole can be directly obtained from (5.45).

We have the following exact results :√
det

(n)
d−1H = rd−1

H

n∏
i=1

(1 +
a2
i

r2
H

) =
rH

bd(r2
H

+ 1)

nµ∂µ = ∂t +
∑
i

r2
H

+ 1

r2
H

+ a2
i

ai∂ϕi = uµ∂µ +
∑
i

1− a2
i

r2
H

+ a2
i

ai∂ϕi

JµS∂µ =
rH

4GAdSbd(r2
H

+ 1)

[
uµ∂µ +

∑
i

1− a2
i

r2
H

+ a2
i

ai∂ϕi

] (5.72)

These exact results can alternatively be expanded in a derivative expansion. Keeping

terms only upto second order in the derivative expansion, we get√
det

(n)
d−1H =

1

bd−1
[1− d− 1

d
b2 +

b2

d

∑
i

a2
i + . . .]

nµ∂µ = uµ∂µ + b2
∑
i

(1− a2
i )ai∂ϕi + . . .

(5.73)

which gives

4GAdSb
d−1JµS = uµ

[
1− b2

2d
ωαβωαβ −

b2R
d(d− 2)

]
+

b2

d− 2
Dλωµλ (5.74)

We have checked this form explicitly using Mathematica till d = 8.

Comparing the above with (5.47) and remembering that σαβ = 0 for the AdS Kerr black

hole, we find that our results in the previous sections are consistent with these exact solutions.

5.6 Discussion

In this chapter we have constructed an explicit map from solutions of the (generalized) Navier

Stokes equations on a d− 1, 1 dimensional boundary with an arbitrary weakly curved metric

gµν to the space of regular solutions to the Einstein equations with a negative cosmological

constant that asymptote, at small z, to ds2 = z−2
[
dz2 + gµνdx

µdxν
]
. We have demonstrated

that our solution space is exhaustive locally in solution space. In other words consider a

particular bulk solution B that is dual, under the map constructed in this chapter, to a

fluid flow F . Then every regular slowly varying bulk solution to Einstein’s equations that is

infinitesimally separated from B is dual to a fluid flow infinitesimally separated from F .

We have also demonstrated that - subject to certain restrictions on the long time behavior

- all the metrics constructed in this chapter have regular event horizons, and have constructed

the event horizon manifold of our solutions in this chapter. It would be interesting to relax the

restrictions on long time behavior under which this result follows, and simultaneously examine

under what conditions these restrictions are dynamically automatic from the equations of fluid

dynamics. In particular, as the long time limit of a fluid flow on a static metric is necessarily
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non dissipative, it would be interesting to fully classify all nondissipative flows on static

background geometries. 85

We have been able to put our construction of the event horizons described above to

practical use: by pulling the area form on the event horizon back to the boundary, we have

been able to define an entropy current for the dual fluid flow. The divergence of this current

is guaranteed to be non negative by the classic area increase theorem of black hole physics.

The entropy current we have constructed is a sort of local ‘Boltzmann H function’ which can,

locally, only be created and never destroyed. The local entropy increase theorem establishes

the irreversible nature of dual fluid flows. It may be interesting to study the structure of

gradient flows generated by this ‘entropy function’.

In the next chapter, we will use the insights gathered in this chapter to work out the

slightly more complicated case of charged fluids and their gravity duals. For simplicity, we

will confine ourselves to the case of CFT4 : as we will see there are novel transport properties

which could be derived by looking at the gravity duals.

5.7 Appendices

5.7.1 d=2

Through the text of this paper we have worked with conformal fluids in d > 2 dimensions.

In this section we explain that conformal fluid dynamics in d = 2 is special and essentially

trivial.

To start with note that a traceless stress tensor in d dimensions has sd = d2+d−2
2 indepen-

dent components. The assumption of local thermalization in the fluid dynamical limit allows

us to work instead with the d variables of fluid dynamics; the velocities and temperature.

Now d < sd for d > 2; it is precisely for this reason that fluid dynamics contains physical

information beyond the conservation of the stress tensor. However s2 = 2; consequently two

dimensional conformal fluid dynamics is simply the assertion of conservation of the two di-

mensional stress tensor. One may as well work directly with the components of the stress

tensor. The general solution to the conservation of the stress tensor in d = 2 is of course well

known. In a frame in which the boundary metric locally takes the form ds2 = e2φdx+dx−

(and ignoring anomaly effects in this discussion) the most general conserved and traceless

stress tensor is given by T++ = f(x+) and T−− = g(x−) for arbitrary functions f and g. This

constitutes the most general solution to ‘conformal fluid dynamics’ in two dimensions. Note

that according to this solution, left and right moving waves do not interact with each other.

Consequently two dimensional conformal ‘fluid’ dynamics is both trivial and a misnomer;

conformal fluids in two dimensions do not locally equilibrate.

The triviality of conformal fluid dynamics in two dimensions has a simple gravitational

counterpart: every solution of Einstein’s equations in two dimensions is locally AdS3. All

85It is natural to guess that this set is exhausted by uniform motion (in the case of the boundary Rd−1,1)

and rigid rotations (in the case of the boundary Sd−1,1), but we are unaware of proofs if any of this intuition.

We thank G.Gibbons for discussions on this issue.
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generally coordinate inequivalent regular solutions of these equations are the BTZ black holes.

(Note that the point mass solutions, studied extensively for instance in [94], have a naked

singularity atleast from the purely gravitational point of view). Conformally inequivalent

slicings of the same geometry (a la Brown and Hanneaux) generate the left and right moving

waves described in the previous subsection. From the bulk point of view these solutions are

trivial because they are all (large) diffeomorphism equivalent to static black holes.

There is yet another way to express the triviality of conformal fluid dynamics in two

dimensions. It turns out that there are no non-zero Weyl-covariant quantities which can be

formed out of velocity/temperature derivatives and hence, as noted by [12, 95], the first order

fluid dynamical metric becomes an exact solution of the bulk Einstein equations (see section

4 of [12] for more details). For all the reasons spelt out above, in the rest of our paper we

will focus on d > 2.

5.7.2 Pointwise solution to dynamics at second order in derivatives

As explained in [6], in order to construct the map from solutions of fluid dynamics to solutions

of gravity at second order, we need to ‘solve’ the equations of fluid dynamics, at a point xµ

to second order in derivatives. While it is of course very difficult to find the general global

solutions to fluid dynamics, the corresponding equations are very easily solved at a point. In

this Appendix we review the solution of these equations in explicitly Weyl covariant terms.

The results of this appendix were utilized in our construction of the bulk metric in section 4.

For solving the bulk constraint equations upto second order, we need (DµTµν = 0)

evaluated upto second order

Dµb = 2b2
4πη

s

[
σαβσ

αβ

d− 1
uµ −

Dλσλµ
d

]
+ . . . (5.75)

where we have introduced the entropy density s of the conformal fluid related to its pressure

by s = pd/T = 4πpb. This can be used to solve for the partial derivatives of b completely in

terms of velocity derivatives

∂µb = Aµb+ 2b2
4πη

s

[
σαβσ

αβ

d− 1
uµ −

Dλσλµ
d

]
+ . . .

∂µ∂νb = b(∂µAν +AµAν) + . . .

(5.76)

Since the left hand side of the last equation is symmetric in µ and ν, we get an integrability

condition

∂µAν = ∂νAµ + . . . (5.77)

Hence, we conclude that to this order we have a valid fluid configuration in a patch

around a point P0 provided we assume

b = b0 + εb0Aν0x
ν + 2ε2b20

4πη

s

[
σαβσ

αβ

d− 1
uµ −

Dλσλµ
d

]
0

+ ε2
b0
2

[∂µAν +AµAν ]0 x
µxν + . . .

Fµν ≡ ∂[µAν] = 0 + . . .

(5.78)
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For the metric given in the text to be a solution of the Einstein equations, it is necessary that

the velocity/temperature fields obey the above equations of motion with η/s = 1/(4π).
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6 Charged Hydrodynamics in AdS5/CFT4

In this chapter, we will study the metric duals of charged fluids in d = 4 spacetime dimen-

sions. We extend the methods decribed in the previous chapter to charged black-branes by

determining the metric duals to arbitrary charged fluid configuration up to second order in the

boundary derivative expansion. We also derive the energy-momentum tensor and the charge

current for these configurations up to second order in the boundary derivative expansion.

We find a new term in the charge current when there is a bulk Chern-Simons interaction

thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes

and boundary hydrodynamics. We have also confirmed that all our expressions are covariant

under boundary Weyl-transformations as expected.

The material for this chapter is drawn from the paper[17] written by the author in

collaboration with Nabamita Banerjee, Jyotirmoy Bhattacharya, Sayantani Bhattacharyya,

Suvankar Dutta and P. Surówka. Many of the results in that paper were simultaneously and

independently derived by Erdmenger et.al.[18].

6.1 Introduction

The connection between the equations of gravity and fluid dynamics, described in the previous

chapter, was demonstrated essentially by use of the method of collective coordinates. The

authors of [6, 9, 11, 12, 74] noted that there exists a d parameter set of exact, asymptotically

AdSd+1 black brane solutions of the gravity equations parameterized by temperature and

velocity. They then used the ‘Goldstone’ philosophy to promote temperatures and velocities to

fields. The Navier Stokes equations turn out to be the effective ‘chiral Lagrangian equations’

of the temperature and velocity collective fields.86.

Now consider a conformal field theory that has a conserved charge Q in addition to

energy and momentum. This is especially an interesting extension of the hydrodynamics of

the uncharged fluids since the hydrodynamics of many real fluids has a global conserved charge

which is often just the number of particles that make up the fluid. The long distance dynamics

of such a system is expected to be determined by the augmented Navier Stokes equations;

∇µTµν = 0 together with ∇µJµQ = 0, where the stress tensor and charge current are now given

as functions of the temperature, velocity and charge density, expanded to a given order in

the derivative expansion. The bulk dual description of a field theory with a conserved charge

always includes a propagating Maxwell field. Consequently the AdS/CFT correspondence

suggests asymptotically AdS long wavelength solutions of appropriate modifications of the the

Einstein Maxwell equation are in one to one correspondence with solutions of the augmented

Navier Stokes equations described above.

This expectation of the previous paragraph also fits well with the collective coordinate

intuition described above. Recall that the Einstein Maxwell equations have a well known d+1

dimensional set of charged black brane solutions, parameterized by the brane temperature,

86There exists a large literature in deriving linearise hydrodynamics from AdS/CFT. See([61] - [8]). There

have been some recent work on hydrodynamics with higher derivative corrections [80, 81].
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charge density and velocity. It seems plausible that the effective Goldstone equations, that

arise from the promotion of these d + 1 dimensional parameters to fields, are simply the

augmented Navier Stokes equations. In this chapter we verify the expectations via a direct

analysis of the relevant bulk equations. More concretely, we generalize the work out in

[6] to set up a perturbative scheme to generate long wavelength solutions of the Einstein

Maxwell equations plus a Chern Simons term (see below for more details) order by order in

the derivative expansion. We also implement this expansion to second order, and thereby

find explicit expressions for the stress tensor and charge current of our dual fluid to second

order in the derivative expansion.

In this chapter we work with the Einstein Maxwell equations augmented by a Chern

Simon’s term. This is because the equations of IIB SUGRA on AdS5×S5 (which is conjectured

to be dual to N = 4 Yang Mills) with the restriction of equal charges for the three natural

Cartans, admit a consistent truncation to this system. Under this truncation, we get the

following action

S =
1

16πG5

∫ √
−g5

[
R+ 12− FABFAB −

4κ

3
εLABCDALFABFCD

]
(6.1)

In the above action the size of the S5 has been set to 1. The value of the parameter κ

for N = 4 Yang Mills is given by κ = 1/(2
√

3) - however, with a view to other potential

applications we leave κ as a free parameter in all the calculations below. Note in particular

that our bulk Lagrangian reduces to the true Einstein Maxwell system at κ = 0.

Our expressions for the charge current and the stress tensor of the fluid are complicated,

and are listed in detail in subsequent sections. We would however like to point out an

important qualitative feature of our result. Already at first order, and at nonzero κ, the

charge current includes a term proportional to lα ≡ εµνλαuµ∇νuλ. The presence of this term

in the current resolves an apparent mismatch between the predictions of fluid dynamics and

the explicit form of charged rotating black holes in IIB supergravity reported in [15]. Note

that due to the presence of the ε symbol, this term is parity odd. However, when accompanied

by a flip in the R-charge of the brane, its sign remains unchanged. Consequently, this term

is CP symmetric in agreement with the expectations of CP symmetry of N = 4 Yang Mills

theory.

As we have explained above, the reduction of boundary field theory dynamics is expected

to reduce to field theory dynamics only at long wavelength compared to an effective mean

free path or equilibration length scale. All the gravitational constructions of this chapter also

work only in the same limit. It is consequently of interest to know the functional form of the

equilibration length scale of our conformal fluid as a function of intensive fluid parameters.

In the case of N = 4 Yang Mills, it follows from ‘t Hooft scaling and dimensional analysis

that, at large λ, the effective equilibration length scale is given by lmfp = f(ν)/T where ν

is the dimensionless chemical potential conjugate to the conserved charge of the theory and

T being the associated temperature. Explicit computation within gravity demonstrates that

f(ν) is of unit order for generic values of ν away from extremality. Consequently, at generic
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values of ν, all the considerations of this chapter apply only when all fields vary at distances

and times that are large compared to the local effective temperature.

6.2 Zeroeth Order Black Brane solution

In this section. we will establish the basic conventions and notations that we will use in the

rest of the paper. We start with the five-dimensional action87

S =
1

16πG5

∫ √
−g5

[
R+ 12− FABFAB −

4κ

3
εLABCDALFABFCD

]
(6.2)

which is a consistent truncation of IIB SUGRA Lagrangian on AdS5×S5 background with

a cosmological constant Λ = −6 and the Chern-Simons parameter κ = 1/(2
√

3) (See for

example, [96–107]). However, for the sake of generality (and to keep track of the effects of the

Chern-Simons term), we will work with an arbitrary value of κ in the following. In particular,

κ = 0 corresponds to a pure Maxwell theory with no Chern-Simons type interactions.

The field equations corresponding to the above action are

GAB − 6gAB + 2

[
FACF

C
B +

1

4
gABFCDF

CD

]
= 0

∇BFAB + κεABCDEFBCFDE = 0

(6.3)

where gAB is the five-dimensional metric, GAB is the five dimensional Einstein tensor. These

equations admit an AdS-Reisner-Nordström black-brane solution

ds2 = −2uµdx
µdr − r2V (r,m, q) uµuνdx

µdxν + r2Pµνdx
µdxν

A =

√
3q

2r2
uµdx

µ,
(6.4)

where

uµdx
µ = −dv; V (r,m, q) ≡ 1− m

r4
+
q2

r6
;

Pµν ≡ ηµν + uµuν ,

(6.5)

with ηµν = diag(− + ++) being the Minkowski-metric. Following the procedure elucidated

in [6], we shall take this flat black-brane metric as our zeroth order metric/gauge field ansatz

and promote the parameters uµ,m and q to slowly varying fields 88.

87We use Latin letters A,B ∈ {r, v, x, y, z} to denote the bulk indices and µ, ν ∈ {v, x, y, z} to denote the

boundary indices.
88Note that the charge we consider here refers to the Maxwell charge

∫
∂S
FABr

AtB in the bulk (where rA

and tA are respectively the unit radial normal and future pointing time-like normal to the spatial bounday ∂S).

In the presence of a Chern-Simons term in the bulk lagrangian (or alternatively, when the boundary global

charge is anomalous), there are other notions of charge (like Page charge - see, for example [108] ) which are

employed in the literature. The Page charge in the bulk would be
∫
∂S

(
FAB + 2κ ε CDE

AB ACFDE
)
rAtB in

our notation . These other notions of charge in the bulk mirrors the various possible notions of a global charge
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In the course of our calculations, we will often find it convenient to use the following

‘rescaled’ variables

ρ ≡ r

R
; M ≡ m

R4
; Q ≡ q

R3
; Q2 = M − 1 (6.6)

where R is the radius of the outer horizon,i.e., the largest positive root of the equation V = 0.

The Hawking temperature, chemical potential and the charge density of this black-brane are

given by89

T ≡ R

2π
(2−Q2) , µ ≡ 2

√
3q

R2
= 2
√

3QR and n ≡
√

3q

16πG5
. (6.7)

In terms of the rescaled variables, the outer and the inner horizon are given by

ρ+ ≡ 1 and ρ− ≡
[(
Q2 + 1/4

)1/2 − 1/2
]1/2

and the extremality condition ρ+ = ρ− corresponds to (Q2 = 2,M = 3). We shall assume

the black-branes and the corresponding fluids to be non-extremal unless otherwise specified -

this corresponds to the regime 0 < Q2 < 2 or 0 < M < 3 which we will assume henceforth.

Using the flat black-brane solutions with slowly varying velocity, temperature and charge

fields, our intention is to systematically determine the corrections to the metric and the gauge

field in a derivative expansion. More precisely, we expand the metric and the gauge field in

terms of derivatives of velocity, temperature and charge fields of the fluid as

gAB = g
(0)
AB + g

(1)
AB + g

(2)
AB + . . .

AM = A
(0)
M +A

(1)
M +A

(2)
M + . . .

(6.8)

where g
(k)
AB and A

(k)
M contain the k-th derivatives of the velocity, temperature and the charge

fields with

g
(0)
ABdx

AdxB = −2uµ(x)dxµdr − r2V (r,m(x), q(x)) uµ(x)uν(x)dxµdxν + r2Pµν(x)dxµdxν

A
(0)
M dxM =

√
3q(x)

2r2
uµ(x)dxµ.

(6.9)

when it is anomalous in the boundary theory. However, in the rest of the paper, we shall not concern ourselves

with these subtleties for the following reason - for the solutions in this chapter, F and hence A ∧ F vanishes

when restricted to boundary of AdS. In such a case, the boundary anomaly is turned off and the definition

of conserved charge in the boundary is unambiguous (Maxwell charge and Page charge become equal for this

subset of solutions). In fact, for a specific value of κ , this conserved charge refers to the unique R-charge of

the boundary super conformal field theory.
89In much of the literature the chemical potential µ is taken to be the potential difference between the

boundary and the horizon. However we have chosen a different normalization for µ (and hence the charge

density n). we shall elaborate on this point in subsection 6.3.5.
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In order to solve the Einstein-Maxwell-Chern-Simons system of equations, it is necessary

to work in a particular gauge for the metric and the gauge fields. Following [6], we choose

our gauge to be

grr = 0; grµ ∝ uµ ; Ar = 0; Tr[(g(0))−1g(k)] = 0. (6.10)

Further, in order to relate the bulk dynamics to boundary hydrodynamics, it is useful to

parameterise the fluid dynamics in the boundary in terms of a ‘fluid velocity’ uµ. In case of

relativistic fluids with conserved charges, there are two widely used conventions of how the

fluid velocity should be defined. In this paper, we will work with the Landau frame velocity

where the fluid velocity is defined with reference to the energy transport. In a more practical

sense working in the Landau frame amounts to taking the unit time-like eigenvector of the

energy-momentum tensor at a point to be the fluid velocity at that point.

Alternatively, one could work in the ‘Eckart frame’ where the fluid velocity is defined with

reference to the charge transport where the unit time-like vector along the charged current to

be the definition of fluid velocity. Though the later is often the more natural convention in the

context of charged fluids, we choose to use the Landau’s convention for the ease of comparison

with the other literature. We will leave the conversion to the more natural Eckart frame to

future work.

In the next two sections, we will report in some detail the calculations leading to the

determination of the metric and the gauge field up to second order in the derivative expansion.

This will enable us to determine the boundary stress tensor and charge current up to the

second order.

6.3 First Order Hydrodynamics

In this section, we present the computation of the metric and the gauge field up to first order

in derivative expansion, the derivative being taken with respect to the boundary coordinates.

We choose the boundary coordinates such that uµ = (1, 0, 0, 0) at xµ. Since our procedure is

ultra local therefore we intend to solve for the metric and the gauge field at first order about

this special point xµ. We shall then write the result thus obtained in a covariant form which

will be valid for arbitrary choice of boundary coordinates.

In order to implement this procedure we require the zeroth order metric and gauge field

expanded up to first order. For this we recall that the parameters m, q and the velocities (βi)

are functions of the boundary coordinates and therefore admit an expansion in terms of the

boundary derivatives. These parameters expanded up to first order is given by

m =m0 + xµ∂µm
(0) + . . .

q =q0 + xµ∂µq
(0) + . . .

βi =xµ∂µβ
(0)
i + . . .

(6.11)

Here m(i), q(i), β(i) refers to the i-th order correction to mass, charge and velocities respec-

tively.
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The zeroth order metric expanded about xµ up to first order in boundary coordinates is

given by

ds(0)2
= 2 dv dr − r2V (0)(r) dv2 + r2 dxi dx

i

− 2xµ ∂µβ
(0)
i dxi dr − 2xµ∂µβ

(0)
i r2(1− V (0)(r)) dxi dv

−

(
−xµ∂µm(0)

r2
+

2q0x
µ∂µ q

(0)

r4

)
dv2,

(6.12)

where m0 and q0 are related to the mass and charge of the background blackbrane respectively

and

V (0) = 1− m0

r4
+
q2

0

r6
.

Similarly the zeroth order gauge fields expanded about xµ up to first order is given by

A = −
√

3

2

[(
q0 + xµ∂µ q

(0)

r2

)
dv − q0

r2
xµ∂µ β

(0)
i dxi

]
(6.13)

Since the background black brane metric preserves an SO(3) symmetry 90, the Einstein-

Maxwell equations separate into equations in scalar, transverse vector and the symmetric

traceless transverse tensor sectors. This in turn allows us to solve separately for SO(3)

scalar, vector and symmetric traceless tensor components of the metric and the gauge field.

6.3.1 Scalars Of SO(3) at first order

The scalar components of first order metric and gauge field perturbations (g(1) and A(1)

respectively) are parameterized by the functions h1(r), k1(r) and w1(r) as follows 91∑
i

g
(1)
ii (r) = 3r2h1(r),

g(1)
vv (r) =

k1(r)

r2

g(1)
vr (r) = −3

2
h1(r)

A(1)
v (r) = −

√
3w1(r)

2r2

(6.14)

Note that g
(1)
ii (r) and g

(1)
vr (r) are related to each other by the gauge choice Tr[(g(0))−1g(1)] = 0.

Constraint equations

We begin by finding the constraint equations that constrain various derivatives velocity,temperature

and charge that appear in the first order scalar sector.The constraint equations are obtained

90Here we are referring to the SO(3) rotational symmetry in the boundary spatial coordinates.
91here i runs over the boundary spatial coordinates, v is the boundary time coordinate and r is the radial

coordinate in the bulk
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by taking a dot of the Einstein and Maxwell equations with the vector dual to the one form

dr. If we denote the Einstein and the Maxwell equations by EAB = 0 and MAB = 0, then

there are three constraint relations.

Two of them come from Einstein equations. They are given by

grrEvr + grvEvv = 0 , (6.15)

and

grrErr + grvEvr = 0 , (6.16)

and the third constraint relation comes from Maxwell equations and is given by

grrMr + grvMv = 0 . (6.17)

Equation (6.15) reduces to

∂vm
(0) = −4

3
m0∂iβ

(0)
i . (6.18)

which is same as the conservation of energy in the boundary at the first order in the derivative

expansion, i.e., the above equation is identical to the constraint (scalar component of the

constraint in this case)

∂µT
µν
(0) = 0 . (6.19)

on the allowed boundary data.

The second constraint equation (6.16) in scalar sector implies a relation between h1(r)

and k1(r).

2∂iβ
(0)
i r5 + 12r6h1(r) + 4q0w1(r)−m0r

3h′1(r) + 3r7h′1(r)− r3k′1(r)− 2q0rw
′
1(r) = 0. (6.20)

The constraint relation coming from Maxwell equation (See Eq. (6.17)) gives

∂v q
(0) = −q0 ∂iβ

(0)
i . (6.21)

This equation can be interpreted as the conservation of boundary current density at the first

order in the derivative expansion.

∂µJ
µ
(0) = 0. (6.22)

We now proceed to find the scalar part of the metric dual to a fluid configuration which

obeys the above constraints.

Dynamical equations and their solutions

Among the Einstein equations four are SO(3) scalars (namely the vv, rv, rr components and

the trace over the boundary spatial part). Further the r and v-components of the Maxwell

equations constitute two other equations in this sector. Two specific linear combination of

the rr and vv components of the Einstein equations constitute the two constraint equations

– 129 –



in (6.18). Further, a linear combination of the r and v-components of the Maxwell equations

appear as a constraint equation in (6.21). Now among the six equations in the scalar sector

we can use any three to solve for the unknown functions h1(r), k1(r) and w1(r) and we

must make sure that the solution satisfies the rest. The simplest two equations among these

dynamical equations are

5h′1(r) + rh′′1(r) = 0. (6.23)

which comes from the rr-component of the Einstein equation and

6q0h
′
1(r) + w′1(r)− rw′′1(r) = 0. (6.24)

which comes from the r-components of the Maxwell equation. We intend to use these dy-

namical equations (6.23), (6.24) along with one of the constraint equations in (6.18) to solve

for the unknown functions h1(r), k1(r) and w1(r).

Solving (6.23) we get

h1(r) =
C1
h1

r4
+ C2

h1
, (6.25)

where C1
h1

and C2
h1

are constants to be determined. We can set C2
h1

to zero as it will lead to

a non-normalizable mode of the metric. We then substitute the solution for h1(r) from (6.25)

into (6.24) and solve the resultant equation for w1(r). The solution that we obtain is given

by

w1(r) = C1
w1
r2 + C2

w1
− q0

C1
h1

r4
. (6.26)

Here again C1
w1

, C2
w2

are constants to be determined. Again C1
w1

corresponds to a non-

normalizable mode of the gauge field and therefore can be set to zero.

Finally plugging in these solutions for h1(r) and w1(r) into one of the constraint equations

in (6.18) and then solving the subsequent equation we obtain

k1(r) =
2

3
r3∂iβ

(0)
i + Ck1 −

2q0

r2
C2
w1

+

(
2q0

2

r6
− m0

r4

)
C1
h1

(6.27)

Now the constants Ck1 and C2
w1

may be absorbed into redefinitions of mass (m0) and charge

(q0) respectively and hence may be set to zero. Further we can gauge away the constant C1
h1

by the following redefinition of the r coordinate

r → r

(
1 +

C

r4

)
,

C being a suitably chosen constant.

Thus we conclude that all the arbitrary constants in this sector can be set to zero and

therefore our solutions may be summarized as

h1(r) = 0, w1(r) = 0, k1(r) =
2

3
r3∂iβ

(0)
i . (6.28)
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In terms of the first order metric and gauge field this result reduces to∑
i

g
(1)
ii (r) = 0,

g(1)
vv (r) =

2

3
r∂iβ

(0)
i ,

g(1)
vr (r) = 0,

A(1)
v (r) = 0 .

(6.29)

Now, we proceed to solving the equations in the vector sector.

6.3.2 Vectors Of SO(3) at first order

The vector components of metric and gauge field g(1) and A(1) are parameterized by the

functions j
(1)
i (r) and g

(1)
i (r) as follows

g
(1)
vi (r) =

(
m0

r2
− q2

0

r4

)
j

(1)
i (r)

A
(1)
i (r) = −

(√
3q0

2r2

)
j

(1)
i (r) + g

(1)
i (r)

(6.30)

Now we intend to solve for the functions j
(1)
i (r) and g

(1)
i (r).

Constraint equations

The constraint equations in the vector sector comes only from the Einstein equation. So there

is only one constraint equation in this sector. It is given by

grrEri + grvEvi = 0 (6.31)

which implies

∂im
(0) = −4m0∂vβ

(0)
i . (6.32)

These equations also follow from the conservation of boundary stress tensor at first order. We

shall use this constraint equation to simplify the dynamical equations in the vector sector.

Dynamical equations and their solutions

In the vector sector we have two equations from Einstein equations (the ri and vi-components)

and one from Maxwell equations (the ith-component) 92.

The dynamical equation obtained from the vi-component of the Einstein equations is

given by

(
q2

0 − 3m0r
2
) dj(1)

i (r)

dr
+ 4
√

3q0r
2dgi(1)(r)

dr
+
(
m0r

2 − q2
0

)
r
d2j

(1)
i (r)

dr2
= −3r4∂vβ

(0)
i . (6.33)

92Note that a linear combination of the ri and vi-components of the Einstein equation appear as the con-

straint equation in (6.32).
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Also the dynamical equation from the ith-component of the Maxwell equation is given by

r

[
2
(
r6 −m0r

2 + q2
0

) d2g
(1)
i

dr2
r2 +

(
6r7 + 2m0r

3 − 6q2
0r
) dg(1)

i (r)

dr

]

−
√

3q0r
(
r6 −m0r

2 + q2
0

) d2j
(1)
i (r)

dr2
+
√

3q0

(
r6 − 3m0r

2 + 5q2
0

) dj(1)
i (r)

dr

=
√

3(q0∂vβ
(0)
i + ∂iq

(0))r3 − 24q2
0κrl

(0)
i ,

(6.34)

where li is defined as

li ≡ εijk∂jβk. (6.35)

Now in order to solve this coupled set of differential equations (6.33) and (6.34) we shall

substitute g
(1)
i (r) obtained from (6.33) into (6.34) and solve the resultant equation for j

(1)
i (r).

For any function j
(1)
i (r), using (6.33) g

(1)
i (r) may be expressed as

g
(1)
i (r) = (Cg)i +

1

4
√

3q0

−∂vβ(0)
i r3 + 4m0j

(1)
i (r)−

(
m0r

2 − q2
0

) dj(1)
i (r)
dr

r

 . (6.36)

Here (Cg)i is an arbitrary constant. It corresponds to non normalizable mode of the gauge

field and hence may be set to zero.

Substituting this expression for g
(1)
i (r) into (6.34) we obtain the following differential

equation for j
(1)
i (r)

(
35q4

0 + 5r2
(
r4 − 6m0

)
q2

0 + 3m0r
4
(
3r4 +m0

)) dj(1)
i (r)

dr

r
(
−11q4

0 −
(
5r6 − 14m0r

2
)
q2

0 −m0r
4
(
r4 + 3m0

)) d2j
(1)
i (r)

dr2

+ r2
(
q2

0 −m0r
2
) (
r6 −m0r

2 + q2
0

) d3j
(1)
i (r)

dr3

=
1√
3

(
6
√

3q0∂iq
(0)r4 + 3

√
3∂vβ

(0)
i

(
5r6 −m0r

2 + q2
0

)
r4 − 144 r l

(0)
i q3

0κ
)

(6.37)

The solution to this equation is given by,

j
(1)
i (r) = (C1

j )i +
(C2

j )ir
2

m0
r2 −

q2
0
r4

+
r ∂vβ

(0)
i

m0
r2 −

q2
0
r4

+

√
3 l

(0)
i q3

0κ

m0

(
m0
r2 −

q2
0
r4

)
r4

+
6r2q0(∂iq

(0) + 3q0∂vβ
(0)
i )

R7
(
m0
r2 −

q2
0
r4

) F1(
r

R
,
m0

R4
),

(6.38)

where again (C1
j )i and (C2

j )i are arbitrary constants. (C2
j )i corresponds to a non-normalizable

mode of the metric and so is set to zero. (C1
j )i can be absorbed into a redefinition of the

velocities and hence is also set to zero.
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Here the function F1( rR ,
m0
R4 ) is given by93

F1(ρ,M) ≡ 1

3

(
1− M

ρ4
+
Q2

ρ6

)∫ ∞
ρ

dp
1(

1− M
p4 + Q2

p6

)2

(
1

p8
− 3

4p7

(
1 +

1

M

))
, (6.39)

where Q2 = M − 1.

Substituting this result for j
(1)
i (r) into (6.36) we obtain the following expression for g

(1)
i (r)

g
(1)
i (r) =

√
3r3
√
R2 (m0 −R4)

2 (m0(r −R)(r +R) +R6)
(∂vβ

(0)
i ) +

3R2κ(m0 −R4)

2 (m0 (r2 −R2) +R6)
li

−

√
3r4
(
r
(
m0

(
r2 −R2

)
+R6

)
F

(1,0)
1

(
r
R ,

m0
R4

)
+
(
6R7 − 6m0R

3
)
F1

(
r
R ,

m0
R4

))
2R8 (m0 (r2 −R2) +R6)

(∂iq
(0) + 3q0∂vβ

(0)
i )

(6.40)

where we use the notation f (i,j)(α, β) to denote the partial derivative ∂i+jf/∂αi∂βj of the

function f .

Plugging back j
(1)
i (r) and g

(1)
i (r) back into (6.30) we conclude that the first order metric

and gauge field in the vector sector is given by

g
(1)
vi (r) = r∂vβ

(0)
i +

√
3 l

(0)
i q3

0κ

m0r4
+

6r2

R7
q0(∂iq

(0) + 3q0∂vβ
(0)
i )F1(

r

R
,
m0

R4
)

A
(1)
i (r) = −

√
3r5F

(1,0)
1

(
r
R ,

m0
R4

)
2R8

(∂iq
(0) + 3q0∂vβ

(0)
i ) +

3Rκ
√
m0 −R4

√
R2 (m0 −R4)

2m0r2
li

(6.41)

6.3.3 Tensors Of SO(3) at first order

The tensor components of the first order metric is parameterized by the function α
(1)
ij (r) such

that

g
(1)
ij = r2α

(1)
ij . (6.42)

The gauge field does not have any tensor components therefore in this sector there is only

one unknown function to be determined.

There are no constraint equations in this sector and the only dynamical equation is

obtained from the ij-component of the Einstein equation. This equation is given by

r
(
r6 −m0r

2 + q2
0

) d2αij(r)

dr2
−
(
−5r6 +m0r

2 + q2
0

) dαij(r)
dr

= −6σ
(0)
ij r

4 (6.43)

where σij is given by

σ
(0)
ij =

1

2

(
∂iβ

(0)
j + ∂jβ

(0)
i

)
− 1

3
∂kβ

(0)
k δij . (6.44)

93Although the expression for F1( r
R
, m0
R4 ) is very complicated but it satisfies some identities. One can use

those identities to perform practical calculations with this function.
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The solution to equation (6.43) obtained by demanding regularity at the future event

horizon and appropriate normalizability at infinity. The solution is given by

α
(1)
ij =

2

R
σijF2(

r

R
,
m0

R4
), (6.45)

where the function F2(ρ,M) is given by

F2(ρ,M) ≡
∫ ∞
ρ

p
(
p2 + p+ 1

)
(p+ 1) (p4 + p2 −M + 1)

dp (6.46)

with M ≡ m/R4 as before.

Thus the tensor part of the first order metric is determined to be

g
(1)
ij =

2r2

R
σijF2(

r

R
,
m0

R4
). (6.47)

6.3.4 The global metric and the gauge field at first order

In this subsection, we gather the results of our previous sections to write down the entire

metric and the gauge field accurate up to first order in the derivative expansion.

We obtain the metric as

ds2 = gABdx
AdxB

= −2uµdx
µdr − r2 V uµuνdx

µdxν + r2Pµνdx
µdxν

− 2uµdx
µ r

[
uλ∂λuν −

∂λu
λ

3
uν

]
dxν +

2r2

R
F2(ρ,M)σµνdx

µdxν

− 2uµdx
µ

[√
3κq3

mr4
lν +

6qr2

R7
P λν DλqF1(ρ,M)

]
dxν + . . .

A =

[√
3q

2r2
uµ +

3κq2

2mr2
lµ −

√
3r5

2R8
P λµDλqF

(1,0)
1 (ρ,M)

]
dxµ + . . .

(6.48)

where Dλ is the weyl covarient derivative defined in appendix 6.6.1. We also have defined

V ≡ 1− m

r4
+
q2

r6
; lµ ≡ ενλσµuν∂λuσ; P λµDλq ≡ P λµ ∂λq + 3(uλ∂λuµ)q; ρ ≡ r

R

σµν ≡ PµαP νβ∂(αuβ) −
1

3
Pµν∂αuα; M ≡ m

R4
; Q ≡ q

R3
; Q2 = M − 1

(6.49)

and

F1(ρ,M) ≡ 1

3

(
1− M

ρ4
+
Q2

ρ6

)∫ ∞
ρ

dp
1(

1− M
p4 + Q2

p6

)2

(
1

p8
− 3

4p7

(
1 +

1

M

))

F2(ρ,M) ≡
∫ ∞
ρ

p
(
p2 + p+ 1

)
(p+ 1) (p4 + p2 −M + 1)

dp .

(6.50)
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6.3.5 The Stress Tensor and Charge Current at first order

In this section, we obtain the stress tensor and the charge current from the metric and the

gauge field. The stress tensor can be obtained from the extrinsic curvature after subtraction

of the appropriate counterterms [43, 109]. We get the first order stress tensor as

Tµν = p(ηµν + 4uµuν)− 2ησµν + . . . (6.51)

where the fluid pressure p and the viscosity η are given by the expressions

p ≡ MR4

16πG5
; η ≡ R3

16πG5
=

s

4π
(6.52)

where s is the entropy density of the fluid obtained from the Bekenstein formula.

To obtain the charge current, we use

Jµ = lim
r→∞

r2Aµ
8πG5

= n uµ −D P νµDνn+ ξ lµ + . . . (6.53)

where the charge density n, the diffusion constant D and an additional transport coefficient

ξ for the fluid under consideration are given by 94

n ≡
√

3q

16πG5
; D =

1 +M

4MR
; ξ ≡ 3κq2

16πG5m
(6.54)

We note that when the bulk Chern-Simons coupling κ is non-zero, apart from the con-

ventional diffusive transport, there is an additional non-dissipative contribution to the charge

current which is proportional to the vorticity of the fluid. To the extent we know of, this is

a hitherto unknown effect in the hydrodynamics which is exhibited by the conformal fluid

made of N = 4 SYM matter. It would be interesting to find a direct boundary reasoning

that would lead to the presence of such a term - however, as of yet, we do not have such an

explanation and we hope to return to this issue in future.

The presence of such an effect was indirectly observed by the authors of [15] where they

noted a discrepancy between the thermodynamics of charged rotating AdS black holes and

the fluid dynamical prediction with the third term in the charge current absent. We have

verified that this discrepancy is resolved once we take into account the effect of the third term

in the thermodynamics of the rotating N = 4 SYM fluid. In fact, one could go further and

compare the first order metric that we have obtained with rotating black hole metrics written

in an appropriate gauge. We have done this comparison up to first order and we find that

the metrics agree up to that order.

94Here we have taken the chemical potential µ = 2
√

3QR which determines the normalization factor of the

charge density n (because thermodynamics tells us nµ = 4p−Ts) which in turn determines the normalization

of Jµ. Note that due to the difference in µ with [18], our normalization of Jµ is different from that in [18].
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6.4 Second Order Hydrodynamics

In this section we will find out the metric, stress tensor and charge current at second order

in derivative expansion. We will follow the same procedure as in [6] but in presence charge

parameter q.

The metric and gauge field perturbations at second order that we consider are

g
(2)
αβdx

αdxβ = −3h2(r)dvdr+r2h2(r)dxidxi+
k2(r)

r2
dv2 +12r2j

(2)
i dvdxi+r2α

(2)
ij dx

idxj (6.55)

and

A(2)
v = −

√
3

2r2
w2(r)

A
(2)
i =

√
3

2
r5g

(2)
i (r)dxi . (6.56)

Here we have used a little different parameterizations (from first order) for metric and gauge

field perturbations in the vector sector. We found that this aids in writting the corresponding

dynamical equations for j
(2)
i (r) and g

(2)
i (r) in a more tractable form (as we will see later).

Like neutral black brane case, here also we will list all the source terms (second order in

derivative expansion) which will appear on the right hand side of the constraint dynamical

equations in scalar, vector and tensor sectors. These source terms are built out of second

derivatives of m, q and β or square of first derivatives of these three fields. We can group these

source terms according to their transformation properties under SO(3) group. A complete

list has been provided in table 6.4. In the table the quantities li and σij are defined to be

li = εijk∂jβk , σij =
1

2
(∂iβj + ∂jβk)−

1

3
δij∂kβk . (6.57)

In table 6.4 we have already employed the first order conservation relations i.e. equation

6.19 and 6.20. Using these two relations we have eliminated the first derivatives of m and q.

However at second order in derivative expansion we also have the relations

∂µ∂νT
µν
(0) = 0 , (6.58)

and

∂λ∂µJ
µ
(0) = 0 . (6.59)

The equations (6.58) and (6.59) imply some relations between the second order source
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1 of SO(3) 3 of SO(3) 5 of SO(3)

S1 = ∂2
vm V1i = ∂i∂vm T1ij = ∂i∂jm− 1

3 s3 δij

S2 = ∂v∂iβi V2i = ∂2
vβi T2ij = ∂(ilj)

S3 = ∂2m V3i = ∂vli T3ij = ∂vσij

ST1 = ∂vβi ∂vβi V4i = 9
5∂jσji − ∂

2βi TT1ij = ∂vβi ∂vβj − 1
3 ST1 δij

ST2 = li ∂vβi V5i = ∂2βi TT2ij = l(i ∂vβj) − 1
3 ST2 δij

ST3 = (∂iβi)
2 VT1i = 1

3(∂vβi)(∂jβ
j) TT3ij = 2 εkl(i ∂vβ

k ∂j)β
l + 2

3 ST2 δij

ST4 = li l
i VT2i = −εijk lj ∂vβk TT4ij = ∂kβ

k σij

ST5 = σij σ
ij VT3i = σij ∂vβ

j TT5ij = li lj − 1
3 ST4 δij

QS1 = ∂2
vq VT4i = li ∂jβ

j TT6ij = σik σ
k
j − 1

3 ST5 δij

QS2 = ∂i∂iq VT5i = σij l
j TT7ij = 2 εmn(i l

m σnj)

QS3 = li∂iq QV1i = ∂i∂vq QT1ij = ∂i∂jq − 1
3 QS2 δij

QS4 = (∂iq)
2 QV2i = ∂iq∂kβ

k QT2ij = ∂(iqlj) − 1
3 QS3 δij

QS5 = (∂iq)(∂vβi) QV3i = εijk∂jlk QT3ij = ∂(iq∂j)q − 1
3 QS4 δij

QV4i = σij∂jq QT4ij = ∂(iq∂vβj) − 1
3 QS5 δij

QV5i = εijk∂vβj∂kq QT5ij = ε(ikm∂kq σmj)

Table 1. An exhaustive list of two derivative terms in made up from the mass, charge and velocity

fields. In order to present the results economically, we have dropped the superscript on the velocities

βi charge q and the mass m, leaving it implicit that these expressions are only valid at second order

in the derivative expansion.
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terms which are listed in table 6.4. These relations are

S1 =
S3

3
− 8m

3
ST1 +

16m

9
ST3− 2m

3
ST4 +

4m

3
ST5

S2 = − 1

4m
S3 + 4ST1 +

1

2
ST4− ST5

QS1 = q (−ST1− S2 + ST3)−QS5

V1i = m

(
−40

9
V4i −

4

9
V5i +

56

3
VT1i +

4

3
VT2i +

8

3
VT3i

)
V2i =

10

9
V4i +

1

9
V5i −

2

3
VT1i +

1

6
VT2i −

5

3
VT3i

V3i = −1

3
VT4i + VT5i

QV1i = −q
(

10

3
V4i +

1

2
(VT2i + 2VT1i + 2VT3i) +

1

3
V5i

)
−QV2i −

1

2

(
2QV4i + QV3i +

2

3
QV2i

)
T1ij = −4m

(
T3ij +

1

4
TT5ij − 4TT1ij +

1

3
TT4ij + TT6ij

)
(6.60)

With these relation between the source terms we will now solve the Einstein equations and

Maxwell equations to find out the constraint and dynamical equations at second order in

derivative expansion. As in the first order calculations we shall perform this seperately in

various sectors denoting different representation of the boundary rotation group SO(3).

6.4.1 Scalars of SO(3) at second order

We parametrise the metric and the gauge field as follows∑
i

g
(2)
ii (r) = 3r2h2(r),

g(2)
vv (r) =

k2(r)

r2

g(2)
vr (r) = −3

2
h2(r)

A(2)
v (r) = −

√
3w2(r)

2r2
.

(6.61)

Now we intend to solve for the functions h2(r), k2(r) and w2(r).

Constraint Equations

As we have already explained, there are three constraint equations. First two come from

Einstein equations (Eq. 6.15 and 6.15) and the third one comes from Maxwell equations (Eq.

6.17). The first constrain from Einstein equations gives

∂vm
(1) =

2

3
R3 ST5 (6.62)
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Second constraint implies relation between k2(r) and h2(r). This constraint equation is given

by

−m0h
′
2(r) + 3r4h′2(r) + 12r3h2(r)− k′2(r) +

4q0w2(r)

r3
− 2q0w

′
2(r)

r2
= SC , (6.63)

where the source term SC is given in appendix 6.6.2.

The constraint relation coming from Maxwell equations is given by

∂vq
(1) = −

3q0

(
R4 +m0

)
16m0

2R
S3 +

(
R4 +m0

)
4m0R

QS2− 6
√

3q0
2κ

m0
ST2

−
(
m0 − 11R4

)
4m0R

QS5− 2
√

3q0κ

m0
QS3− q0

4m0R
3 QS4

+
9q0

(
3R4 +m0

)
4m0R

ST1 (6.64)

Dynamical Equations and their solutions

The Dynamical Equations in the scalar sector (coming from the Einstein equation Err = 0)

is given by

rh′′2(r) + 5h′2(r) = Sh . (6.65)

The source term Sh is explicitly given in appendix 6.6.2.

The second dynamical scalar equation, which comes form the Maxwell equations (M(r) =

0), is given by

−6q0h
′
2(r) + rw′′2(r)− w′2(r) = SM (r). (6.66)

The explicit form of the source term SM (r) is again given in appendix 6.6.2.

The source terms have the same large r behavior as uncharged case (see [6]) because

the charge dependent terms (leading) are more suppressed than that of charge independent

terms. So one can follow the same procedure to obtain the solution for h2(r) and k2(r). Here

we present the result schematically. Firstly, we solve equation (6.65) for the function h2(r);

we obtain

h2(r) =

∫ (
1

r5

(∫ (
r4Sh(r)

)
dr + C

(1)
h

))
dr + C

(2)
h , (6.67)

where C
(1)
h and C

(2)
h are the constants of integration. We then plug in this solution for h2(r)

in to (6.66). Solving the resultant equation for the w2 we obtain,

w2(r) =

∫ (
r

(∫ (
1

r2
Sw(r)

)
dr + C(1)

w

))
dr + C(2)

w , (6.68)

where again C
(1)
w and C

(2)
w are integration constants, and the function Sw(r) is

Sw(r) = SM (r) + 6q0h
′
2(r).
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Finally, we substitute the functions h2(r) and w2(r) solved above, in to (6.63) to obtain the

following equation for k2(r)

k′2(r) = (3r4 −m0)h′2(r) + 12r3h2(r) +
4q0

r3
w2(r)− 2q0

r2
w′2(r)− SC ≡ Sk(r). (6.69)

This equation can be easily integrated to obtain

k2(r) =

∫
Sk(r)dr + Ck, (6.70)

Ck being the integration constant. All the integration constants in the above solutions are

obtained by imposing regularity at the horizon and normalizability of the functions, just as

in the first order computation.

6.4.2 Vectors of SO(3) at second order

As given in (6.55) and (6.56), in this sector we parametrize95 the metric, and the gauge field

respectively in the following way

gvi = 6r2j
(2)
i (r)

A
(2)
i =

√
3

2
r2g

(2)
i (r).

(6.71)

Constraint Equations

In this sector, the constraint equation comes only from the Einstein equations (6.31). This

constraint relation is give by

∂im
(1) =

10R3

9
V4i +

10R3

9
V5i +

10R3

3
VT1i −

5R3

6
VT2i

+
6q0R

m0 − 3R4 QV4i −
(
21R7 − 43m0R

3
)

3
(
m0 − 3R4

) VT3i . (6.72)

Dynamical Equations and their solutions

There are two vector dynamical equations. The first equation comes from Einstein equation

and is given by

q0rg
(2)
i

′
(r) + 5q0g

(2)
i (r) + rj

(2)
i

′′
(r) + 5j

(2)
i

′
(r) = (Svec

E )i(r), (6.73)

where (Svec
E )i(r) is the source terms given in the appendix 6.6.3. The second dynamical

equation comes from Maxwell equation and is given by

√
3
(
−m0r

4g
(2)
i

′′
(r) + q2

0r
2g

(2)
i

′′
(r) + r8g

(2)
i

′′
(r) + g

(2)
i

′
(r)
(
−9m0r

3 + 7q2
0r + 13r7

)
+ 5g

(2)
i (r)

(
−3m0r

2 + q2
0 + 7r6

)
+ 12q0j

(2)
i

′
(r)
)

= (Svec
M )i(r)

(6.74)

95Note that the parametrization of the gauge field at this order is different from the one used for the scalar

sector.
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where (Svec
M )i(r) is the other source term the explicit form of which is also given in the

appendix 6.6.3. The sources (Svec
M )i(r) and (Svec

E )i(r) are expressed in terms of the weyl

invariant quantities (Wv)
m
i which are defined in appendix 6.6.1. We can now solve equation

(6.73) for the function g
(2)
i (r) to obtain

g
(2)
i (r) = −

j
(2)
i

′
(r)

q0
+

(Wv)
1
i + (Wv)

2
i

6q0r3
−
(

1

q0r5

)∫ ∞
r

x4

(
(Svec
E )i(r)−

(Wv)
1
i + (Wv)

2
i

3x3

)
dx,

(6.75)

where the integrating constant has been chosen by the normalizability condition. Plugging

in this solution in to (6.74) we obtain the following effective equation for j
(2)
i (r)

d

dr

(
1

r

d

dr

(
r7
(
V (0)(r)

)2 d

dr

(
1

V (0)(r)
j

(2)
i (r)

)))
+ Si(r) = 0, (6.76)

where

Si(r) =

(
− 1√

3r2

)(√
3
(
r
(
m0

(
R2 − r2

)
+ r6 −R6

)
(Svec
E )′i(r)

+(Svec
E )i(r)

(
m0

(
R2 − 3r2

)
+ 7r6 −R6

))
−
√
R2 (m0 −R4)(Svec

M )i(r)

)
.

(6.77)

Finally, the solution to the equation (6.76) is given by

j
(2)
i (r) = −V (0)(r)

∫ ∞
r

1

x7
(
V (0)(x)

)2
(∫ ∞

x
y

∫ ∞
y

Sregi (z)dzdy

)
dx

− V (0)(r)

∫ ∞
r

1

x7
(
V (0)(x)

)2
[
C

(j)
i −

1

3(m03R2)
3R7

((
(Wv)

1
i + (Wv)

4
i

)
x

−m0R
3
(
(Wv)

1
i + 3(Wv)

4
i

)
x− 1

2
m0

(
(Wv)

1
i + (Wv)

2
i

)
x4 +

3

2
R4
(
(Wv)

1
i + (Wv)

2
i

)
x4

)]
dx,

(6.78)

where again for convenience we have defined

Sregi (z) =
R3
(
m0((Wv)

1
i + 3(Wv)

4
i )− 3R4((Wv)

1
i + (Wv)

4
i )
)

3z2 (m0 − 3R4)
− Si(z)−

4

3
z((Wv)

1
i + (Wv)

2
i ).

(6.79)

The constant C
(j)
i is determined by the regularity at horizon and is given by

C
(j)
i = − 1

12m0 (m0 − 3R4)

(
R4
(
m2

0(9(Wv)
1
i + 4(Wv)

2
i + 15(Wv)

4
i )

− 6m0R
4(6(Wv)

1
i + 3(Wv)

2
i + 4(Wv)

4
i ) + 9R8(3(Wv)

1
i + 2(Wv)

2
i + (Wv)

4
i )
)

− 9R2
(
m2

0 − 4m0R
4 + 3R8

)(∫ ∞
R

Sregi (x) dx

)
+ 6m0

(
m0 − 3R4

) ∫ ∞
R

y2Sregi (y) dy

)
,

(6.80)
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We now have to plug in the source terms (given in Appendix 6.6.3) and perform the inte-

grals to write the solutions explicitly. Since such explicit solution would be very complicated,

we do not provide it here. Nevertheless, from the above solution we extract the boundary

charge current as we explicate in the following section.

6.4.3 Boundary Charge Current at second order

The charge current at second order in derivative expansion is given by

J (2)
µ = lim

r→∞

r2A
(2)
µ

8πG5
. (6.81)

The gauge field perturbation at this order is parametrised by the function g
(2)
i (r). Thus to

obtain the charge current density we have to consider the asymptotic limit (i.e. the r → ∞
limit) of the function g

(2)
i (r). This function is given by (6.75). The function j

(2)
i (r) in that

equation is in turn given by (6.78).

If we carefully extract the coefficient of the 1/r2 term in the r → ∞ limit of the gauge

field (using the equation referred to in the last paragraph) we find that the charge current is

given by

J
(2)
i =

m0(Wv)
2
i − 6C

(j)
i

4
√

3
√
R2 (m0 −R4)

, (6.82)

the constant C
(j)
i being given by the equation (6.80). Plugging in the sources in to equation

(6.80) and performing the integrations we find

J
(2)
i =

(
1

8πG5

) 5∑
l=1

Cl(Wv)
l
i, (6.83)

where the coefficients of the Weyl invariant terms (Wv)
l
i are given by 96

C1 =
3
√

3R
√
M − 1

8M
,

C2 =

√
3R(M − 1)3/2

4M2
,

C3 = −3Rκ(M − 1)

2M2
,

C4 =
1

4

√
3R
√
M − 1 log(2) +O(M − 1),

C5 = −
√

3R
√
M − 1

(
M2 − 48(M − 1)κ2 + 3

)
16M2

.

(6.84)

We have expressed the above results in terms of the parameters M and R with M = m0/R
4.

96All these coefficients perfectly match with the corresponding coefficients in version 4 of [18]
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6.4.4 Tensors Of SO(3) at second order

We now consider the tensor modes at second order. Following the first order calculations

we pametrize the traceless symmetric tensor components of the second order metric by the

function α
(2)
ij (r) such that

g
(2)
ij = r2α

(2)
ij (r). (6.85)

In this sector there are no constraint equations. However, there is a dynamical equation which

we solve in the following subsection.

Dynamical equations and their solutions

The ij-component of the Einstein equation gives the dynamical equation for α
(2)
ij (r) which

is similar to (6.43). However the source term of the differential equation is modified in the

second order. Thus, at second order this equation is given by

− 1

2r

d

dr

(
1

r

(
q2

0 −m0r
2 + r6

) d
dr
α

(2)
ij (r)

)
= Tij(r), (6.86)

where we write the source in terms of weyl-covariant quantities as follows

Tij(r) =
9∑
l=1

τl(r) WT
(l)
ij . (6.87)

We define the weyl-covariant terms WT
(l)
ij in appendix 6.6.1. The coefficients τl(r) of these

weyl-covariant terms are given in appendix 6.6.4.

The solution to (6.86) which is regular at the outer horizon and normalizable at infinity

is given by

α
(2)
ij (r) =

∫ ∞
r

((
ξ

q2
0 −m0ξ2 + ξ6

)∫ ξ

1
( 2 ζ Tij(ζ)) dζ

)
dξ. (6.88)

We need to plug in the source from appendix 6.6.4 in to the above equation and perform

the integrals to obtain an explicit answer. However, as in the second order vector sector this

turns out to be very complicated in general and therefore we do not produce it here. The

transport coefficients, however, of the boundary stress tensor at second order in derivative

expansion may be obtained only by knowing the function α
(2)
ij (r) asymptotically (near the

boundary). In the next subsection, we compute this boundary stress tensor.

6.4.5 Boundary Stress Tensor at second order

As mentioned earlier in subsection 6.3.5, the AdS/CFT prescription for obtaining the bound-

ary stress tensor from the bulk metric is given by

Tµν = − 1

8πG5
lim
r→∞

(
r4 (Kµ

ν − δµν )
)
, (6.89)

where Kµ
ν is the extrinsic curvature normal to the constant r surface. Now, as is apparent

from the formula, we need to know the asymptotic expansion of the metric perturbation
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α
(2)
ij (ρ) in order to obtain the stress tensor. The asymptotic expansion of the solution (6.88)

for α
(2)
ij (ρ) is given by

α
(2)
ij (ρ) =

1

r2

(
WT

(3)
ij −

1

2
WT

(2)
ij −

1

4
WT

(4)
ij

)
+

1

4r4

9∑
l=1

Nl WT
(l)
ij +O

(
1

r5

)
, (6.90)

The leading term of this asymptotic expansion gives divergent contributions to the stress

tensor which are canceled by divergence arising from the expansion of g(0) +g(1) up to second

order.

On plugging in this asymptotic solution for the metric in to the formula (6.89) we obtain

Tµν =

(
1

16πG5

) 9∑
l=1

Nl WT (l)
µν . (6.91)

with Nl being the transport coefficients at second order in derivative expansion. These trans-

port coefficients are given by

N1 = R2

(
M√

4M − 3
log

(
3−
√

4M − 3

3 +
√

4M − 3

)
+ 2

))
,

N2 = − MR2

2
√

4M − 3
log

(
3−
√

4M − 3√
4M − 3 + 3

)
,

N3 = 2R2,

N4 =
R2

M
(M − 1)

(
12(M − 1)κ2 −M

)
,

N5 = −(M − 1)R2

2M
,

N6 =
1

2
(M − 1)R2

(
log(8)− 1

)
+O

(
(M − 1)2

)
,

N7 =

√
3(M − 1)3/2R2κ

M
,

N8 = 0

N9 = 0.

(6.92)

6.5 Charged Blackhole Solution

We will now turn to the black hole solutions of the five-dimensional action in (6.2) :

S =
1

16πG5

∫ √
−g5

[
R+ 12− FABFAB −

4κ

3
εLABCDALFABFCD

]
(6.93)

which is a consistent truncation of IIB SUGRA Lagrangian on AdS5×S5 background with a

cosmological constant Λ = −6 and the Chern-Simons parameter κ = 1/(2
√

3). The general
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blackhole solutions which solves the equations coming out of this action with this special

value of κ was found in [19]. Their solution is given by97

ds2 = −
(
r2 + 1

)
∆Θdt1

2

(1− ω1
2) (1− ω2

2)
+

2(m− qω1ω2)

ρ2
− q2

ρ4

+
(dψ1 + dt1ω2)2

(
r2 + ω2

2
)

cos2 Θ

1− ω2
2

+
(dφ1 + dt1ω1)2

(
r2 + ω1

2
)

sin2 Θ

1− ω1
2

+
ρ2dr2r2

q2 − 2ω1ω2q − 2mr2 + (r2 + 1) (r2 + ω1
2) (r2 + ω2

2)

+
ρ2dΘ2

∆Θ
+

2q

ρ2

(
ω1(dψ1 + dt1ω2) cos2 Θ + (dφ1 + dt1ω1)ω2 sin2 Θ

)
×
[

∆Θdt1
(1− ω1

2) (1− ω2
2)
− ω2(dψ1 + dt1ω2) cos2 Θ

1− ω2
2

− ω1(dφ1 + dt1ω1) sin2 Θ

1− ω1
2

]
A = −

√
3q

ρ2

[
∆Θdt1

(1− ω1
2) (1− ω2

2)
− ω2(dψ1 + dt1ω2) cos2 Θ

1− ω2
2

− ω1(dφ1 + dt1ω1) sin2 Θ

1− ω1
2

]
(6.94)

where we use the definitions

ρ2 ≡ r2 + ω1
2 cos2 Θ + ω2

2 sin2 Θ

∆Θ ≡ 1− ω1
2 cos2 Θ− ω2

2 sin2 Θ
(6.95)

After some manipulations (which closely follow the methods outlined in [7, 11]) , we find

that the final metric and the gauge field can be written in a manifestly Weyl-covariant form

ds2 = −2uµdx
µ (dr + r Aνdxν) +

[
r2gµν + u(µSν)λu

λ − ωµλωλν
]
dxµdxν

+

[(
2m

ρ2
− q2

ρ4

)
uµuν +

q

2ρ2
u(µlν)

]
dxµdxν

A =

√
3q

ρ2
uµdx

µ ; ρ2 ≡ r2 +
1

2
ωαβω

αβ ; lµ ≡ εµνλσuνωλσ

(6.96)

with

Tµν = p(gµν + 4uµuν) + 2κl(µJν) +
1

64πGAdS

(
RαβRαµβν −

R2

12
gµν

)
Jµ = nuµ where lµ ≡ εµνλσuνωλσ ; p ≡ m

8πGAdS
and n ≡

√
3q

8πGAdS

(6.97)

We note that when the bulk Chern-Simons coupling κ is non-zero, apart from the con-

ventional diffusive transport, there is an additional non-dissipative contribution to the energy

current which is proportional to the vorticity of the fluid. To the extent we know of, this is

a hitherto unknown effect in the hydrodynamics which is exhibited by the conformal fluid

97Note that the parameter q here is the negative of the one used in [19].
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made of N = 4 SYM matter. This new non-dissipative transport can be traced back to

the Chern-Simons term in the gravity theory which according to the gauge-gravity duality,

encodes the information about the global anomalies in the field theory. This suggests that

this transport is closely related to the U(1)3 global anomaly in the field theory.

It would be interesting to find a direct boundary reasoning that would lead to the presence

of such a term - however, as of yet, we do not have such an explanation. However, an

indirect explanation was provided by the authors of [20], where they give a clever entropic

argument which relates this coefficient to the anomaly. This suggests the possibility that such

a transport is universal,i.e., it is present in any field theory which has global anomalies and

it would be useful to explicitly check whether this is the case by calculating this transport

coefficient in a calculable model - say a spin model.

The presence of such an effect was indirectly observed by the authors of [15] where they

noted a discrepancy between the thermodynamics of charged rotating AdS blackholes and

the fluid dynamical prediction with the third term in the charge current absent. We have

verified that this discrepancy is resolved once we take into account the effect of the third term

in the thermodynamics of the rotating N = 4 SYM fluid. In fact, one could go further and

compare the first order metric obtained in [17, 18] with the rotating blackhole metric written

in an appropriate gauge. We have done this comparison up to first order and we find that

the metrics agree up to that order.

6.6 Appendices

6.6.1 Charged conformal fluids and Weyl covariance

Consider the hydrodynamic limit of a 3+1 dimensional CFT with one global conserved charge.

The Weyl covariance of the CFT translates into the Weyl covariance of its hydrodynamics. In

turn, this implies that the metric dual to fluid configurations of the CFT under consideration

should also be invariant under boundary Weyl-transformations [2, 11, 73].

In this section, we use the manifestly Weyl-covariant formalism introduced in [2] to

examine the constraints that Weyl-covariance imposes on the conformal hydrodynamics and

its metric dual. We begin by introducing a Weyl-covariant derivative acting on a general

tensor field Qµ...ν... with weight w (by which we mean that the tensor field transforms as Qµ...ν... =

e−wφQ̃µ...ν... under a Weyl transformation of the boundary metric gµν = e2φgµν)

Dλ Qµ...ν... ≡ ∇λ Qµ...ν... + w AλQµ...ν...

+
[
gλαAµ − δµλAα − δ

µ
αAλ

]
Qα...ν... + . . .

− [gλνAα − δαλAν − δανAλ]Qµ...α... − . . .
(6.98)

where the Weyl-connection Aµ is related to the fluid velocity uµ via the relation

Aµ = uλ∇λuµ −
∇λuλ

3
uµ (6.99)

We can now use this Weyl-covariant derivative to enumerate all the Weyl-covariant

scalars, transverse vectors (i.e, vectors that are everywhere orthogonal to the fluid veloc-
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ity field uµ) and the transverse traceless tensors in the charged hydrodynamics that involve

no more than second order derivatives. We will do this enumeration ‘on-shell’, i.e., we will

enumerate those quantities which remain linearly independent even after the equations of

motion are taken into account. Our discussion here will closely parallel the discussion in

section 4.1 of [11] where a similar question was answered in the context of uncharged hydro-

dynamics coupled to a scalar with weight zero. However, we will use a slightly different basis

of Weyl-covariant tensors which is more suited for purposes of this chapter.

The basic fields in the charged hydrodynamics are the fluid velocity uµ with weight unity,

the fluid temperature T with with weight unity and the chemical potential µ with weight unity.

This implies that an arbitrary function of µ/T is Weyl-invariant and hence one could always

multiply a Weyl-covariant tensor by such a function to get another Weyl-covariant tensor.

Hence, in the following list only linearly independent fields appear. To make contact with

the conventional literature on hydrodynamics we will work with the charge density n (with

weight 3) rather than the chemical potential µ.

At one derivative level, there are no Weyl invariant scalars or pseudo-scalars. The only

Weyl invariant transverse vector is n−1P νµDνn. Finally, the only Weyl-invariant transverse

pseudo-vector lµ and only one Weyl-invariant symmetric traceless transverse tensor Tσµν .

At the two derivative level, there are five independent Weyl-invariant scalars98

T−2σµνσ
µν , T−2ωµνω

µν , T−2R, T−2n−1PµνDµDνn and T−2n−2PµνDµnDνn
(6.101)

one Weyl-invariant pseudo-scalar T−2n−1lµDµn and four independent Weyl-invariant trans-

verse vectors

T−1P νµDλσνλ, T−1P νµDλωνλ, T−1n−1σµ
λDλn and T−1n−1ωµ

λDλn (6.102)

and one Weyl-invariant transverse pseudo-vector T−1σµν l
ν .

There are eight Weyl-invariant symmetric traceless transverse tensors -

uλDλσµν , ωµ
λσλν + ων

λσλµ, σµ
λσλν −

Pµν
3

σαβσ
αβ, ωµ

λωλν +
Pµν
3

ωαβω
αβ,

n−1 Παβ
µν DαDβn, n−2 Παβ

µν Dαn Dβn, Cµανβu
αuβ and

1

4
εαβλµ ε

γθσ
νCαβγθ uλuσ.

(6.103)

98We shall follow the notations of [2] in the rest of this section(except for the curvature tensors which differ

by a sign from the curvature tensors in [2]. In particular, we recall the following definitions

R = R+ 6∇λAλ − 6AλAλ ; Dµuν = σµν + ωµν

Dλσµλ = ∇λσµλ − 3Aλσµλ ; Dλωµλ = ∇λωµλ −Aλωµλ
(6.100)

Note that in a flat space-time, R is zero but R is not.

– 147 –



where we have introduced the projection tensor Παβ
µν which projects out the transverse trace-

less symmetric part of second rank tensors

Παβ
µν ≡

1

2

[
Pαµ P

β
ν + Pαν P

β
µ −

2

3
PαβPµν

]
and Cµναβ is the boundary Weyl curvature tensor. Further, there are four Weyl-invariant

symmetric traceless transverse pseudo-tensors

D(µlν), n−1Παβ
µν lαDβn, n−1εαβλ(µσν)λuαDβn and

1

2
εαβλ(µC

αβ
ν)σu

λuσ. (6.104)

We will now restrict ourselves to the case where the boundary metric is flat. In this

case the last two tensors appearing in (6.103) and the last tensor appearing in (6.104) are

identically zero whereas, contrary to what one might naively expect, the Weyl-covariantised

Ricci scalar R would still be non-zero.

We will now relate the rest of the Weyl-covariant scalars, transverse vectors and sym-

metric, traceless transverse tensors listed above to the quantities appearing in the table 6.4.

There are six scalar/pseudo-scalar Weyl covariant combinations given by

W 1
s ≡ σµνσµν = ST5

W 2
s ≡ ωµνωµν =

1

2
ST4

W 3
s ≡ R = 14 ST1 +

2

3
ST3− ST4 + 2ST5− S3

m

W 4
s ≡ n−1PµνDµDνn =

1

q

[
QS2− 3q

4m
S3 + 18qST1 + 5QS5

]
W 5
s ≡ n−2PµνDµn Dνn =

1

q2

[
QS4 + 6qQS5 + 9q2ST1

]
W 6
s ≡ lµDµq = QS3 + 3qST2.

(6.105)

and five vector/pseudo-vector Weyl covariant combinations given by

(Wv)
1
µ ≡ P νµDλσνλ =

5V4

9
+

5V5

9
+

5VT1

3
− 5VT2

12
− 11VT3

6

(Wv)
2
µ ≡ P νµDλωνλ =

5V4

3
− V5

3
−VT1− VT2

4
+

VT3

2

(Wv)
3
µ ≡ lλσµλ = VT5

(Wv)
4
µ ≡ n−1σµ

λDλn =
1

q
[QV4 + 3qVT3]

(Wv)
5
µ ≡ n−1ωµ

λDλn =
1

2q
[QV3 + 3qVT2]

(6.106)
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In the tensor sector, there are nine Weyl-covariant combinations

WT (1)
µν = uλDλσµν = TT1 +

1

3
TT4 + T3.

WT (2)
µν = −2

(
ωµλσ

λν + ωνλσ
λµ
)

= TT7.

WT (3)
µν = σµλσλν −

1

3
Pµνσαβσαβ = TT6.

WT (4)
µν = 4

(
ωµλωλν +

1

3
Pµνωαβωαβ

)
= TT5.

WT (5)
µν = n−1Παβ

µνDαDβn

=
1

q

[
QT1 + 8QT4 + 15qTT1 + qTT4 + 3qT3 + 3qTT6 +

3q

4
TT5

]
WT (6)

µν = n−2Παβ
µνDαnDβn =

1

q2

[
QT3 + 6qQT4 + 9q2TT1

]
WT (7)

µν = Dµlν +Dν lµ = 4TT2 + 2T2− TT3.

WT (8)
µν = n−1Παβ

µν lαDβn =
1

q
[QT2 + 3 q TT2] .

WT (9)
µν = n−1εαβλ(µσν)λuαDβn =

1

q

[
QT5− 3

2
q TT2 +

3

2
q TT3

]
.

(6.107)

6.6.2 Source Terms in Scalar Sector: Second Order

There are three source terms in scalar sector at second order Sk(r), Sh(r) and SM (r). They

are quite complicated functions. Here we provide the explicit form of these source terms in

terms of weyl covariant quantities.

The source term Sk is given by

SC =

6∑
i=1

s
(C)
i W i

s . (6.108)
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The Weyl covariant terms W i
s are given in §6.6.1. The functions s

(k)
i s are given by,

s
(C)
1 =

r
(
4
(
m0 − 3r4

) (
r2 + rR+R2

)
F2

(
r
R ,

m0
R4

)
+R

(
m0(r +R)− 2R3

(
r2 + rR+R2

)))
3R(r +R) (−m0 + r4 + r2R2 +R4)

s
(C)
2 =

1

3m2
0r

7

(
−m3

0

(
r4 + 2r2R2 + 36R4κ2

)
+ 2m2

0

(
18r4R4κ2 + r2R6 + 36R8κ2

)
−36m0R

8κ2
(
2r4 +R4

)
+ 36r4R12κ2

)
s

(C)
3 =

r

3

s
(C)
4 =

2r2
(
m0 −R4

) (
rF

(1,0)
1

(
r
R ,

m0
R4

)
+ 6RF1

(
r
R ,

m0
R4

))
R6

s
(C)
5 = − 1

2R16 (m0 − 3R4)

(
r2
(
m0 −R4

) (
24R4F1

( r
R
,
m0

R4

) (
r3
(
m2

0 − 4m0R
4

+ 3R8
)
F

(2,0)
1

( r
R
,
m0

R4

)
+ 11r2R

(
m2

0 − 4m0R
4 + 3R8

)
F

(1,0)
1

( r
R
,
m0

R4

)
+ 6m0R

7 − 4R11
)

+ r
(
r2R2

(
m2

0

(
25r2 − 13R2

)
+m0

(
−25r6 − 75r2R4 + 52R6

)
+ 75r6R4 − 39R10

)
F

(1,0)
1

( r
R
,
m0

R4

)2
+ rF

(2,0)
1

( r
R
,
m0

R4

) (
4R9

(
m0 −R4

)
− r3

(
m2

0

(
R2 − r2

)
+m0

(
r6 + 3r2R4 − 4R6

)
+ 3R4

(
R6 − r6

))
F

(2,0)
1

( r
R
,
m0

R4

))
+ 2RF

(1,0)
1

( r
R
,
m0

R4

) (
−5r3

(
m2

0

(
R2 − r2

)
+m0

(
r6 + 3r2R4 − 4R6

)
+ 3R4

(
R6 − r6

))
F

(2,0)
1

( r
R
,
m0

R4

)
+ 26m0R

9 − 22R13
)

+ 16m0R
6
(
m0 −R4

)
F

(1,1)
1

( r
R
,
m0

R4

))
+ 96m0R

7
(
m0 −R4

)
F

(0,1)
1

( r
R
,
m0

R4

)
+ 288rR6

(
m0 − 3R4

) (
m0 −R4

)
F1

( r
R
,
m0

R4

)2
))

s
(C)
6 =

2
√

3κ
(
m0 − r4

) (
R4 −m0

) (
5RF

(1,0)
1

(
r
R ,

m0
R4

)
+ rF

(2,0)
1

(
r
R ,

m0
R4

))
m0R7

.

(6.109)

The source term Sh is given by

Sh =

6∑
i=1

s
(h)
i W i

s , (6.110)
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where the functions s
(h)
i ’s are given by

s
(h)
1 =

1

3R(r +R)2 (−m0 + r4 + r2R2 +R4)2

(
2r
(
2
(
m0

(
4r3 + 8r2R+ 6rR2 + 3R3

)
−3R3

(
r2 + rR+R2

)2)
F2

( r
R
,
m0

R4

)
+ r2R

(
r2 + rR+R2

)2))
,

s
(h)
2 =

2

3r7

(
r4 −

36R4κ2
(
m0 −R4

)2
m2

0

)
,

s
(h)
3 = 0,

s
(h)
4 = 0,

s
(h)
5 =

r7
(
R4 −m0

)
R16

(
5RF

(1,0)
1

( r
R
,
m0

R4

)
+ rF

(2,0)
1

( r
R
,
m0

R4

))2

s
(h)
6 =

4
√

3κ
(
R4 −m0

)
m0R7

(
5RF

(1,0)
1

( r
R
,
m0

R4

)
+ rF

(2,0)
1

( r
R
,
m0

R4

))
.

(6.111)

Finally the source term SM (r) is given by

SM (r) =
6∑
i=1

s
(M)
i W i

s , (6.112)
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with the functions s
(M)
i being given by

s
(M)
1 =

4r
√
R2 (m0 −R4)

(
r2 + rR+R2

)
F2

(
r
R ,

m0
R4

)
R(r +R) (−m0 + r4 + r2R2 +R4)

s
(M)
2 = −

2
√
R2 (m0 −R4)

(
m2

0r
4 + 12R2κ2

(
m0 −R4

) (
2m0r

2 + 3m0R
2 − 3R6

))
m2

0r
7

s
(M)
3 = 0

s
(M)
4 = −

r5
√
R2 (m0 −R4)

(
5RF

(1,0)
1

(
r
R ,

m0
R4

)
+ rF

(2,0)
1

(
r
R ,

m0
R4

))
R9

s
(M)
5 =

r5
(
R2
(
m0 −R4

))3/2
R17 (3R4 −m0)

(
r2
(
−
(

6r
(
m0 − 3R4

)
F1

( r
R
,
m0

R4

)
+R5

))
F

(3,0)
1

( r
R
,
m0

R4

)
−2

(
15r2R

(
m0 − 3R4

)
F

(1,0)
1

( r
R
,
m0

R4

)2
+
(

3r
(
m0 − 3R4

) (
r2F

(2,0)
1

( r
R
,
m0

R4

)
+35R2F1

( r
R
,
m0

R4

))
+ 20R7

)
F

(1,0)
1

( r
R
,
m0

R4

)
+R

(
2m0rRF

(2,1)
1

( r
R
,
m0

R4

)
+r
(

39r
(
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6.6.3 Source Terms in Vector Sector: Second Order

The source term in the vector sector at second order Svec
E (r) in (6.73) is given by

(Svec
E )i(r) =

5∑
l=1

r
(E)
l (Wv)

l
i (6.114)
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where the Weyl covariant quantities W i
v’s are given in Appendix 6.6.1 and the functions s

(E)
i

are given by
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The other source term in the vector sector at second order Svec
M (r) in (6.74) is given by

(Svec
M )i(r) =

5∑
l=1

r
(M)
l (Wv)

l
i, (6.116)
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where the coefficient functions r
(M)
i are given by
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6.6.4 Source Terms in Tensor Sector: Second Order

In this appendix we provide the source of the dynamical equation (6.86). We report the result

in terms of the parameters M and R and the variable ρ defined in (6.6). The source Tij(ρ)

in (6.86) is given by

Tij(r) =
9∑
l=1

τl(r) WT
(l)
ij , (6.118)
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where the weyl-covariant terms WT
(l)
ij are defined in Appendix 6.6.1 in equation (6.107). The

coefficient of the weyl-covariant terms in the above source is given by
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6.6.5 Comparison with Erdmenger et. al.

Firstly we shall present a dictionary of relations between the quantities defined in [18] and

those in this chapter. To avoid confusion we shall use a subscript ‘E’ to denote the quantities

in [18].
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The charge and mass of the black brane in the two papers are related by

(Q)E = −q

(b)4
E =

1

m
.

(6.120)

Also the gauge field in [18] is twice the gauge field in this chapter

(Aµ)E = 2Aµ. (6.121)

We list the relation between several other quantities in the two papers
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2
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(lµ)E = −lµ.

(6.122)

Finally the various functions that go into the first order metric and the gauge field are

related by

(F (r))E =
1
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F2(ρ,M)
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√
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(6.123)

These statements are true only up to zeroth order in the expansion of R in terms of the

boundary derivatives. Further for the tensor sector matching we have to use the following

relations

Di
(µ
T

)
=

2π
√

3(2 + 3Q2 +Q4)
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Diq
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(6.124)

where,

µ =

√
3q

2R2
; T =

R

2π
(2−Q2),

are respectively the chemical potential and the temperature in our notation.

Using this dictionary our stress tensor and charge current matches perfectly with [18].
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7 Conclusion

As a part of this thesis, we have elaborated on the rich interplay between gravity in AdS

spacetimes on one hand and on the other hand, the hydrodynamics that arises out of scale in-

variant field theories. We have noted through a variety of examples, how this correspondence

works in detail, how physical mathematical structures natural to one side of this correspon-

dence make their appearence on the other side. This detailed dictionary is a part of the

broader AdS/CFT dictionary which seeks to establish a complete dictionary between various

questions in quantum gravity to questions in quatum field theory.

The fluid-gravity correspondence that we have described in this thesis is among the

few methods which allow us to go beyond supersymmetric and time-independent states in

AdS/CFT dictionary. Such questions are just beginning to be explored. Their importance for

a broader understanding of how field theory and gravity are related can hardly be overstated.
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