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Synopsis

Abstract

In this synopsis, I report on non-perturbative studies of various aspects of baryon physics us-

ing lattice QCD. The first part of the thesis consists of spectroscopy of baryons with one or

more charm quarks using two complementary non-perturbative approaches. The first approach

enables us to extract highly excited states, which are very difficult to extract using the previ-

ously existing lattice QCD techniques, of charm baryons and the second allows us to extract

the ground states of various charm and strange hadrons with improved control over cut-off

effects. The second part of the synopsis deals with a study of baryon screening masses at finite

temperature.

In the work on excited state charm baryon spectroscopy, which constitutes the major part

of this thesis, we use anisotropic lattices having Nf = 2 + 1 dynamical quark fields with very

fine temporal lattice spacing, which is crucial for minimizing the discretization errors. After

constructing the correlation functions with a large basis of interpolating operators employing

a recently developed technique, called distillation, we extract the highly excited states using a

variational fitting method. The spectra of excitations of charm baryons thus computed have

baryonic states with well-defined total spin up to 7
2 for both the parities and the low lying

states closely resemble the pattern expected from non-relativistic potential models. We also

study various energy splittings between the extracted states, which can provide insights on the

interactions within heavy baryons.

Complementary to the above work, we perform lattice calculations of charm hadrons adopt-

ing a mixed action approach with the overlap action for the valence quarks on a background

of 2+1+1 flavors highly improved staggered quarks. We calculate the low lying hadron spectra

as well as energy splittings at various lattice spacings with improved control over cut-off effects

and compare with results from the above work.

In the second part, we perform a finite temperature study of screening masses of hadrons,

particularly for baryons, where we analyze the temperature dependence of the hadronic screen-

ing correlators above and immediately below the deconfinement transition temperature (Tc).

iv



Synopsis v

Above Tc, both mesonic and baryonic screening correlators show clear evidence for weakly in-

teracting quarks, while below Tc, unlike mesonic channels, baryonic screening correlators show

precursor effects for chiral symmetry restoration.
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0.1 Introduction

Most of the mass of the visible universe - about 99% - constitute of baryons. Though

the recently discovered Higgs boson [1] is believed to provide mass to the fundamental

particles like leptons and quarks, it does not explain the total mass of the baryons that

are made of these quarks. Baryons are relatively simple systems in which quintessentially

confining character of multiple quarks is manifest and are sufficiently complex to shed

light on physics hidden from us in the mesons. Understanding the baryon spectra is

thus expected to answer a large series of questions on baryons and the interactions that

exist within them. Particularly, with the recent excitement in heavy hadron physics and

fore-seeing the observations from large statistical samples that will be collected in many

future and ongoing experiments, a detailed understanding of the heavy baryon spectra

is expected to provide insights into various aspects of the strong force that cannot be

probed with light baryons.

The physical properties of baryons are believed to be governed by the theory of

Quantum ChromoDynamics (QCD), an asymptotically free local non-Abelian quantum

gauge field theory. As one of four recognized fundamental forces of nature, the theory

of QCD, also known as the strong force, is one of the most important areas of research

in modern particle physics. In high energy domain, where the coupling constant is small

enough for pursuing a perturbative study, analytical calculations based on QCD have

been proved to be highly accurate in explaining numerous experimental data, such as in

deep inelastic scattering. However, at low energies, the coupling constant becomes very

large, rendering perturbation theory in the coupling inapplicable.

A comprehensive understanding of the theory of QCD in the strong coupling regime

implies a rigorous determination and understanding of its bound states. If QCD is the

correct theory, then one should be able to reproduce the physical hadron spectra from a

high precision first principles non-perturbative calculation. Much like the role of atomic

spectroscopy in the development of quantum mechanics, hadron spectroscopy, both the-

oretically and experimentally, has played a crucial role in understanding the nature of

the fundamental strong force and its degrees of freedom. The rich spectra of physical

hadrons for light quarks provided us with a framework for constructing the theory of

strong interaction starting from eightfold way to quarks-partons as the fundamental de-

grees of freedom. The discovery of the heavier hadron, J/ψ meson, and the subsequent

discoveries of other charmonia put this framework on solid footing. The discovery of J/ψ

meson triggered so huge scientific interest that it was termed as the November revolution.
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From a mere mathematical construct, the concept of quarks became reality. The charm

quark being heavier in mass, the approximation that the charm quark and anti-quark are

non-relativistic were found to be good for many predictions. Studies on various energy

splittings provided crucial information on heavy quark-antiquark potential, hyperfine and

spin-orbit interactions, etc. The ground state charmonia, J/Ψ and ηc, gave an excellent

example of a kind of hydrogen atom of strong interactions, which revealed the quark layer

of substructure for hadrons. Potential models, consisting of non-relativistic quark kinetic

energy, a central confining potential, and spin-dependent interaction terms were found

to be very successful in explaining various observed states. Recently, a tower of heavy

hadron states, including the X’s, Y ’s and Z’s, have been discovered with unusual proper-

ties [2]. These discoveries have rejuvenated the heavy hadron spectroscopy tremendously

and offer a bright promise in detailed understanding of various interesting aspects of the

theory of strong interaction.

While the heavy quarkonia and other heavy flavored mesons have been studied quite

extensively, the heavy baryon physics has received substantially less attention, even

though they can provide similar insight in understanding the strong interaction. Just

as the quark-antiquark interactions are examined in charmonia, these studies can probe

the interactions between multiple heavy quarks and heavy quarks with one or more

lighter quarks. Various spin dependent splittings between baryons can provide informa-

tion to constrain spin dependent potential terms which are crucial to build successful

Non-Relativistic QCD (NRQCD), pNRQCD and similar models. Experimentally only a

handful of charm baryons have been discovered and a reliable determination of the quan-

tum number of most of the observed states has not been made [2]. Only very recently have

a few excited singly charm baryons been observed and the discovery status of the doubly

charm baryons remains unsettled. While the SELEX experiment observed doubly charm

Ξcc(ccu) baryons [3], these have not been confirmed either by BABAR [4] or Belle [5].

Along with the well-established triply flavored ∆(uuu) and strange Ω(sss) baryons, QCD

predicts similar states built from charm quarks, the triply charm baryon, Ωccc. Such a

state is yet to be observed. This could be because of the large energy threshold re-

quired for their production via either resonant or continuum production mechanisms,

their very short lifetime and the very low reconstruction efficiency for the highly excited

heavy hadron resonances, which follows cascade decays into multi-particle final states.

The extremely low production rate hinders the identification of the spin-parity quantum

numbers, even though the partial wave analysis is relatively simpler in heavy hadrons in

comparison with the light hadron spectra. However, it is expected that the large sta-
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tistical sample collected at the LHCb experiment, the PANDA experiment at the FAIR

facility, Belle II at KEK and BES III may be able to provide some information on charm

baryons.

On the theoretical side, one expects that potential models will be able to describe,

charm baryons [6, 7, 8], in particular the triply charm baryons, to a similar level of

precision as their success in charmonia. The triply charm baryons may provide a new

window for understanding the structure of baryons, as pointed out by Bjorken several

years ago [9]. The spectra of charm baryons have been studied theoretically [6, 7, 8] using

non-relativistic potential models and various improvised versions of that.

QCD, like other quantum field theories, needs to be regularized. Regularization using

a lattice discretization of space-time (known as lattice QCD) has the advantage that

one can use numerical techniques to access the non-perturbative aspects of QCD. A

quantitative description of the spectra of the charm baryons using rigorous ab-initio

computations like lattice QCD are important for a number of reasons. Firstly, all the

estimates of physical states from these calculations will be predictions and thus can

naturally provide crucial inputs to the future experimental discovery. Secondly, lattice

results can provide a guide in identifying unknown quantum numbers (spin-parity) of the

discovered states, based on what one expects from QCD. Moreover, it will be interesting to

compare the low lying spectra of charm baryons computed from a first principles method

to those obtained from potential models which have been very successful for charmonia.

It is expected that more information about interactions between multiple charm quarks

and, charm quark and light quarks can be obtained by computing the excited state

spectra of charm baryons, including in particular the spin-dependent energy splittings.

The success of lattice QCD calculations in light hadron spectroscopy is well docu-

mented, e.g. Ref. [10, 11, 12, 13, 14]. There were quite a few successful heavy hadron

spectroscopic studies, for mesons, e.g. [15, 16, 17, 18, 19, 20, 21], and for baryons, e.g.

[22, 23, 24, 25, 26, 27, 28, 29], but they were limited only to the ground state determi-

nations. In spite of all these motivating results from lattice QCD, estimation of excited

state spectrum remained a major challenge till last 7-8 years. Invention of novel smear-

ing techniques called distillation [30] and the proper utilization of fitting techniques, such

as the generalized eigenvalue method [31, 32], along with the derivative based operator

construction formalism [33, 34], boosted the hadron spectroscopic studies, facilitating the

determination of the excited state spectra [34, 35, 36, 37, 38].

The major part of this synopsis consists of spectroscopy of charm baryons using two

complementary non-perturbative approaches. The first, which constitutes the major part,
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employs these novel techniques mentioned above, enabling us to extract a tower of spin

identified excited states for all charm baryons. Using an anisotropic lattice with very fine

temporal resolution and a large set of carefully constructed interpolating operators, we

study the ground as well as the excited states of charm baryons with one or more valence

charm quark content for each spin-parity channel up to spin 7/2. We also computed

several energy splittings, for example, hyperfine as well as spin-orbit splittings between

various states. The results on these studies were reported in Ref. [39].

In the above mentioned work, we used the tree level tadpole improved clover action

with no O(mat) and O(mas) errors. We have not addressed other higher order terms, as

the temporal lattice spacing is quite small. We also do not make a quantitative study of

O(m2a2
s) errors. However, to study the charm physics, it is essential to have an action

with discretization errors as small as possible. Another caveat in the above study is that

the clover action does not have chiral symmetry at finite lattice spacing, i.e., we have not

addressed the effects of chiral symmetry on observables. Keeping these caveats in mind,

confronting this study with a totally different non-perturbative approach, having better

control over the systematics, will be a good check to validate the smallness of systematic

corrections in the above results.

Hence to complement the above work, we performed another non-perturbative calcu-

lation of the low lying spectra using overlap valence quarks in the background of a large

set of 2+1+1 flavors dynamical configurations generated with the one-loop, tadpole im-

proved Symanzik gauge action and the highly improved staggered quark (HISQ) fermion

action [40, 41]. By adopting such a mixed action approach, one can get advantage of

the chiral symmetry and low quark mass limit of overlap fermions, and the advantage of

having a large set of configurations with small discretization errors as well as small taste

breaking effects. One also gets the advantage of simulating both light, strange as well

as heavy fermions on the same lattice formalism with chiral fermions having no O(a) er-

rors. With the above formulation we have calculated the ground state spectra of various

charm hadrons and have made a comparative study between these two projects along

with other results from literature where available. Agreement between these results from

different approaches gives confidence in our estimates. The results from these studies

were reported in Ref. [27].

In the third work, we performed a finite temperature analysis of hadronic screening

correlators [42], with main focus on the baryon sector. The question is what are the

degrees of freedom that exist in a QCD medium at finite temperature and how they are

modified across the crossover / transition temperature. These can be answered by study-
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ing the static correlation lengths in a QCD medium in thermal equilibrium. In this work,

we focused on the static spatial correlations in the equilibrium thermodynamic system

for probes with mesonic and baryonic quantum numbers. We performed simulations of

pure gauge theory for three different temperatures across the transition temperature and

studied screening correlators for mesonic and nucleonic resonances with clover fermions.

0.2 Lattice methodology in excited state spectroscopy

Lattice QCD is the first principles non-perturbative numerical technique widely used

in determining the QCD observables. Introduced by Kenneth Wilson in 1974 [43], it

regularizes the theory by discretizing the Euclidean space-time and representing QCD

Lagrangian on a finite size lattice. Expectation values of the QCD observables can be

expressed as path integrals which can be directly evaluated with controlled systematics

using Monte Carlo methods.

Lattice computations of hadron masses proceed through the calculations of the Eu-

clidean two point correlation functions, Cji, between creation operators, Ōi, at time ti

and annihilation operators, Oj, at time tf .

Cji(tf − ti) = 〈0|Oj(tf )Ōi(ti)|0〉 =
∑
n

Zn∗
i Z

n
j

2mn

e−mn(tf−ti) (1)

The RHS is the spectral decomposition of such two point functions, where the sum is over

a discrete set of states, n, with energies, mn. Zn = 〈0|Oi|n〉 is the vacuum state matrix

element, also called an overlap factor. In general, the calculation of hadronic masses by

lattice QCD methods takes place by performing non-linear exponential fits to the long

distance tail of these two point correlators, where only the ground state contribution

dominates.

The goal of this work is to calculate the ground as well as the higher excited state

spectra of charm baryons. However, one encounters several problems while extracting the

masses of these states by using the näıve method as mentioned. The first major hurdle

in charm hadron spectroscopy is attributed to the heavyness of the charm quark. One

needs to use a very fine lattice so that the mca << 1 to keep discretization error as small

as possible. Moreover, the physical states comprised of valence charm quarks are quite

heavy and their temporal correlation functions decay increasingly rapidly in the Euclidean

time with increase in the energy of the resonances, while the noise behaves in the same
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manner as in the ground state. Hence the signal-to-noise ratio in the correlators of these

states exhibits increasingly rapid degradation in Euclidean time with increasing energy.

A remedy of these problems is to use an anisotropic lattice, as discussed in Section 0.2.1.

Another difficulty is in the extraction of multiple excited states from a single correlator

using a reliable non-linear fitting method. One way to get away with this issue is to

use correlation functions for multiple interpolators as well as to use a better analysis

method to extract excited states from them reliably. A careful construction of large basis

of interpolating operators that could overlap strongly with the desired excited states is

crucial for this purpose. In Section 0.2.2, we discuss the construction of a large basis

of interpolating operators and the novel smearing technique that provides an efficient

method to compute the two point correlation functions. In addition to the operator

construction, the extraction of the physical states with correct quantum numbers from

correlation functions of such large basis of operators, relies on a good analysis procedure.

In Section 0.2.2, we discuss the variational fitting method that we have used to extract

the spectrum of baryon states from matrix of correlation functions using such large basis

of operators. A reliable identification of the spin-parity quantum numbers of a state is

highly non-trivial on a finite lattice. However, it is possible to identify these quantum

numbers on lattices with even single lattice spacing using the overlap factors as described

in Section 0.2.2 [32].

0.2.1 Anisotropic lattice

A possible solution for the issues related to discretization error as well as the rapid

decay of the temporal correlations is to increase the temporal resolution by adopting a

finer lattice spacing along the Euclidean time direction while keeping the spatial lattice

constants same, so that one can avoid the computational cost that would come from

reducing the spacing in all directions[44, 45]. In this work, we adopt such an anisotropic

dynamical lattice formulation to extract the highly excited charm baryon spectra.

We used the anisotropic Nf = 2 + 1 flavor dynamical gauge configurations generated

by the Hadron Spectrum Collaboration (HSC) with clover improved Wilson fermions for

both sea and valence quarks. The gauge field sector utilized the tree-level Symanzik-

improved gauge action, while the fermion sector used an anisotropic Shekholeslami-

Wohlert fermion action with tree-level tadpole improvement and three-dimensional stout-

link smearing of gauge fields. More details of the formulation of actions as well as the

techniques used to determine the anisotropy parameters can be found in Refs. [45, 46].



Synopsis xii

Lattice size atm` atms Ncfgs mK/mπ mπ/MeV atmΩ

163 × 128 −0.0840 −0.0743 96 1.39 391 0.2951(22)

Table 1: Properties of the gauge-field ensembles used. Ncfgs is the number of gauge-field
configurations.

The lattice action parameters of the gauge-field ensembles used in this work are given

in Table 3.1. The temporal lattice spacing at was determined using the Ω-baryon mass

measured on these ensembles [46]. This leads to a−1
t = 5.67(4) GeV. On this lattices we

find mcat << 1, which assures the use of these lattice to study the charm physics. With

an anisotropy close to 3.5, as = 0.12 fm. This gives a spatial extent of about 1.9 fm,

which would be sufficient to study charm baryons, in particular doubly and triply charm

baryons.

The details of the charm quark action used in this study are given in Ref. [37]. The

action parameters for the charm quark are obtained by ensuring that the mass of the ηc

meson takes its physical value and its dispersion relation at low momentum is relativistic.

It is expected that the effects due to the absence of dynamical charm quark fields in this

calculation will be small, as the disconnected diagrams are OZI suppressed.

0.2.2 Construction of baryon operators

In this section, we briefly discuss the construction of baryon interpolating operators using

up to two derivatives, such that they project up to J = 7
2

states with both even and odd

parities. The construction has been detailed in [34]. Hence in this synopsis, we discuss

only the basics and the essentially different part from that in Ref. [34], which are the

flavor structures. The details about the construction of the operators used for the study

also provides insight into the results obtained from the numerical studies.

The methodology involves first constructing a basis of baryon interpolating operators

in the continuum with well-defined continuum spin-parity quantum numbers. These

continuum operators are then subduced/reduced to the irreducible representations (irrep)

of the octahedral group on the lattice. The correlation functions, constructed out of

these octahedral operators, are expected to show rotational symmetry breaking artefacts

in these calculations due to the reduced symmetry on a lattice. However, we see an

effective rotational symmetry from the primary spin identification tests and that the

symmetry breaking effects are very small.
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Continuum baryon interpolating operators

All hadrons are color singlet objects and thus they form totally anti-symmetric combi-

nations in the color indices of its constituents. Since baryons are fermions made of three

quarks, their interpolating operators excluding the color part should be totally symmetric

combinations of all the quark labels representing flavor, spin and the spatial structure.

The overall flavor-spin-spatial structure of a continuum baryon interpolating operator

with quantum numbers, JP , can be decomposed into a combination as

O[JP ] = [FΣF ⊗ SΣS ⊗DΣD ]J
P

, (2)

where F , S and D are flavor, Dirac spin and spatial projection operators respectively and

the subscripts stands for the symmetry in the respective subspaces. For every baryon

operator, we must combine the symmetry projection operators such that the resulting

baryon operator, excluding the color part, is overall symmetric.

Flavor symmetry structures

With only three different flavors simultaneously possible, the flavor wave functions of

the charm baryon operators can be constructed to be members of SU(3)F multiplets as

3⊗3⊗3 = 10S⊕8MS⊕8MA⊕1A, where S, MS, MA and A stands for Symmetric, Mixed-

Symmetric, Mixed-Antisymmetric and Antisymmetric constructions. These represent a

subset of states from the larger group of SU(4)F which has a decomposition based on

symmetry considerations as 4⊗ 4⊗ 4 = 20S ⊕ 20MS ⊕ 20MA⊕ 4A. Table 3.2 contains the

details of the flavor symmetry constructions possible for various charm baryons.

For the spin and spatial parts also, we construct similar symmetry structures.1 For the

spatial symmetry structures we considered operators that include up to two derivatives.

Totally symmetric constructions in flavor-spin-spatial indices from combinations of these

flavor symmetry structures and the symmetry structures in the spin and the spatial parts

forms the desired local and non-local charm baryon interpolating operators [34].

Only a subset of operators that are formed purely from the upper two components

of the Dirac spinor, in Dirac-Pauli representation, appear at a leading order velocity

expansion and hence are referred to as “non-relativistic”. All other operators other than

this subset is referred to as “relativistic”. Using non-relativistic components alone, it

is not possible to construct a negative parity state with a spin higher than 5/2, even

1The details about the spin-spatial symmetry structures are omitted for the sake of space.
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20M
I Iz S FMS FMA

Λ+
c 0 0 0 1√

2
(|cud〉MS − |udc〉MS) 1√

2
(|cud〉MA − |udc〉MA)

Σ++
c 1 +1 0 |uuc〉MS |uuc〉MA

Σ+
c 1 0 0 |ucd〉MS |ucd〉MA

Σ0
c 1 −1 0 |ddc〉MS |ddc〉MA

Ξ
′+
c

1
2 +1

2 −1 |ucs〉MS |ucs〉MA

Ξ
′0
c

1
2 −1

2 −1 |dcs〉MS |dcs〉MA

Ξ+
c

1
2 +1

2 −1 1√
2
(|cus〉MS − |usc〉MS) 1√

2
(|cus〉MA − |usc〉MA)

Ξ0
c

1
2 −1

2 −1 1√
2
(|cds〉MS − |dsc〉MS) 1√

2
(|cds〉MA − |dsc〉MA)

Ω0
c 0 0 −2 |scs〉MS |scs〉MA

Ξ++
cc

1
2 +1

2 0 |ccu〉MS |ccu〉MA

Ξ+
cc

1
2 −1

2 0 |ccd〉MS |ccd〉MA

Ω+
cc 0 0 −1 |ccs〉MS |ccs〉MA

20S
I Iz S FS

Σ++
c 1 +1 0 |uuc〉S

Σ+
c 1 0 0 |ucd〉S

Σ0
c 1 −1 0 |ddc〉S

Ξ+
c

1
2 +1

2 −1 |ucs〉S
Ξ0
c

1
2 −1

2 −1 |dcs〉S
Ω0
c 0 0 −2 |ssc〉S

Ξ++
cc

1
2 +1

2 0 |ccu〉S
Ξ+
cc

1
2 −1

2 0 |ccd〉S
Ω+
cc 0 0 −1 |ccs〉S

Ω++
ccc 0 0 0 |ccc〉S

4A
I Iz S φA

Λ+
c 0 0 0 |udc〉A

Ξ+
c

1
2 +1

2 −1 |ucs〉A
Ξ0
c

1
2 −1

2 −1 |dcs〉A

Table 2: Flavor symmetry structures for charm baryons. I in the first column stands for
the isospin, Iz in the second column is for the third component of isospin and S in the
third column is for the strangeness.

with operators that include two derivatives. Use of relativistic operators along with non-

relativistic ones enables us to extract states with spin up to 7/2 for both the parities. A

subset of operators constructed using two derivatives and projected onto L = 1 orbital

angular momentum with MS/MA, are proportional to the field strength tensor and are

zero in a theory without gauge fields. These operators are identified as hybrid operators.

Account of the orbital motion classifies the total symmetry in a non-relativistic approach

with 3 flavors to be SU(6)⊗ O(3) super-multiplets with the O(3) describing the orbital

motion. With four component Dirac spinors, the actual construction of the operators

corresponds to SU(12)⊗O(3).
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Subduction into lattice irreps

Ωccc G1 H G2

SF g u g u g u
Total 20 20 33 33 12 12

Hybrid 4 4 5 5 1 1
NR 4 1 8 1 3 0

(b)

Ξcc, Ωcc G1 H G2

(SF +MF ) g u g u g u
Total 55 55 90 90 35 35

Hybrid 12 12 16 16 4 4
NR 11 3 19 4 8 1

(a)

Σc, Ωc (SF +MF ) Λc (MF + AF ) Ξc (SF +MF + AF )
G1 H G2 G1 H G2 G1 H G2

g u g u g u g u g u g u g u g u g u
Total 55 55 90 90 35 35 53 53 86 86 33 33 116 116 180 180 68 68

Hybrid 12 12 16 16 4 4 12 12 16 16 4 4 24 24 32 32 8 8
NR 11 3 19 4 8 1 10 3 17 4 7 1 23 6 37 8 15 2

(c)

Table 3: The number of lattice operators for different charm baryons obtained after sub-
duction to various irreps from continuum operators with up to two covariant derivatives.
The number of non-relativistic (NR) and hybrid operators for each irreps and for both
even (g) and odd (u) parities are given.

In lattice QCD computations, one considers the theory in a discretized four dimen-

sional Euclidean hyper-cubic box. The hyper-cubic lattice does not possess the full sym-

metry of the continuum. Thus, in a lattice calculation, the states at rest are classified

not according to the continuum spin (J ,Jz), but rather according to the irreps of a cube.

There are eight irreps of the double-valued representations of the octahedral group (Oh),

named as A1, A2, E, T1 and T2 for the integer spins, and G1, G2 and H representing the

half-integer spins. For baryons, there are four two-dimensional irreps corresponding to

G1, G2 (two for each parity) and two four dimensional representations for H. The G1 irrep

contains J = 1
2
, 7

2
, 9

2
, 11

2
, ... states, the G2 irrep contains J = 5

2
, 7

2
, 11

2
, ... states while H irrep

has J = 3
2
, 5

2
, 7

2
, 9

2
, ... states. One needs to examine the degeneracy patterns across the

different Oh irreps to reliably deduce continuum-limit spins J of these states which will

be discussed later. Mathematically this subduction of continuum spin to lattice irreps

can be expressed as,

ΩJ
nΛ,r =

∑
m

SJ,mnΛ,r ΩJ
m, (3)
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where ΩJ
nΛ,r is the lattice operator representing the rth row of the nth embedding of

the irrep Λ on the continuum spin J , subduced from a continuum spin operator ΩJ
m.

The SJ,mnΛ,r are called the subduction coefficients. Table 3 shows the total number of

relativistic and non-relativistic operators constructed based on eq. (3.15) for various

charm baryons. It also contains the number of non-relativistic and hybrid operators

constructed for various charm baryons.

The complexity of these operators is evident from this example. A continuum Ωccc

operator with spin and parity of the three quarks as 3
2

−
in the first embedding of mixed-

symmetry Dirac spin constructions and with two derivatives coupled into L = 2 with

a mixed-symmetric spatial part and total spin and parity JP = 7
2

−
, is denoted as(

Ωccc,S ⊗ (H
u,1,M

)⊗D[2]
L=2,M

)JP= 7
2

−

. On the lattice this operator gets subduced once

over G1u, G2u and Hu.

Distillation

Having constructed a large set of operators it is possible to calculate their diagonal and

off-diagonal correlation functions to extract excited states by using variational methods.

However, construction of correlation functions with so many operators, particularly for

the operators with one or more derivatives, is very computationally intensive as it needs

one inversion for each non-local source. The total time needed for the construction of

correlation function could be as intensive as gauge field generations. To avoid this we

use a recently developed novel technique, called the “distillation method” [30]. Using

this method, one can efficiently construct a large number of correlation functions with

multiple operators. Moreover, this method automatically includes a smearing process, a

requirement for suppressing the high frequency modes that do not contribute significantly

to the low energy regime in the spectrum and thus increases the relative contributions

from the low lying states in the correlation functions.

In the distillation method one uses a smearing operator which is a projection operator

constructed by outer product over the low lying eigenmodes of the discretized gauge-

covariant Laplacian, ∇2, as

�xy(t) = Vxz(t)V
†
zy(t) =

Nvecs∑
k=1

ξ(k)
x (t)ξ(k)†

x (t), (4)

where ξ
(k)
x are Nvecs number of eigenvectors, sorted by the eigenvalues, of ∇2 evaluated
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on the background of spatial gauge fields of the time slice t. The number of these modes,

Nvecs (volume dependent), should be sufficient to sample the required angular structure

of the low lying hadronic states, but is small compared to the number of sites on a time

slice. When Nvecs is the same as the number of sites on a time-slice, then the distillation

operator becomes identity, and the fields acted upon are unsmeared. The computational

cost is highly reduced because inversions need to be performed in a smaller space of

Dirac spin and distillation vectors, with dimensionality 4 × Nvecs. A factorization of

the correlation function in terms of the eigenvectors of the Laplacian allows efficient

computation of correlation functions with a large basis of interpolating operators at

both the source and the sink time slices. Furthermore, this factorization also enables

a momentum projection at both the source and the sink time slices, in contrast with

what is possible in conventional spectroscopy. In this work, we used Nvecs = 64. It can

be shown that the correlation functions constructed using the distilled fields have same

symmetry properties on the lattice as those constructed using the Laplacian methods.

Variational fitting technique

Once we construct the matrix of two point correlation functions, Cij(t), for each lattice

irrep, we extract the energies and overlaps of the physical states over the interpolating

operators by solving a generalized eigenvalue problem of the form,

Cij(t)v
n
j = λn(t, t0)Cij(t0)vnj , (5)

where an appropriate reference time-slice t0 is selected following the description as in Ref.

[31]. The energies of the physical states are extracted by fitting the t − t0 dependence

of the eigenvalues, λn, called the principal correlators and the overlaps being determined

from the eigenvectors, vnj . The principal correlators are fit using a double exponential

form

λα(t) = e−mα(t−t0)(1 +O(e−|δm|(t−t0))), (6)

where mα is the mass of a state labeled by α and δm is the energy splitting from the

nearest excited state to α.

One main goal, which is a highly non-trivial task, in these lattice calculations is to

ensure that any state identified can be assigned continuum quantum numbers in a reliable

way. To identify the spin of a state we followed the same method detailed in Ref. [32]

and used in the calculations of light baryons [34, 35], light mesons [36], charm mesons
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as well as heavy-light mesons [37]. The main ingredient is the overlap factor, Zn
i , as

defined in eq. (1). However, spin-5
2

and spin-7
2

states appear in multiple lattice irreps.

In these cases, the continuum operator is subduced to multiple lattice irreps. In the

continuum limit, for a given physical state, the overlap factors obtained from different

operators, which are subduced from the same continuum operators should become equal.

They should nearly be equal even on a finite lattice, if the rotational symmetry breaking

effects are small. Hence in order to confirm the reliability of the identification of a state

with a given spin > 3/2, one has to compare the magnitudes of overlap factors of those

operators which are subduced into different irreps. After identification of the spin of

states with matching overlap factors, it is also necessary to check whether the energy of

this state also matches over the irreps. Once this is made, one needs to do simultaneous

fitting of its masses over the irreps to get the final mass.

0.3 RESULTS : Excited state spectroscopy of charm

baryons

In this section, we present our results on spectra of charm baryons with spins up to 7
2

and for both parities. Various spin dependent energy splittings between the extracted

states are also considered and compared with the similar splittings at light, strange as

well as bottom quark masses. We present our results in terms of energy splittings relative

to a reference hadron rather than their absolute energies. This reduces the systematic

uncertainties associated with charm quark mass determination as well as the with the

discretization errors.

0.3.1 Triply charm baryons

In Figure 1(a), we present relativistic spectra of the triply charm baryons in terms of

the energy splittings from the mass of the pseudoscalar charmonium, ηc, which is made

of a charm and an anti-charm quarks. A factor of 3
2

is multiplied with ηc mass to

balance the different number of valence charm quarks in triply charm baryon and ηc.

Boxes with the thick borders correspond to those states with a greater overlap onto

operators proportional to the field strength tensor as discussed in the previous section,

which might consequently be hybrid states. The states inside the magenta ellipses have

relatively large overlap with the non-relativistic operators. The number of states inside
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Figure 1: (a) Spin identified spectra of triply charm baryons with respect to 3
2
mηc . The

boxes with thick borders corresponds to the states with strong overlap with hybrid op-
erators. The states inside the magenta ellipses are those with relatively large overlap
to non-relativistic operators. (b) Energy splittings between states with same L and S
values, starting from light to heavy baryons. The details are described in the Section
0.3.1.

these ellipses are also the number of states expected based on a quark model with only

non-relativistic quark spins. This agreement of the pattern of low lying states between

the lattice spectra obtained in this work and from non-relativistic quark model implies a

clear signature of SU(6)×O(3) symmetry in the low-lying spectra. It is to be noted that

though we used non-relativistic as well as relativistic operators, the low-lying spectra

resembles with the non-relativistic spectra. Such SU(6) × O(3) symmetric nature of

spectra was also observed for light baryons in Ref. [35]. However, it is not meaningful

to interpret the higher excited states in terms of SU(6) × O(3) symmetry [35] since we

did not include non-relativistic operators with three derivatives. For negative parity, it

is not possible even to identify a state with strong hybrid content because it is unclear

how the relative importance of all the relevant operators overlapping to that state will

change in the presence of non-relativistic operators having three or more derivatives.

Energy splittings

Spin-dependent splittings, such as the hyperfine and spin-orbit splittings between hadrons,

can provide important information about the interquark interaction which are necessary

to build a successful model. Here we also calculated those splittings of triply charm
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baryons and compare those with such splittings of similar baryons at other quark masses.

Among the states that we extract in our calculations, several of them have the same L and

S values, but with different J values. For example, we construct flavor (F ) decuplet states

with D = 2, S = 3
2

and L = 2 with the combination {10FS⊗(S)S⊗(D)S}, where S in the

subscript stands for symmetric combinations. In this construction, we get four operators

with JP = 1
2

+
, 3

2

+
, 5

2

+
and 7

2

+
. In the heavy quark limit, the spin-orbit interaction van-

ishes since the interaction term is inversely proportional to the square of the quark mass.

States corresponding to quantum numbers (|L, S, JP 〉 ≡ |2, 3
2
, 1

2

+〉, |2, 3
2
, 3

2

+〉, |2, 3
2
, 5

2

+〉
and |2, 3

2
, 7

2

+〉) will thus be degenerate in the heavy quark limit. Similarly, two states

with quantum numbers JP = 1
2

−
and 3

2

−
with L = 1 and S = 1

2
will also be degenerate

in the heavy quark limit. In Figure 1(b), we plot absolute values of energy differences

between energy levels which originate from the spin-orbit interaction of the following

(L , S) pairs : (2,3
2

–in the left column), (2,1
2

–in the middle column) and (1,1
2

–in the

right column). We plot these spin-orbit energy splittings at various quark masses cor-

responding to following triply flavored baryons : ∆uuu, Ωsss, Ωccc and Ωbbb. We identify

the states with these (L, S) pairs by finding the operators which incorporate these pairs

and have major overlaps to these states. These energy differences are obtained from the

ratio of jackknifed correlators, which in general, reduce error bars by canceling correlation

between these correlators. For bottom baryons, we use data from Ref. [47] and for light

and strange baryons, results from Ref. [35] are used. One can observe that the degen-

eracy between these states is more or less satisfied both for bottom and charm quarks,

justifying a heavy quark status for charm and bottom quarks. However, data with higher

statistics are necessary to identify the breaking of this degeneracy at charm quark mass.

We also made similar comparisons for some other energy splittings using our results

and similar results at other quark masses. Some of these, such as the hyperfine splitting,

vanish in the heavy quark limit while others become constant. However, as expected,

most splittings tend to be higher at lighter quark masses where relativistic effects are

prominent. As an example, we consider following splittings: m∆uuu − 3
2
mωūu ,mΩsss −

3
2
mφs̄s ,mΩccc − 3

2
mJ/ψc̄c and mΩbbb − 3

2
mΥb̄b

. For ∆++(uuu) and Ωsss baryons, results are

from Ref. [35], while for Ωbbb, we use results from Ref. [47]. These splittings mimic the

binding energies of triply flavored states and thus it is interesting to compare these as

a function of quark masses. One can expect that, in the heavy quark limit, the quark

mass dependence of these splittings can be expressed is a form a + b/mPS. We observe

such quark mass dependence starting from strange to bottom quarks. This validates the
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heavy quark expansion for these splittings, particularly for charm and bottom quarks.2
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Figure 2: Spin identified spectra of doubly charm baryons, a) Ωcc and b) Ξcc, with respect
to mηc . States with strong overlap with operators that are proportional to field strength
tensor are painted with thick borders. While the low lying bands showing the pattern of
states as expected from an SU(6) ⊗ O(3) potential model are highlighted by enclosing
them within magenta closed curves.

0.3.2 Doubly charm baryons

The study of doubly charm baryons is important as these systems provide a unique

opportunity to get insight into the nature of strong force in the presence of slow relative

motion of the heavy quarks along with the relativistic motion of a light quark. The

excited spectra and the splittings between different energy levels will help to understand

how the collective degrees of freedom give rise excitations of these systems. A comparison

of their excitations with the corresponding spectra of singly and triply charm baryons,

where the number of charm quark is one less and more respectively, will be helpful to get

information about quark-quark interactions. Doubly charm baryons are characterized

by two widely separated scales: the low momentum scale, of order ΛQCD, of the light

quark and the relatively heavy charm quark mass. A doubly heavy baryon can be treated

as a bound state of a heavy antiquark and a light quark in the limit when the typical

momentum transfer between the two heavy quarks is larger than ΛQCD [48]. In this

limit of quark-diquark symmetry, QQq ↔ Q̄q, one can get definite prediction of spin

dependent energy splittings [49]. It is thus interesting to study those spin splittings to

check whether charm quark is heavy enough to respect this quark-diquark symmetry.

2The details have been skipped to save space.
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All previous lattice calculations involve only the ground state spectrum of Ξcc, Ξ∗cc,

Ωcc and Ω∗cc. However, it is expected that much more information about the interactions

between two charm quarks and between charm and light quarks can be obtained by

computing the excited state spectra of these baryons, including in particular the spin-

dependent energy splittings, as well as by studying similar spectra for other spin-parity

channels. Towards this goal, in this work, we make the first attempt to compute the

excited state spectra of doubly charm baryons by using dynamical lattice QCD. The

ground states for each spin-parity channel as well as their excited states up to spin 7/2

are computed and a few spin-dependent energy splittings are studied.

In Figure 2 we present the relativistic spectra of the doubly charm baryons, Ωcc(ccs)

and Ξcc(ccu), in terms of the energy splittings from the mass of ηc meson, which has

the same valence charm quark content. Even here, the number and the pattern of states

in the lowest negative parity band and the first excitation band in the positive parity

(magenta boxes in Figure 2) can be seen to be well in agreement with the expectations

based on SU(6)⊗O(3) symmetry, which assumes non-relativistic nature for quarks. As

before, the states with significant overlap with the operators proportional to the field

strength tensor are shown with thick borders, and are identified to be strongly hybrid in

nature.

Similar to the case of triply charm baryons, we estimate spin-dependent energy split-

tings, including hyperfine splittings, for doubly charm baryons, and then study the quark

mass dependence of some of those energy splittings. For some cases, we observe that the

quark mass dependence can also be fitted with a heavy quark inspired form a+ b/mPS.

From such quark mass dependencies we are able to make the following predictions :

mBc∗ −mBc = 80± 8 MeV, and mΩccb = 8050± 10 MeV.

0.3.3 Singly charm baryons

After triply and doubly charm baryons, we studied singly charm baryons with the same

details. However, for singly charm baryons the number of channels are many more,

namely, Λc(cud), Σc(cuu), Ξc(cus), and Ωc(css). In the presence of one or two light

quarks, the dynamics of these particles become much more complicated and these par-

ticles provide a unique opportunity to study the interaction between one or more light

quarks in the presence of a heavy quark. The number of possible interpolating operators

are also more as was shown in Table 3.

We show our results for the spectra of singly charm baryons in Figure 3 (name of each
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particle channel are shown inside). As before, we plot spectra in terms of mass splittings

instead of absolute masses. In our calculation, the pion mass is mπ ∼ 391 MeV. Due

to this unphysical light quark mass, we plot the Λc(cud) and Σc(cuu) spectra in terms

of their splitting from the vector meson mass mρ(ūd) calculated on these lattices. For

Ξc(cus), and Ωc(css), we show the spectra in terms of their splittings from the mass of

vector mesons K∗(ūs) and φ(s̄s), respectively. This set of splittings for singly charm

baryons is considered, since the leading order all the singly charm baryon spectrum have

the same discretization errors and the same effect of the light quark dynamics, making a

comparative study between the singly charm baryon spectra possible. It is to be noted

that with physical quark masses one may also opt to subtract D and Ds meson masses

instead, to reduce discretization error due to heavier charm quark.

As in the previous cases, we observed that the pattern of the extracted low-lying

states are remarkably similar to the expectation from a model with broken SU(6)×O(3)

symmetry. As previously, the low lying bands that have relatively large overlap with

the non-relativistic operators are shown with magenta boxes. Similarly the states with

significant overlap with the operators proportional to the field strength tensor are painted

with thick borders, and are identified as strongly hybrid in nature. Known physical states

are shown by violet stars (question marks are shown where quantum numbers are not

known). The mismatch between the experimental value and our calculated energies is

believed to be due to the unphysical quark masses and the finite volume effects.

The Σ++
c and Ωc baryons have the same flavor structure : pqq. The allowed flavor

symmetries are similar to that of the doubly charm baryons, where one can have a

symmetric flavor structure and a MS/MA flavor structure. Thus the spectrum of these

two baryons should resemble the spectrum obtained for the doubly charm baryons. This

is quite evident from the two plots on the right in Figure 3.

The Λc baryons are those with quark content udc and can have an antisymmetric

or MS/MA flavor structure, which corresponds to Λc-singlet and Λc-octet respectively.

The difference between the Λc-octet and the Σ+
c is that the latter is a part of the isospin

triplet, while the former forms an isospin singlet. The details of the flavor structure is

shown in Table 3.2. Since there is no totally antisymmetric spin combination that can

be constructed from a purely non-relativistic formalism, one requires angular momen-

tum structure through non-local behavior to construct a flavor-singlet Λc interpolating

operator. Figure 3(a) shows the spectrum of Λc, where one can see only one state in the

low lying band. This state has significant overlap with the flavors MS/MA with non-

relativistic spin 1/2. As observed for the other channels, the number and the pattern of
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Figure 3: Results on the spin identified spectra of (a) Λc, (b) Σc, (c) Ξc and (d) Ωc

baryons for both parities w.r.t. vector mesons, ρ (upper two) and K∗, φ (lower two).
The keys are same as in Figure 1(a). Known physical states are shown by violet star
(question marks are shown where quantum numbers are not known).

the first negative parity band and the first excited positive parity band agrees with the

non-relativistic predictions. It is to be noted that the ordering of the first two states,

particularly the lowest lying first excited positive parity state, is observed to have spin

5/2 which is similar to the pattern supported by experiments.

The Ξc baryons, with quark content usc, can have S, A or MS/MA flavor structure,

which correspond to Ξc-decuplet, Ξc-singlet and Ξc-octet respectively. Within Ξc-octet

flavor structure, one has two possibilities. If we assume an us-spin symmetry, similar to

the isospin that describes the symmetry between u and d quarks, there are two possible

MS/MA combinations : the Ξc-octet and the Ξ
′
c-octet. The latter is a part of the us-spin

triplet, of which Ωc and Σ++
c are included, while the former is a us-spin singlet. As in
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the case of Λc, due to the absence of a totally antisymmetric spin combination that can

be constructed from a purely non-relativistic formalism, one requires angular momentum

structure through non-local behavior to construct a flavor-singlet Ξc interpolating oper-

ator. Hence the low lying spectrum for Ξc baryon will have two spin 1/2 states from the

Ξc-octet and Ξ
′
c-octet operators and a spin 3/2 state with the Ξc-decuplet flavor struc-

ture. This can clearly be seen in Figure 3(c). The full set of operators for Ξc baryon

forms a very large set that fails to converge and produce a reliable spectrum from the

variational fitting. In this analysis, hence we use purely non-relativistic operators for

fitting, and the Ξc spectrum shown in Figure 3(c) is non-relativistic.

0.4 Mixed action approach : Charm and strange

hadron spectroscopy

The main aim of this study is to explore heavy hadron spectra using the chiral overlap

fermions on the background of a set of improved gauge configurations generated with

highly improved staggered quarks. By using such an approach, we get an advantage to

use a chiral action as well as a large set of highly improved configurations with multiple

lattice spacings. Below I mention results obtained from my contribution in this project.

As mentioned in the introduction, this is a calculation complementary to the previous

study of excited charm baryon spectra, particularly to improve the control over the

discretization errors.

We use two sets of dynamical 2+1+1 flavors HISQ lattice ensemble generated by the

MILC collaboration : a set of 323 × 96 lattices with a =0.0877(10) fm and another set

of 483 × 144 lattices a =0.0582(5) fm. For valence quarks we use overlap action [50].

The strange and charm masses are set at their physical values while ml/ms = 1/5 for

both lattices. The details of these configurations are summarized in Ref. [41]. The above

lattice spacings are determined using the Ω baryon mass measured on these ensembles.

The results reported here are obtained from 110 configurations on the coarser lattice, and

65 configurations on the finer lattice. Using both point and wall sources, we calculate

various point-point, wall-point as well as wall-wall quark propagators to study the low

lying hadron spectra.

Our extracted pseudoscalar meson masses are within the range 400 − 5130 MeV

and 230 − 4000 MeV for the coarser and finer lattices, respectively. In following two

subsections, we will discuss our estimates for mesons and baryons mostly in terms of
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Figure 4: (a) Meson mass splitting for charmonia and charm-strange mesons at two
lattice spacings. Experimental values are shown in the left side. (b) Mass splitting of

the ground state of JP = 3
2

+
Ωccc from 3/2mJ/ψ. Results of this mass splitting from this

work (blue) are compared with those obtained from the excited charm baryon studies in
the previous sections (red), Ref. [28] (violet) and Ref. [29] (green).

energy splittings as those have less systematics compared to extracted energies.

0.4.1 Energy splittings in charmonia and charm-strange mesons

In Figure 4(a) we present the energy splittings between axial, scalar and tensor charmonia

from pseudoscalar charmonia. In addition to this, we also calculate charm-strange mesons

with various quantum numbers. The energy splittings between these mesons are as

shown in Figure 4(b). We find that tuning of charm mass using kinetic mass brings

these splittings closer to their experimental values than when performed with the pole

mass [27]. Our results for the hyperfine splitting in 1S charmonia are 125(6) MeV and

119(3) MeV corresponding to coarser and finer lattices respectively. It is to be noted

that the this hyperfine splitting is one of the most well studied physical quantities in

lattice charmonium calculations over the year, and until very recently [15, 16], lattice

results were found to be smaller than the experimental value (∼ 116 MeV). Our results

are closer to the experimental value.

Charm baryons

We also study the ground state spectra of charm baryons with one or more charm quark

content, e.g., with quark content css, ccs, and ccc on these lattices. The mass splittings

Ωccc− 3
2
J/Ψ are shown in Figure 4(b). The blue rectangles represent the results from this
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work for the two different lattice spacings, while the rectangles in red are results from

the work discussed in the previous section. The two red points are with the tree-level

clover coefficient cs = 1.35 and at a boosted value of cs = 2, which gives correct char-

monium hyperfine splitting, J/ψ − ηc. The red and blue squares showed the consistency

between our two independent calculations. These results are also consistent with other

independent lattice results [28, 29]. We also calculate various spin splittings for doubly

charm baryons and find similar consistency between our two results and results from

other lattice calculations.

0.5 Baryon screening masses at finite temperature
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Figure 5: The ratio of screening masses
measured at T = 1.5Tc in quenched QCD
with those in FFT. Although all the re-
sults are not taken for exactly the same
quark mass, the effects of the quark mass
are very small (less than 1% in this study).

mπ
Tc

µN+

mN+

µN−−µN+

mN−−mN+

2.20 1.05± 0.05 0.75± 0.10

1.99 1.07± 0.04 0.68± 0.12

Table 4: Thermal shifts in nu-
cleon masses and mass splittings at
T = 0.95Tc; µN+/N− denotes the in-
verse screening length in the posi-
tive/negative parity nucleonic channel,
and mN+/N− the respective mass at T =
0.

The long term experimental programs on finite temperature QCD are beginning to

probe the finer details of the non-perturbative predictions of QCD [51], at various collider

experiments, including Relativistic Heavy Ion Collider (RHIC) at BNL and Large Hadron

Collider (LHC) at CERN. This is possible because fireballs produced in these collisions

come close to thermal equilibrium [52] and the data from such experiments need to be

confronted with first principles calculations such as Lattice QCD techniques that can

make useful theoretical predictions on the expectation value of observables.
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Using lattice QCD, the phases and properties of the medium can be studied by ana-

lyzing the static correlation lengths (which is inverse of the screening mass, µ) [53]. These

correlations are measured by introducing static probes into the equilibrium plasma and

measuring the response of the medium. The response depends on the quantum numbers

carried by the probes; so one can classify static correlators as glueball-like, meson-like

and baryon-like probes with the usual quantum numbers of these quantities corrected

for the fact that the static spatial symmetries are different from the Poincare group.

In this work, we study the meson-like and baryon-like static correlation lengths above

(1.5 Tc) and immediately below (0.95 Tc) the deconfinement transition temperature. It

is expected that these studies provide important inputs to the study of baryon-number

fluctuations, which is of much interest in the experimental search for the critical point of

QCD. We reboot the study of these correlators in the high temperature phase.

At 1.5 Tc, we find that the scalar/psuedoscalar (S/PS) and the (vector/axialvector)

V/AV correlators become pairwise degenerate. We find strong signals of approximate

chiral symmetry restoration from the near degeneracy of the screening masses of the

mesonic parity partners. Figure 5 shows the ratio of screening masses of various hadrons

in an interacting theory to the respective screening masses in free field theory. In addition

we found, as before [54, 55, 56], that the screening masses are not far from those obtained

in Free Field Theory (FFT), which is a model of non-interacting quarks. Along with our

estimates for the ratio of screening masses in interacting theory to the free theory, Figure

5 also contains a survey of the literature. This work uses the smallest lattice spacing used

in a quenched study to date, and agrees with previous work using clover quarks [55]. It

also agrees with results from studies using overlap quarks at smaller lattice spacing [56].

However, it seems that studies with näıve staggered quarks always indicate stronger

deviations from FFT than any of these above studies [57, 58]. Immediately below Tc,

we find that the mass of the mesons is hardly affected by the temperature below the

deconfinement transition temperature.

As in the mesonic correlations, the nucleonic screening lengths at T = 1.5 Tc, show

strong signals of approximate chiral symmetry restoration through the near degeneracy

of their screening masses. It is also evident from Figure 5 that above Tc the baryonic

screening lengths also support the evidence for weakly interacting quarks. However, be-

low Tc some interesting observations can be seen from Table 4. We find that µN+
= mN+

within 95% confidence limits, indicating no significant thermal effects in the nucleon

mass. However, the splitting between the N+ and its parity partner, N−, changes at

finite temperature, and is a precursor to the restoration of chiral symmetry before the
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QCD phase transition. These observations not only constrain models of quantum hadro-

dynamics [59], but could also have implications for the analysis of heavy-ion collision

data.

0.6 Summary and conclusions

In this synopsis, we summarized our study of baryons by using non-perturbative methods

of lattice QCD. The significant part of the work dealt with spectroscopy of charm baryons.

In this, we performed two complementary studies using two different non-perturbative

techniques with distinct merits, and comparative study was performed between the results

from both these studies, which gave us confidence in our results. A second part of this

synopsis involved a study of baryon screening masses at finite temperature that could

provide important information on the properties of the QCD medium across the transition

temperature.

The detailed study of charmonia, both theoretically and experimentally, has provided

crucial insights in our understanding of strong interaction. In contrast to that, charm

baryons have not been studied comprehensively, though that can also provide similar

information. In this work, we make the first attempt to study charm baryons comprehen-

sively. An anisotropic action with 2+1 flavor dynamical clover and with temporal lattice

spacing of about (5.67 GeV)−1 was used. A large set of carefully designed baryonic inter-

polating operators with up to two derivatives were constructed and the newly developed

distillation technique was employed to generate the correlation functions. A well-suited

variational technique was utilized to extract the energy eigenstates with reliable spin-

parity quantum numbers. The main results are shown in Figure 1, 2 and 3. Among the

results most significant ones are the following predictions: mΩccc −mJ/ψ = 160± 6 MeV,

mBc∗ − mBc = 80 ± 8 MeV, and mΩccb = 8050 ± 10 MeV. In the extracted spectra we

found bands of states with alternating parities and increasing energies. Beside identify-

ing the spin of a state we could also decode the structure of operators leading to that

state : whether constructed by relativistic, non-relativistic, hybrid, non-hybrid types or

a mixture of them all. However, for negative parity states and highly excited positive

parity states, this identification is not possible since we do not include operators with

more than two derivatives which will contribute to these states and so will change the

relative contribution from various operators leading to such states. Similar to light and

strange baryon spectra [35], we also found the number of extracted states of each spin

in the three lowest-energy bands and the number of quantum numbers expected based



Synopsis xxx

on weakly broken SU(6) × O(3) symmetry agree perfectly, i.e., all the low lying charm

baryon spectra remarkably resemble the expectations of quantum numbers from quark

model [6, 7, 8] though we used relativistic as well as non-relativistic hybrid operators

which are not present in such models.

In addition to the pattern of the spectra, we also studied various energy splittings that

could give insights into spin-dependent interactions that exists between multiple charm

quarks as well as charm quarks and the light or the strange quarks. In the heavy quark

limit, the energy splitting due to spin-orbit coupling should vanish as it is proportional

to the heavy quark masses. To check this, we identify a few states with the same L

and S values from overlap factors of various operators and found that the spin-orbit

energy degeneracy between these states are more or less satisfied both for bottom and

charm quarks, justifying a heavy quark status for the charm quarks. More precise data

are necessary to check the breaking of this degeneracy at the charm quark mass. We

also evaluated some other energy splittings that mimics the binding energy of various

baryon states, such as : mΩbbb − 3
2
mΥb̄b

,mΩccc − 3
2
mJ/ψc̄c and mΩsss − 3

2
mφs̄s . Significant

quark mass dependence was observed for such splittings that can be modeled with a form

a + b/mPS, which assumes they will tend to a constant in the heavy quark limit. It is

interesting to note that the heavy quark expansion gives a good fit with data at bottom,

charm as well as strange masses.

It is to be noted that we did not use any multi-hadron operators in this calculation.

Inclusion of those operators, particularly those involving light quarks, may affect some of

the above conclusions, though to a lesser extent than their influence in the light hadron

spectra. Also this calculation was carried out with one lattice spacing, one volume

and at mπ = 391 MeV. In order to get precise estimate, which can be compared with

experiments, this study needs to be repeated with multiple volumes and lattice spacings

at lighter pion masses.

Complementary to the above work, we calculated charm and strange hadron spectra

with the overlap fermions in the background of a set of 2+1+1 flavors HISQ gauge

configurations. By adopting such a mixed action approach, we took advantage of the

chiral symmetry and low quark mass limit of overlap fermions, and the advantage of

having a large set of configurations with small discretization errors as well as small

taste breaking effects. We were also able to simulate both light, strange as well as

heavy fermions on the same lattice formalism with chiral fermions having no O(a) errors.

Results obtained, in particular the splittings between various hadrons, including the

hyperfine splitting in 1S charmonia, are encouraging and consistent with experiments.
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This suggests that the overlap valence quarks on 2+1+1 flavor HISQ configurations is a

promising approach to do lattice QCD simulation with light, strange and charm quark

together in the same lattice formulation. We found the tuning of the charm quark mass

with the kinetic mass, rather than the pole mass, improves the discretization errors. We

also have the estimates for various charm and charm-strange hadrons. The splitting

(mΩccc − 3
2
mJ/Ψ), between J/Ψ and the unknown triply charm baryon Ωccc was found to

be 145(10) MeV and 144(10) MeV, on our coarser and finer lattices respectively.

This is a complementary study of the first project to access the effect of discretization

errors on extracted masses. In both the works, we calculated the Ωccc mass, for which the

discretization error is maximum since all the three quarks are heavy. We observed that

results from both the calculations are consistent with each other and are also consistent

with a few other independent lattice calculations. This shows that the discretization

errors entering in our estimates are in good control.

It is to be noted that we have not performed continuum and chiral extrapolations

which will be performed later by ILGTI after adding another lattice spacing. The chiral

extrapolation has to be done carefully by using mixed action partially quenched chiral

perturbation theory [60] with proper mixed action discretization term ∆mix [61].

In the second part of the work, we calculated thermal correlations in quenched QCD

in channels with various hadronic quantum numbers, with a aim to access the behavior

of baryons at finite temperature. The correlation functions are consistent with the usual

picture of the QCD phase diagram : below Tc long-distance correlations are mediated

by hadrons and above Tc these are mediated by weakly interacting quarks. Above Tc,

at the temperature T = 1.5Tc, we found strong signals of approximate chiral symmetry

restoration in the near degeneracy of screening masses of hadronic parity partners. In

addition, we found, as before [54, 55, 56], that the correlation functions and screening

masses are not far from those obtained in FFT, which is a model of non-interacting quarks.

The estimates from this work is in consistence with previous results using clover quarks

[55] and overlap quarks [56], while staggered quarks in the quenched approximation

always indicated stronger deviations from FFT [57, 58].

Mesonic channels and the nucleon ground state show no thermal effects below Tc.

However, the opposite parity excitation of the nucleon, S11, is seen to move closer to the

ground state signaling a precursor to chiral symmetry restoration. No such effects have

been seen earlier either in the glue sector or with quarks, nor do we see any effect in the

V/AV channels here. This is a new observation which can constrain models of quantum

hadrodynamics, as well as have implications for the analysis of heavy-ion collision data.
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This encourages for future study of baryonic correlators in a comprehensive way.
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Outline of the thesis

In this thesis, I present my work on the non-perturbative studies of various aspects of

baryon physics using lattice QCD. An outline of the works presented in the thesis is as

follows :

• Spectroscopy of charm hadrons

– Excited state charm baryon spectroscopy using clover fermions.

– Charm hadron spectroscopy using overlap fermions.

• Nucleons at finite temperature.

The organization of this thesis is as described below.

In Chapter 1, I introduce the aforementioned works, covering the phenomenology in

the respective aspects. I discuss the experimental and the theoretical advances in the

spectroscopic studies and the future prospects from both experimental and theoretical

point of view. After the phenomenological background and motivation, I discuss the

works on Excited state charm baryon spectroscopy and Charm hadron spectroscopy using

overlap fermions. The work on Nucleons at finite temperature is discussed briefly in the

last section.

Chapter 2 serves as very brief review of the basics of the first principle non-perturbative

technique, known as Lattice QCD, that we employ for our calculations. The review cov-

ers a short introduction to the QCD in the continuum followed by a section dedicated

to the lattice regularization of QCD. A third section discusses the basics of simulations

involved and an introduction to the conventional spectroscopy studies using lattice.

Chapter 3 is dedicated for the technical details related to the work on excited state

spectroscopy. I begin by discussing the procedure involved in conventional spectroscopy

studies using lattice QCD and the challenges that appear in the excited state spec-

troscopy. Individual sections are dedicated to explain the solutions, which include the

xxxix
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use of anisotropic lattice formalism, derivative based operator construction formalism

and variational fitting techniques, to these challenges.

In Chapter 4, our results for charm baryons from the excited state spectroscopy

studies are presented. The chapter is divided into three sections : 1) Triply charm

baryons, 2) Doubly charm baryons and 3) Singly charm baryons and spectra for them

are discussed in the respective sections. Along with I also discuss our calculations to

assess the discretization errors entering our estimates. Separate subsections are used for

various energy splittings, which carry the information about the binding energies of the

extracted states. We also discuss various systematics involved in this calculation that

have not been addressed.

In Chapter 5, I discuss the details and the results from our heavy hadron spectroscopy

calculations using overlap fermions. In this chapter, we discuss the detailed study of the

discretization errors in this non-perturbative approach, and make a comparative study

of various estimates that we measure from this work and the previous one, along with

estimates from other lattice and potential model calculations.

In Chapter 6, I discuss our study of hadron screening masses at finite temperature.

Main emphasis has been given for the nucleonic channels, where we observe interesting

behavior in the negative parity nucleonic channels indicating precursor effects for the

chiral symmetry restoration in the nucleonic channels immediately below Tc.

In Chapter 7, we give a brief summary of the findings made in the works described

in the thesis.



Chapter 1

Introduction

Understanding the building blocks of the universe and the fundamental laws of nature

that govern the interactions between them is the primary aim of theoretical physics, with

a hope that this understanding will help us explain all the complex natural phenomena

around us. This view is known as reductionism. Success of such a view in atomic physics

began with John Dalton’s (1803) atomic theory, followed by Dmitri Mendeleev’s proposal

of atomic periodic table and the developments that followed till the early 20th century.

Atomic physics further got a substantial boost in its understanding about the atomic

spectra and atomic substructure following Ernest Rutherford’s Gold foil experiment,

Niels Bohr’s proposal of his atom model and, in particular, the development of quantum

mechanics. The enormity of the success of quantum mechanics is such that it found

applications in a wide variety of areas beyond atomic physics, including a great deal of

modern technological inventions which revolutionized our life.

Particle physicists also believe in such a reductionist point of view in order to un-

derstand the proliferated collection of particles that were observed after the invention of

cyclotron and the development of various particle accelerators. The rich spectra of light

hadrons provided us with a framework for constructing a theory of strong interactions

starting from the eightfold way to treating quarks and gluons as the fundamental degrees

of freedom. The development including the unification of the electromagnetic and the

weak interactions [1, 2, 3], followed by the proposal of Higgs field [4], which is believed

to give mass to all the fundamental particles in the universe, gave the Standard Model

of particle physics its modern form.

Though the discoveries of the neutral intermediate vector boson, the top quark, the

τ -neutrino and the Higgs boson [5, 6] put the Standard Model of particle physics on solid

1
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footing, there remains significant limitations in our understanding. Quantum Chromo

Dynamics (QCD), a local non-Abelian gauge theory representing the SU(3) sector in

the Standard Model, is established to be the theory of strong interactions. The most

desirable feature of QCD, the asymptotic freedom [7, 8], allowed successful application

of perturbative techniques in explaining the observations in the high energy domain from

various particle collider experiments. However, a complete understanding of the non-

perturbative part of QCD in the low energy domain remains a challenge. The masses of

the hadrons made of light quarks, in particular baryons, are observed to be an order of

magnitude higher than the sum of the mass of the quarks that constitutes them. Baryons,

particularly neutrons and protons, account for ∼99% of the mass of the visible universe.

However, only ∼1% of the proton mass is explained by the Higgs mechanism. Hence

it is very important to understand the origin of the mass that constitutes the major

part of the visible universe. From various lattice studies, it is now understood that this

mass comes from the non-perturbative nature of the strong interactions in the low energy

domain. The calculation of the energy spectra of various hadrons is the main aim of this

work.

1.1 Baryons

Baryons are relatively simple systems in which quintessentially confining character of

multiple quarks is manifest and are sufficiently complex to shed light on physics hidden

from us in the mesons. Understanding the baryon spectra is thus expected to answer

a large series of questions on baryons and the interactions that exist within them [9].

A few questions for which the current day and the future baryon spectroscopy studies

are expected to provide answers are the following. Can all baryon resonances be ex-

plained from QCD? What are the leading interactions that govern the spectra of baryons

from the light to the heavy sector? Can we find signatures for the property of flavor

independence of the QCD interactions? How much the mean field theories, like quark

model calculations that are highly successful in explaining the low lying spectrum, will be

successful in explaining the full resonance spectrum? Why are the ‘missing resonances’

missing? Missing resonances are those that are predicted by symmetric quark models

but have not been observed. Even the diquark models, in which the diquark excitations

are suppressed, predicts a lot more resonances than observed. Do they really exist in

nature? What is the spectral pattern of the highly excited states? Are they organized

in the form of spin-parity doublets or chiral multiplets of mass degenerate states having
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identical spin and parity?

Though in its infancy, one also expects to understand a number of questions in the

heavy baryon sector. The triply heavy baryons are expected to shed light into the quark

dynamics in baryons, which is somewhat hidden by the chiral dynamics in the light

baryons. The doubly charm spectrum will explain if it is dominantly governed by a

charmonium-like heavy quark dynamics or a charm meson-like relativistic light quark

dynamics around a static color source formed by the heavy-heavy diquark. While the

spectra of singly charm baryons are expected to help us understand the hierarchy of the

light quark excitations. Particularly, with the recent excitement in heavy hadron physics

and fore-seeing the observations from large statistical samples that will be collected in

many future and ongoing experiments [10, 11, 12, 13, 14, 15], a detailed understanding

of the heavy baryon spectra is expected to provide insights into various aspects of the

strong force that cannot be probed with light baryons.

1.2 Heavy hadrons in QCD

A comprehensive understanding of the theory of QCD in the strong coupling regime

implies a rigorous determination and understanding of its bound states. If QCD is the

correct theory, then one should be able to reproduce the physical hadron spectra from a

high precision first principles non-perturbative calculation. Much like the role of atomic

spectroscopy in the development of quantum mechanics, hadron spectroscopy, both the-

oretically and experimentally, has played a crucial role in understanding the nature of

the fundamental strong force and its degrees of freedom. The dense spectra of hadrons

with light quarks provided us with a framework for constructing the theory of strong

interaction. The discovery of the heavier hadron, J/ψ meson, and the subsequent dis-

coveries of other charmonia put this framework on a solid footing. These discoveries

and the identification of these states as charm-anti-charm bound states took the con-

cept of quarks from a mere mathematical construct to reality. The discovery of J/ψ

meson triggered such a huge scientific interest that it was termed as the November revo-

lution. The charm quark mass being heavy, the approximation that the charm quark and

anti-quark are non-relativistic were found to be good for many predictions. Studies on

various energy splittings provided crucial information on heavy quark-anti-quark poten-

tial, hyperfine and spin-orbit interactions, etc. The ground state charmonia, J/Ψ and ηc,

gave the excellent analogs of hydrogen atom for strong interactions, which revealed the

quark layer of substructure for hadrons. Potential models, consisting of non-relativistic
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quark kinetic energy, a central confining potential, and spin-dependent interaction terms

were found to be very successful in explaining various observed states. Recently, a tower

of heavy hadron states, including the X’s, Y ’s and Z’s, has been discovered with un-

usual properties [16]. These discoveries have rejuvenated the heavy hadron spectroscopy

tremendously and offer a bright promise in detailed understanding of various interesting

aspects of the theory of strong interaction.

While the heavy quarkonia and other heavy flavored mesons have been studied quite

extensively, the heavy baryon physics has received substantially less attention, even

though they can provide similar insight in understanding the strong interaction. Ex-

perimentally nearly a score of singly charm baryons have been discovered, but only a

few of the low lying states have been assigned the spin-parity quantum numbers based

on experimental evidence [16]. A reliable determination of the quantum number of most

of the observed states has not been made. For doubly charm baryons, only experiments

at SELEX reported the discovery of five doubly charm baryon resonances and inter-

preted those as Ξ+
ccd(3443), Ξ+

ccd(3520), Ξ++
ccu (3460), Ξ++

ccu (3541) and Ξ++
ccu (3780) [17, 18].

Later they confirmed the Ξ+
ccd(3520) state in two different decay modes (Ξ+

cc → ΛcK
−π+;

Ξ+
cc → pD+K−) at a mass of 3518.7 ± 1.7 MeV with an average lifetime of less than 33

fs [19]. However, these states have not been observed either by BABAR [20] or Belle

[21, 22] in e+e− annihilation experiments. Along with the well-established triply fla-

vored ∆(uuu) and strange Ω(sss) baryons, QCD predicts similar states built from charm

quarks, the triply charm baryon, Ωccc. Such a state is yet to be observed. This could be

because of the large energy threshold required for their production via either resonant

or continuum production mechanisms, their very short lifetime and the very low recon-

struction efficiency for the highly excited heavy hadron resonances, which follow cascade

decays into multi-particle final states. The extremely low production rate hinders the

identification of the spin-parity quantum numbers, even though the partial wave analysis

is relatively simple in heavy hadrons in comparison with the light hadron spectra. Being

a baryon-baryon collider experiment, SELEX, unlike BaBar and Belle, may have had

huge cross section for the production of the charm baryons through continuum produc-

tion mechanism from the QCD background. This could be a reason for the observation

of the doubly charm baryon in SELEX experiments, while not in BaBar or Belle. One of

the main aims of the proposed PANDA experiment at the Facility for Anti-proton and

Ion Research (FAIR), Darmstadt, is to provide an ideal environment to study the heavy

hadron physics. It will investigate anti-proton annihilations in the momentum range from

1.5 GeV to 15 GeV. The ongoing proton-proton collider experiments at LHCb aim at wide
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range of physics programs covering many important aspects of heavy flavor physics. The

high intensity baryon beams and the gluon rich reaction product from the baryon-baryon

and the nucleus-nucleus collisions in both these experiments will allow high precision

spectroscopy of heavy hadrons.

1.2.1 Potential model calculations

On the theoretical side, one expects that potential models will be able to describe, charm

baryons [9, 23, 24], in particular the triply charm baryons, to a similar level of precision

as their success in charmonia. The triply charm baryons may provide a new window

for understanding the structure of baryons, as pointed out by Bjorken several years ago

[25]. Just as the quark-anti-quark interactions are examined in charmonia, these studies

can probe the interactions between multiple heavy quarks and heavy quarks with one

or more lighter quarks. Various spin dependent splittings between baryons can provide

information to constrain spin dependent potential terms, which are crucial in building

successful Non-Relativistic QCD (NRQCD), pNRQCD and similar models [26, 27]. The

low lying spectra of charm baryons have been studied theoretically using various ap-

proximate formulations [9, 23, 24] of QCD. These include potential model calculations

with non-relativistic and relativistic heavy quarks utilizing various symmetries in a heavy

quark system, calculations based on QCD sum rules and Regge phenomenology. These

kind of calculations were performed as early as in late 1970’s by Isgur and Karl [28, 29]

where they studied baryons in a quark model framework inspired by QCD. These were

followed by studies using a QCD motivated bag model [30]. Potential model calculations

in non-relativistic quarks were performed in a number of works using simple variational

methods [31] or by employing Faddeev formalism to solve the three body problem of

baryons [32, 33, 34]. Taking into account the presence of the valence heavy flavor, calcu-

lations were performed based on heavy quark effective theory formulations [35], and with

heavy quark spin symmetry constraints [36, 37, 38] to solve the non-relativistic three

body problem. In Ref. [39] masses and mass relations between heavy baryons with one

heavy quark using 1/mQ and 1/Nc expansions were studied. Non-relativistic potential

model calculations were also performed treating baryons as quark-diquark systems [40],

where the excitations in the diquark are frozen or occur at significant higher energies.

Calculations were also performed using NRQCD and its improvisations called pNRQCD

formalisms, which were found to be successful in classifying the low lying charmonia and

bottomonia [41, 42, 43, 44]. Owing to the fact that the NRQCD Lagrangian can be
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derived in a systematic manner from QCD, these formulations were also used in many

first principles lattice spectroscopic studies [45, 46, 47, 48]. Various forms of relativistic

potentials were also used in many studies. For example, in Ref. [49] a relativized quark

model with simple Breit-Fermi potential, combined with the spin-orbit interactions after

accounting for the corrections from Thomas precession, was considered. Ref. [50] uses a

relativistic potential for baryons constructed from a hyper-spherical expansion. Another

approach was to extract the spectrum by solving the three body problem of baryons

based on Bethe-Salpeter equations using relativistically covariant quark model in the in-

stantaneous approximation [51]. In Ref. [52], the relativistic three quark equations were

derived using dispersion relation techniques and were solved so as to extract the masses

of charm baryons with orbital excitations. In Ref. [53] a constituent quark model with a

full relativistic form for the light quarks and a velocity expanded relativistic potential for

the heavy quarks up to second order was used. Other calculations were also performed

based on QCD sum rules [54, 55], inspired by their success in explaining the low lying

heavy quarkonium systems. Masses and mass relations among the heavy hadrons were

studied assuming the quasi-linear Regge phenomenology ansatz for the heavy meson and

heavy baryon spectra [56]. Although predictions from all these models for the low lying

spectra are satisfactory, none of these models possess all the features of the full theory

of QCD and many of them also does not possess the full relativistic nature. Further,

it is questionable about the validity of the predictions for the extended baryons, where

the dynamics could include features beyond the approximation made in these models.

Hence, in the absence of any experimental discovery the only way to test these model-

dependent calculations is to compare these with the results from first principles lattice

QCD calculations.

1.2.2 Lattice spectroscopy

QCD, like other quantum field theories, needs to be regularized. Discretizing the space-

time serves as an intutive non-perturbative regularization scheme for the theory by intro-

ducing a UV cut off through the lattice spacing, ‘a’. A gauge invariant regularization of

QCD is possible this way, which is often referred to as lattice QCD. Such a regularization

combined with putting the theory on a finite sized box reduces the theory with infinite

degrees of freedom to a theory with finite number of degrees of freedom and thus allowing

to perform numerical computations of QCD. Expectation values of the QCD observables

can be expressed as finite dimensional path integrals, which can directly be evaluated
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with controlled systematics using Monte Carlo methods. At present, lattice QCD is the

only ab-initio approach to access the non-perturbative aspects of QCD, that includes the

QCD spectrum.

A quantitative description of the QCD spectra, particularly the charm baryons, using

rigorous ab-initio computations like lattice QCD is important for a number of reasons.

Firstly, many of the estimates of physical states from these calculations will be predictions

and thus can naturally provide crucial inputs to the future experiments. Secondly, lattice

results can provide guidance in identifying unknown quantum numbers (spin-parity) of

the discovered states, based on what one expects from QCD. Moreover, it will be interest-

ing to compare the low lying spectra of charm baryons computed from a first principles

method to those obtained from potential models, which have been very successful for

charmonia. It is expected that more information about interactions between multiple

charm quarks and charm quark and light quark can be obtained by computing the ex-

cited state spectra of charm baryons, including in particular the spin-dependent energy

splittings.

Lattice computations of hadron masses proceed through the calculations of the Eu-

clidean two point correlation functions, followed by performing non-linear exponential fits

to the long distance tail of these two point correlators, where only the ground state con-

tribution dominates. Lattice computations of light hadron masses are well documented

in the literature. Lattice studies with quenched approximation, which assume no quark

loops in the theory, were found to give estimates that are accurate with respect to the

observed values at ∼10% level [57, 58]. Light hadron spectroscopy calculations performed

in the preceding couple of years with dynamical configurations, that included the quark

loop effects from the light and strange flavors [59, 60], obtained an improvement in the

estimates and the results were observed to be accurate with the physical values at 3%

level of the statistical and systematic errors. Other dynamical calculations were also

performed, which used the fermion discretizations like O(a) improved Wilson action [61],

domain wall fermion action [62, 63] and twisted mass fermions [64]. But all of these

calculations compromised with one or other systematics involved. A notable work is by

the BMW collaboration [65], where they performed a precise determination of the masses

of the light hadron ground states, with controlled systematics that included the effects

of light and strange sea quark effects, the chiral extrapolations, the infinite volume limit

and the continuum limit. Their results were in excellent agreement with the experimental

observations.

The study of heavy hadron spectroscopy using lattice QCD, mainly for the ground
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state mesons, is quite mature. From early days of lattice QCD, impressive results were

obtained for spectra as well as for decay constants of heavy mesons, for example, in

Refs. [66, 67, 68, 69, 70, 71] and in many other works. Charmonium and bottomonium

mass splittings, particularly the 1S hyperfine splittings, were studied in detail in differ-

ent works using staggered quarks Asqtad improvement [72], Highly Improved Staggered

Quarks (HISQ) [73, 74, 75, 76, 77]. Notably the estimates from Refs. [76, 77] included

the quark loop effects up to the charm quark mass, various systematics including chiral,

infinite volume and continuum extrapolations. Their results include a set of predictions

along with a set of post-dictions, which are found to be in good agreement with the

observed values. Considering the heavy mass of the charm quarks, Ref. [78, 79] used

relativistic heavy quark formulation for the charm quarks, to determine the low lying

spectra of charmonium and charm mesons.

For charm baryons, early calculations include those using quenched configurations

[80, 81, 82]. Recently, the interest in lattice charm baryon spectroscopy has revived with

quite a few calculations being reported. Ref. [83] used relativistic Fermilab formulation

for the valence heavy quark and domain wall fermions for the valence light and strange

quarks on Nf = 2 + 1 gauge configurations using improved Kogut-Susskind sea quarks to

study the spin-1/2 singly and doubly charm baryons. Nf = 2+1+1 gauge configurations

using HISQ action for sea quarks was utilized by Ref. [84], to study the ground state

charm baryons, using relativistic heavy quark action for charm quarks and clover-Wilson

fermions for light and strange quarks. The masses of low lying charm baryons are evalu-

ated using two degenerate flavors of twisted mass sea quarks in Ref. [85]. There are a few

dynamical calculations using clover-Wilson fermions [86, 87] and relativistic heavy quark

action for charm quarks [88] aimed at spectroscopy of the low lying charm hadrons and

improving the discretization errors using different discretization schemes for the heavy

quarks [87].

1.2.3 Excited state spectroscopy

In spite of all these motivating results for low lying hadrons from lattice QCD, estimation

of excited state spectrum remained a major challenge. Lattice results are available only

for a few excited states [89, 90, 91, 92, 93, 94, 95] using usual local operators which

fails to give higher radial and orbital excitations. This deficiency is mainly because the

excited state contributions decay faster than those from the ground state. Hence the

conventional fitting procedures fail to produce reliable estimate as the signals for the
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excited states are swamped by those from the low lying states. One solution to study

the excited states is to use very fine temporal resolution and scan early times so as to

get stronger signals from the excited states. This can be achieved by using anisotropic

lattices, where one uses a finer temporal lattice spacing in comparison with the spatial

lattice spacing. Further, one can use a large set of operators that allow strong overlap with

the excited states. Use of novel smearing technique, called distillation [96], aid in efficient

computing of correlation functions between such large number of interpolating operators.

Development of distillation and the proper utilization of fitting techniques, such as the

generalized eigenvalue method [97, 98, 99], along with the derivative based operator

construction formalism [100, 101], boosted the hadron spectroscopic studies, facilitating

the determination of the excited state spectra [101, 102, 103, 104, 105, 106, 107, 108].

A significant part of this thesis consists of spectroscopy of charm baryons using two

complementary non-perturbative approaches. The first, which constitutes the major

part, employs these novel techniques mentioned above, enabling us to extract a tower of

spin identified excited states for all charm baryons. In this work, we follow a well de-

fined procedure developed and employed extensively for extracting excited states for light

mesons [103, 104, 105], mesons containing charm quarks [106, 107], and light and strange

baryons [101, 102, 108]. The procedure uses anisotropic lattice configurations with the

light and strange quark dynamics included [109, 110]. The anisotropic discretization

helps us obtain better resolution of the correlation functions, which is very helpful for

extraction of excited states. The anisotropic gauge configurations utilized here are gen-

erated with Nf = 2 + 1 flavor clover improved Wilson fermions [109, 110]. The valence

quarks, including the charm quark, are realized using clover action, which are O(am)

improved at tree level in tadpole-improved perturbation theory [111]. Furthermore, we

follow the derivative based operator construction formalism as described in Ref. [101].

This procedure proceeds in two steps : First we construct a large set of baryonic opera-

tors in the continuum. These operators transform as irreducible representations (irreps)

of SU(3)F symmetry for flavor, SU(4)S symmetry for Dirac spins of quarks and O(3)

symmetry for orbital angular momenta, corresponding to a SU(12)⊗O(3) symmetry. If

instead of the Dirac spinors with four components, Pauli spinors that are formed from

purely the upper two components of the Dirac spinor in Dirac-Pauli representation are

used, one would have obtained only an SU(6)⊗O(3) symmetry, where the SU(6) is built

up from the sub-groups according to SU(6) = SU(3)F ⊗ SU(2)S. The O(3) corresponds

to the symmetry in the spatial part. These continuum operators are then subduced to

various lattice irreducible representations to obtain lattice operators [101]. Finally, using
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the novel technique called “distillation” [96], correlation functions for these operators

are computed and the variational method is utilized to extract excited energies of charm

baryons with one or more valence charm quark content as well as to reliably determine

the spins of these states up to spin 7/2. We also computed several energy splittings, for

example, hyperfine as well as spin-orbit splittings between various states. Being first of

its kind in the excited charm baryon spectra calculation, this study serves as a founda-

tion for many follow up studies, which may help us address many of the challenges in the

baryon spectroscopy. The results from these studies were reported in Ref. [112, 113, 114].

Like any other lattice study, this work also possess certain systematics. The finite

lattice spacing introduces a UV cut-off and the finite box size brings in an IR cut-

off. It is very crucial that any physics extracted from these studies remains unaffected

by these cut-offs. In order to have good control over the ma errors, we used the tree

level tadpole improved clover action with O(mat) and O(mas) errors removed. We have

not addressed other higher order terms, as the temporal lattice spacing is quite small.

We also do not make a quantitative study of O(m2a2
s) errors. However, to study the

charm physics, it is essential to have an action with discretization errors as small as

possible. Further, one needs to perform lattice calculations with multiple lattice spacings

on multiple lattice sizes; this is beyond the scope of this work. Furthermore, the light

quark mass on the lattices we use is such that the pion mass is ∼ 391 MeV. Along with the

approach to the thermodynamic limit, one also needs to perform a chiral extrapolation

due to the unphysical pion mass in these calculations, which again is beyond the scope

of this work. Another caveat in the above study is that the clover action does not have

chiral symmetry at finite lattice spacing, i.e., we have not addressed the effects of chiral

symmetry on observables. Though this may not affect the triply charm baryon spectra,

charm baryons with valence light quark content could have some effects. Furthermore, it

is also to be noted that we have not used any multi-hadron operators, which are expected

to give significant implications in the extracted spectra. Hence, one also need to perform

calculations considering multi-hadron operators. Keeping these caveats in mind in future

it will be worthwhile to pursue same calculation by addressing all these systematics to

make more precise quantitative predictions which can then confront experimental results.

1.2.4 Spectroscopy with chiral fermions

So as to complement the above calculation on spectroscopy of excited charm baryons,

we perform a second non-perturbative calculation of the low lying charm hadron spectra
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with highly controlled systematics. The main advantage of performing these calculations,

which cover the second part of the work on spectroscopy of charm baryons, using the

mixed action approach is the better control over the systematic errors that appear in the

estimates. Mixed action approaches have been studied by many groups such as DWF

valence on staggered fermion sea [63, 115, 116, 117], overlap valence on DWF sea [118],

overlap valence on clover sea [119], and overlap valence on twisted fermion sea [120].

This calculation uses overlap valence quarks in the background of a large set of dynami-

cal configurations generated with the one-loop, tadpole improved [111] Symanzik gauge

action and the highly improved staggered quark (HISQ) fermion action [121, 122]. Taste

violations, which were a generic problem with the unimproved staggered fermion action,

were found to be small in the HISQ formalism [121]. The overlap formalism has exact

chiral symmetry [123, 124] on the lattice and is automatically O(a) improved. By adopt-

ing such a mixed action approach, one can simultaneously get the advantage of having

a large set of configurations with very small discretization errors as well as small taste

breaking effects and the unbroken chiral symmetry as well as the low quark mass limit of

overlap fermions. The overlap action also has some desirable features computationally,

such as the adaptation of multi mass algorithms [125], which allows us to perform quark

propagator construction for multiple quark masses very efficiently. One also gets the

advantage of simulating both light, strange as well as heavy fermions on the same lattice

formalism with chiral fermions having no O(a) errors. With a large set of quark masses

being studied, we plan to perform a chiral extrapolation so as to get the estimates at

the physical pion mass. With the above formulation we have calculated the ground state

spectra of various charm hadrons and have made a comparative study between these two

projects along with other results from literature where available. Agreement between

these results from different approaches gives confidence in our estimates. The results

from these studies were reported in Ref. [126, 127].

1.3 Hadrons at finite temperature

Following the zero temperature calculations involving the spectroscopy of the low lying

hadrons, we are further interested in understanding how these physical states behave at

finite temperature. QCD at finite temperature proceeds through a crossover transition

between two phases : deconfined chirally symmetric phase at high temperatures to a

confined chiral symmetry broken phase at low temperatures. It has been observed from

many lattice calculations that this proceeds through a cross-over transition during this
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change of phase. While in a pure gluonic field theory, this change of phase proceeds

through a first order transition. The non-perturbative effects that dominate the low

temperature regime of QCD, contributes at a significant level even at finite temperatures.

In this work, we are interested in understanding how the degrees of freedom, in particular

those with nucleon quantum numbers, that exists in the zero temperature QCD gets

modified with increasing temperature.

In order to understand the thermal effects on the zero temperature degrees of free-

dom, we study the static correlation lengths that exist in a pure SU(3) gauge theory

above and immediately below the deconfinement transition temperature, Tc. Such static

correlations that persist in the equilibrium thermodynamic system can be studied by

introducing static probes into the equilibrium plasma and measuring the response of the

medium. This response depends on the quantum numbers carried by the probes; so one

can classify static correlators as glueball-like, meson-like and baryon-like probes with the

usual quantum numbers of these quantities corrected for the fact that the static spatial

symmetries are different from the Poincare group.

Meson-like screening masses have been studied in QCD in great detail [128, 129, 130,

131, 132, 133, 134, 135]. Baryons at finite temperature has not been studied in detail

in recent past and a few notable works were in the late 1980’s [128, 133]. Moreover, a

detailed study of the baryon screening masses in the low temperature phase also has not

been performed yet. In this work, we perform simulations of pure gauge theory for three

different temperatures across the transition temperature and study screening correlators

for mesonic and nucleonic resonances with clover fermions. The main emphasis, in this

work, has been given to the nucleon channels, which are expected to provide important

inputs to the study of baryon number fluctuations and thus to the experimental search

for the critical point of QCD. The results from these studies were reported in Ref. [136].

1.4 Summary

In this chapter, we give a detailed discussion about the phenomenological and theoretical

background in the spectroscopy calculations of baryons from lattice QCD. We begin with

briefing the major questions that are expected to be answered with the experimental

progress in the baryon spectroscopy, in Section 1.1. While in Section 1.2, we discuss

the main part of the thesis work, that includes the charm baryon spectroscopy. We

begin by emphasizing the experimental status and the theoretical developments from first

principles lattice QCD calculations and quark model calculations of the low lying heavy
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hadron spectrum. Following these discussions, we discuss our two main complementary

non-perturbative calculations, which cover most part of this thesis, of the heavy baryon

spectrum. The first calculation focuses on excited charm baryon spectroscopy using clover

fermions (Section 1.2.3), while the second calculation performs a spectroscopy of the low

lying heavy hadron states, with improved control over the systematics related the lattice

formulation of QCD (Section 1.2.4).

In the last section, we discuss our studies on hadron screening masses to study the

the nature of the strongly interacting matter at high temperatures. Main emphasis

was given for the study of baryonic screening lengths above and immediately below the

deconfinement transition temperature.



Chapter 2

Quantum ChromoDynamics on

lattice

Quantum ChromoDynamics (QCD) is the established fundamental theory of strong in-

teractions that governs the dynamics in a system of quarks and gluons. Along with the

weak and the electromagnetic gauge theories, QCD, which is an SU(3) gauge theory,

constitutes the Standard Model of particle physics. Perturbation theory, which relies on

the smallness of the coupling strength, provided an excellent tool to understand high

energy regime of QCD [7, 8]. However, first principles studies of QCD at the low energy

regime that includes spectroscopy, remained a highly non-trivial task.

The lattice formulation of QCD makes calculations of the QCD observables in the low

energy regime possible. Introduced by Kenneth G. Wilson in 1974 [137], lattice QCD is a

first principle non-perturbative regularization scheme that proceeds by putting the QCD

action on a discretized Euclidean space-time array. On a finite lattice, with only finite

number of degrees of freedom, it serves as a promising tool to study QCD using numerical

techniques. This formalism is widely used in determining various QCD observables. The

discretization introduces a UV cut-off, while the finite size of the lattice gives the system

an IR cut-off. All the infinite dimensional path integrals representing physical observables

become finite dimensional numerical integrals similar to those in statistical mechanics.

One can then use the Markov-chain Monte Carlo methods, which have been widely in

use for studies in statistical mechanics, to determine the observables in QCD.

This chapter is dedicated to a brief introduction to the theory of QCD on lattice.

Section 2.1 discusses the continuum formulation of QCD, while Section 2.2 briefs how

the QCD action is realized on the lattice and Section 2.3 details how simulations and

14
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spectroscopy calculations are made using this lattice formulation of QCD.

2.1 QCD in the continuum

The QCD action in a four dimensional Euclidean space-time, with temporal extent at 0

and T , can be written as [138, 139, 140]

S
E

QCD
[ψ, ψ̄, A] = SF [ψ, ψ̄, A] + SG[A], (2.1)

where

SF [ψ, ψ̄, A] =

Nf∑
f=1

∫ T
0

dτ

∫
d3x ψ̄(f)

α c(x){(γµ)αβ(δcd∂µ + iAµ(x)cd) +m(f)δαβδcd} ψ(f)
β d(x)

(2.2)

is the Fermion action and

SG[A] =
1

2g2

∫
d4x Tr[Fµν(x)Fµν(x)] (2.3)

is the gluon action with the bare gauge coupling, g.

Here ψ(f)(x) is the Fermion field corresponding to a quark flavor, f, with mass m(f)

and γµ is the Euclidean Dirac gamma matrix. {(δcd∂µ + iAµ(x)cd)} is the gauge co-

variant derivative with Aµ being the gauge field, which can be decomposed as Aµ(x) =∑
i λ

iAiµ(x). Here λi’s are the generators of the SU(3) gauge group. Fµν(x) is the field

strength tensor, which can be expressed as Fµν(x) =
∑8

i=1 F
(i)
µν (x)λi, where F

(i)
µν can be

written in terms of the vector potential as

F (i)
µν = ∂µA

(i)
ν (x)− ∂νA(i)

µ (x)− fijkA(j)
µ (x)A(k)

ν (x), (2.4)

where fijk’s are the structure constants.

This theory can be quantized using the Euclidean path integral formalism, in which

the partition function for this system can be written as,

ZT = Tr(e−T Ĥ) =

∫
D[ψ, ψ̄, A]e

−SE
QCD

[ψ,ψ̄,A]
. (2.5)

The expression in the center represents the partition function in the Hamiltonian oper-

ator formalism, where the self-adjoint operator, Ĥ, is the Hamiltonian operator of the
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system that measures the energy in the system and also governs the time evolution. The

expression on the right is the partition function in the path integral formalism. The

expectation value of an operator Ô is given by

〈Ô〉 =
1

ZT
Tr(e−T ĤÔ) =

1

ZT

∫
D[ψ, ψ̄, A]e−S

E
QCD[ψ,ψ̄,A]O[ψ, ψ̄, A]. (2.6)

The usage ‘partition function’ for ZT appears very natural, once we establish the

structural equivalence between quantum field theory and statistical mechanics. For a

canonical ensemble of spins (s), the expectation value of an observable O is given by

〈O〉 =
1

Z

∑
{s}

e−βH[s]O[s]. (2.7)

where Z =
∑
{s} e

−βH[s] is the partition function, 1/β is the temperature in units of kB

and H[s] is the Hamiltonian of the system. The similarity between eq. (2.6) and eq. (2.7)

is very much evident. The Boltzmann factor, e−βH[s], is replaced by the weight factor,

e
−SE

QCD , and the summation over all spin configurations by the integral over the fields

ψ, ψ̄ and Aµ at all space-time points. The structural equivalence allows one to apply

the numerical methods, like Monte Carlo techniques, originally developed in statistical

mechanics, to quantum field theories.

2.2 Lattice formulation of QCD

Lattice QCD proceeds by the discretization of the space-time and thus regularizing the

theory from UV divergences by introducing a cut-off. The theory is put on a finite sized

box, so as to perform numerical computations, and this introduces an IR cut-off. The

next step is to define the QCD action on lattice such that it is explicitly gauge invariant

at any lattice spacing ‘a’. Further, any such definition for the QCD action on the lattice

should approach the continuum form in the limit, a→ 0.

The quark fields are placed on the lattice sites, followed by the discretization of the

derivative terms. Naive discretization of the derivative terms in the action,

∆µψ(n) =
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)), (2.8)

introduces terms involving fields at different space-time points resulting in gauge de-

pendent expressions. For example, consider the term ψ̄(n)ψ(n + µ̂) : under a gauge
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transformation,

ψ(n)→ ψ′(n)→ Ωµ(n)ψ(n), ψ̄(n)→ ψ̄′(n)→ ψ̄(n)Ω†µ(n)

and ψ̄(n)ψ(n+ µ̂)→ ψ̄(n)Ω†µ(n)Ωµ(n+ µ̂)ψ(n+ µ̂)

.

Uµ(n) is a new field living on the links between two lattice sites that is introduced so

as to construct gauge invariant action. Then

ψ̄(n)Uµ(n)ψ(n+ µ̂)→ ψ̄′(n)U ′µ(n)ψ′(n+ µ̂) = ψ̄(n)Ω†µ(n)U ′µ(n)Ωµ(n+ µ̂)ψ(n+ µ̂)

is gauge invariant, given Uµ(n) transforms as

Uµ(n)→ U ′µ(n) = Ωµ(n)Uµ(n)Ω†µ(n+ µ̂).

Objects with such transformation properties in the continuum are the path ordered

(P ) exponential integral (eq. (2.9)) of the gauge field (Aµ) along a curve (C) connecting

two points, x and y.

U(x, y) = P exp (

∫
C

igAds). (2.9)

Based on the transformation properties, Uµ(n)s are interpreted as the lattice version of

the gauge transporters in the continuum and hence the lattice gauge fields are introduced

as

Uµ(n) = exp (iaAµ(n)). (2.10)

Since Uµ(n) lives on the links connecting the adjacent sites, they are called as link vari-

ables. Thus, all the quark fields ψ and ψ̄ live on the lattice sites, while the gauge fields

live on the links between adjacent sites.

2.2.1 Gauge action on lattice

As mentioned above, the main requirement of any lattice definition of QCD action is

that they should explicitly be gauge invariant and should have proper continuum limit.

The gauge invariant objects that can be formed purely from link variables are various

path ordered closed loops. With this information it is very straight forward to define the

lattice form of gauge action in terms of these closed loops. The simplest definition of the
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lattice gauge action, SG, is given by

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr(I − Uµν(n)), (2.11)

where Uµν(n), called the plaquette, are the smallest closed loops constructed by the

product of four link variables.

Uµν(n) = Uµ(n)Uν(n+ µ)U−µ(n+ µ+ ν)U−ν(n+ ν), (2.12)

where U−µ(n+ µ) = U †µ(n).

Expressing this gauge action in terms of the field strength tensor in the continuum

and the lattice spacing one gets

SG[U ] =
a4

2g2

∑
n∈Λ

∑
µ,ν

Tr[Fµν(n)2] +O(a2). (2.13)

In general, it is advantageous to use a gauge action with improved discretization effects

defined by adding contributions from the large loops constructed out of six or more link

variables to the definition given in eq. (2.11). Such an improvement is called Symanzik

improvement. In our spectroscopy calculations, we use such improved gauge actions with

appropriate co-efficients, to correct for the O(a2) errors in eq. (2.11). The details are

discussed in the respective sections.

2.2.2 Fermion action on lattice

The continuum action for a free Fermion is given by

S
F

=

∫
d4x {ψ̄(x)γµ∂µψ(x) +mψ̄(x)ψ(x)}, (2.14)

where the Dirac indices are suppressed for convenience. Defining the lattice derivatives

as symmetric differences, a naive discretization can be made as

S
naive

F
=
∑
n,µ

ψ̄nγµ∆µψn +m
∑
n

ψ̄nψn =
∑
m,n

ψ̄mDm,nψn, (2.15)

where ∆µψn = 1
2a

(ψn+µ̂ − ψn−µ̂) and Dm,n = 1
2

∑
µ γµ{δn+µ̂,m − δn−µ̂,m}+mδm,n is called

the Dirac operator.
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Since Fermions are anti-commuting in nature, they are described by the Grassmann

numbers. Using Matthews-Salam formula [141],

∫ N∏
n=1

dψ̄n dψn e
−

∑N
i,j=1 ψ̄iDi,jψj = det[D] (2.16)

the two point functions of the Fermionic fields or the Fermion propagator can be obtained

as

〈ψiψ̄j〉 = −D−1
ij . (2.17)

The lattice free propagator in the momentum space is given by

1

a
D−1
naive(p) =

−iγµsin(pµa) +ma∑
µ sin

2(pµa) +m2a2
. (2.18)

A free Fermion propagator in the continuum, D(p) = (iγµpµ + m)−1, has its pole

at pµ = (0, 0, 0, 0). While for the naive discretization of Fermions on the lattice, one

get additional poles at pµ = (π, 0, 0, 0), pµ = (0, π, 0, 0), ..., pµ = (π, π, π, π) (all the

corners in a Brillouin zone). Hence in the continuum, we get sixteen poles representing

sixteen Fermions instead of just one Fermion. This is the (in)famous Fermion doubling

problem. Associated with this is a no-go theorem, which has important consequences on

Fermion discretization schemes This no-go theorem was first formulated in the Ref. [142].

It states that describing the Fermionic fields on a lattice by a transitionally invariant

(D(x, y) = D(x − y)) Hermitian matrix that preserves the chiral symmetry and have

couplings that extend over a finite number of lattice spacings, one inevitably runs into

the problem of Fermion doubling.

Wilson Fermions

One solution to get away with Fermion doubling is to force the unwanted solutions to be

heavy in the continuum limit and thus retaining only one low energy solution. Wilson

Fermions involve such a solution, where one adds an irrelevant operator constructed of

two derivatives.

S
W

= rψ̄DWψ = − r

2a

∑
n,µ

(ψn+µ − 2ψn + ψn−µ) ∼ −ar
2
ψ̄D2ψ, (2.19)
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where DW is called the Wilson term forces the doublers to be heavy. With this definition,

the momentum space propagator becomes

1

a
D−1
naive+W (p) =

1

a
D−1
w (p) =

−iγµsin(pµa) +ma+ r
∑

µ(cos(pµa)− 1)∑
µ sin

2(pµa) + {ma+ r
∑

µ(cos(pµa)− 1)}2
(2.20)

While the doubler modes are lifted to energies that are of the order of 1/a at any

non-zero r, the pole at pµ = (0, 0, 0, 0) remains unchanged and thus retaining only one

low energy solution.

The Wilson term is not chiral, due to the presence of a term proportional to the mass

term in it, that causes explicit breaking of chiral symmetry. Thus the chirality of the

Fermion action is sacrificed in this formulation according to the aforementioned no-go

theorem. Consequently, the Wilson action may not be able to capture the subtle effects

of the spontaneous chiral symmetry breaking. This explicit symmetry breaking due to

the Wilson term cannot be rectified by further adding irrelevant terms to the lattice

action and is inherent to the theory. Another unpleasant disadvantage with the Wilson

Fermions is that the discretization errors appears at O(a), unlike the case of näıve lattice

Fermions, where the discretization errors start at O(a2).

Symanzik improved Wilson Fermions

Symanzik improvement program offers a clean solution to avoid the leading cut off effects.

The basic idea is to use additional terms in the action with dimension, d > 4, and tune the

respective co-efficients such that all contributions of order O(ad−4) are removed. First

application of this methodology to remove the O(a) errors in Wilson Fermions is by

Sheikholeslami and Wohlert [143]. They used the counter terms up to O(a5). The only

effective term at O(a5) other than the Wilson term that contribute to this improvement

is

SSW = cSW ψ̄σµνFµνψ, (2.21)

where Fµν , known as the clover term, is the imaginary part of the sum of the four

oriented loops of link variables as shown in Figure 2.1. As was mentioned for the Wilson

Fermions, the addition of irrelevant terms to the lattice action does not restore the

explicitly broken chiral symmetry. Thus the chiral symmetry is broken in this formulation

also, in accordance with the aforementioned no-go theorem.

For the tree level improvement, cSW = 1. A non-perturbative evaluation of the co-

efficient, cSW (g) has been performed by Luscher, et al. [144] and an empirical form for
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Figure 2.1: The ‘clover’ term

cSW was obtained,

cSW =
1− 0.656g2 − 0.152g4 − 0.054g6

1− 0.922g2
. (2.22)

It is to be noted that this empirical form has been derived for isotropic lattices. While

for the calculations using anisotropic lattices, we used the tree-level tadpole improved

values for the spatial and temporal improvement co-efficients.

Staggered Fermions

The doublers contribute from each corner of the Brillouin zone. Staggered formulation

ameliorates the doubling problem by reducing the size of the Brillouin zone from 1/a

to 1/2a. Effectively, the doubler Fermion degrees of freedom are distributed over a

hypercube of lattice spacing 2a on the lattice. This method was originally suggested by

Kogut and Susskind [145] and hence it is also known as Kogut-Susskind Fermions. The

staggered Fermion action is given by

SksF =
1

2a

∑
n,µ

χ̄nαµ(n){χn+µ̂ − χn−µ̂}+m
∑
n

χ̄nχn, (2.23)

where αµ(n) = (−1)n0+n1+...+nµ−1 .

χ and χ̄ are the single component spinors. Because of the alternating nature of the

sign of αµ(n), the natural unit for the staggered Fermion field is the 24 hypercube. The

sixteen hypercube components are formed by four ‘taste’s of four ‘Dirac component’s.

The taste degree of freedom corresponds to the residual doubler degree of freedom. On

a finite lattice and for massless Fermions this action is invariant under

ψ → eiθψ & ψ → eiβ(γ5⊗τ5)ψ,
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where τ5 is the γ5 matrix acting on the taste space. Thus the action has a remnant

U(1)⊗ U(1) chiral symmetry and this makes it useful in the study related to the chiral

symmetry. With the partially preserved chiral symmetry, the assumption in the no-go

theorem that is relaxed in this Fermion formulation is the remnant doubler degrees of

freedom (taste) contributing to the low energy physics.

Associating different taste with different physical flavors were considered in many

older works [146], but it was proved to be not a fruitful idea, because it is not possible

to break the flavor symmetry by introducing different masses for different tastes. One

alternative is to introduce new species of staggered field with its own mass for each flavor.

But this comes with a penalty of having additional multiplicity : each flavor comes with

its own four tastes. In common practice one uses one staggered Fermion for each flavor

and take the fourth root of the Fermion determinant [146].

Overlap Fermions

One way to realize chiral Fermion on lattice is through overlap formulation invented by

Narayanan and Neuberger [123]. The overlap action is given by

Dov = 1 + γ5sgn(γ5Dw); sgn(γ5Dw) =
γ5Dw√

γ5Dwγ5Dw

, (2.24)

where Dw is the Wilson Dirac Fermion operator and sgn denotes the matrix sign function.

The operator possess a form of chiral symmetry on the lattice [147] :

δψ = iαγ5(1− a/2Dov)ψ & δψ̄ = iαψ̄(1− a/2Dov)γ5, (2.25)

that leaves the Fermion action invariant for any a 6= 0. In the continuum limit, this

transformation reduces to the continuum definition of chiral transformation. Hence this

is interpreted as exact chiral symmetry at a 6= 0 and thus the overlap operator is bet-

ter suited for study of problems related to chiral symmetry. However, the presence of

the matrix sign function makes the overlap operator highly non-local and so it is very

expensive to implement it in numerical calculations. Thus the assumption of the local

nature of the couplings in the Fermion formulation is relaxed in accordance with the

no-go theorem.

One important symmetry of these lattice Dirac operators, that has very important
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implications on numerical computations, is the γ5-hermiticity :

(γ5D)† = γ5D or γ5Dγ5 = D†. (2.26)

One important consequence of this property is that the eigenvalues of a γ5-hermitian

Dirac operator are either real or come in complex conjugate pairs. This implies that

the Fermion determinant, which is the product of all the eigenvalues, is real and hence

det[D] = det[D†].

Followed by these definitions for the Fermion action in the free field theory, one can

construct the Fermion action in the non-trivial gauge field theory by inclusion of the link

variables, which acts as gauge transporters and make the action gauge invariant. In our

calculations dealing with excited state spectroscopy, we use the O(a) improved clover

Fermion action on lattices with non-degenerate spatial and temporal lattice spacings

(anisotropic lattices). While in the studies employing the MILC configurations, the

dynamical simulations were carried out using a highly improved version of the staggered

quarks (HISQ) [121] and the spectroscopy calculations used overlap quarks. In the finite

temperature studies, the clover improved Wilson Fermions were used on isotropic lattices.

2.3 Numerical calculations using lattice QCD

In this section, we briefly discuss how simulations and spectroscopy calculations are

performed numerically using the lattice formulation of the theory of QCD.

2.3.1 Simulations using lattice QCD

Following the discretization of the space-time and the definition of the gauge and the

Fermion fields on the lattice, we move on to the discussion of how simulations are per-

formed on the lattice. The Fermion fields are represented by anti-commuting Gramss-

mann valued field variables so as to satisfy the Fermi statistics. Since there is no existing

realization of the Grassmann valued variables on a computer, one integrates out the

Fermion degrees of freedom and obtain the partition function as

Z =

∫
D[U ] e−SG

Nf∏
f=1

det[Df ] (2.27)
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. Given eq. (2.26), for mass degenerate pair of quark flavors in dynamical simulations

with a γ5-hermitian Dirac operator, this weight factor (
∏Nf

f=1 det[Df ]) will be positive

definite real number, which is a requirement for the application of Monte Carlo methods.

det[D] det[D] = det[D] det[D†] = det[DD†] ≥ 0. (2.28)

Monte Carlo techniques

Although the lattice formulation of the QCD in a finite sized box reduces the problem

of infinite degrees of freedom to a problem of finite degrees of freedom, the partition

function, Z, is still very large dimensional and näıve numerical integrations are not

possible even on small lattice within finite time. The structural equivalence (Section

2.1) of the quantum field theories and statistical mechanics comes to aid here. Monte

Carlo techniques, originally developed in the context of statistical mechanics, can be

utilized to find a representative sequence of statistically independent field configurations,

{Ω}, on which the observables can be measured such that

〈O(Ω)〉Ω '
1

Z

∑
i

e−SiO(Ωi). (2.29)

The underlying idea behind the Monte Carlo methods is as follows : Since the number

of configurations is very large, the weight factor for most of the configurations, Ωi, is very

small. Hence a simple set of randomly picked configurations from a uniform distribution

would result in a very bad convergence of eq. (2.29) and so highly inefficient. In Monte

Carlo technique, one performs an importance sampling, in which the configuration se-

quence is generated with a probability distribution P (Ω) equal to the weight factor in

eq. (2.27).

P (Ω) =
1

Z
e−SG

Nf∏
f=1

det[Df ]. (2.30)

Markov process is a method to generate such a sequence of configurations that rep-

resent the whole ensemble. The idea is to pick a new configuration, Ω′, with a transition

probability, T (Ω,Ω′), which depends only on the current configuration, Ω, and Ω′. The

procedure is repeated, so that after some time of thermalisation, the equilibrium, which

satisfies eq. (2.29), is reached. The transition probability, T (Ω,Ω′) should posses two

important properties, so that it is a Markov process and hence guarantees the approach

to the equilibrium distribution after the initial period of thermalisation.
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1. Strong ergodicity : For every Ω and Ω′,

TN(Ω,Ω′) > 0 for every Ω and Ω′.

In other words, every configuration should be reachable in finite number of updates,

N.

2. The transition probability, T (Ω,Ω′), should be a map of P (Ω) to itself.

P (Ω′) =

∫
dΩP (Ω)T (Ω,Ω′) for every Ω′.

It can be shown that the 〈O(Ω)〉 evaluated on an ensemble generated from such a

Markov chain indeed approaches the ensemble average, 〈O〉, with a statistical uncertainty

of the order of 1√
n
. Here n is the number of configurations in the set, {Ω}. Simulations

for the finite temperature studies were performed using a combination of one heat bath

and three over-relaxation updates [140]. While the gauge configurations, that were used

in these spectrum calculations, were generated with the Rational Hybrid Monte Carlo

algorithm [148, 149, 150]. The details of these algorithm and the other related subtleties

related with the simulations are very huge that they themselves can cover the original

size of this document. Hence we omit those and refer the interested reader to the Refs.

[109, 122].

The major part of the computation resource in simulations goes into the evalua-

tion of the Fermion determinants. So as to reduce the computational intensity, sim-

ulations can also performed after putting these Fermion determinants to unity. This

approximation known as quenched approximation, is equivalent to neglecting all the cre-

ation/annihilation of the quark-anti-quark pairs in the vacuum. Though this is an acute

unphysical approximation, it has been surprisingly successful in many spectroscopy stud-

ies.

The finite temperature studies that are discussed in this thesis are based on the

quenched approximation, where there are no quark loops allowed in the gauge configura-

tions, while both of our works on charm baryon spectroscopy employs dynamical configu-

rations. The excited state spectroscopy studies employ Nf = 2 light and 1 strange quark

fields in the configuration generation, where the charm quark fields follow the quenched

approximation. While the MILC configurations used for spectroscopy calculations were

generated with Nf = 2 light, 1 strange and 1 charm quark fields in the lattice action.
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2.3.2 Spectroscopy on the lattice

All numerical simulations of lattice QCD begins with the determination of the low lying

hadron masses. Since most of the masses are experimentally known to a high precision,

the comparison of these to the numerical estimates is an important check to the lattice for-

mulation of QCD. Other lattice QCD calculations, like matrix elements, thermodynamic

properties, also begin with the spectroscopy calculation of the low lying hadron masses.

In this section, we brief the theory behind conventional spectroscopy calculations.

Using the standard time evolution of a Hamiltonian system, a two point correlation

function can be expressed as

〈Ôi(t)Ô
†
j(0)〉 =

1

ZT
Tr(e−THetHÔie

−tHÔ†j), (2.31)

where ZT , which is the partition function, which ensures proper normalization of the

correlation function. In the limit of large T , one can express the zero-momentum two

point correlation function as a sum of contribution from the eigenstates at rest,

lim
T →∞
〈Ôi(t)Ô

†
j(0)〉 =

∑
n

〈0|Ôi|n〉〈n|Ô†j |0〉
2 ∆En

e−t∆En =
∑
n

Zn
i Z

n∗
j

2 ∆En
e−t∆En , (2.32)

where ∆En = En − E0 is the energy difference of the eigenstate relative to the energy

of the vacuum and the Zn
i = 〈0|Ôi|n〉 is referred to as the overlap factors, which carries

the information about the quantum numbers of the states they represent. In Section 3.5,

we will see these quantities are crucial in the determination of the spin of the extracted

states. Since the calculation will be performed on a finite lattice, the
∑

n is over a finite

number of states. Assuming discrete spectrum in the low lying states, in the large t limit,

the lowest lying state corresponding to ∆E1 contributes significantly, while contribution

from all other higher lying states can be neglected.

In brief, the first step in the lattice spectroscopy calculations is the identification /

construction of the hadron interpolators 1, which are functionals of the lattice fields with

the quantum number of the state one is interested in. Once the interpolators are identified

/ constructed, one evaluates the two point Euclidean correlation functions between them.

Finally, the low lying spectrum can be extracted by performing non-linear fitting to the

exponential fall of the correlation functions at large t, where the contribution from the

excited sates can be neglected.

1Interpolator and operator refers to the same quantity and we use them here synonymously.
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Consider an isovector meson operator, OM(x) = ψ̄uΓψd(x), where Γ carries the spin

quantum numbers and the spatial description of the operator. The two point Euclidean

correlators for this operator is then given by

〈 OM(x) ŌM(y) 〉 = 〈 ψ̄uΓψd(x) ψ̄dΓψu(y) 〉

= − Tr{ Γ D−1
d (x, y) Γ D−1

u (y, x) }, (2.33)

where D−1
f (x, y) = 〈ψf (x)ψ̄f (y)〉. The negative sign appears due to the rearrangement

of the Grassmann valued Fermion fields. From the above expression once can see that

the expectation value factorizes with respect to the flavors, 〈 ... 〉 = 〈 ... 〉f1〈 ... 〉f2 .

Application of the Wick’s theorem for each individual flavors expresses the correlation

function as a product of the quark propagators as given in the second step of eq. (2.33).

This procedure is called as Fermion contraction.

It can be seen from the eq. (2.33), the quark propagators carry no information about

the quantum numbers in the interpolator and all the information about the quantum

numbers of the state of interest are embedded in Γ factors. Hence, the computation

of the quark propagators can be performed independently. More importantly, once all

these quark propagators are computed, one can construct correlation functions for any

interpolators of interest.

2.3.3 Quark propagators

To compute the hadron correlation functions, we will have to compute the quark propa-

gators in each configurations. However, computing quark propagators from all the sites

on the lattice to all the sites on the lattice (all-to-all) would not be feasible, due to the

computational intensiveness and the huge memory requirement. For example, if we con-

sider all-to-all propagators on the lattices that we use for the excited state spectroscopy

(163× 128), quark propagator from each configuration consumes approximately 633 Ter-

abytes of memory, which is enormously huge. The simplest solution, that is widely

followed, is to put quark source (ηi) in just one point in space-time (point-to-all propa-

gator) followed by construction of the quark propagators from them as the solutions of

the matrix equations

D xi = ηi, (2.34)

where D is the Dirac matrix. However, for operators that are non-local, one may need to

compute point-to-all propagators using quark sources at multiple space-time points. We



Lattice QCD 28

employ novel smearing techniques to circumvent these necessities, the details of which

are described in the Section 3.4.7.

In general, this system of linear equations (eq. (2.34)) are solved by iterative methods

such as Conjugate Gradient (CG) for symmetric positive definite matrices, the MINRES-

method for symmetric non-definite matrices or Bi-Conjugate Gradient (BiCG) method

for non-symmetric matrices. These details of the quark propagator generation are either

described in brief or referred to literature in the respective sections.

2.4 Summary

In this chapter, we briefly discuss the QCD in the continuum (Section 2.1) and how it is

formulated on a lattice, so as to perform numerical computations (Section 2.2 and 2.3).

In Section 2.2, we discuss the details about the standard discretization scheme for the

gauge fields and the various lattice realization of Fermionic fields along with the main

pros and cons in each of the realizations. In Section 2.3, we briefly discuss the basic idea

behind Monte Carlo simulations and the spectroscopy calculations using lattice QCD.

This chapter serves as a fundamental building block for various topics discussed in later

chapters.



Chapter 3

Excited state spectroscopy

As mentioned in the previous chapter, spectrum calculation proceeds by the construction

of the two point correlation function on the lattice, followed by fitting them with non-

linear fit forms and extracting the energy spectrum of QCD from the exponential fall of

these correlation functions at large Euclidean times. While the ground state energy can

be determined fairly straight forward from the correlations at large time, the extraction

of the excited state spectra is highly non-trivial. This is because the signals from the

excited state appears in the sub-leading exponentials and simple multi-dimensional fits

are usually unstable. In this section, we start by discussing the conventional methodology

in extraction of the ground state masses from the large time exponential fall-off in Section

3.1, followed by the challenges in excited state spectroscopy on the lattice in Section

3.2. Then we discuss the solutions of these challenges including the use of anisotropic

lattices, construction of large basis of carefully designed interpolators, and a good fitting

technique, which also aids in reliable spin identification in Section 3.3, 3.4 and 3.5.

3.1 Conventional spectroscopy from lattice

As discussed in the previous chapter, spectroscopy proceeds by constructing the two point

correlation functions between the operators with the desired quantum numbers. Based

on the spectral decomposition, the two point correlation function at large times behaves

as

C(t) ∼ Ae−Et, (3.1)

where E is the energy gap of the ground state from the vacuum. If the energy gap

between the ground state and the excitations are large enough, the ground state can

29
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Figure 3.1: The plot of effective mass versus the time slice, showing the plateau in the
effective mass at large times. At short times, the contribution from the excited states is
clearly visible from the approach to the plateau. The fit value is an estimate using the
fit range {8-14}.

be extracted reliably by fitting it with single exponential at large Euclidean times. The

non-negligible contamination of the excited states will be evident as the instability in the

fit range. This can also be viewed in terms a local fit estimate, known as effective mass

or local mass, which is defined as

at meff = ln(
C(t)

C(t+ 1)
). (3.2)

This quantity helps to visualize the decaying contribution from the excited states in the

correlation function as the approach to plateau in effective masses.

The final step in the extraction is to compare the fit estimates with the plateau in

the effective mass plot. This method is very efficient as the effective masses are very

much visually appealing than the correlation functions itself, as the correlation function

involves numbers that differ in magnitude by many orders. Thus, reliable fits can be

made in those ranges with negligible contribution from the higher lying states to the
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effective masses by ensuring a stable plateau in the fitted range of time slices. In Figure

3.1, we show a sample effective mass plot, where the best fit result (fit range {8-14})
is also plot. One need to be careful with the fact that, if the covariance between the

time-slices are large then the good fit range may not pass through the effective masses.

3.2 Challenges in excited state heavy hadron spec-

troscopy

Though the basic procedure in all spectroscopy calculations on the lattice are similar and

fairly straight forward, the challenges in the excited state heavy hadron spectroscopy

are multiple fold. The first obvious difficulty is attributed to the heaviness of the quark

in the heavy hadrons. The discretization errors in a lattice fermion action and the

Fermionic observables are quoted in terms of the dimensionless quantity am, where m

is the quark mass. The typical lattice spacings that are used for the light hadron spec-

troscopy (O(0.1 fm)), cannot be used for the heavy quark systems, as they will provide

very large discretization errors to the estimates. For rapidly decreasing successive cor-

rections from the higher order terms in am, one requires am << 1, so that one can

neglect the contributions beyond some order of am. This requires one to use a lattice

with very fine spacing between the lattice points, so that am << 1. Further, the physical

states comprised of heavy quarks, being heavy, the correlations fall very rapidly with the

Euclidean time. Employing very fine lattices in the calculation becomes a requirement

due to this necessity for high temporal resolution at very early time slices.

The study of excited states also comes with various difficulties. Lepage analysis [151]

of fluctuations in hadron correlations shows that while signal-to-noise ratio (SNR) in

meson correlations is a constant with Euclidean time, the SNR in baryon correlations

falls exponentially. The argument is as follows. The signal for mesons and baryons can

be extracted from the respective correlations. While the fluctuations in such correlations

are given by C2, which goes as σ2
M(τ) ∼ e−2 mπτ for mesons and σ2

B(τ) ∼ e−3 mπτ in

baryons. This is because each quark propagator is uncorrelated with any other in a

gauge field and does not know which physical state it is part of. Hence the variance in

the baryon correlations are dominated by the state with three pions, and hence σB(τ)

falls much more slowly than the signal as 3/2mπ < mB. Further, for the excited states,
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the scenario is much worse as 3/2mπ << m∗B and the SNR goes as

lim
τ→∞

CB(τ)

σB(τ)
∝
√
Ncfg e

−(m∗B−3/2mπ)τ (3.3)

Employing a very fine lattice serves as a naive solution here also. We can extract the

energy of the resonances from very early time slices, where the signals from the desired

correlations may not have eclipsed by the noise. But using very fine lattice spacings

along all the four dimensions is extremely costly. So we follow a formalism, in which

the temporal lattice spacing, along which the correlations are measured, is much finer

compared to the spatial lattice spacings, while keeping the latter unchanged. This allows

one to reduce the huge computational necessity that will arise from reducing lattice

spacing in all four dimensions, while keeping the discretization errors under control. This

formalism, known as anisotropic formalism [109, 152, 153, 154, 155], is briefly discussed

in Section 3.3.

Another major difficulty is in the extraction of the excited state spectrum using

conventional fitting procedures. In principle, one can perform multi-parameter fits to get

the information about the higher excited states. But in general, the stability of the fits

degrades very fast with the addition of each successive exponentials to the fit form. Hence

it is desirable to have the correlation functions such that contributions from the higher

lying states to the state being studied are suppressed, while keeping contribution from the

state of interest intact. The solution to this problem is to perform a careful construction

of large basis of interpolating operators, which can overlap strongly with various physical

states. Marrying this with a novel smearing technique, called distillation, provides an

efficient method to compute the two point correlation functions for the large basis of

operators, in addition to suppressing the contribution from the higher lying states to

the state being studied. Details of this construction of the operators and the use of

distillation are discussed in detail in Section 3.4.

In addition to the computation of the correlation functions with improved signal from

the physical states, one also require to have a good analysis procedure in their extraction

along with precise determination of the respective quantum numbers. A reliable identifi-

cation of the spin-parity quantum numbers of a state is highly non-trivial on the lattice.

We use the variational fitting method so as to extract the spectrum of baryon states

from the matrix of correlation functions using large basis of interpolators. Section 3.5

discusses the details about the variational fitting method. We also discuss the procedure

we follow to identify the quantum number of the extracted state from these lattices with
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single lattice spacing using the overlap factors, Zn
i .

3.3 Anisotropic lattice

A possible solution for the issues related to the discretization errors as well as the rapid

decay of the temporal correlations is to increase the temporal resolution by adopting a

very fine lattice spacing along the Euclidean time direction, while keeping the spatial

lattice spacing same. This reduces the huge computational efforts that would have come

from reducing the spacing in all lattice directions [109, 152, 153, 154, 155]. In this work,

we adopt such an anisotropic dynamical lattice formulation to extract the highly excited

charm baryon spectra.

We use the anisotropic Nf = 2 + 1 flavor dynamical gauge configurations generated

by the Hadron Spectrum Collaboration (HSC)[109]. For the gauge sector, a Symanzik-

improved action was used. With tree level tadpole improved coefficients [111], the action

is given by

SξG[U ] =
β

Ncγg

(∑
x,s<s′

[
5Pss′
3u4

s

− Rss′

12u6
s

]
+
∑
x,s

[
4Pst

3u2
su

2
t

− Rst

12u4
su

2
t

])
, (3.4)

where P is the plaquette and R is the 2+1 rectangular Wilson loop. In order to preserve

the positive definiteness of the transfer matrix, length-two rectangle in time were omitted

from the action. The coupling g2 appears in the β = 2Nc
g2 . The parameter γg is the

bare gauge anisotropy and us and ut are the spatial and temporal tadpole improvement

factors, dividing the spatial and temporal gauge links respectively. This action has leading

discretization errors O(α4
s, a

2
t , g

2a2
s).

For fermions, we use an anisotropic Shekholeslami-Wohlert fermion (clover) action,

with tree level tadpole improvement and three dimensional stout link smeared gauge

fields. In terms of the dimensionless variables, m̂0 = m0at, ∇̂µ = a2
µ∇µ, ∆̂µ = aµ∆µ, the

‘Wilson operator’ : Ŵµ = ∇̂µ − γµ
2

∆̂µ and the clover term : F̂µν = aµaνFµν , the fermion

action is given by

SξF [U, ψ̄, ψ] =
∑

ψ̄(x)
1

ũt
(ũtm̂0 + Ŵt +

1

γf

∑
s

Ŵs

−1

2

[
(
γg
γf

+
1

γrg
)

1

2ũtũ2
s

∑
s

σstF̂st +
1

γfu3
s

∑
s<s′

σss′F̂ss′

]
)ψ(x), (3.5)
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where γf is the bare fermion anisotropy, γrg is the renormalized gauge anisotropy, ũs

and ũt are the spatial and temporal tadpole improvement factors associated with the

three dimensional stout smeared gauge fields and σµν = 1
2
[γµ, γν ]. Finer details of the

formulation, the determination of the tadpole factors and the improvement co-efficients,

the tuning of the anisotropy coefficients and the algorithms employed in the simulation

of these lattices are detailed in the Ref. [109].

Lattice size atm` atms Ncfgs mK/mπ mπ/MeV atmΩ

163 × 128 −0.0840 −0.0743 96 1.39 391 0.2951(22)

Table 3.1: Properties of the gauge-field ensembles used. Ncfgs is the number of gauge-field
configurations.

The important lattice parameters required for this work is summarized in the Table

3.1. The temporal lattice spacing, at, was determined using the Ω-baryon mass measured

on these ensembles [110]. This leads to a−1
t = 5.67(4) GeV. On these lattices we find

mcat << 1, which validates the use of these lattices to study the charm physics. With

an anisotropy close to 3.5, as = 0.12 fm. This gives a spatial extent of about 1.9 fm,

which would be sufficient to study charm baryons, in particular doubly and triply charm

baryons.

The charm quarks were not included in the sea during generation of these lattices.

It is expected that the effects due to the absence of the dynamical charm quark loops

in this calculation will be small, as the disconnected diagrams are OZI suppressed. Liu,

et al. [106, 107] initiated the study of charm hadron spectroscopy using these lattices

and the construction of clover fermion perambulators (equivalent of quark propagator,

see Section 3.4.7). The action parameters for the charm quark, including the fermion

anisotropy and the temporal and the spatial clover co-efficients, are obtained by ensuring

that the mass of the ηc meson takes its physical value and its dispersion relation at low

momentum is relativistic. In their studies, the preliminary tests they made to estimate the

contribution of disconnected diagrams to the hyperfine splitting in charmonium showed

that this contribution is negligibly small.

3.4 Construction of baryon operators

After addressing the issue of discretization, the next challenge is to construct a large

basis of baryon interpolating operators, such that they project on to the desired states
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of interest. In this section, we discuss the construction of baryon interpolating operators

using up to two derivatives, such that they project up to J = 7
2

states with both even and

odd parities. We follow the prescription given in [101]. The details about the construction

of the operators used for the study also provides insight into the results obtained from

the numerical studies. Since our calculations are performed in a hyper-cubic lattice, all

the operators that we use should be classified according to the symmetry on the lattice,

rather than the full symmetry of the continuum space-time. As the lattice spacing is

made quite small, we expect to recover the symmetry of the continuum space-time.

Since we are only interested in spectroscopy, restricting ourselves to the zero-momentum

correlations, we require that our operators should transform according to the irreps of

the double-cover octahedral group, OD
h . The methodology involves first constructing a

basis of baryon interpolating operators in the continuum with well-defined continuum

spin-parity quantum numbers. These continuum operators are then subduced/reduced

to the irreducible representations (irrep) of the double-cover octahedral group on the

lattice. The correlation functions, constructed out of these octahedral operators, are

expected to show rotational symmetry breaking artefacts in these calculations due to the

reduced symmetry on a lattice. However, we observe, as will be discussed in Section 3.6,

an effective rotational symmetry from the primary spin identification tests and that the

symmetry breaking effects are very small. In the next section, we will be discussing these

tests in detail with examples.

3.4.1 Continuum baryon interpolating operators

All hadrons are color singlet objects and thus they form totally anti-symmetric combi-

nations in the color indices of its constituents. Since baryons are fermions made of three

quarks, their interpolating operators excluding the color part should be totally symmetric

combinations of all the quark labels representing flavor, spin and the spatial structure.

The overall flavor-spin-spatial structure of a continuum baryon interpolating operator

with quantum numbers, JP , can be decomposed into a combination as

O[JP ] = [FΣF ⊗ SΣS ⊗DΣD ]J
P

, (3.6)

where F , S and D are flavor, Dirac spin and spatial projection operators respectively and

the subscripts stands for the symmetry in the respective subspaces. For every baryon

operator, we must combine the symmetry projection operators such that the resulting
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baryon operator, excluding the color part, is overall symmetric. In the next subsection,

we discuss the general symmetry constructions possible for three objects, based on which

we construct the symmetry projection operators in individual subspaces.

3.4.2 General symmetry combinations

Before we start with construction of the continuum operators, let us look at the definite

symmetries for three objects that can be labeled by x, y and z, where the first object is

labeled by x, the second is labeled by y and third by z. There are four definite permutation

symmetry combinations: Symmetric (S), Mixed-Symmetric (MS), Mixed-Anti-symmetric

(MA) and Antisymmetric (A). They are as follows

{xyz}
S

= N
S

[ xyz + yxz + zyx+ yzx+ xzy + zxy ]

{xyz}
MS

= N
MS

[ xyz + yxz + zyx+ yzx− 2xzy − 2zxy ]

{xyz}
MA

= N
MA

[ xyz − yxz + zyx− yzx ]

{xyz}
A

= N
A

[ − xyz + yxz + zyx− yzx+ xzy − zxy ] (3.7)

The objects x, y and z could be identical as well, depending on which the normal-

ization constants N
S
, N

MS
, N

MA
and N

A
change. For example, when all of them are

different, N
S

= 1√
6
, and when all of them are the same, N

S
= 1. The convention used for

mixed symmetries is the same as used in [101], where the MS and MA are according to

whether the first two labels are symmetric or antisymmetric.

As described in eq. (3.6), baryon operators are constructed from direct products of the

different projection operators corresponding to the flavor, spin and the spatial derivative

labels. Each of these labels can be arranged according to the symmetry combinations

above, following which they have to be combined with each other in order to make an

overall symmetric object. The general rules for carrying out direct product between the

symmetry combinations of independent sets to make different overall symmetries are as

follows [101] :

{1}
S
{2}

S
= {1, 2}

S
, {1}

S
{2}

MS
= {1, 2}

MS
,

{1}
S
{2}

MA
= {1, 2}

MA
, {1}

S
{2}

A
= {1, 2}

A
,

{1}
A
{2}

S
= {1, 2}

A
, {1}

A
{2}

MS
= {1, 2}

MA
,

−{1}
A
{2}

MA
= {1, 2}

MS
, {1}

A
{2}

A
= {1, 2}

S
,
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1√
2

(+{1}
MS
{2}

MS
+ {1}

MA
{2}

MA
) = {1, 2}

S
,

1√
2

(−{1}
MS
{2}

MS
+ {1}

MA
{2}

MA
) = {1, 2}

MS
,

1√
2

(+{1}
MS
{2}

MA
+ {1}

MA
{2}

MS
) = {1, 2}

MA
,

1√
2

(−{1}
MS
{2}

MA
+ {1}

MA
{2}

MS
) = {1, 2}

A
, (3.8)

3.4.3 Flavor symmetry structures

(a)
(b)

(c)

Figure 3.2: The SU(4) multiplets of baryons containing u, d, s and c flavors [16]. (a) 20M -
plet containing the light-strange SU(3) octet, (b) 20S-plet containing the light-strange
SU(3) decuplet and (c) 4A-plet containing the light-strange SU(3) singlet

Figure 3.2 shows the SU(4)F - classification of the baryons containing the u, d, s and c

flavor quarks. The lowest plane in all these diagrams represent the octet, decuplet and the

singlet in the light-strange SU(3)F symmetric flavor sector. With the approximation that

mu ∼ md (the theory has an approximate isospin symmetry) and ms being only an order

of magnitude heavier, we see in nature that this multiplet structure is nearly followed.

But due to very heavy mass of the charm quark, we believe that there could be very strong

mixing between various multiplets in the physical states. Though this symmetry is greatly

broken to the large non-degeneracy in the masses, these provide a good bookkeeping

systematics for the large set of baryons that are allowed based on quark models. The

layers, except the lowest, constitutes of the charm baryons. With only three different

flavors simultaneously possible, the flavor wave functions of the charm baryon operators

can be constructed to be members of SU(3)F multiplets as 3 ⊗ 3 ⊗ 3 = 10S ⊕ 8MS ⊕
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8MA⊕1A. These represent a subset of states from the larger group of SU(4)F which has a

decomposition based on symmetry considerations as 4⊗4⊗4 = 20S⊕20MS⊕20MA⊕4A.

Table 3.2 contains the details of the flavor symmetry constructions possible for various

charm baryons.

20M
I Iz S FMS FMA

Λ+
c 0 0 0 1√

2
(|cud〉MS − |udc〉MS) 1√

2
(|cud〉MA − |udc〉MA)

Σ++
c 1 +1 0 |uuc〉MS |uuc〉MA

Σ+
c 1 0 0 |ucd〉MS |ucd〉MA

Σ0
c 1 −1 0 |ddc〉MS |ddc〉MA

Ξ
′+
c

1
2 +1

2 −1 |ucs〉MS |ucs〉MA

Ξ
′0
c

1
2 −1

2 −1 |dcs〉MS |dcs〉MA

Ξ+
c

1
2 +1

2 −1 1√
2
(|cus〉MS − |usc〉MS) 1√

2
(|cus〉MA − |usc〉MA)

Ξ0
c

1
2 −1

2 −1 1√
2
(|cds〉MS − |dsc〉MS) 1√

2
(|cds〉MA − |dsc〉MA)

Ω0
c 0 0 −2 |scs〉MS |scs〉MA

Ξ++
cc

1
2 +1

2 0 |ccu〉MS |ccu〉MA

Ξ+
cc

1
2 −1

2 0 |ccd〉MS |ccd〉MA

Ω+
cc 0 0 −1 |ccs〉MS |ccs〉MA

20S
I Iz S FS

Σ++
c 1 +1 0 |uuc〉S

Σ+
c 1 0 0 |ucd〉S

Σ0
c 1 −1 0 |ddc〉S

Ξ+
c

1
2 +1

2 −1 |ucs〉S
Ξ0
c

1
2 −1

2 −1 |dcs〉S
Ω0
c 0 0 −2 |ssc〉S

Ξ++
cc

1
2 +1

2 0 |ccu〉S
Ξ+
cc

1
2 −1

2 0 |ccd〉S
Ω+
cc 0 0 −1 |ccs〉S

Ω++
ccc 0 0 0 |ccc〉S

4A
I Iz S φA

Λ+
c 0 0 0 |udc〉A

Ξ+
c

1
2 +1

2 −1 |ucs〉A
Ξ0
c

1
2 −1

2 −1 |dcs〉A

Table 3.2: Flavor symmetry structures for charm baryons. I in the first column stands
for the isospin, Iz in the second column is for the third component of isospin and S in
the third column is for the strangeness.

With only one kind of flavor available, the Ωccc baryon, like the ∆ and Ω baryons,

appears only in the S flavor construction. While all those baryons with two of the quarks

having identical flavor, which is different from that of the third quark, can appear in the

S, the MS and the MA flavor constructions. The doubly charm baryons, Σc and the Ωc

baryons falls in this category. While the Ξc baryon that have all the three quarks in three
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different flavor can appear in all the symmetry constructions. Λc baryon, for which all

three quark flavors are different, being an isospin singlet, can appear only with MS, MA

and A flavor constructions.

3.4.4 Dirac spin symmetries

The Dirac matrices in the Dirac-Pauli representation can be expressed as a direct product

of two SU(2) components : one for ordinary spin (s-spin) and the other for intrinsic

parity (ρ-spin), where the SU(2) components are generated by 2 × 2 Pauli matrices

corresponding to the two component Pauli spinor ( +
− ) [100]. This representation of Dirac

matrices is convenient for constructing the symmetry combinations that exists in the

Dirac labels. Expressed in terms the SU(2)ρ ⊗ SU(2)σ matrices, γ4 = ρ3 ⊗ σ4, where

ρ3 = diag[1,−1] and σ4 = diag[1, 1]. Thus the Dirac index µ = 1, 2, 3, 4 is equivalent to a

two-dimensional superscript corresponding to ρ-spin (ρ = +1,−1) and a two-dimensional

subscript corresponding s-spin (σ = +1,−1), and the quark field may be expressed as

ψµ = qρσ. The mapping of Dirac indices (µ) to the ρ and s labels are as given in Table

3.3(a). We refer to the ρ value as ρ-parity because of its role in the parity transformations

(γ4 is the parity transformation operator).

Using a two component Pauli spinor, σ-spin, and the formula in eq. (3.7), one gets the

following symmetry combinations for a three quark system, with total spin 3
2
, 1

2
and 1

2
for

the symmetric (S), mixed symmetric (MS) and mixed antisymmetric (MA) combinations

respectively.

S :
∣∣3

2
,+3

2

〉
=
∣∣+ + +

〉
S
;

∣∣3
2
,+1

2

〉
=
∣∣+ +−

〉
S
;∣∣3

2
,−1

2

〉
=
∣∣+−−

〉
S
;

∣∣3
2
,−3

2

〉
=
∣∣−−− 〉

S
;

MS :
∣∣1

2
,+1

2

〉
=
∣∣+−+

〉
MS

;
∣∣1

2
,−1

2

〉
= −

∣∣−+−
〉
MS

;

MA :
∣∣1

2
,+1

2

〉
=
∣∣+−+

〉
MA

;
∣∣1

2
,−1

2

〉
= −

∣∣−+−
〉
MA

. (3.9)

Only the operators formed by considering a two component Pauli spinor (ρ = +1), which

form the upper two components of the four component Dirac spinor (µ), appear in the

leading order in a velocity expansion of any baryon operator. The baryon operators

constructed purely from such a two component Pauli spinor is hence non-relativistic in

nature. Those based on the lower components of Dirac spinors are relativistic. A full

relativistic formulation requires consideration of the ρ = −1 sector as well, hence one

uses the full four component Dirac spinor instead of the two component Pauli spinor.
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The symmetry constructions for the ρ-spins also follow similarly. The direct product of

the ρ-spin and the σ-spin follows the rules as described in eq. (3.8), and yields sums of

three-quark terms in which each quark has a ρ and s label representing its Dirac index.

The construction of the symmetry combinations for full four component Dirac spinor

using the symmetry patterns from ρ-spin and s-spin is detailed in Table 3.3(b).

Dirac ρ s
1 + +
2 + −
3 − +
4 − −

(a)

D IR Emb S = ρ⊗ s
S 1

2
1 1√

2

(
+ |ρ〉MS|s〉MS + |ρ〉MA|s〉MA

)
3
2

1, 2 |ρ〉S|s〉S
MS 1

2
1, 2 |ρ〉S|s〉MS

3 1√
2

(
− |ρ〉MS|s〉MS + |ρ〉MA|s〉MA

)
3
2

1 |ρ〉MS|s〉S
MA 1

2
1, 2 |ρ〉S|s〉MA

3 1√
2

(
+ |ρ〉MS|s〉MA + |ρ〉MA|s〉MS

)
3
2

1 |ρ〉MA|s〉S
A 1

2
1 1√

2

(
− |ρ〉MS|s〉MA + |ρ〉MA|s〉MS

)
(b)

Table 3.3: (a) : Mapping of Dirac spin indices to ρ and s labels. (b) Table taken from
Ref. [101] : Symmetries of Dirac spin states based on direct products of ρ-spin and s-spin
states for three quarks. |ρ〉Σρ and |s〉Σs refer to a ρ-spin and s-spin state with Σρ and
Σs symmetries respectively. Direct products of the ρ-spin and s-spin states yield sums
of three-quark terms in which each quark has a ρ and s label. These two labels together
determines each quark’s Dirac index according to (a).

From the above discussion, it is clear that using spatially local constructions the total

spin of baryon can have only two values, 1/2 or 3/2. The flavor and non-relativistic

spin can be combined in an approximate spin flavor SU(6) whereby the multiplets are

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A. These can again be decomposed into flavor SU(3)

multiplets as 56 = 410⊕ 28, 70 = 210⊕ 48⊕ 28⊕ 21, 20 = 28⊕ 41, where the superscript

(2S+1) gives the spin for each particle in the SU(3) multiplet. The wave functions of the

56-plet can be combined with local or non-local spatial projections to make the non-color

component of the wave function symmetric, while the wave functions of the 70 and 20-

plets require some non-local excitations of the spatial part to make the overall non-color

component of the wave function symmetric. With the four component Dirac spinors, the

actual construction of the operators corresponds to SU(12), which is built up from the

subgroups according to SU(12) = SU(3)F ⊗ SU(2)ρ ⊗ SU(2)s. The details of the local

operators constructed from the symmetries in the flavor and Dirac spin sector, forming

the SU(12) group, is tabulated in the Table 3.4.
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Σ SU(3)
SU(2) Nnr Nr

S (10,4) 1 1 φSχS

(10,2) 1 φSχS

(8,4) 1 1√
2
(φMSχMS + φMAχMA)

(8,2) 1 2 1√
2
(φMSχMS + φMAχMA)

(1,2) 1 φAχA

M (10,4) 1 MS φSχMS MA φSχMA

(10,2) 1 2 φSχMS φSχMA

(8,4) 1 1 φMSχS φMAχS

(8,4) 1 1√
2
(−φMSχMS + φMAχMA) 1√

2
(φMSχMA + φMAχMS)

(8,2) 1 φMSχS φMAχS

(8,2) 1 2 1√
2
(−φMSχMS + φMAχMA) 1√

2
(φMSχMA + φMAχMS)

(8,2) 1 φMAχA φMSχA

(1,4) 1 φAχMA φAχMS

(1,2) 1 2 φAχMA φAχMS

A (10,2) 1 φSχA

(8,4) 1 1√
2
(φMSχMA − φMAχMS)

(8,2) 1 2 1√
2
(φMSχMA − φMAχMS)

(1,4) 1 1 φAχS

(1,2) 1 φAχS

Table 3.4: Local baryon operators classified according to symmetry of the flavor and the
four component Dirac spin. The first element inside the braces in the second column
shows the dimensionality of the SU(3)F representation, while the second element shows
the dimensionality of the Dirac spin projections. The third column is the number of
Dirac spin embeddings in non-relativistic (ρ = +) construction, while those constructions
involving the lower two components also are shown in the fourth column. The multiplicity
of operators in the non-relativistic case is 56S, 70MS, 70MA and 20A, and corresponds
to the conventional non-relativistic SU(6) construction. The relativistic construction,
which involves both positive and negative parity operators, corresponds to the reduction
of SU(12). Table taken from [101].

3.4.5 Spatial projection operator symmetries

In order to project the higher spin baryons (J > 3/2) and the excited baryon states, one

needs to employ baryon operators that create states with angular and radial excitations.

Such excitations can be explored using baryon operators with non-local behavior. Covari-

ant derivatives defined in Ref. [100] are incorporated into the three quark operators in

order to obtain suitable representations that transform like orbital angular momentum.

First the covariant derivatives are combined in the definite symmetries with respect to
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their action on the three quark fields. At the single derivative level, there are two relevant

symmetry combinations transforming like an L = 1 object. They are

L = 1; D
[1]
MS(m) =

1√
6
{2D(3)

m −D(1)
m −D(2)

m },

D
[1]
MA(m) =

1√
2
{D(1)

m −D(2)
m }, (3.10)

where the different m-components in D
(q)
m , which acts on the q-th quark, are given by

D
(q)
±1 = ± i

2
(D(q)

x ± iD(q)
y ), D

(q)
0 = − i

2
D(q)
z (3.11)

The superscript inside the square brackets in eq. (3.10), stands for the number of deriva-

tives in the operator being represented. There is no totally antisymmetric construction

of the one derivative and the symmetric combination D(1) +D(2) +D(3) is a total deriva-

tive that gives zero when applied to a baryon with zero momentum. Totally symmetric

baryon operators with one derivative are constructed by applying eq. (3.10) to the mixed

symmetric spin-flavor operators as given in Table 3.4.

ψ
[1]
S =

1√
2

(
D

[1]
MSψ

[0]
MS +D

[1]
MAψ

[0]
MA

)
, (3.12)

where the superscripts in brackets indicate the number of derivatives in the operator.

The two derivative baryon operators are constructed as follows. Initially, definite

symmetry combinations of two derivatives are formed using the single derivatives, based

on the same general rules of combination of two symmetry labels (see eq. (3.8)). The

three quark symmetry combinations with two derivatives that transform like L = 0, 1, 2

are as follows,

L = 0, 2;D
[2]
S =

1√
2
{D[1]

MSD
[1]
MS +D

[1]
MAD

[1]
MA},

L = 0, 2;D
[2]
MS =

1√
2
{−D[1]

MSD
[1]
MS +D

[1]
MAD

[1]
MA},

L = 0, 2;D
[2]
MA =

1√
2
{D[1]

MSD
[1]
MA +D

[1]
MAD

[1]
MS},

L = 1;D
[2]
A =

1√
2
{−D[1]

MSD
[1]
MA +D

[1]
MAD

[1]
MS}. (3.13)
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Using these two derivative symmetric constructions one can construct the totally

symmetric baryon interpolators by applying them on the local baryon operators. They

are as follows.

ψ
[2]
S = D

[2]
S ψ

[0]
S ;

1√
2

(D
[2]
MSψ

[0]
MS +D

[2]
MAψ

[0]
MA); D

[2]
A ψ

[0]
A , (3.14)

where no total derivatives are considered in these constructions. In Table 3.5, we give

the different derivative operators that can be constructed using two derivatives.

L=0,2 L=1
S (qqq)1c 0
M (qqq)1c [(qqq)8c G8c ]1c
A 0 (qqq)1c

Table 3.5: Summary of the bound state interpretations of the two derivative structures.
Table taken from Ref. [108]

The subset of operators, as given in Table 3.5, that follows the MS and MA con-

structions, with angular momentum, L = 1, corresponds to a commutation of the two

gauge-covariant derivatives acting on the same quark field [108]. Note that such opera-

tors form color singlet object, [(qqq)8cG8c ]1c , as a combination of the three quarks in color

octet and a gluon field, G. Such operators vanish in a theory without the gauge fields

and corresponds to the chromomagnetic components of the gluonic field strength tensor.

This leads to the identification of the so-called hybrid operators, as they are formed out

of a hybrid combination of quark and gluon fields. As will be observed later, operators

that are proportional to the gluon field strength tensor are essential in obtaining some

states in the spectrum.

These spatial projection operators with definite symmetries are then combined with

the symmetry combinations constructed out of the Dirac spin projection operators using

the standard Clebsch-Gordan formula of SU(2) in order to obtain operators with good J

in the continuum. Table 3.6 shows the details of the allowed spin-parity patterns of the

non-relativistic local and non-local operators for various symmetries in the flavor sector.

We show the constructions up to two derivatives. Using non-relativistic components

alone, it is not possible to construct a negative parity state with a spin higher than 5/2,

even with operators that include two derivatives. Use of relativistic operators along with

non-relativistic ones enables us to extract states with spin up to 7/2 for both the parities.

We follow the same naming convention as used in Ref. [101]. As an example, Ωcss oper-



Excited state spectroscopy 44

ator with spin and parity of the three quarks as 3
2

−
, with two derivatives coupled into L =

2 and total spin and parity JP = 7
2

−
, is denoted as

(
Ωcss,S ⊗ (3

2

−
1,M

)⊗D[2]
L=2,M

)JP= 7
2

−

,

where the subscripts show the definite symmetries in different labels. Accounting for

the orbital motion classifies the total symmetry in a non-relativistic approach to be

SU(6) ⊗ O(3) super-multiplets with the O(3) describing the orbital motion. With four

component Dirac spinors, the construction of the operators corresponds to SU(12)⊗O(3).

3.4.6 Subduction into lattice irreps

Discretization reduces the symmetry of the space from O(3) to OD
h . The eigenstates of

the lattice Hamiltonian transforms as irreps of the OD
h . With the reduced symmetry,

the continuum states get separated across the lattice irreps. Restricting the operators in

the continuum to the symmetries allowed by the lattice generates the representations of

these continuum operators that are reducible under OD
h . Subduction is this method of

generating the representations of the continuum irreducible operators, which are reducible

under OD
h in terms of the lattice irreps. Once the continuum operators are constructed,

we subduce them to the irreps of the octahedral group.

The octahedral group consists of 24 group elements, each corresponding to a rotation

that leaves invariant a cube, or an octahedran embedded within the cube. When the

objects that are rotated involve half-integer values of angular momentum, the number of

group elements doubles to extend the range of rotational angles from 2π to 4π, forming

doubled-valued representations of the octahedral group, giving the irreps for half integer

spins also. Spatial inversion commutes with all rotations and together with identity forms

a two-element point group simply doubling the number of group elements.

The eight irreps of the double-valued representations of the octahedral group include

A1, A2, E, T1 and T2 for integer spins and G1, G2 and H for half-integer spins. The

continuum spins are distributed over these eight irreps on a lattice. Since we consider

only baryons, we discuss only the appearance of the continuum spins over different lattice

irreps for half integer spins (G1, G2 and H). The irreps of the octahedral group are

determined only by the s-spins and the derivative structures. A J = 1/2 spin state

appears only in G1 irrep. A spin of J = 3/2 appears only in H irrep. A continuum spin

of J = 5/2 distributes itself across G2 and H irrep, while J = 7/2 appears over G1, G2
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N(JP )

F ND L S 1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

−

SF 0 0 3
2

1

1 1 1
2

1 1

2 0 1
2

1

2 0 3
2

1

2 1 1
2

1 1

2 2 1
2

1 1

2 2 3
2

1 1 1 1

AF 1 1 1
2

1 1

2 0 1
2

1

2 1 3
2

1 1 1

2 1 1
2

1 1

2 2 1
2

1 1

MF 0 0 1
2

1

1 1 1
2

1 1

1 1 3
2

1 1 1

2 0 1
2

1

2 0 1
2

1

2 0 3
2

1

2 1 1
2

1 1

2 1 3
2

1 1 1

2 1 1
2

1 1

2 2 1
2

1 1

2 2 3
2

1 1 1 1

2 2 1
2

1 1

Table 3.6: The number of operators of a given JP that can be constructed from up to
two derivatives acting on non-relativistic quark spinors. ND indicates the number of
covariant derivatives, S indicates the total spin of the quarks and L indicates the total
orbital angular momentum. The row indicated in bold face contains the two-derivative
hybrid operators, which vanish in the absence of a non-trivial gluon field.

and H. A simple mathematical notation of this phenomena of subduction is given by

ΩJ
nΛ,r =

∑
m

SJ,mnΛ,r ΩJ
m, (3.15)
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where ΩJ
nΛ,r is the lattice operator that is the rth row of the nth embedding of the irrep:

Λ on the continuum spin J , subduced from a continuum spin operator ΩJ
m. The SJ,mnΛ,r

are called the subduction coefficients.

Ωccc G1 H G2

g u g u g u
Total 20 20 33 33 12 12

Hybrid 4 4 5 5 1 1
NR 4 1 8 1 3 0

(a)

Ξcc, Ωcc G1 H G2

(Sf +MF ) g u g u g u
Total 55 55 90 90 35 35

Hybrid 12 12 16 16 4 4
NR 11 3 19 4 8 1

(b)

Table 3.7: The number of lattice operators for triply (left) and doubly (right) charm
baryons obtained after subduction to various irreps of operators with up to two covariant
derivatives. The number of non-relativistic (NR) and hybrid operators for each irreps
and for both parities are given.

Σc, Ωc G1 H G2

(Sf +MF ) g u g u g u
Total 55 55 90 90 35 35

Hybrid 12 12 16 16 4 4
NR 11 3 19 4 8 1

(a)

Λc G1 H G2

(MF + AF ) g u g u g u
Total 53 53 86 86 33 33

Hybrid 12 12 16 16 4 4
NR 10 3 17 4 7 1

(b)

Ξc G1 H G2

(SF +MF + AF ) g u g u g u
Total 116 116 180 180 68 68

Hybrid 24 24 32 32 8 8
NR 23 6 37 10 15 2

(c)

Table 3.8: The number of lattice operators for different singly charm baryons obtained
after subduction to various irreps of operators with up to two covariant derivatives. The
number of non-relativistic (NR) and hybrid operators for each irreps and for both parities
are given.

Considering the ρ-parity involved, one can classify these irreps into even and odd

parity versions, indicated by the subscripts g (gerade) and u (ungerade). The parity of

the baryon operator is determined from it ρ × (−1)L, where ρ = ρ1ρ2ρ3 and L is the
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angular momentum from the derivatives and ρi is the ρ-value of the ith quark. For non-

relativistic operators, ρ1 = ρ2 = ρ3 = 1 always, hence its parity is solely determined by

the orbital angular angular momentum.

Table 3.7 and Table 3.8 shows the total number of relativistic and non-relativistic oper-

ators constructed using the above procedure for various charm baryons. They also contain

the number of non-relativistic and hybrid operators used for various charm baryons.

3.4.7 Distillation

Having constructed a large set of operators, it is possible to calculate their diagonal and

off-diagonal correlation functions to extract excited states by using variational methods.

However, construction of correlation functions with so many operators, particularly for

the operators with one or more derivatives, is very computationally intensive as it needs

extra inversions for non-local sources. The total time needed for the construction of

correlation function could be as intensive as gauge field generations. To avoid this we

use a recently developed novel technique, called the “distillation method” [96]. Using

this method, one can efficiently construct a large number of correlation functions with

multiple operators. Moreover, this method automatically includes a smearing process, a

requirement for suppressing the high frequency modes that do not contribute significantly

to the low energy regime in the spectrum and thus increases the relative contributions

from the low lying states in the correlation functions. As a smearing function, the con-

straint on the distillation operator is that it should preserve as many symmetries as

possible while effectively removing the contribution from the short distance modes.

A gauge covariant source, with a shape similar to a Gaussian is obtained by Jacobi

smearing [156], where one uses a gauge covariant second order three dimensional lattice

Laplacian operator,

−∇2
xy(t) = 6δxy −

3∑
j=1

{Ũj(x, t)δx+ĵ,y + Ũ †j (x− ĵ, t)δx−ĵ,y}, (3.16)

where the gauge fields may be constructed from an appropriate covariant gauge field

smearing algorithm. The high energy modes of this operator is suppressed by exponenti-

ating it, exp (σ∇2(t)), with a smearing weight, σ. The resulting smoothened operator is

applied on the quark fields (ψ) to construct the smeared quark fields (ψ̃). The suppres-

sion of the high energy modes of the Jacobi smearing operator means that only a small

number of modes contribute significantly to the smeared quark fields, ψ̃.
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The distillation technique [96] replaces the exponentiation of the Laplacian by an outer

product over the low lying eigenmodes of the discretized gauge covariant Laplacian,

�xy(t) = Vxz(t)V
†
zy(t) =

N∑
k=1

ξ(k)
x (t)ξ(k)†

x (t), (3.17)

where ξ
(k)
x are a finite number, N << N3

sNc, of eigenvectors of ∇2 evaluated on the

background of spatial gauge fields of the time slice t, once the eigenvectors have been

sorted by the eigenvalues. The number of modes, N (volume dependent), should be

sufficient to sample the required angular structure of the low lying hadronic states, but is

small compared to the number of sites on a time slice. Once the eigenvectors are sorted

by the eigenvalues, in terms of V (t), the kth column of V (t) contains the kth eigenvector

of ∇2 evaluated on the background of the spatial gauge fields of time-slice t. This is the

projection operator onto the subspace, VN , spanned by the N lowest lying eigenmodes,

so �2 = �. When N is the same as Nc times the number of sites on a time-slice, then the

distillation operator becomes identity, and the fields acted upon are unsmeared. In this

calculation, we used 64 eigenvectors from four time slices in construction of the baryon

correlation functions.

The Laplace operator inherits many symmetries of the vacuum. It transforms like a

scalar under rotations, is covariant under gauge transformation and is parity and charge

conjugation invariant. If the action of one of these symmetries on the Laplace operator

maps ∇2 onto ∇̃2, then there is a unitary transformation, R on the vector space spanned

by the eigenmodes of the Laplacian such that

R∇̃2R† = ∇2. (3.18)

This implies that if v is an eigenvector of ∇2, then Rv is an eigenvector of ∇̃2.

Considering the definition of the distillation operator, the transformed operator must

obey

R�̃R† = �, (3.19)

and so the correlation functions constructed using the distilled fields have same symmetry

properties on the lattice as those constructed using the Laplacian methods.
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Distilled baryon correlation functions

Here we discuss the application of the distillation technique in the construction of the

hadron correlation functions and a smart representation of the correlation functions in

terms of the eigenvectors of the discretized gauge covariant Laplacian, which will make

their computation efficient. We take the case of the isospin-1
2

baryon as an illustrative

example. A generalization is straight forward. A general baryon annihilation operator

can be written as

Oi(t) = εabcSiαβγ(Γ1�d)aα(Γ2�u)bβ(Γ3�u)cγ, (3.20)

where u and d are the quark fields; Γj is a spatial operator, including possible spatial

displacements, acting on quark j; a, b, c are the color indices, and α, β and γ are the

spin indices; S encodes the spin structure of the operator, and is constructed so that the

operator has the desired quantum numbers. Using eq. (3.20), we construct the baryon

correlation function as

Cij(t
′, t) = εabcε̄āb̄c̄SiαβγS̄

∗j
ᾱβ̄γ̄
〈[(Γ1�d)aα(Γ2�u)bβ(Γ3�u)cγ(t

′)].[(d̄�Γ̄1)āᾱ(ū�Γ̄1)āᾱ(ū�Γ̄1)āᾱ(t)]〉,
(3.21)

where the bar over S and Γ indicate these are from the creation operator. Inserting the

outer product representation for distillation operator, we can write the baryon correlator

as

Cij(t
′, t) = Φ

i,(p,q,r)
αβγ (t′)Φ

j,(p̄,q̄,r̄)

ᾱβ̄γ̄
(t)× [τ pp̄αᾱ(t′, t)τ qq̄

ββ̄
(t′, t)τ rr̄γγ̄(t

′, t)− τ pp̄αᾱ(t′, t)τ qr̄βγ̄(t
′, t)τ rq̄

γβ̄
(t′, t)],

(3.22)

where Φ
i,(p,q,r)
αβγ = εabcSiαβγ(Γ1ξ

(p))a(Γ2ξ
(q))b(Γ3ξ

(r))c (3.23)

and τ pp̄
αβ̄

(t′, t) = ξ†(p̄)(t′)M−1
αβ (t′, t)ξ(p). Φ

i,(p,q,r)
αβγ has a well defined momentum and all

the information about the quantum numbers of the operator goes into this quantity.

While τ pp̄
αβ̄

(t′, t) is called the operator independent ‘perambulator’ with no explicit mo-

mentum projections. Hence the perambulators can be computed independently between

any source and sink. In principle, once the τ has been computed and stored, the corre-

lation of any local or non-local source and sink operators can be computed.

Note that both the Φ’s and τ ’s are 4N × 4N matrices. Such a decomposition of

the correlation functions reduces the cost of their computation substantially. Firstly,

such a decomposition enables efficient computation of correlation functions with a large

basis of interpolating operators at both the source and the sink time slices. It also en-

ables a momentum projection at both the source and the sink time slices, in contrast
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with conventional spectroscopy, where a momentum projection only at sink is possible.

Furthermore, it also reduces the costs of computations involving all-to-all quark propa-

gators, since calculation of all elements of a perambulator requires only 4N inversions of

the Dirac matrix, in contrast to 12N3
s inversions for conventional all-to-all quark propa-

gators. Thus, the ‘distillation’ technique allows one to perform computations involving

disconnected diagrams, multihadron operators, etc. also, with limited computation re-

sources.

3.5 Variational fitting technique

After constructing two point correlation functions (see eq. (2.31)) for a large basis of

interpolating operators, the next task is the extraction of the spectrum from these matrix

of correlation functions in a reliable way. We employ a variational fitting method [97, 98,

99] for this purpose. The construction of the large basis of operators has been discussed

in detail in the previous section. The basic idea of variational fitting technique is to solve

a generalized eigenvalue problem of the form

C(t)vα = λαC(t0)vα, (3.24)

where C(t) is the matrix of correlators at time-slice t. The orthonormality condition

for the generalized eigenvectors is v†αC(t0)vβ = δαβ. The ‘principal correlators’ λα, as

a function of the times-lice, representing the physical two point correlation functions,

are formed from the generalized eigenvalues of the correlation matrices on the respective

time-slices and can be shown to behave at large times as

λα(t) = e−mα(t−t0)(1 +O(e−|δm|(t−t0))), (3.25)

where mα is the mass of a state labeled by α and δm is the energy splitting from the

nearest excited state to α. The eigenvectors form a dim(C) × dim(C) matrix V that

transform the interpolating operators into an optimum linear combination to overlap

with the dim(C) lightest states accessible to them. These eigenvectors should be time

independent to the extent that the correlator is saturated by the lightest dim(C) states.

In practice, one solves the eigenvalue problem on each time-slice and obtain eigenvectors

that can vary with t. The C(t0)-orthogonality of these eigenvectors are then utilized to

order these eigenvectors across the time slices. Examining the form of the eigenvalue in
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eq. (3.24) with the substitution of the spectral decomposition in eq. (2.32) one finds that

Zα
i = (V −1)αi

√
2mαe

mαt0/2. The inverse of this eigenvector matrix is trivial to compute

owing to the orthonormality property V †C(t0)V = I ⇒ V −1 = V †C(t0).
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Figure 3.3: Principal correlator fits for six Ωccc states in irrep Hg that will be identified as
JP = 3/2+ based on the procedure described in the Section 3.7. Fits are obtained using
eq. (3.27). Data points are obtained from emn(t−t0)λn(t) and the lines show the fits and one
sigma-deviation according to the fitting form emn(t−t0)λn(t) = 1−An+Ane

−(m′n−mn)(t−t0),
with t0 = 10; the gray points are not included in the fits.

The selection of the parameter t0 plays a crucial role as in practice one works with a

limited number of interpolating operators. The eigenvectors are forced by the solution

procedure to be orthogonal on the metric C(t0), which will be a good approximation to the

true orthonormality, defined in continuum with an infinite number of states and operators,

if the correlator at t0 is dominated by the lightest dim(C) states. The choice of the

optimum t0 is governed by two factors. The contribution from the excited states pushes

the optimum value of t0 to larger values where they would have died down significantly

in the correlators, while the fall in the signal-to-noise ratio with the Euclidean time slice



Excited state spectroscopy 52

urges one to keep t0 to be as small as possible. A remedy for this is to define a χ2

like quantity, so as to gauge how well the generalized eigenvalue problem describes the

correlators for any given t0, as [99]

χ2 =
1

1
2N(N + 1)(tmax − t0)− 1

2N(N + 3)

∑
i,j≥i

tmax∑
t,t′=t0+1

(Cij(t)−Crec.ij (t))C−1
ij (t, t′)(Cij(t

′)−Crec.ij (t′))

(3.26)

where N = dim(C) and C is the data covariance matrix for the correlator Cij com-

puted with jackknife statistics. For a given value of t0, one gets the estimates for the

masses and the overlap factors (Z) by solving the eigenvalue problem and then fitting

the principal correlators. Using these mass and overlap factor estimates one can recon-

struct the correlator matrix using the spectral decomposition in eq. (2.31). Crec.
ij are the

correlation functions obtained from the reconstruction procedure discussed above. The

optimum value of t0 is chosen based on the minimum of the chi-square like quantity

defined in eq. (3.26).

After the diagonalization procedure to obtain the optimum linear combination repre-

senting the physical states, we extract the energy of a state by fitting the dependence of

λn on t− t0 to the form,

λn(t, t0) = (1− An)e−mn(t−t0) + Ane
−m′n(t−t0), (3.27)

with three fit parameters mn,m
′
n and An. We find that allowing a second exponential

stabilizes the fits and the resulting second exponential decreases rapidly with large t0,

implying that m′n >> mn. In Figure 3.3, we plot some examples of fits to six Ωccc

principal correlators in irrep Hg, where the fitted states will be identified with JP = 3
2

+
.

The fits approach the constant value, 1 − An, for large t, and they approach one if a

single exponential dominates. This is seen to be the case for most of our fits.

3.6 Rotational symmetry and cross correlations

After the construction of the matrix of two point correlation functions for a large basis

of interpolating operators and the extraction of the physical states employing a reliable

advanced fitting technique, what remains is to make a precise determination of the quan-

tum numbers of the extracted physical states. One primary goal of lattice calculations

such as this one is such an identification of the continuum quantum numbers for the

extracted physical states. As discussed earlier, lattice possess only a reduced symmetry
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Figure 3.4: The normalized correlation matrix, Cij/
√
CiiCjj, of ccc baryon at t/at = 5

for the Hg irrep averaged over all the configurations. Operators are ordered such that
those subduced from spin 3/2 appear first followed by spin 5/2 and then spin 7/2.

of the continuum. And hence the physical states in the continuum gets subduced over

the lattice irreps. In the continuum limit, the rotational symmetry should be restored.

If the lattice is fine enough, one should be able to observe the effects of the restoration

of the rotational symmetry. The use of smeared fields in construction of interpolating

operators should help in making this restoration more directly observable. With the aim

of creating a more direct link between the lattice operators and the physical quantum

numbers, operators were constructed first in the continuum and then subduced onto the

lattice irreps. Therefore, it is useful to determine whether these lattice operators exhibit

a remnant of the continuum rotational symmetry on the lattice.

To check this, in Figure 3.4, we plot the normalized two point correlation functions

(Cij/
√
CiiCjj) of triply charm baryons in the Hg irrep at time separation 5 averaged
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Figure 3.5: The normalized correlation matrix, Cij/
√
CiiCjj, of Ωccs baryon at t/at = 5

for the Hg irrep averaged over all the configurations. Operators are ordered such that
those subduced from spin 3/2 appear first followed by spin 5/2 and then spin 7/2.

across all the configurations used in the study. The normalization ensures all the diagonal

entries are unity, while cross correlations are always less than 1. There are 33 operators

used in this irrep, including operators up to two derivatives. The solid lines divide these

operators subduced from continuum spins 3
2
, 5

2
and 7

2
, and the dashed lines are used for

separating operators defined above with various abbreviations (nr : non-relativistic, nh :
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Figure 3.6: The normalized correlation matrix, Cij/
√
CiiCjj, of Ωcss baryon at t/at = 5

for the Hg irrep averaged over all the configurations. Operators are ordered such that
those subduced from spin 3/2 appear first followed by spin 5/2 and then spin 7/2.

non-hybrid, r : relativistic and h : hybrid). A breaking of the rotational symmetry on the

lattice is expected to reflect in these plots in terms of the relatively large magnitude of the

cross correlations between lattice operators with different continuum spin in comparison

with the diagonal elements. The matrix plot can be trivially seen to show a block

diagonal pattern in the various continuum spin labels. We observe similar patterns of

block diagonal structure in correlation functions of other irreps as well as correlation
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functions of different irreps in other charm baryons. For example, we show in Figure 3.5

and Figure 3.6 the matrix plot of correlation for the Ωccs and Ωcss baryons. The solid lines

in these plots divides different continuum spin operators with varying flavor symmetry

constructions, while the dashed lines divide various abbreviations (n1 : non-relativistic

and non-hybrid, n2 : non-relativistic and hybrid, r1 : relativistic and non-hybrid, r2 :

relativistic and hybrid). As mentioned above, one can trivially observe a block diagonal

structure along the boundaries of different continuum spins. Similar patterns were also

observed for the light ant the strange baryons [102]. These observations suggest that after

subduction a remarkable degree of rotational symmetry remains in the lattice operators.

And this fact gives us confidence in our ability to make unambiguous spin-identification

for the charm baryons.

This analysis also aids in identifying the mixing between different operators. For

example, it is evident from Figure 3.4 that there is strong mixing between ‘nr-nh’ and ‘r-

nh’ type operators and comparatively weak mixing between ‘h’ and ‘nh’-type operators.

As was observed in Ref. [157], we also found additional suppression of mixing for operators

with a given J , but with different L and S, compared to those with the same J , as well

as the same L and S. For example, for the operators O1 = [(3
2

+

1,S
) ⊗ D[0]

L=0,S]
3
2Hg1 and

O2 = [(3
2

+

1,S
) ⊗ D

[2]
L=0,S]

3
2Hg1 both of which have J = 3/2, L = 0, S = 3/2, the matrix

element M12 = C12/
√
C11C22 = 0.99. On the other hand, the mixings of these operators

with O3 = [(3
2

+

1,S
) ⊗ D[2]

L=2,S]
3
2Hg1 which has J = 3/2, L = 2, S = 3/2 are M13 = 0.0026

and M23 = 0.0031. This suppression of mixing is however evident only for the non-

relativistic operators. We found that for some relativistic operators mixing enhanced

between operators with same J but different L and S, compared to those with same J ,

L and S. This observation, particularly in the non-relativistic sector can be explained in

terms of the heaviness of the charm/bottom quark. Being heavy, the spin-orbit interaction

is significantly small and hence L and S acts as good quantum numbers separately. Hence

those operators with same L and S values can be expected to show strong correlations as

their quantum numbers match, while a cross correlation between operators with different

L and S may not be significant. Similar observations can also be made in the other

charm baryons also.

These plots also aid in qualitative understanding of how much the SU(4)F symmetry

is violated due to very heavy charm quark mass compared to the light and strange quark

masses. These violations of the flavor symmetry are expected to reflect in these matrix

plots in terms of the cross correlation (mixing) between the operators from different

flavor symmetry combinations. One can easily observe in Figure 3.5 and Figure 3.6 that,
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the non-hybrid operators from the 10F flavor combination, corresponding to S, show

significant mixing with non-hybrid operators in the 8F flavor combination, corresponding

to MS and MA. A similar observation can also be made between the hybrid operators

in two different multiplets. It is also very clear from the figures that this mixing is very

strong in the singly charm baryons. Similar observations are also made in other irreps

and different irreps in other charm baryons.

3.7 Spin identification

One main goal, which is a highly non-trivial task, in these lattice calculations is to ensure

that any state identified can be assigned continuum quantum numbers in a reliable way.

In principle, the spin of a hadron state can be determined by extracting the spectrum at

various lattice spacings and then extrapolating to the continuum limit. In the continuum

limit, where the SO(3) symmetry gets restored, the emergence of energy degeneracies

between the lattice irreps will aid us in identifying the continuum spin of the state.

However, there are difficulties with this procedure. Firstly, this requires high precision

calculations with successively finer lattice spacings, and hence with increasing compu-

tational demand. With the current computational resources, this procedure is hence

impractical. Secondly, in the continuum limit, the spectrum can exhibit degeneracies not

just arising from SO(3) symmetry restoration, but also due to the physical degeneracies,

like the ones due to hyperfine splittings and spin-orbit splittings. This raises the problem

of identifying degeneracies due to lattice discretization unambiguously.

An alternative approach, which was detailed in Ref. [99] and used in the calculations

of light baryons [101, 102], light mesons [103], charm mesons as well as heavy-light mesons

[106, 107], was followed by us in these calculations. The main ingredient is the overlap

factor, Zn
i , as defined in eq. (2.32). To identify the states with spin 1/2 and 3/2 are

fairly straight forward. A state with spin S should have large overlap factors with those

operators, which are subduced from continuum spin S. The operators with largest overlap

factors to this state not only determine the quantum numbers, but also the spin and

spatial structure of this state. Figure 3.7, Figure 3.8 and Figure 3.9 shows the matrix

plot of normalized Zn
i values of various states across various operators for Ωccc, Ωccs and

Ωcss baryons respectively. The normalization of Zn
i is given by

Zni
maxn[Zni ]

, so that for a

given operator the largest overlap across all states is unity. It is very easy from this

plot to identify the spin of the state from the operators corresponding to darker pixels

for a given state. As one can see, that the low lying states correspond to first seven
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Figure 3.7: “Matrix” plot of values of overlap factor, Zn
i , of an operator i to a given state

n, as defined by eq. (2.32) for Ωccc baryon. Zn
i are normalized according to

Zni
maxn[Zni ]

, so

that for a given operator the largest overlap across all states is unity. The normalized
magnitudes of various operator overlaps to states in the Hg irrep are shown. Darker pixel
indicates larger values of the operator overlaps. Various type of operators, for example,
non-relativistic (nr) and relativistic (r) operators, as well as hybrid (h) and non-hybrid
(nh) operators are indicated by column labels. In addition, the continuum spins of the
operators are shown by 3/2, 5/2 and 7/2. Here one can associate state 6 with quantum

number JP = 7
2

+
, the states 3, 5 and 10 with JP = 5

2

+
, and the rest with JP = 3

2

+
. The

states 7 and 9 are predominantly hybrid in nature, while states 4, 8 and 10 are found to
have substantial overlap with non-hybrid operators.

states in Ωccc have very strong non-relativistic content. They also have contribution

from the relativistic operators. The higher lying states can be seen to have very little

overlap with the non-relativistic operators, while they overlap very significantly with the

relativistic operators. Similar observation can also be made to identify the low lying

states as strongly non-relativistic in nature for the other charm baryons, which is evident

from the plots for Ωccs and Ωcss baryons. For states with spin 1/2 and 3/2, which gets

subduced simply over single irrep, G1 and H respectively, this procedure is sufficient for

identification.

One can also identify certain states in these plots that have overlap with 5/2 and

7/2 spin, and not with the 3/2. However, spin - 5/2 and 7/2 states appear in multiple
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Figure 3.8: Same as in Figure 3.7, but for Ωccs baryon.

lattice irreps, as in these cases, the continuum operator is subduced to multiple lattice

irreps. Identification of spin of these states is made by identifying the Zn
i degeneracies
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Figure 3.9: Same as in Figure 3.7, but for Ωcss baryon.
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Figure 3.10: A selection of Z-values for Ωccc baryon states conjectured to be identified
with JP = 5

2

+
(left) and 7

2

+
(right). Operators in consideration, which overlap to these

states, are mentioned as the x-axis tick labels. Z-values obtained for a given operator,
but from different irreps, are found to be consistent to each other which helps to identify
the spin of a given state.

between states across different irreps. In the continuum limit, for a given physical state,

the overlap factors obtained from different operators, which are subduced from the same

continuum operators should become equal. They should nearly be equal even on a finite

lattice, if the rotational symmetry breaking effects are small. Hence in order to confirm

the identification of a state with a given spin > 3/2, one has to compare the magnitudes

of overlap factors of those operators, which are subduced into different irreps. In Figure

3.10 and Figure 3.11, we show a selection of Z values for a set of Ωccc and Ωccs states

respectively, across a set of operators with matching overlaps. A degeneracy between

the Z-values is clearly evident in these plots helping in identification of the states with

spin > 3/2. After confirming the matching overlap factors, it is also necessary to check

whether the energy of the identified state also matches over the irreps. The legends in

these plots contains the ma values obtained for each of these states in the respective

irreps. Comparing those estimates one can see that the spin identification made in

these plots are valid. In Figure 3.12 and Figure 3.13, we show the histogram plots of

normalized Z values of a selection of low lying Ωccc and Ωccs states identified to be spin

1/2(black), 3/2(red), 5/2(green) and 7/2(blue) for the positive parity, respectively. The

normalization of the Z values follows the same definition as used in the Figure 3.7. Once

this is made, we perform a simultaneous fitting of the respective principal correlators

over the irreps to get the final mass. Figure 3.14 and Figure 3.15 show two examples of
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Figure 3.11: A selection of Z-values for Ωccs baryon states conjectured to be identified
with JP = 5

2

+
(top left), JP = 5

2

−
(top right), 7

2

+
(bottom left) and 7

2

−
(bottom right).

Operators in consideration, which overlap to these states, are mentioned as the x-axis
tick labels. Z-values obtained for a given operator, but from different irreps, are found
to be consistent to each other which helps to identify the spin of a given state.

such simultaneous fits performed for a state with spin 5/2 and 7/2 respectively.

3.8 Summary

This chapter discusses various details about the techniques used in the excited charm

baryon spectroscopy calculations. We begin this chapter discussing the conventional

methodology followed in spectroscopy calculations (Section 3.1), following which we dis-
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G1 g

Hg

G2 g

Figure 3.12: Histogram plot showing normalized overlap factor, Z, of a few operators
onto some of the lower-lying Ωccc states in each of the lattice irreps. The overlaps are
normalized according to

Zni
maxn[Zni ]

s that the largest overlap across all states for a given

operator is unity. Black bars correspond to spin-1/2 state, red for spin-3/2, green for
spin-5/2 and blue represents spin-7/2 states. Lighter and darker shades at the top of
each bar represent the one-sigma statistical uncertainty.

G1 g

Hg

G2 g

Figure 3.13: Same as the Figure 3.12, but for Ωccs baryon.

cuss about the challenges in the excited state spectroscopy (Section 3.2). In Section 3.3,

3.4 and 3.5 we discuss how the use of anisotropic lattices, the derivative-based operator

construction formalism, and the variational fitting method help us meet these challenges.
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Figure 3.14: The joint fits of principal correlators identified to be the same 5/2 state
obtained from Hg and G2g irrep. The red point are those included in the fit, while the
grey points are excluded.
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Figure 3.15: The joint fits of principal correlators identified to be the same 7/2 state
obtained from G1g, Hg and G2g irrep. The red point are those included in the fit, while
the grey points are excluded.

In the last two sections, 3.6 and 3.7, we discuss how a reliable identification of the quan-

tum numbers of a state is made. In short, this chapter discusses all the major technical

details related with the calculations referred in the next chapter.



Chapter 4

Charm baryon spectrum

In this chapter, we present our results on the spectra of charm baryons with spins up

to 7/2 and for both the parities. Results for the extracted masses are quoted in terms

of various energy splittings. This convention is preferable, as it is expected to reduce

the impact of various systematic errors that could arise from the uncertainty in determi-

nation of the quark mass parameters as well as the discretization of the lattice action.

Particularly, we consider the option of subtracting out the valence charm quark content

in the spectrum, as the contribution for the discretization errors from the charm quark

is larger than the light quarks. Various spin dependent energy splittings between the ex-

tracted states are also considered and compared with similar splittings at light, strange

and bottom quark masses, wherever possible. We divide the discussion of results in three

separate sections for the charm baryons with three, two and one flavor in the valence

sector, respectively.

4.1 Triply charm baryons

With three valence charm quarks, triply charm baryons are the heaviest of all the baryons

made of u, d, s and c quarks. The triply-charmed baryons may provide a new window for

understanding the structure of baryons, as pointed out by Bjorken several years ago [25].

A comprehensive study of the excitation spectra of these states, where the complications

of light-quark interaction are absent, can provide information about the quark confine-

ment mechanism as well as elucidating our knowledge about the nature of the strong force

by providing a clean probe of the interplay between perturbative and non-perturbative

QCD [158]. Just as the quark-antiquark interactions are examined in charmonia, these

64
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studies will probe the quark-quark interactions in the charm baryons. The flavor content

being similar to ∆(uuu) and Ω(sss), only symmetric flavor combination is allowed for

the triply charm baryons. Table 3.7(a) shows the total number of operators including up

to two derivatives that we use in our calculations.

4.1.1 The spectrum
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Figure 4.1: Spin identified relativistic spectra of triply-charmed baryons with respect
to 3

2
mηc . The boxes with thick borders corresponds to the states with strong overlap

with hybrid operators. The states inside the pink ellipses are those with relatively large
overlap to non-relativistic operators.

Figure 4.1 shows the relativistic spectrum of triply charm baryons as splitting from

3/2 times the mass of ηc meson, while Table 4.1 contains the estimates. The factor of 3
2

corrects for the different number of valence charm quarks in triply-charmed baryon and

charmonium states. As mentioned earlier, plotting in this splitting is expected to reduce

the possible discretization errors in the estimates. Boxes with thicker borders correspond

to those with a greater overlap onto operators proportional to the field strength tensor

as discussed in the previous chapter and might consequently be hybrid states. The states

inside the pink ellipses have relatively large overlap with non-relativistic operators.
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1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

0.923(13) 0.287(6) 0.930(15) 0.921(49) 0.644(9) 0.648(13) 1.040(64) 1.205(28)
0.929(14) 0.841(31) 0.988(15) 1.136(31) 1.186(31) 1.233(25)
1.563(33) 0.954(13) 1.155(43) 1.248(44) 1.234(24)
1.607(42) 0.989(13) 1.273(21) 1.289(34) 1.236(32)
1.992(80) 1.618(40) 1.656(69) 1.823(44)
2.236(56) 2.147(46) 1.850(51)

2.165(43)
2.298(46)

Table 4.1: Relativistic spectrum m
Ωccc
− 3

2
mηc in units of GeV.
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Figure 4.2: Spin identified non-relativistic spectra of triply-charmed baryons with respect
to 3

2
mηc . The boxes with thick borders corresponds to the states with strong overlap with

hybrid operators.

An analysis of the spectrum using only the non-relativistic operators is presented in

the Figure 4.2. One can easily see that the low lying states in the relativistic spectrum

(Figure 4.1) looks the same as in the non-relativistic spectrum. This supports the non-

relativistic nature of the low lying spectrum of triply charm baryons. The main difference

between Figure 4.1 and Figure 4.2 is the absence of negative parity states with spin higher
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than 3/2 in the non-relativistic spectrum. This is because with the two component Dirac

spinor (ρ = +1) and using up to two derivatives, one can construct operators that has

continuum quantum numbers only up to spin 3/2 for negative parity. A similar non-

relativistic spectrum was studied for the triply bottom baryons in Ref. [157]. The main

difference with the set of operators used in that calculation is the inclusion of the hybrid

operators in this work, which provides access to two higher lying states with spin 1/2

and 3/2, represented using boxes with thick borders in Figure 4.2.

In the low lying bands of states, up to the second band, the pattern of states expected

based on and SU(6)⊗O(3) symmetry is as mentioned in Table 3.6. With only symmet-

ric flavor structure allowed for triply charm baryons, only a symmetric spin pattern can

combine with a local spatial structure to give a totally symmetric baryon wavefunc-

tion, modulo the color part. Hence the ground state is formed by a spin-3/2 (Hg) local

structure. The first excited band is formed from the states with overlap on to the one

derivative operators. One derivative operators possess only MS and MA construction

with L = 1. Hence they can combine only with MS and MA spin constructions to give

a totally symmetric spin-spatial projection operator. Thus, two negative parity states

(1/2− and 3/2−) are formed in the first excitation band as a result of the spin-orbit

interaction between the spin-1/2 (G1g) structure and the orbital angular momentum of

L = 1. With two derivatives, a set of positive parity states with a range of spins from 1
2

to 7
2

is expected in the second excitation band based on a model with SU(6)⊗O(3) sym-

metry. All these patterns up to the second excitation band is clearly evident in the full

spectrum determined by this calculation, as shown in Figure 4.1. This agreement of the

number and pattern of low lying states between the lattice spectra obtained in this work

and the expectations based on non-relativistic quark spins implies a clear signature of

SU(6)×O(3) symmetry in the spectra. Such SU(6)×O(3) symmetric nature of spectra

was also observed in Ref. [102]. It is not meaningful to interpret the higher excited states,

that are extracted in this calculation, in terms of SU(6) × O(3) symmetry due to the

following reasons. We have not included non-relativistic operators with three derivatives

and as the relativistic operators are expected to have strong overlaps with the higher

excited states, it is not clear how the relative importance of all the relevant operators

overlapping to that state will change in the presence of non-relativistic operators having

three or more number of derivatives. For the same reasons, it is also not possible to

identify negative parity states with strong hybrid content.
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4.1.2 Investigating lattice artifacts

For a simulation carried out at a finite lattice cut-off, the results obtained will differ

from their continuum counterparts and the difference can be understood in a Symanzik

expansion in powers of the lattice spacing. Usually, the best means of removing these

artifacts is to perform calculations at a range of lattice spacings and to use the expansion

to extrapolate to the limit of vanishing lattice spacing. In this study, we do not have

sufficient data to carry out this extrapolation. So we follow a calculation similar to the

one that was made in Ref. [106] so as to get an estimate on how much our spectrum is

affected with the corrections from the discretization.

In Ref. [106], a simple experiment was carried out to provide a crude estimate of the

systematic uncertainty due to spatial discretization artifacts. The charm quark action is

discretized using an action that removes the O(as) effects at the tree-level. To assess if

radiative corrections to the co-efficient of the improvement term in the charm-quark action

could lead to significant changes in physical predictions, a second calculation was carried

out after the spatial clover co-efficient was boosted from its tree-level value, cs = 1.35

to cs = 2. In the charmonium study, it was observed that this new ad-hoc value for cs

is found to increase the hyperfine spitting (mJ/ψ −mηc), from its tree level estimate, by

∼ 45 MeV and take it to its physical value. A very similar shift was observed in other low

lying states in the charmonium spectrum indicating a similar magnitude of uncertainty

in their estimation. Higher lying states do not show any statistically significant difference

between the two charm quark actions.

With three valence charm quarks, triply charm baryons is expected to posses the

maximum discretization errors among the charm baryons. We perform a similar calcu-

lation using the charm quark action with cs = 2.0, where we computed the two point

correlation functions for the triply charm baryons. Figure 4.3 and Figure 4.4 shows the

energy splitting, mΩccc − 3/2mηc , of positive and negative parity, respectively, for various

states that we extracted using the two charm quark actions. Here the factor of 3
2

corrects

for the different number of valence charm quarks in a triply-charmed baryon and the ηc

meson. A very similar shift, to that observed in charmonia, is observed in the lowest

few states, indicating a similar scale of uncertainty in this calculation for triply charm

baryons also. The lowest few states, where this shift is observed, has been shown in

insets of the plots for clarity. The higher lying triply charm states also do not show any

statistically significant shifts between the estimates from the two calculations.



Charm baryon spectrum 69

cs=1.35 cs=2 cs=1.35 cs=2 cs=1.35 cs=2 cs=1.35 cs=2
0.0

0.4

0.8

1.2

1.6

2.0

2.4

∆
m

a
ss

 (
G

e
V

)

0.28

0.3

0.32

0.34

1/2
+

3/2
+

5/2
+

7/2
+

Figure 4.3: Comparison of the positive parity triply charm baryon spectrum from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
3/2 times the mass of the ηc meson in the respective calculations.

4.1.3 Valence quark mass dependence of energy splittings

Spin-dependent splittings between the triply-flavored baryons provide an insight into

interactions between three confined quarks with the same mass. We consider now the

dependence of these splittings on the mass of the valence quarks.

As presented in Table 3.6, operators with increasing numbers of gauge-covariant

derivatives (which can correspond to non-zero orbit angular momentum in a quark model)

create states with numerous values of total spin J . For example, we construct flavor (F )

decuplet states with D = 2, S = 3
2

and L = 2 with the combination {10FS⊗(S)S⊗(D)S},
where S in the subscript stands for symmetric combinations, as defined in Ref. [101]. In

this way of construction, we get four quantum numbers with JP = 1
2

+
, 3

2

+
, 5

2

+
and 7

2

+
.

In the heavy quark limit, the spin-orbit interaction vanishes since the interaction term is

inversely proportional to the square of the quark mass. States corresponding to quantum

numbers (|L, S, JP 〉 ≡ |2, 3
2
, 1

2

+〉, |2, 3
2
, 3

2

+〉, |2, 3
2
, 5

2

+〉 and |2, 3
2
, 7

2

+〉) will thus be degener-

ate in the heavy quark limit. Similarly, two states with quantum numbers JP = 1
2

−
and
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Figure 4.4: Comparison of the negative parity triply charm baryon spectrum from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
3/2 times the mass of the ηc meson in the respective calculations.

3
2

−
with L = 1 and S = 1

2
will also be degenerate in the heavy quark limit. In Figure 4.5,

we plot absolute values of energy differences between energy levels which originate from

the spin-orbit interaction of the following (L , S) pairs : (2,3
2

–in the left column), (2,1
2

–in the middle column) and (1,1
2

–in the right column). We plot these spin-orbit energy

splittings at various quark masses corresponding to following triple-flavored baryons :

∆uuu, Ωsss, Ωccc and Ωbbb. We identified the states with these (L, S) pairs by finding the

operators, which incorporate these pairs and which have major overlaps to these states.

These energy differences are obtained from the ratio of jackknifed correlators, which in

general, reduce error bars by canceling systematic corrections in these correlators. For

bottom baryons we use data from Ref. [157] and for light and strange baryon results from

Ref. [102] are used.

It should be noticed that energy levels shown for bottom baryons are obtained from

only non-relativistic operators [157]. For charm baryons, we show results from the full

set of operators (including relativistic and non-relativistic operators) as well as from only
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Figure 4.5: Energy splittings between states with same L and S values, starting from
light to heavy baryons. For Ωbbb, results are with only non-relativistic operators [157];
for Ωccc, results from relativistic and non-relativistic as well as only non-relativistic op-
erators are shown, and for light and strange baryons results are with relativistic and
non-relativistic operators [102]. These results are obtained from fitting the jackknife ra-
tio of the correlators which helps to get smaller error bar in splittings. The left column
is for the states with D = 2, S = 3

2
and L = 2. The symbol Hg,1,S refers to the first em-

bedding of irrep Hg in the totally symmetric Dirac spin combination, while D
[2]
L=2,S refers

to spatial projection operators with two derivatives in a totally symmetric combination,
and with orbital angular momentum two. Similarly, the middle column is for the states
with D = 2, S = 1

2
and L = 2. Here irrep is G1g and both Dirac and derivative are in

a mixed symmetric combination. In the right column these negative parity states have
D = 1, S = 1

2
and L = 1. Here again irrep is G1g and both Dirac and derivative are in a

mixed symmetric combination.

non-relativistic operators, and for light and strange baryons the splittings results are

obtained also with the full set operators. In some cases, we find that the inclusion of

the relativistic operators increase error bars. As one can observe that the degeneracy

between these spin-orbit split states is more or less satisfied both for bottom and charm

quarks. However, data with higher statistics is necessary to identify the breaking of this

degeneracy at charm quark. For ∆(uuu) and Ω(sss) some of these splittings are non-zero.

This is expected because of the presence of the light quark masses in the denominator of
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the spin-orbit interaction, which enhance these splittings.
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Figure 4.6: Energy splittings of a few positive parity triple-flavored baryons from vector
meson (T−−1 ) ground state are plotted against the square of the pseudoscalar masses.
Data at charm quark are from this work, while light and strange quark results are from
Ref. [102] which uses the same gauge field configurations. Data points for bottom quark
are shown by open symbols and are taken from Ref. [157], which uses non-relativistic
action. A factor 3/2 is multiplied with vector meson masses to account for the difference
in the flavor content between baryons and mesons. The fits are performed assuming a
form a+ b/mps, inspired by HQET [39], (except for 3

2

+
ground state, where data are also

fitted with a constant, which gave better χ2/dof). The light quark data has not been
considered in the fits though the fit estimates are extrapolated to light quark masses.

We also compared how energy splittings change between light and heavy baryons.

Some of these, such as the hyperfine splitting, vanish in the heavy quark limit while others

become constant. However, most splittings tend to be higher at lighter quark masses

where relativistic effects are prominent. We determined the energy difference between

the triply-flavored baryons with respect to the vector mesons with two constituents of

the same flavor. To make a comparison, which is independent of the quark mass in the

heavy quark limit, we subtract 3
2

of the vector meson mass, where this factor simply

takes account of the difference in the flavor content between baryons and mesons. It is
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to be noted here that the light and strange vector mesons are isoscalar in nature, while

for the charm and the strange vector mesons the disconnected diagrams were omitted

in the calculations so as to reduce the computational costs. It is expected that the

contributions from such disconnected diagrams will be very small, since such diagrams

are OZI suppressed. Specifically we consider following splittings: m∆uuu− 3
2
mωūu ,mΩsss−

3
2
mφs̄s ,mΩccc − 3

2
mJ/ψc̄c and mΩbbb − 3

2
mΥb̄b

. These splittings mimic the binding energies

of triple-flavored states and thus it is interesting to compare these as a function of quark

masses. In Figure 4.6 and Figure 4.7, we plot these splittings, for the ground-state and

a few excitations as a function of the square of the pseudoscalar meson masses. For

∆++(uuu) and Ωsss baryons, results are from Ref. [102], while for Ωbbb, we use results

from Ref. [157]. Notice that most of the splittings in various spin parity channels decrease

with quark mass.
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Figure 4.7: Energy splittings of a few negative parity triple-flavored baryons from vector
meson (T−−1 ) ground state are plotted against the square of the pseudoscalar masses.
Details same as in Figure 4.6. The fits are performed assuming a form a+b/mps, inspired

by HQET [39], except for 1
2

−
ground state, where data are also fitted with a constant,

which gave better χ2/dof .

In the heavy quark limit, naively one can expand the mass of a heavy hadron, with
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State a b χ2/DOF State a b χ2/DOF
1
2

+
773 (16) 59 (22) 1.876 1

2

−
511 (12) ?????

1
2

+
758 (16) 117 (19) 0.411 1

2

−
963 (31) 193 (27) 10.89

3
2

+
168 (9) -2.0 (9) 0.474 3

2

−
513 (14) 45 (15) 0.085

3
2

+
170 (5) ?????

3
2

+
640 (22) 179 (21) 0.558 3

2

−
1089 (30) 109 (20) 0.200

3
2

+
765 (17) 149 (21) 1.228

3
2

+
805 (12) 177 (21) 0.179

5
2

+
760 (17) 140 (16) 0.009 5

2

−
954 (61) 230 (50) 10.33

5
2

+
807 (17) 167 (15) 0.148 5

2

−
1021 (26) 271 (26) 28.54

7
2

+
739 (17) 201 (16) 0.687 7

2

−
1009 (30) 220 (27) 17.41

Table 4.2: The fit estimates for the parameters in the fit form, a + b/mps (inspired by
HQET), for different states from various quantum channels. The states are identified
between this table and the figures 4.6 and 4.7 by keeping the colors consistent between
them.

n heavy quarks, as MHnq = n mQ + A + B/mQ + O(1/mQ2) [39]. Though in Ref. [39]

such an expansion is argued for singly charm baryons, here we assume it to work for

hadrons with multiple quarks. Hence, the energy splittings between heavy hadrons, that

take into account the difference in the heavy flavor content, can be expressed in the form

a + b/mQ and similarly in the heavy quark limit with a + b/mps. Note this form is not

expected to be valid for light hadrons. Using this function, we fitted the data obtained

for mΩbbb − 3
2
mΥb̄b

,mΩccc − 3
2
mJ/ψc̄c and mΩsss − 3

2
mφs̄s . Because of the very different

behavior in the chiral limit, the light quark points, m∆uuu− 3
2
mωūu are excluded from the

fit. For the cases where data for the bottom quark are not available (mainly for negative

parity cases), fitting is done using only the two data at charm and strange masses. While

there is no good reason for the heavy-quark inspired functional form to model the data at

the strange quark mass, a good fit is still found. We also extrapolate fit results to lighter

pion masses and observe that for many cases they pass through the light quark points

though those points are not included in these fits. However, as mentioned before, one

should not use this extrapolation to get splittings at lighter quark masses as is evident in

many cases where data points fall significantly below the fit. It is worth noting that that

the energy splittings for the spin-3
2

+
and spin-1

2

−
ground states are almost constant, even

when varying the quark mass from light to bottom. In fact, we observe better fit with a

constant term for these splittings. Table 4.2 tabulates the fit estimates for the parameters
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in the fit form, a+ b/mps (inspired by HQET), for different states from various quantum

channels.

4.2 Doubly charm baryons
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Figure 4.8: Spin identified Ξcc baryon spectra for both parities and with spin up to 7/2.
Energy splittings of the Ξcc baryons from the mass of mηc meson, which has same number
of charm quarks, are shown here. The states inside the magenta boxes are those with
relatively larger overlap to non-relativistic operators and the states with thick borders
corresponds to the states with strong hybrid content. The number of states inside these
boxes matches with the expectations based on non-relativistic quark spins, as shown in
Table 3.6. This agreement of the number of low lying states between the lattice spectra
obtained in this work and the expectations based on non-relativistic quark spins implies
a clear signature of SU(6)×O(3) symmetry in the spectra.

Doubly charm baryons are interesting systems as they provide a unique opportunity

to get insights into the nature of strong force in the presence of slow relative motion

of the heavy quarks along with the relativistic motion of a light quark. The study of

their excited state spectra and various energy splittings will help us understand how the

collective degrees of freedom gives rise to excitations in these systems. A comparison of

these excitations with corresponding spectra of singly and triply charm baryons, where the

number of charm quark is one less and more respectively, will be helpful to get information
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about quark-quark interactions within these systems. A doubly-heavy baryon can be

treated as a bound state of a heavy antiquark and a light quark (qQQ ↔ qQ̄) in the

limit when the typical momentum transfer between the two heavy quarks is larger than

ΛQCD [159, 160]. In this limit of quark-diquark symmetry, definite predictions of the spin

dependent energy splittings can be made [42, 161]. It is thus interesting to study those

spin splittings based on first principles to check whether charm quark is heavy enough

to respect this quark-diquark symmetry.

With two valence charm quarks, doubly charm baryons are the second heaviest

baryons of the SU(4) flavor family. The flavor pattern being similar to the Σ++ baryon

(suu), the allowed flavor symmetry combination are symmetric, mixed-symmetric and

mixed-antisymmetric. Table 3.7(b) shows the total number of operators including up to

two derivatives, we have used in our calculations.

4.2.1 The spectrum

1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

0.676(08) 0.770( 9) 1.329(13) 1.393(10) 1.049(11) 1.098(12) 1.224(14) 1.583(68)
1.338(22) 1.291(23) 1.376(14) 1.558(15) 1.083( 8) 1.185(10) 1.572(22)
1.342(20) 1.351(33) 1.523(19) 1.201(12) 1.243(13) 1.741(20)
1.397(30) 1.391(13) 1.534(16) 1.604(30) 1.653(35) 1.806(34)
1.456(21) 1.422(28) 1.602(17) 1.666(32) 1.734(21)
1.526(18) 1.446(30) 1.687(44) 1.836(20)
1.564(14) 1.541(14) 1.751(33) 1.925(21)
1.780(72) 1.555(22) 1.769(28)
2.049(37) 1.565(29)
2.061(47)
2.078(56)

Table 4.3: Relativistic spectrum m
Ξcc
−mηc in units of GeV.

In Figure 4.8 and Figure 4.9, we show the spin identified full spectra, that we extracted

on our lattices, of Ξcc and Ωcc baryons, respectively, as splittings from ηc meson, while

Table 4.4 and Table 4.3 contains the respective estimates. The states inside the magenta

boxes are those with relatively larger overlap to non-relativistic operators and the states

with thick borders corresponds to the states with strong hybrid content.

Similar to the case of the triply charm baryons, an analysis of the number of pattern of

the states in the spectrum for both the doubly charm baryons points to a spectrum based
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Figure 4.9: Spin identified spectra of Ωcc baryons for both parities and with spin up
to 7/2. Energy splittings of the Ωcc states from the mass of ηc meson, which has same
number of charm quark, are shown here. All other details are same as in Figure 4.13.

1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

0.720(7) 0.792(9) 1.362(16) 1.438(12) 1.084(12) 1.134(8) 1.272(11) 1.736(18)
1.314(37) 1.345(18) 1.405(14) 1.620(12) 1.088(11) 1.176(23) 1.640(22)
1.371(17) 1.364(27) 1.531(21) 1.206(15) 1.222(17) 1.767(24)
1.391(35) 1.400(16) 1.569(15) 1.677(27) 1.703(35) 1.786(30)
1.462(21) 1.473(35) 1.577(28) 1.736(24) 1.708(33) 1.840(25)
1.555(15) 1.475(27) 2.070(48) 1.837(26) 1.709(30)
1.563(17) 1.535(22) 1.882(20) 1.920(26)
1.896(47) 1.587(17)
2.115(49) 1.602(16)
2.143(44)
2.186(37)

Table 4.4: Relativistic spectrum m
Ωcc
−mηc in units of GeV.

on non-relativistic quark models. With two flavor symmetry constructions possible, dou-

bly charm baryons allows two local non-relativistic operators : one from the combination

of spin 1/2 (G1g) and the other from the combination of spin 3/2 (Hg) with local spa-

tial structure, giving rise to two positive parity operators with total angular momentum

1/2 and 3/2, respectively. While the set of one derivative operators posses a pattern of
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(3,3,1,0) with the total angular momentum J = (1
2
, 3

2
, 5

2
, 7

2
), the two derivative operators

form a pattern of (6,8,5,2) with the total angular momentum J = (1
2
, 3

2
, 5

2
, 7

2
). Figure

4.8 and Figure 4.9 shows this pattern is very clearly followed in the low lying three bands

with the allowed quantum numbers as mentioned above. It is to be pointed out that in

our calculation, we use the whole set including non-relativistic and relativistic operators

and still we obtain the number and pattern of states allowed by purely non-relativistic

operators. This agreement of the number of low lying states between the lattice spectra

obtained in this work and the expectations based on non-relativistic quark spins implies

a clear signature of SU(6)×O(3) symmetry in the spectra. As mentioned in the previous

section, such a symmetry based on non-relativistic quarks is observed in the triply charm

baryons and in the light baryons [102]. Note that there are no 7/2 operators with nega-

tive parity that can be constructed purely with non-relativistic quarks, and the signal for

the extracted state is a result of the inclusion of the relativistic operators. We also able

to identify a few states which has strong overlap to hybrid operators. Though there are

more number of non-relativistic operators with hybrid nature in Table 3.6, we could not

clearly identify those. We expect a data with higher statistics will aid in extracting the

signals from those states. Further, one cannot argue an SU(6)⊗O(3) symmetry for the

higher lying states to these non-relativistic bands, because of same reasons as described

for triply charm baryons. Identification of the negative parity states with hybrid content

also suffers from this ambiguity.

Since both the doubly charm baryons have the same flavor structure, pqq, and hence

the same allowed flavor symmetry combinations, the interpolators used in their spec-

troscopy are similar. They differ only in their flavor content. Hence one expects a similar

pattern in their spectra also. To check such a similarity in the spectra of doubly charm

baryons, in Figure 4.10 and Figure 4.11, we show the extracted positive and negative

parity spectra, respectively, in terms of another type of energy splittings. For each spin,

left column is for splittings of Ξcc−D and the right column is for Ωcc−Ds splittings. By

subtracting out D and Ds mesons from Ξcc and Ωcc baryons we effectively leave only the

excitation of one charm quark in both cases. One would thus naively expect that both

spectra will be equivalent. This is almost true for the lowest state in each spin parity

channel, except for negative parity spin-7/2 state, as can be observed in Figure 4.10 and

Figure 4.11. That state is obtained from relativistic operators and it is expected that

such naive expectation may not hold there. This is also true for other excited states,

where the contribution from relativistic operators are much larger. The inset figures in

Figure 4.10 are for the positive parity ground states of spin-1/2 and spin-3/2 baryons.
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Figure 4.10: Energy splittings of positive parity Ξcc and Ωcc baryons from D and Ds

mesons, respectively. For each spin, left column is for splittings of Ξcc(ccu) baryons from
the ground state D(cu) meson and the right column is for splittings of Ωcc(ccs) baryons
from the ground state Ds(cs) meson. The inset figure are for the positive parity ground
states of spin-1/2 and spin-3/2 ground states. Results for D and Ds mesons are taken
from Ref. [107].

Results for D and Ds mesons are taken from Ref. [107].

As mentioned in the introduction that the experimental discovery of doubly heavy

baryons is quite unsettled. It is thus important to compare the ground state spectra

of the two doubly heavy baryons obtained by different calculations. In Figure 4.12 we

show the ground state results of JP = 1
2

+
and 3

2

+
Ωcc baryons, obtained in this work,

along with other lattice as well as various model results. In Figure 4.13, we show the

ground state results of JP = 1
2

+
and 3

2

+
of Ξcc baryons, obtained in this work, along with

the only experimental (SELEX) result and other lattice as well as various model results.

The discretization scheme for charm quarks followed by the other lattice calculations

are as follows : Mathur, et. al [80]→NRQCD; Briceno, et. al [84] and PACS-CS [88]

→relativistic heavy quark formalism; ILGTI [127] → overlap fermions; and Bali, et.

al [86]→clover Wilson fermions. Our results are at pion mass 391 MeV, results for PACS-

CS [88] and Briceno et. al [84] are extrapolated to the physical pion mass, while ILGTI

[127] and Bali, et. al [86] results are at pion mass 340 MeV and 348 MeV respectively.

The lattice spacing in the temporal direction (at) for this work is 0.035 fm, the lattice
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Figure 4.11: Energy splittings of negative parity Ξcc and Ωcc baryons from D and Ds

mesons, respectively. For each spin, left column is for splittings of Ξcc(ccu) baryons from
the ground state D(cu) meson and the right column is for splittings of Ωcc(ccs) baryons
from the ground state Ds(cs) meson. Results for D and Ds mesons are taken from
Ref. [107].
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Figure 4.12: Ground state masses of spin-1/2 and spin-3/2 doubly charm Ωcc baryons
as a splitting from ηc meson mass. Our results are shown by the red filled circle. Other
lattice as well as model results are also shown.

constants in other lattice calculations are as follows : PACS-CS at = 0.09 fm, Bali et.

al at = 0.08 fm and for ILGTI at = 0.0582 fm. Results from only Briceno et. al are

extrapolated to the continuum.
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Figure 4.13: Ground state masses of spin-1/2 and spin-3/2 doubly-charmed Ξcc baryons
as a splitting from ηc meson mass. Our results are shown by the red filled circle. Our u
quark mass is not physical and have a pion mass 391 MeV, while results for PACS-CS
[88], and Briceno et. al [84] are extrapolated to the physical pion mass, while ILGTI
[127] and Bali, et. al [86] results are at pion mass 340 MeV and 348 MeV respectively.

4.2.2 Investigating lattice artifacts
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Figure 4.14: Comparison of a few low lying positive parity Ωcc baryon states from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
mηc in the respective calculations.

As in our previous study for triply charm baryons [112], to check the systematic

uncertainty due to spatial discretisation artifacts, we carried another calculation in which

the spatial clover co-efficient was boosted from its tree-level tadpole improved value,
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Figure 4.15: Comparison of a few low lying negative parity Ωcc baryon states from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
mηc in the respective calculations.
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Figure 4.16: Comparison of a few low lying positive parity Ξcc baryon states from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
mηc in the respective calculations.
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Figure 4.17: Comparison of a few low lying negative parity Ξcc baryon states from the
two calculations; one using the tree level tadpole improved spatial clover co-efficient,
cs = 1.35, and the other using ad-hoc boosted value, cs = 2.0, to study the systematics
coming from the discretization. The spectrum is in terms of the energy splittings from
mηc in the respective calculations.

cs = 1.35 to cs = 2. At this boosted value the new extracted hyperfine splitting was

found to be physical [106]. The mass splittings were found to have increased by ∼45 MeV

between two calculations. For doubly charm baryon also we performed similar analysis

with the boosted spatial clover co-efficient. Figure 4.14, 4.15, 4.16 and 4.17 shows the

comparison of a few low lying doubly charm baryons using the two different charm quark

actions. We find a similar shift in the low lying doubly charm baryon energies, indicating

a similar scale of uncertainty in this calculation. While for the higher excited states this

shift seems to have eclipsed by the statistical uncertainties.

4.2.3 Energy splittings in doubly charm baryons

The energy splittings between various excitations in a spectra provide important informa-

tion about the nature of interactions needed to excite those states. The energy splittings

also provide inputs for building models which can describe these states successfully. The

most notable spin dependent baryon energy splitting that one always considers is the

hyperfine splittings between 3
2

+
and 1

2

+
states (for example, splitting between ∆ and

nucleon). For doubly charm baryons, we also compute this splitting and show in Figure

4.18 for Ξcc (left plot) and Ωcc (right plot) baryons. Our results are compared with other
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lattice results as well as with various model results. As one can see that our estimates

are in very good agreement with other lattice estimations.
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Figure 4.18: Hyperfine mass splittings between spin-3
2

+
and spin-1

2

+
states of Ξcc (left

plot) and Ωcc (right plot) baryons are compared for various lattice and model results.
Our results are shown by red filled circle. Pion mass in these calculations is 391 MeV,
while results for PACS-CS [88], and Briceno et. al [84] are extrapolated to the physical
pion mass, while ILGTI [127] and Bali, et. al [86] results are at pion mass 340 MeV and
348 MeV respectively.

In Figure 4.19, we compare these hyperfine splittings for Ξcc and Ωcc baryons as a

function of quark mass. In the x-axis of that figure, we use the square of the pseudoscalar

meson mass (mps), while y-axis shows hyperfine splittings at those pseudoscalar meson

masses. Along with Ξcc and Ωcc, we also show splittings between spin-3
2

and spin-1
2

states

of Ωccc baryon. The later splittings is not hyperfine in nature. For the Ωccc baryons, we

take the spin-orbit splittings between E3(3
2

+
) and E0(1

2

+
) states, which have same L and

S values corresponding to the 7th row in SF in Table 3.6.

In Figure 4.20, we show energy splittings of the ground states of each spin-parity

channel from the lowest state in that parity channel. For the positive parity, the lowest

state is JP = 1
2

+
and for negative parity the lowest state is JP = 1

2

−
. It is interesting

to note that both for Ξcc and Ωcc this splittings are almost same. This indicates that

the interquark interactions, which are responsible for these splittings, are similar in these

two different type of baryons. The negative parity 7/2 state is a result of the inclusion

of the relativistic operators and doesn’t appear in a purely non-relativistic spectrum

constructed using up to two derivatives. So the contribution to that state from a possible

three derivative operator is unclear and hence the disagreement may change after its

inclusion.

Motivated by the success of HQET inspired fit form in understanding the quark
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Figure 4.19: Mass splittings between spin-3
2

+
and spin-1

2

+
states are compared for

Ξcc(ccu), Ωcc(ccs) and Ωccc(ccc) baryons. For Ωccc, mass splitting is between E0(1/2+)
and E3(3/2+) states, which is actually due to spin-orbit coupling, while for Ξcc and Ωcc,
these are between respective ground states and are due to hyperfine splittings.

mass dependence of energy splittings in triple flavored baryons, we fit similar energy

splittings for doubly charm baryons. However, there is a difference in doubly charm

baryons. So as to show quark mass dependence one need to include triply-charmed

baryons also. In the study of triple flavored baryons, states at different quark masses

are obtained from same operators and so they are easy to compare. However, states at

doubly charmed-baryons and triply-charmed baryons are not obtained from same set of

operators except for positive parity spin 3/2 states. We thus consider energy splittings

only for this state. In specific, we calculate the following energy splittings : Ξ∗cc(ccu) −
Du(c̄u) ,Ω∗cc(ccs)−Ds(c̄s) and Ω∗ccc(ccc)−ηc(c̄c), and Ξ∗cc(ccu)−D∗u(c̄u) ,Ω∗cc(ccs)−D∗s(c̄s)
and Ω∗ccc(ccc)− J/ψ(c̄c) and plot in Figure 4.21. Absorbing the mass of the one remnant

valence charm quark in to the additive parameter,‘a’, we again fit these splittings with

a form a + b/mps, which was used for triply charm baryons, and obtain good fits. We

also like to point out that energy splittings at very light quark masses should not be

calculated using the above form and is valid only in the heavy quark domain.

It is interesting to note that one can extrapolate the fitted results to bottom mass to

obtain the energy splittings of Ω∗ccb(
3
2

+
)−Bc and Ω∗ccb(

3
2

+
)−B∗c at the mass of Bc meson.

Using these splittings, we can empirically predict the mass splitting of B∗c −Bc by taking

the difference between Ω∗ccb(
3
2

+
)−Bc and Ω∗ccb(

3
2

+
)−B∗c . Further, one can predict the mass

of Ω∗ccb by taking input for the mass of only discovered charm-bottom meson [16], assuming

it is as a pseudoscalar meson with mass 6277 MeV, using the splitting Ω∗ccb(
3
2

+
) − Bc.
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Figure 4.20: Energy splittings (in units of GeV) between the ground states of different
spins are shown for positive (top two) and negative parity (bottom two) doubly-charmed
baryons. Left two plots are for Ξcc and right two are for Ωcc baryons. For positive parity,
the lowest state has JP = 1

2

+
and for negative parity the lowest state has JP = 1

2

−
.

Figure 4.21: Energy splittings between positive parity spin-3/2 baryons and pseudoscalar
meson as well as vector mesons are plotted against the square of the pseudoscalar masses.
Left figure is the splittings of : Ξ∗cc(ccu)−Du(c̄u) ,Ω∗cc(ccs)−Ds(c̄s) and Ω∗ccc(ccc)−ηc(c̄c),
and right figure includes following splittings : Ξ∗cc(ccu)−D∗u(c̄u) ,Ω∗cc(ccs)−D∗s(c̄s) and
Ω∗ccc(ccc)− J/ψ(c̄c); they are plotted against the square of the pseudoscalar masses (i.e.,
at Du , Ds) and ηc mass. We fit the quark mass dependence with a form a+ b/mps (right
figure is also fitted with a constant term). The fitted results are shown by solid lines with
shaded regions as one sigma error bars.

This way we obtain the mass splitting of B∗c − Bc as 80 ± 8 MeV (fitting with a form

a + b/mps) and 76 ± 7 MeV (fitting with a constant term). This result agrees very well

with the results obtained in potential models [162]. However, this result does not agree

with other lattice QCD prediction [74, 75, 163], which provided much lower values. It

will be interesting to study the lattice cut-off effect on the hyperfine splittings of these

hadrons with the possibility of future discovery of B∗c meson. By taking mBc = 6277
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MeV, our other prediction, the mass of Ω∗ccb(3/2
+) is 8050 ± 10 MeV, which is consistent

with the results from various models [30, 34, 38, 50] and a recent lattice calculation [164].

4.3 Singly charm baryons

Singly charm baryons have received significant scientific attention, mainly due to the

recent experimental discoveries at various particle colliders like, SELEX, CDF, D0, Belle

etc. In contrast to the triply and doubly charm baryons, the production and identification

of singly charm baryons are relatively easier in hadron-hadron colliders as well as in

electron-positron colliders. Particularly, the new Beijing Spectrometer and Belle II has

great potential for accumulating large number of events and thus help us understand

more about single charm baryons. The PANDA experiment, a GSI future project, and

the LHCb are also expected to provide huge amount of information on charm baryon

spectrum.

Considering the experimental prospects, it is very timely to study the singly charm

baryons using a first principle non-perturbative calculation. That will serve various pur-

poses : understanding the structure of already discovered states, assigning quantum

numbers to ambiguous states and finally predicting states, which can be searched exper-

imentally. After triply and doubly charm baryons, we studied singly charm baryons with

the same detailing. However, for singly charm baryons the number of channels are many

more, namely, Λc(cud), Σc(cuu), Ξc(cus), and Ωc(css). In the presence of one or two light

quarks, the dynamics of these particles become much more complicated and hence they

provide a unique opportunity to study the interaction between one or more light quarks

in the presence of a heavy quark. These systems provide an excellent laboratory to study

the dynamics of the light quark in the heavy quark environment, such as those controlled

by the chiral symmetry. In a heavy quark effective theory, the two light quarks in the

singly charm baryon can often be considered as a diquark system, similar to the case

in doubly charm baryons. In the heavy quark limit, the spin-spin interactions between

the heavy quark and the diquark will vanish and hence the diquark spin will be a good

quantum number and will have implications in the singly charm spectrum as degeneracies

between the spin-spin coupled states.
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4.3.1 The spectrum

In this case, the number of possible interpolating operators are more than triply and dou-

bly charm baryons as was shown in Table 3.8. We considered a large set of interpolating

operators, as high as 180 (in Hg irrep for Ξc baryons), in construction of the correlation

functions. In the analysis, we considered the full set of relativistic and non-relativistic

operators for all the singly charm baryons, except for the Ξc, where we used only the

non-relativistic operators. We show our results for the spectra of singly charm baryons

in Figure 4.22, 4.23, 4.25 and 4.26, while the respective estimates are tabulated in the

Tables 4.5, 4.6, 4.7 and 4.8. As in the previous cases, we plot the spectra in terms of

the mass splittings instead of the absolute values. This is because the mass splittings

are expected to suffer less from the discretization errors, as they gets canceled between

the individual masses. In these plots, we show the mass splittings of these channels from

0.5 mηc , where the effects of charm quark discretization cancels out.

As in the previous cases, we observed that the pattern of the extracted low-lying

states are remarkably similar to the expectation from a model with broken SU(6)×O(3)

symmetry. As previously, the low lying bands that have relatively large overlap with

the non-relativistic operators are shown with magenta boxes. Similarly the states with

significant overlap with the operators proportional to the field strength tensor are painted

with thick borders, and are identified as strongly hybrid in nature.

1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

1.072(10) 1.185(10) 1.827(21) 1.058(25) 1.443(12) 1.524(12) 1.522(22) 2.105(37)
1.825(15) 1.825(20) 1.838(21) 1.822(16) 1.448(10) 1.533(10) 2.093(27)
1.872(18) 1.825(40) 1.916(21) 1.612(13) 1.626(12) 2.083(38)
1.883(25) 1.883(13) 1.950(29) 2.122(26) 2.092(19) 2.138(30)
1.892(16) 1.904(20) 2.055(30) 2.165(31) 2.257(16)
1.918(16) 1.943(20) 2.180(25) 2.261(28)
2.022(19) 1.979(17) 2.193(28) 2.310(24)
2.591(30) 2.027(23) 2.251(27)
2.533(28) 2.033(18) 2.340(20)

2.511(35)

Table 4.5: Relativistic spectrum m
Σc
− 0.5 mηc in units of GeV.
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Figure 4.22: Results on the spin identified spectra of Σc for both even and odd parities
w.r.t. 0.5 mηc . The keys are same as in Figure 4.1.
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Figure 4.23: Results on the spin identified spectra of Ωc for both even and odd parities
w.r.t. 0.5 mηc . The keys are same as in Figure 4.1.
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1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

1.210( 6) 1.262(14) 1.927(21) 1.945(14) 1.515(34) 1.593(21) 1.674(19) 2.267(21)
1.895(35) 1.849(43) 1.936(21) 2.184(18) 1.550(17) 1.619(19) 2.175(25)
1.913(17) 1.910(30) 1.954(15) 1.744(12) 1.750(10) 2.210(32)
1.964(18) 1.939(24) 2.112(24) 2.274(41) 2.157(33) 2.338(31)
2.014(22) 2.045(28) 2.152(27) 2.280(20) 2.315(38) 2.381(28)
2.046(25) 2.054(26) 2.305(17) 2.333(17) 2.417(31)
2.059(74) 2.075(25) 2.360(19) 2.359(38)
2.155(14) 2.079(27) 2.499(16) 2.421(20)
2.258(90) 2.109(23) 2.426(40)

Table 4.6: Relativistic spectrum m
Ωc
− 0.5 mηc in units of GeV.

4.3.2 Σc and Ωc baryon

The Σ++
c and Ωc baryons have the same flavor structure : pqq. The allowed flavor

symmetries are similar to that of the doubly charm baryons, where one can have S flavor

structure and MS/MA flavor structure. Thus the spectrum of these two baryons should

resemble the spectrum obtained for the doubly charm baryons. This is quite evident from

the Figure 4.22 and Figure 4.23. In Figure 4.24, we show the hyperfine splittings of the

Ωc and Σc baryons in units of MeV. Alongside we plot the estimates from various lattice

calculations available in the literature and quark model calculations. We also show the

experimental value in the plot with a magenta filled polygon in each of the plots. We see a

reasonably good agreement between various lattice calculations, though our estimate for

the Σc hyperfine splitting lies above the experimentally observed value. One important

caveat in these calculations is that the light pion mass is heavier than its experimental

value and the disagreement between our estimate and the experimental value is mainly

due to this unphysical pion mass. The box size of the lattice used in these calculations is

L ∼ 1.9fm. The finite size effects in singly charm baryons can be expected to be larger

than the corresponding effects in triply and doubly charm baryons. Hence, a systematic

study of finite size effects is also necessary, which is beyond the scope of the current work.

4.3.3 Λc baryon

The Λc baryons are those with quark content udc and can have an A or MS/MA flavor

structure, which corresponds to Λc-singlet and Λc-octet respectively. The difference be-

tween the Λc-octet and the Σ+
c is that the latter is a part of the isospin triplet, while the
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Figure 4.24: Hyperfine splittings in Ωc and Σc baryons(in MeV). The estimates from this
calculation has been quoted in red filled circles, while estimates from other lattice calcula-
tions in black squares, and a quark model calculation in blue square. The experimentally
observed value is quoted as magenta filled polygon. Pion mass in these calculations is
391 MeV, while results for PACS-CS [88], and Briceno et. al [84] are extrapolated to the
physical pion mass, while ILGTI [127] and Bali, et. al [86] results are at pion mass 340
MeV and 348 MeV respectively.
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1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

0.969(11) 1.732(19) 1.685(31) 1.995(25) 1.353(14) 1.410(20) 1.706(22) 2.156(34)
1.761(19) 1.811(70) 1.934(40) 1.517(22) 1.541(31) 1.950(39) 2.292(42)
1.825(28) 1.923(16) 2.017(29) 1.518(12) 1.698(18) 2.094(40)
1.837(33) 1.927(25) 2.061(39) 2.084(66) 2.073(59) 2.397(29)
1.926(17) 2.047(22) 2.148(21) 2.220(21) 2.224(19)
1.981(23) 2.058(25) 2.239(26) 2.244(18)
2.067(27) 2.128(24) 2.287(41) 2.258(45)
2.272(55) 2.371(26) 2.298(19) 2.265(41)
2.295(51) 2.568(32) 2.320(23) 2.354(43)
2.403(41) 2.480(28) 2.419(18)
2.489(30)
2.669(23)

Table 4.7: Relativistic spectrum m
Λc
− 0.5 mηc in units of GeV.

former forms an isospin singlet. The details of the flavor structure is shown in Table 3.2.

Since there is no totally antisymmetric spin combination that can be constructed from

a purely non-relativistic formalism, one requires angular momentum structure through

non-local behavior to construct a flavor-singlet Λc interpolating operator. Figure 4.25

shows the spectrum of Λc, where one can observe only one state in the low lying band.

This state has significant overlap with the flavors MS/MA with non-relativistic spin 1/2.

As observed for the other channels, the numbers and the pattern of the first negative

parity band and the first excited positive parity band agrees with the non-relativistic

predictions. It is to be noted that the energy ordering of the low lying two positive parity

states are in accordance with the experimental observation.

4.3.4 Ξc baryon

The Ξc baryons, with quark content usc, can have S, A or MS/MA flavor structure,

which correspond to Ξc-decuplet, Ξc-singlet and Ξc-octet respectively. Within Ξc-octet

flavor structure, one has two possibilities. If we assume an us-spin symmetry, similar to

the isospin that describes the symmetry between u and d quarks, there are two possible

MS/MA combinations : the Ξc-octet and the Ξ
′
c-octet. The latter is a part of the us-spin

triplet, of which Ωc and Σ++
c are included, while the former is a us-spin singlet. As in

the case of Λc, due to the absence of a totally antisymmetric spin combination that can

be constructed from a purely non-relativistic formalism, one requires angular momentum
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Figure 4.26: Results on the spin identified spectra of Ξc for both even and odd parities
w.r.t. 0.5 mηc . The keys are same as in Figure 4.1.
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Figure 4.27: Hyperfine splittings in Ξc baryon(in MeV). The estimates from this calcula-
tion has been quoted in red filled circles, while estimates from other lattice calculations
in black squares, and a quark model calculation in blue square. The experimentally
observed value is quoted as magenta filled polygon.

structure through non-local behavior to construct a flavor-singlet Ξc interpolating oper-

ator. Hence the low lying spectra for Ξc baryon will have two spin 1/2 states from the
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1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

− 7
2

−

1.033(12) 1.221(10) 1.856(16) 1.985(14) 1.467(15) 1.458(26) 1.640(11)
1.148(10) 1.805(28) 1.930(19) 2.019(22) 1.504(26) 1.572(43) 1.758(13)
1.738(55) 1.845(21) 1.935(17) 2.180(22) 1.528(33) 1.608(38)
1.762(14) 1.870(36) 2.019(19) 1.563(13) 1.619(22)
1.923(18) 1.917(30) 2.030(18) 1.585(13) 1.622(38)
1.931(19) 1.953(18) 2.089(21) 1.692(22) 1.679(40)
1.957(18) 2.037(17) 2.147(24)
1.982(19) 2.048(15) 2.164(21)
2.043(21) 2.059(40) 2.198(16)
2.074(24) 2.037(32) 2.202(15)
2.078(25) 2.079(19) 2.670(90)
2.083(17) 2.116(23)
2.126(19) 2.125(20)
2.138(21) 2.128(23)
2.280(42) 2.146(24)
2.437(56) 2.162(54)
2.517(35) 2.721(51)
2.551(34) 2.771(55)
2.640(37)
2.738(42)

Table 4.8: Relativistic spectrum m
Λc
− 0.5 mηc in units of GeV.

Ξc-octet and Ξ
′
c-octet operators and a spin 3/2 state with the Ξc-decuplet flavor struc-

ture. This can clearly be observed in Figure 4.26. We have calculated the correlation

matrix for all of them. However, being too many in numbers, it is quite difficult to put

together all these operators in our framework of variational fitting code. Hence, in this

work, we use a smaller set comprising only the non-relativistic operators for fitting, and

the Ξc spectrum shown in Figure 4.26 is non-relativistic. In Figure 4.27, we show the

hyperfine splitting between the 3/2+ and 1/2+ ground states of Ξc baryon. Alongside

we show the estimates from other lattice calculations and quark model estimate. The

experimental value is shown as magenta filled polygon.

4.3.5 Energy splittings : A preliminary study

One important caveat in these calculations of the excited state charm baryon spectroscopy

is that the pion mass used, mπ = 391 MeV. This unphysical heavy pion mass can give

serious implications in the spectrum, where one expects the light quark chiral dynamics
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Figure 4.28: Spectra of spin 1/2 singly charm baryons shown as their splitting from the
light vector mesons, such that the effective valence content in the splitting is a charm
quark. Explicitly we consider the following splittings : Λc(cud)−ρ(ūd), Σc(cuu)−ρ(ūu),
Ξc(cus)−K∗(ūs) and Ωc(css)− φ(s̄s).

to play a significant role. So as to make a comparative study of light quark effects in the

singly charm baryons, we consider the splitting of the singly charm baryons with respect

to the corresponding light vector mesons, such that there is only one remnant valence

charm quark in the splitting. In other words, we consider the splittings, Λc(cud)−ρ(ūd),

Σc(cuu)− ρ(ūu), Ξc(cus)−K∗(ūs) and Ωc(css)− φ(s̄s). This is a good choice, since to

the leading order all these splittings should have the same discretization errors and the

same effect of the light quark dynamics, making a comparative study between the singly

charm baryon spectra possible. In Figure 4.28, 4.29, 4.30 and 4.31, we plot the spectra of

the singly charm baryons, as the splittings mentioned above, corresponding to the spin

1/2, 3/2, 5/2 and 7/2 respectively. We also plot the experimental values (violet circled

star) of the low lying singly charm states in these plots. Question marks are given beside

those states that for which the quantum numbers are not certain (even based on quark

model assumptions). It is very clear that the pattern of the low lying states, particularly

for 1/2+ and 3/2+ channels, is almost the same between the experimental estimates and

the results from our calculations. The little disagreement in the low lying spectra with

the experimental numbers could be because of the various systematics that we will be
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Figure 4.29: Spectra of spin 3/2 singly charm baryons shown in terms of the splittings :
Λc(cud)− ρ(ūd), Σc(cuu)− ρ(ūu), Ξc(cus)−K∗(ūs) and Ωc(css)− φ(s̄s).

discussing in Section 4.4. This observation calls for a detailed study of the singly charm

baryon spectra, with improved control over the systematics, particularly with lighter pion

mass as well as with multi-hadron operators.

4.4 Caveats in excited state spectroscopy

Lattice computations should be accompanied with a study of the systematics associated

with the formulation of the theory on lattice, so as to validate and compare the results

obtained from these calculations with the actual values. The discretization of the space-

time introduces a UV cut off proportional to the inverse of the lattice spacing (1/a). The

systematics from this UV cut off is in general quantified in terms of the dimensionless

quantity, ‘am’, m being the quark mass. One in general considers complicated lattice

formalisms, that has the discretization errors up to different orders of ‘ma’ removed. In

this study, in order to have good control over the discretization errors, we use the tree

level tadpole improved (mean field improvement [111]) clover fermion action, which has

no O(mat) and O(mas) errors. We have not considered any higher order terms as the

temporal lattice spacing is quite small. However, for the charm quarks the discretization
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Figure 4.30: Spectra of spin 5/2 singly charm baryons shown in terms of the splittings :
Λc(cud)− ρ(ūd), Σc(cuu)− ρ(ūu), Ξc(cus)−K∗(ūs) and Ωc(css)− φ(s̄s).
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Figure 4.31: Spectra of spin 7/2 singly charm baryons shown in terms of the splittings :
Λc(cud)− ρ(ūd), Σc(cuu)− ρ(ūu), Ξc(cus)−K∗(ūs) and Ωc(css)− φ(s̄s).
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errors is significantly larger than the light and strange quarks on a given lattice. The

study of heavy hadrons using lattice QCD has this inherent problem, since at these

masses, with currently available lattices, the condition mat << 1 and mas << 1, in

general is not satisfied leading to larger systematic errors. In such a case, one require

to perform a continuum extrapolation of the estimates from calculations using multiple

lattices with very fine lattice spacings : this is beyond the scope in these excited state

spectroscopy calculations.

Another systematics that enter the lattice calculations is due to the finite box size,

which is limited by the available computational resources. To ensure negligible finite size

effects in these systems, in general one makes sure that the lattice size, L, is at least 4

times the Compton wavelength of the lightest state in that lattice. In our calculations,

mπL = 3.77 and hence we expect the finite size effects to be under control. An infinite

volume extrapolation is necessary to have the estimates free of finite size effects : This is

also beyond the scope of the previous work, as excited baryon spectroscopy calculations

involving larger lattices calls for very large computational requirements, which is currently

beyond the limit of the available resources.

A third systematics in lattice QCD calculations is related to the light quark masses

that are used in the calculations. The computational cost for calculations involving

fermions increases as the quark mass decreases and hence the studies involving lighter

quark masses are highly CPU intensive. The light quark mass used in these calculations

corresponds to a pion mass of ∼ 391 MeV, which is greater than the physical pion mass.

Hence, along with the continuum and the infinite volume extrapolations, one need to

perform a chiral extrapolation, which is not possible with just one light quark mass

available in these calculations. With all these caveats related to the lack of study of

systematics in mind, confronting this calculation with another non-perturbative study

with better control over the systematics, will be a good check to validate the smallness

of the systematic errors in our results from calculations in the previous chapters.

Finally we have not used the multi-hadron operators in our basis of operators. These

operators couples efficiently onto multi-hadron scattering states having the same quan-

tum number as the resonance states. As an example, while studying ρ resonance, one

needs to include ππ two-particle operators along with regular 1−− operator set. To match

the appropriate quantum number one use the technique of moving frames where the total

momentum of the system is nonzero. This has been demonstrated in Ref. [166], where ρ

resonance has been studied in great details. This is also true for ∆, S11(1535) resonance,

where one needs to use Nπ operators to study these resonances. Other higher particle
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decay channel operators also need to be included for comprehensive study of resonances.

These additional operators will increase the number of levels that can be extracted and

hence the resonance parameters can be evaluated from the extensive mapping of the en-

ergy dependence of the scattering amplitudes. In this calculation, one should also use

these multi-hadron operators in the basis of operators. Inclusion of those operators, par-

ticularly those involving light quarks, may affect some of the above conclusions. However,

due to the presence heavier quark(s), influence of these multi-hadron operators may be

lesser for charm baryons, particularly for triply and doubly charm baryons, than their

influence in the light baryons.

4.5 Summary, conclusions and future prospects

In this work, we present results from the first non-perturbative calculation on the excited

state spectroscopy of the charm baryons, with three, two and one valence charm quarks

and with spin up to 7/2. Employing a large set of operators classified according to the

irreps of the lattice symmetries, constructed out of derivative based operator formalism

using up to two derivatives, we extracted approximately 20 states for each of the charm

baryons, along with a reliable identification of the spin-parity quantum numbers for each

of these states. Beside identifying the spin of a state we are also able to decode the

structure of operators leading to that state : whether constructed by relativistic, non-

relativistic, hybrids, non-hybrid types or a mixture of them all. We discussed the results

in three sections, dedicated for triply, doubly and singly charm baryons respectively.

The spectra for the triply, doubly and singly charm baryons are shown in Figure 4.1,

4.9, 4.8, 4.22, 4.23, 4.25 and 4.26. Similar to light and strange baryon spectra [102], we

also find the number of extracted states of each spin in the three lowest-energy bands

and the number of quantum numbers expected based on weakly broken SU(6) × O(3)

symmetry agree perfectly, i.e., all the charm baryon spectra remarkably resemble the

expectations of quantum numbers from non-relativistic quark model [28, 29, 165]. It is

to be noted that in these calculations, we use the full set of operators (non-relativistic

and relativistic) and still the spectra behaves to be non-relativistic.

Discretization errors are of major concern for heavy hadron spectroscopy. Since a

calculation involving multiple lattice spacing is beyond the scope of this work, we follow

a similar analysis procedure, as was performed in Ref. [106]. To assess if radiative

corrections to the co-efficient of the improvement term in the charm quark action could

lead to significant changes in physical predictions, we perform a second calculation using
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a boosted spatial clover co-efficient, cs = 2, from its tree level tadpole improved value,

cs = 1.35. A very similar shift of ∼ 45 MeV, to that found in charmonia, was observed

for the lowest few states of triply and doubly charm baryons, indicating a similar scale

of uncertainty in this calculation of charm baryons also. The higher lying charm baryon

states do not show any statistically significant shifts between the estimates from the two

calculations.

Various energy splittings, including splittings due to hyperfine and spin-orbit coupling,

are also evaluated for all these baryons. In the triply charm baryons we performed a

quantitative study of the spin-orbit coupling to understand how good is the heavy quark

approximation for the charm quarks, by comparing them with the respective splitting for

triply light, strange and bottom baryons. We find degeneracy between these spin-orbit

split states is more or less satisfied both for bottom and charm quarks. However, data

with higher statistics is necessary to identify the breaking of this degeneracy precisely

at charm quark. The energy splitting of the triply charm baryon spectrum, from the

isoscalar vector meson (irrep T−−1 ) ground state is also evaluated. These splittings are

compared with similar ones obtained at other quark masses. For the splitting, which

mimics the binding energy of these states, significant quark mass dependence is observed

for ground as well as for first few excited states, except for the JP = 3/2+ and JP = 1/2−

ground states. These splittings can be modeled with a form a + b/mps to show their

expected quark mass dependence, which assumes they will tend to a constant in the

heavy quark limit. It is interesting to note this form gives a good fit with data at

bottom, charm as well as strange quark masses. For some of them, we observe that the

extrapolated fit lines pass through the light quark data points even through they are not

included in the fit.

For doubly and singly charm baryons, we calculated hyperfine mass splittings between

spin-3
2

+
and spin-1

2

+
states and compared those with various other lattice as well as

model results. We also evaluated mass splittings between ground states of spin-3
2

and

spin-1
2

states at both parities. To study the quark mass dependence of these splittings

we compared results for Ξcc(ccu), Ωcc(ccs) and Ωccc(ccc) baryons for which there is a

common ‘cc’ diquark and a varying quark from ‘u’ to ‘c’. Encouraged by a successful

fitting of the mass splittings in triple flavored baryons, we studied similar mass splittings.

Here also we find that a heavy quark motivated form a+ b/mps can fit quite successfully

energy splittings like : Ξ∗cc(ccu) −Du(c̄u) ,Ω∗cc(ccs) −Ds(c̄s) and Ω∗ccc(ccc) − ηc(c̄c), and

Ξ∗cc(ccu)−D∗u(c̄u) ,Ω∗cc(ccs)−D∗s(c̄s) and Ω∗ccc(ccc)− J/ψ(c̄c). From the fitted results we

are able to predict B∗c −Bc = 80± 8 MeV and Ω∗ccb(3/2
+) = 8050 ± 10 MeV. The study
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of energy splittings of singly charm baryons is ongoing and we expect similar interesting

results from that sector also. The method used here to study charm baryons can also

be employed for similar study of bottom baryons. Considering experimental importance

and prospects we will carry out such calculation in future.

There are various systematics that are unattended in this calculation, which include

various extrapolations like chiral extrapolation, continuum limit and infinite volume ex-

trapolation. Furthermore, it is also to be noted that we have not used any multi-hadron

operators, which are expected to give significant implications in the extracted spectra.

Hence, one also need to perform calculations considering multi-hadron operators. How-

ever, this calculation is the first of its kind in the excited charm baryon spectra calculation

and hence this study serves as a foundation for many follow up studies, which may help

us address many of the challenges in the heavy baryon spectroscopy.



Chapter 5

Spectroscopy using chiral fermions

In this chapter, we discuss another independent non-perturbative calculation to deter-

mine the low lying charm baryon spectrum with improved control over the systematics.

This alternative calculation was made with a hope that confronting our ground state

studies with the excited state calculations will give us an idea of the systematic errors

appearing in our excited state spectrum calculations. We give a brief introduction of this

calculation in Section 5.1 and Section 5.2. As mentioned earlier, discretization errors are

of major concern in charm baryon spectroscopy. In Section 5.3, we detail our attempts

to quantify the discretization errors that enters in these calculations, by studying the

dispersion relation for the pseudoscalar charmonia. In Section 5.4, we discuss our results

on charmonia, charm-strange mesons and charm baryons. There we make comparison

of estimates from this studies with the experimental estimates, wherever available. We

also make comparison of estimates from this calculation and our studies of excited state

spectroscopy, wherever available. Finally, in Section 5.5, we summarize the findings in

these calculations.

5.1 Mixed action formalism

In order to study the systematics due to the discretization errors in our previous study, we

thus performed another calculation with a chiral action with the overlap fermions [123,

124], which is automatically O(a) improved. However, using overlap action for the dy-

namical quarks is still prohibitively costly, except with fixed topology [167]. A substan-

tially less expensive approach is to adopt a mixed action formulation with chiral fermions

as valence quarks in a background of existing highly improved gauge field configurations.

102
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Mixed action approaches have been studied by many groups such as DWF valence on

staggered fermion sea [63, 115, 116, 117], overlap valence on DWF sea [118], overlap

valence on clover sea [119], and overlap valence on twisted fermion sea [120]. The Indian

Lattice Gauge Theory Initiative (ILGTI) has adopted this mixed action approach and

this part of my thesis is related to my work in that project. This calculation uses a large

set of dynamical configurations generated during the past few years by MILC [122] with

the one-loop, tadpole improved Symanzik gauge action and highly improved staggered

quark (HISQ) fermion action [121]. Two degenerate light quarks, a strange and a charm

sea quark field were included in the generation of these dynamical configurations. With

very small magnitude of taste violations in comparison with the unimproved staggered

quarks, HISQ provides an efficient lattice fermion formulation that demands very less

computational requirements in contrast with the overlap action in simulation.

The valence quarks in this calculation are realized using the overlap formalism [123,

124], which has many desirable features. The overlap formalism has exact chiral symme-

try [124] on the lattice and is automatically O(a) improved. By adopting such a mixed

action approach, one can get advantage of the chiral symmetry and low quark mass limit

of overlap fermions, and the advantage of having a large set of configurations with small

discretization errors as well as small taste breaking effects. One also gets the advantage

of simulating both light, strange as well as heavy fermions on the same lattice formalism

with chiral fermions having no O(a) errors. The overlap action also has some desirable

features computationally, such as the adaptation of multi mass algorithms [125]. How-

ever, we will have to encounter the usual systematics related to mixed action and partial

quenching [169, 170, 171]. With the above formulation we have calculated the ground

state spectra of various charm hadrons and have made a comparative study between these

two projects along with other results from literature. Agreement between these results

from different approaches gives confidence in our previous estimates. The results from

these studies were reported in the Ref. [127, 126]

5.2 Numerical details

In this calculation, we used two sets of dynamical 2+1+1 flavors HISQ lattice ensembles,

generated by the MILC [122] : 323 × 96 lattices with lattice spacing a = 0.0877(10) fm

and 483 × 144 lattices with lattice spacing a = 0.0582(5) fm. The gauge action used in

these calculations is a one-loop, tadpole improved Symanzik gauge action that included

1× 1 and 1× 2 planar Wilson loops and a 1× 1× 1 ‘parallelogram’. The co-efficients of
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these terms are calculated perturbatively and are tadpole improved. As mentioned above,

the sea quark fields were realized using the HISQ action, which ensured the quark action

is order a2 improved. The use of HISQ action, instead the näıve staggered quark ac-

tion, ensured very small taste-symmetry violations. The lattice spacings of these lattices

mentioned above were determined by equating the Ω baryon mass measured on these en-

sembles to its physical value. Our estimates for the lattice spacings, as mentioned above,

are consistent with the estimates as measured by MILC using the r1 parameter [122],

which are a = 0.0888(8) fm and a = 0.0582(4) fm respectively. The strange and charm

masses are set at their physical values, while ml/ms = 1/5 for both lattices. The details

of these configurations are summarized in Ref. [122]. The results reported here were ob-

tained from 110 configurations on the coarser lattice, and 65 configurations on the finer

lattice.

For valence quarks we used overlap action [124]. The overlap Dirac operator has the

following definition for massive fermions :

Dov = (ρ+
m

2
) + (ρ− m

2
)γ5sgn(γ5Dw); sgn(γ5Dw) =

γ5Dw√
γ5Dwγ5Dw

, (5.1)

where sgn denotes the matrix sign function, Dw is the Wilson Dirac fermion operator

and ρ = 1/2κ− 4 here is a negative mass parameter. Lüscher showed that on the lattice

one can define the chiral transformation as [147],

δψ = iαγ5(1− a

2
Dov)ψ & δψ̄ = iαψ̄(1− a

2
Dov)γ5, (5.2)

which reduces to the proper continuum form in the continuum limit. For any a 6= 0,

the overlap action remains invariant under this lattice chiral transformation. While

the Wilson fermion action is ultra-local having only up to second derivative terms in

it, in overlap fermions the condition of ultra-locality is sacrificed to preserve the exact

chiral symmetry on the lattice in accordance with the Nielson-Ninomiya theorem. The

advantage of the overlap fermion over Wilson fermion is the presence of the exact chiral

symmetry. But since the operator contains a matrix sign function, its numerical studies

require more computational resources than the Wilson fermion formulation.

Hence, for the numerical implementation of massive overlap fermions the methods

used by the χQCD collaboration [168, 172] were followed. The gauge configurations were

first fixed to Coulomb gauge and then HYP smeared [173]. Low mode deflation technique

was employed in the inversion of the Hermitian Wilson Dirac operator (γ5Dw). In these
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calculations, we projected out 350 and 160 low lying Wilson eigenmodes for the coarser

and the finer lattices, respectively, using Arnoldi algorithm. The matrix sign function

of the Hermitian Wilson Dirac operator in the overlap Dirac operator is calculated with

22nd degree Zolotarev rational polynomial approximation [174, 175]. We used periodic

boundary condition in the spatial and anti-periodic in the temporal directions. Using

both point and wall sources and sinks, we calculated various hadron two point correlation

functions. The adaptation of the multi mass algorithms on overlap action helped us

to calculate the quark propagators over a wide range of quark masses with 10 − 12%

overhead. Our extracted pseudoscalar meson masses are within the range 400 − 5130

MeV and 230 − 4000 MeV for the coarser and finer lattices respectively. The valence

strange quark mass was tuned by setting the s̄s pseudoscalar mass to 685 MeV [176]. At

heavy quark masses, one need to be careful about the discretization errors. The charm

mass is tuned by setting the spin-averaged 1S state mass, (mηc +3mJ/ψ)/4, to its physical

value, where we take into account the kinetic mass, as defined below, in the definition

of mass. As in the previous sections, in the following sections also, we will discuss our

estimates for mesons and baryons mostly in terms of energy splittings as those have less

systematics compared to extracted energies.

5.3 Discretization errors

Since ma is not very small, we need to be careful about discretization errors. Overlap

action does not have O(ma) errors. In order to estimate the size of discretization errors

coming from higher orders of ma, we look at the energy-momentum dispersion relation of

the 1S charmonia. A naive construction of finite-momentum meson correlation functions

by projecting the point-point meson correlation function to a suitable momentum is

in general noisy, and require large statistics. Hence in these calculations of dispersion

relations, we use a momentum induced wall source to construct the quark propagators,

which are later used to project the meson correlators to suitable momentum. Below we

briefly discuss this method, which is found to improve the SNR ratio significantly in the

finite momentum correlators with much less statistics [127].
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5.3.1 Finite momentum meson correlators

The mode expansion of a quark propagator from a point source is given by

S(x′µ;xµ) =
1

L3 Nt

∑
kµ

eikµ(xµ−x′µ)S̃(kµ). (5.3)

A quark propagator constructed out of a momentum (k1,m = 2πm
L

) induced wall source is

defined as :

∑
x′1,x

′
2,x
′
3

eik1,mx′1S(x′µ;xµ) =
∑

x′1,x
′
2,x
′
3

eik1,mx′1

L3 Nt

∑
kµ

eikµ(xµ−x′µ)S̃(kµ),

=
eik1,mx1

Nt

∑
k4

eik4(x4−x′4)S̃(k1,m, 0, 0, k4),

= S(x1, x4;x′4; k1,m). (5.4)

With m = 0, we get back the wall source,

∑
x′1,x

′
2,x
′
3

S(x′µ;xµ) =
1

Nt

∑
k4

eik4(x4−x′4)S̃(0, 0, 0, k4) = S(x4;x′4). (5.5)

Construction of finite momentum meson correlation function follows by introducing

another phase factor in the final momentum projection, so as to compensate the phase

factor that was introduced in the source. Local meson interpolating operators possess

the form ψ̄Γψ(x ), where Γ carries the quantum numbers. With the use of momentum

induced wall sources, the finite momentum correlation functions for such operators can

be written as

∑
x,y,z

e−ik1,nx1〈ψ̄Γψ(x ) ¯̃ψmΓ′ψ̃0(x ′)〉

=
∑
x,y,t

Tr{ΓS(x1, x4;x′4; k1,m)Γγ5S
†(x4;x′4)γ5} e−ik1,nx1

= Tr{ Γ

Nt

∑
k4

eik4(x4−x′4)S̃(k1,m, 0, 0, k4)

×Γγ5

Nt

∑
k′4

e−ik
′
4(x4−x′4)S̃(0, 0, 0, k′4)γ5}

∑
x1

ei(k1,m−k1,n)x1 , (5.6)
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and ∑
x,y,z

e−ik1,nx1〈ψ̄Γψ(x ) ¯̃ψmΓ′ψ̃0(x ′)〉 =

M(k1,m) if m = n

0 if m 6= n
(5.7)

Here ψ̃m(x′) is the momentum induced quark source field with a phase factor, eik1,mx′1 ,

and M(k1,m) is the finite momentum meson propagator with a momentum, k1,m.
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Figure 5.1: Energy-momentum dispersion relation for the ηc on the coarser lattices with
a = 0.09 fm. Also shown are the continuum relativistic dispersion relation (solid line),
and the lattice dispersion relation (dashed line) for the standard scalar action.

Employing this method and simple point source, we calculated pseudoscalar meson

mass at various external momenta p2 = n2 (2π/L)2, with n ≤ 2. While the momen-

tum induced wall requires a separate inversion for each momenta, that is more than

compensated by the improvement in the signal, as shown in Figure 5.1. In this fig-

ure, we show both point source and momentum induced wall source results for the

coarser lattice. Also shown are the continuum dispersion relation, E2 = m2 + p2,

and the lattice dispersion relation for the standard scalar action with O(m2a2) error,

sinh2(E(p)a/2) = (sinh2(ma/2))2 + sin2(pa/2). Note that the wall source results are

from 8 configurations, but the statistical error is already comparable to that from 100

configurations with the point source. While substantial deviation from the continuum

dispersion relation is seen, the lattice scalar dispersion relation seems to explain the data

quite well.

For a more quantitative analysis, we follow the standard practice of introducing an

effective “speed-of-light” c through E2(p) = m2 + p2c2. The value of c obtained using
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Figure 5.2: c2 = (E2(p) − E2(p = 0))/p2 calculated for ηc at various values of p, on
lattices with a = 0.09 fm. Solid horizontal lines represent the estimate ma/ sinh(ma),
suggested by the lattice scalar action.

this relation and E(p) at various p are shown in Figure 5.2. As the figure shows, we get

c2 ∼ 0.75 on our coarser lattices. Using quenched overlap fermions, on an even coarser

lattice, Ref. [177] found c2 ∼ 1 for the charm. However, on our dynamical lattices, we

obtained c2 values similar to that obtained in the literature with clover action, indicating

a similar size of cutoff in the overlap action as that in the clover. The c2 values are

well-approximated by the estimate ma/ sinh(ma), suggested by the lattice scalar action.

With such a large deviation of c from unity, the discretization errors entering due to

uncertainty in the tuning of charm mass could be very large. In a second attempt, we

used an expansion of the energy-momentum dispersion relation in powers of pa, assuming

p << m0 & 1/a,

E(p)2 = M2
1 +

M1

M2

p2 +O(p4) = M2
1 + p2c2. (5.8)

Here M1 is the called pole mass, E(0) : which is the same as rest mass in our previous

definition, and M2 is called the kinetic mass (M1/c
2). The difference between M1 and

M2 is a measure of O(ma) cutoff effects. As highlighted in Ref. [178], in the so-called

Fermilab interpretation, since M2 controls the non-trivial physics of a heavy hadron

system, in using a relativistic action for heavy quarks, one should use M2 to measure the

masses. In Figure 5.3, we show E(p)2 for various momenta for the pseudoscalar meson on

our finer lattices. The green line is for the continuum dispersion relation, E2 = m2 + p2,

while the blue line is the fitted dispersion relation with c = 0.96(2). For coarser lattices
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Figure 5.3: Energy-momentum dispersion relation for the pseudoscalar meson at charm
mass on the finer lattices. Blue line is with c = 0.96(2) obtained by fitting our data while
green line is with c = 1.

we obtain c = 0.92(3). With a better estimate for c, kinetic mass proved to be a good

candidate to be used for tuning the charm quark mass, as mentioned in the previous

section.

5.4 Results

In this section, we discuss our results from these calculations. We studied pseudoscalar

meson masses in a broad range of energies spanning between 400− 5130 MeV and 230−
4000 MeV for the coarser and finer lattices respectively. Figure 5.4 shows two plots of

mπ versus mq for the range of quark masses we performed the computations for coarser

and finer lattices respectively.

We start our discussion with various energy splittings in mesons, including hyperfine

splittings, in the following section. Following which, we discuss our estimates for various

charm baryons, and their comparison with our previous calculations and other lattice

determinations in literature.

5.4.1 Hyperfine splitting in 1S charmonia

The hyperfine splitting in 1S charmonia is one of the most well studied physical quan-

tities in lattice charmonium calculations over the year, and until very recently [72, 73]
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Figure 5.5: Effective hyperfine splitting in 1S charmonia for wall-point correlators for
lattices with spacing 0.0582 fm. Horizontal lines show the fit results with one sigma
error.

lattice results were found to be smaller than the experimental value (∼ 116 MeV). This

underestimation is now understood to be mainly due to the discretization error associ-

ated with the charm quark action and the quenched approximation. The effects due to

the discretization errors are evident in the results from the excited state spectroscopy

calculations using a tree level tadpole improved cs value, where this hyperfine splitting

is found to be ∼40MeV below the experimental value. In this study, we calculated this

splitting. In Figure 5.5, we show the effective splittings between vector and pseudoscalar
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correlators (jackknifed) at the tuned charm mass for wall-point correlators on finer lat-

tices. horizontal lines shown are the fit results, with one sigma error bar. Our final

estimate for this hyperfine splitting are 125(6) MeV and 119(3) MeV corresponding to

coarser and finer lattices respectively. A com
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Figure 5.6: Meson mass splitting for charmonia and charmed-strange mesons at two
lattice spacings. Experimental values are shown in the left side.

5.4.2 Energy splittings in charmonia and charmed-strange mesons

Beside 1S hyperfine splittings, it is also important to consider energy splittings between

various other charmonia. In Figure 5.6, we plot energy splittings between axial, scalar and

tensor charmonia from pseudoscalar charmonium. In addition to this, we also calculate

charmed-strange mesons with various quantum numbers. Energy splittings between these

mesons are plotted in Figure 5.6. It was observed that tuning of charm mass by using

kinetic mass has brought these splittings more closer to experimental values than those

obtained using the rest mass [127]. After adding one more lattice spacing, the continuum

extrapolation will be carried out in future.

5.4.3 Charmed baryons

Our main motivation is to compare baryon masses calculated in this formalism with those

obtained from the excited state spectroscopy study. Here we investigate that by studying

the ground state spectra of charm baryons with one or more charm quark content, e.g.,
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with quark content css, ccs, and ccc on these lattices. To project out the baryon states

with 1/2 spin, we use the following standard local interpolating operators :

Ωcc ⇒ εabc[cTaCγ5sb]cc and Ωc ⇒ εabc[sTaCγ5cb]sc,

with C = γ4γ2 being the charge conjugation matrix. For spin 3/2 baryons, we choose the

following operators :

Ωccc ⇒ εabc[cTaCγµcb]cc, Ωcc ⇒ εabc[cTaCγµsb]cc and Ωc ⇒ εabc[sTaCγµcb]sc.

However, these operators has both spin 1/2 and 3/2 projections in them. At zero mo-

mentum the corresponding correlation functions using these operators can be written

as

Cij(t) = (δij −
1

3
γiγj)C3/2(t) +

1

3
γiγjC1/2(t),

where i and j are the spatial Lorentz indices and C3/2(t) is the correlation function for

spin 3/2 state [179]. By choosing the appropriate Lorentz components, the spin 3/2 part

of the correlation function, C3/2(t), can be extracted and used to calculate the mass of

the spin 3/2 baryons.

The discretization effects will be maximum for triply charmed baryons since they have

three heavy charm quarks, followed by doubly charmed baryons made with two charm

quarks. Hence we first compare the results of Ωccc obtained from these two independent

studies. The mass splittings Ωccc − 3
2
J/Ψ are shown in Figure 5.7. The factor 3/2

accounts for the difference in the valence charm quark content in the baryons and the

mesons. The blue rectangles represent the results from this work for the two different

lattice spacings, while the rectangles in red are results from the work discussed in the

previous section. The two red points corresponds to the estimates from the tree-level

clover coefficient cs = 1.35 and at a boosted value of cs = 2 (see Section 4.1.2), which

gives correct charmonium hyperfine splitting, J/ψ−ηc. The consistency between the red

and blue squares is evident. We also plot results from other lattice calculations (violet

: Ref. [87], green : [88]). These can also be seen to be consistent with our estimates.

We have omitted the estimate from Ref. [84], as the error bar was very large, though

consistent with our estimates. Different variety of discretization used in above references.

Our calculations were with anisotropic clover and overlap fermions, while Ref. [87] used

Brillouin quraks and Ref. [88] used relativistic heavy quark action for the heavy quarks.

The agreement between our calculations and furthermore with results from other lat-
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+
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factor 3/2 is multiplied with J/ψ mass to account for the difference in the number of
charm quarks in baryons and mesons. This mass splitting mimics the binding energy
of the ground state Ωccc. Results of this mass splitting from this work (blue boxes) are
compared with those obtained from calculations discussed in the previous section (red
box). Along with we compare estimates that are available from various lattice and quark
model calculations available in the literature.

tice calculations gives us confidence in our estimates from the excited state spectroscopy

calculations. While this consistency in results also make our calculations using overlap

fermions itself serve an excellent formalism to study heavy quark systems. We also quote

a few quark model calculations (orange) in the Figure 5.7, to show how potential mod-

els stand in predictions for the triply charm systems. As one can see that, though the

relativistic calculations by Martynenko [50] and bag model calculations by P. Hasenfratz

[30] lie in the range of lattice predictions, a relativistic calculation by Migura, et al.,

accounting for the spin dependence of the confining potential in two different ways gives

widely different estimates [51]. This plot can potentially provide crucial input to the

future discovery of Ωccc.

Next we calculate various spin splittings for doubly charm baryons where one also

expect larger discretization error. We have already shown the numbers from this calcu-

lation in Figure 4.18 and Figure 4.24 while comparing the numbers from the previous
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Figure 5.8: Mass splittings of Ωcc − J/Ψ. The inset plot shows the hyperfine splitting in
this channel. Also shown are other lattice determinations.

calculations with results from various lattice calculation. For a completeness, we show

the results here again. We find our results from the excited stated spectroscopy calcula-

tions and the calculations using overlap fermions are consistent with each other. We also

find similar consistency of our results with estimates from other lattice calculations. In

Figure 5.8, we show the results for 1/2+ and 3/2+ ground states for the Ωcc baryon in

terms its splitting from mJ/ψ. Along side we plot estimates from other lattice determi-

nations. It is to be noted that these baryons are yet to be measured experimentally. The

inset plot shows the corresponding hyperfine splitting. Our results for both the splittings

are consistent with other lattice results [80, 84, 86, 88, 114]. This agreement further

boosts the confidence in our results from our excited stated spectroscopy calculation and

the applicability of overlap fermions in heavy quark systems. In Figure 5.9, we plot our

estimates for the Ωc baryons. It shows the 1/2 and 3/2 ground states for the Ωc baryon

for both the parities. We also quote the experimental numbers also in the plot, so as to

have a comparison. While there are observations for the positive parity states, the neg-

ative parity states are yet to be measured experimentally. In the inset plot, we show the

hyperfine splitting in this baryon, and make a comparison with other lattice estimates.

Once again the consistency in our findings validates the credibility in our results.
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5.5 Summary, conclusions and future prospects

In this chapter, we discuss an alternative dynamical lattice QCD calculation of the low

lying heavy hadron states. The main motivation is to compare the results between

two independent calculations by two different type of discretization and then get an

estimate of the discretization effects in energy spectra. Using a mixed action approach,

we utilized the highly desirable features of small discretization errors and small taste

breaking effects of the HISQ action and the small discretization effects and the low quark

mass limit of the overlap fermion action. We are thus able to study a long range of

pseudoscalar meson masses from 230 − 5000 MeV. By tuning the charm quark mass

using the kinetic mass, we made sure the discretization errors due to the uncertainty in

the charm mass tuning is small. And at this tuned charm mass, we extracted the meson

and the baryon spectra containing one or more charm quarks. We observed that results

from our two independent methods are consistent with each other. Furthermore, we made

a comparative study of our results with results from other lattice calculations and quark

model calculations. The consistency within the lattice calculations and the agreement of

those with the experimental values, wherever available, validates the credibility in both of

our calculations. Thus, this calculation serves simultaneously as a complementary study

to compare the results from our previous calculations and as an independent study with

improved control over the systematics that gives predictions about the low lying charm

hadron spectrum.



Chapter 6

Baryons at finite temperature

6.1 Introduction

In this chapter, we will describe our investigations of the nature of the strongly interacting

matter at high temperatures using baryonic probes. The QCD matter undergoes a change

of phase when its temperature is varied: from a chiral symmetry broken state of color

singlet objects called hadrons at low temperatures to a deconfined chiraly symmetric state

of the quark gluon plasma at high temperatures. It has been observed from many lattice

calculations that there is no sharp phase transition but a cross-over from the hadronic to

the deconfined state. One the other hand, in a pure gluonic field theory, this change of

phase proceeds through a first order transition. In this work, we focused on the hadronic

correlation lengths that exist in a pure SU(3) gauge theory above and immediately below

the deconfinement transition temperature, Tc. These correlations will help us understand

the non-perturbative nature of QCD with varying temperature.

The starting point of the lattice computations of the correlation lengths in QCD

medium at finite temperature, T, is the thermodynamic partition function,

Z = Tr{e−βT HQCD}, (6.1)

where HQCD is the QCD Hamiltonian and βT = 1/T (kB = 1). This partition function

can be expressed as a path integral of the QCD action, SQCD (eq. (3.5)), over a four

dimensional Euclidean space-time with a compactified temporal direction of extent βT =

1/T ,

ZT =

∫
DψDψ̄DAµe

−SQCD . (6.2)

116
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At finite temperature, the fermion and the gauge fields must satisfy anti-periodic and

periodic boundary conditions along the temporal direction respectively due to the trace

relation

ψ(x̄, t+ 1/T ) = −ψ(x̄, t), Aaµ(x̄, t+ 1/T ) = Aaµ(x̄, t) (6.3)

After discretizing the space-time, the physical volume of the system is V = N3
s a

3 and

T = 1/(Nta), where Ns an Nt are the number of lattice points along the spatial and the

temporal directions.

We study the QCD medium at finite temperatures by looking at the static correlation

functions,

O(z) =
1

Z
Tr(h(z)h(0)e−βT HQCD) and

O(z) |z→∞ = b exp [−µ(T )z]. (6.4)

Static correlation lengths (µ) indicates the spatial distance beyond which the effects of

putting a test hadron in the medium is screened. This response depends on the quantum

numbers carried by the probes; so one can classify static correlators as glueball-like,

meson-like and baryon-like probes with the usual quantum numbers of these quantities

corrected for the fact that the static spatial symmetries are different from the Poincare

group.

Meson-like screening masses have been studied in QCD in great detail [128, 129, 130,

131, 132, 133, 134, 135]. Baryons at finite temperature has not been studied in detail

in recent past and a few notable works were in the late 1980’s [128, 133]. Moreover, a

detailed study of the baryon screening masses in the low temperature phase also has not

been performed yet. In this work, we perform simulations of pure gauge theory for three

different temperatures across the transition temperature and study screening correlators

for mesonic and nucleonic resonances with clover fermions. The main emphasis, in this

work, has been given to the nucleon channels, which are expected to provide important

inputs to the study of baryon number fluctuations and thus to the experimental search

for the critical point of QCD.

The organization of this chapter is as follows. In Section 6.2 we discuss technical

details related to the simulation, inversion and analysis, including the details of inter-

polating operators used and their asymptotic fit forms. In Section 6.3 and Section 6.4

we display the results for mesonic and baryonic channels, respectively, for temperatures

above and immediately below Tc. In Section 6.5, we compare our results on screening
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masses with the estimates from free theory and the other existing lattice calculations.

Section 6.6 summarizes and concludes this study of hadrons at finite temperature. Ap-

pendices 6.A and 6.B discusses two technical aspects related with these calculations,

which interested reader is referred to in the main section in this chapter.

6.2 Runs and measurements

T/Tc Nτ ×N3
s β Nconf cSW κ

0 32× 163 6.03 71 1.7333 0.1345, 0.1347
0.95 8× 323 6.03 94 1.7333 0.1345, 0.1347
1.5 8× 323 6.332 67 1.5667 0.1345, 0.1350, 0.1355

Table 6.1: The simulation and measurement parameters used in this work. β is the
bare coupling for the Wilson gauge action, cSW is the clover coefficient (determined non-
perturbatively using eq. (2.22)), and κ is the hopping parameter in the improved Wilson-
Dirac operator.

The hadronic correlation functions with mesonic and baryonic quantum numbers were

constructed out of clover-improved Wilson quarks [143], in zero and finite temperature

ensembles generated using the Wilson gauge action. The finite temperature configura-

tions were generated on lattices with lattice spacing a = 1/(8T ) with T = 0.95Tc and

1.5Tc. The spatial size of the lattice, L, was tuned such that LT = 4. We use the notation

L = Ns a and V4 = V/T . Zero temperature measurements were carried out on (2L)×L3

lattices with coupling β = 6.03, which corresponds to the same lattice spacing as the

finite temperature run below Tc [180, 181]. The box size, L, is sufficiently large (> 4

times the Compton wavelength of the lightest state on the lattice) in all our lattices, as

a result of which finite volume effects are under control. A zero temperature study at

β = 6.332, corresponding to the thermal ensemble above Tc was not made, but the corre-

sponding choice of κ was made so that we could use a previous study [182]. Details of the

simulation and measurement parameters are tabulated in Table 6.1. With the choices of

κ listed for β = 6.332, the values of mπ/Tc are 1.52, 2.58, and 3.31 respectively.1.

The zero momentum correlation functions for the mesonic channels are,

SH(t) =
∑
x

〈H†(x, t)H(0, 0)〉, where H(x, t) = ψ̄(x, t)ΓHψ(x, t), (6.5)

1Discussion on a subtle aspect related to the studies has been omitted from the main text and has
been discussed in detail in the Appendix 6.A
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where ψ(x, t) is the quark field at time t and spatial point x (we will also use the com-

ponent notation x1 = x, x2 = y and x3 = z). The sum over all spatial sites of the

point-to-point correlator projects on to zero spatial momentum. All Dirac, flavor, and

color indices are summed. ΓH is an appropriate Dirac, flavor matrix which gives the

quantum numbers of the meson, H. In actual practice, we replaced the point source of

eq. (6.5) by a wall source (see eq. (5.5)). Wall source allows the suppression of high mo-

menta modes, especially above Tc, allowing more accurate study of the screening masses,

which are related to the long distance behavior of the static correlation function in eq.

(6.5). Wall source being a gauge non-invariant source, this required gauge fixing; we fixed

to the Coulomb gauge.

We used ΓPS = γ5 for the isovector pseudoscalar (PS), ΓS = 1 for the isovector scalar

(S), ΓV = γi for the vector (V) and ΓAV = γiγ5 for the isovector axial vector (AV)

channels. For the T = 0 measurements, we considered propagation in the time direction

as shown in eq. (6.5), and since all the orthogonal directions are equivalent, we summed

the V and AV propagators over the three polarizations i = 1, 2, 3. For the screening

correlators all the polarizations of the V and AV are not equal, and we summed over only

i = 1 and 2.

Masses and screening masses can be obtained without renormalization. They were

estimated, as described in Section 3.1, by fitting to an assumed cosine-hyperbolic form,

and looking for agreement with effective masses. Statistical errors on masses are obtained

by a jackknife procedure. The propagation of statistical errors is done by jackknife when

they could be correlated, and by adding in quadrature when they are independent.

(a) (b) (c)

Figure 6.1: Quark line diagrams which couples with scalar propagator in the full theory.
In the quenched theory (c) does not contribute.

Though analysis of meson correlators is straight forward, scalar correlators in quenched

calculations require special care. There have been several calculations to study the isovec-

tor scalar meson (a0) at zero temperature with the ψ̄ψ interpolation field in the quenched

approximation [183, 184, 185]. In all these works the scalar correlation functions were

found to change the signature between the source point and Nτ/2 violating spectral pos-

itivity. In this work, we make the observation of similar interesting unphysical behaviors

of the scalar correlators at finite temperature (see for example Figure 6.2). An expla-
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nation of this behavior based on quenched chiral perturbation theory (QχPT) has been

discussed in [183, 185]. Unlike full QCD, the contributions to the scalar correlator in

the quenched approximation comes only from diagrams Figure 6.1(a) and Figure 6.1(b).

The diagram Figure 6.1(b) is equivalent to the propagation of η − π intermediate state

along significant fraction of the time in the correlation function, in contrast with the

diagram Figure 6.1(a), which corresponds to the propagation of a scalar excitation. The

negative value of the ψ̄ψ correlator appears due to the absence of the diagrams like in

Figure 6.1(c), and hence does not compensate for the coupling of scalar with the η − π
ghost state appearing due to the presence of Figure 6.1(b). In quenched calculations the

intermediate η − π state is equivalent to π − π state and hence we use twice the mass of

the pseudoscalar excitation in our studies to estimate its binding energy.
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Figure 6.2: Scalar correlation functions below the deconfinement transition temperature,
Tc: for temperatures T = 0 (red) and T/Tc = 0.95 (blue) and mπ/Tc = 1.99. The con-
tinuous curves are the fit estimates using the asymptotic fit forms predicted by quenched
chiral perturbation theory (eq. (6.6)).

In references [183, 185], it has been argued that the large time behavior of the zero

temperature scalar correlator in the quenched theory is given by

SQχPT (t) = b {exp [−mSt] + exp [−mS(Nt − t)]}

−aS {(1 +mπt) exp(−Eη′πt) + (1 +mπ(Nt − t)) exp(−Eη′π(Nt − t))} . (6.6)
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The negative term is explicitly due to the quenched ghost. mπ/S are the masses of the

PS and S meson, Eη′π is the energy of the ghost state (Eη′π = 2mπ−Eint) and −aS is the

coupling to the ghost. Since the ghost exactly cancels a physical term, these two param-

eters are physical. For sufficiently small mπ the second term dominates at intermediate

distances, leading to negative values for the correlator. Though the asymptotic form in

eq. (6.6) has been derived for zero temperature, in our calculations we have used the

same form at finite temperature to study the thermal effects for the scalar meson. The

continuous lines in Figure 6.2 are the best fit curves describing the unphysical coupling,

obtained by fitting the tail of the correlation functions with the coupling term as in eq.

(6.6). This negative dip becomes prominent as one decreases the quark mass.

The SUL(2)×SUR(2) chiral symmetry of the QCD vacuum is restored above Tc. The

anomalous UA(1) remains broken asymptotically, although its effects are seen to be small

at temperatures of 1.5Tc. The most straightforward consequence of this is that the S/PS

and the V/AV correlators should become pairwise degenerate in the high temperature

phase. The observation of some breaking of this symmetry has been an issue of some

interest recently [134]. Here we introduce a new measure for this symmetry—

RH =
1

Nt − 1

Nt−1∑
t=1

〈SH+(t)− SH−(t)〉
〈SH+(t) + SH−(t)〉

, (6.7)

where SH±(t) are parity partner correlators (for the screening correlators t is replaced by

z and Nt by Ns), and the angular brackets are averages over the gauge ensemble. The

correlators at t = 0 are left out of the sum to avoid problems with time doublers. We

will use the convention of taking the positive parity partner for the label H. When chiral

symmetry is broken we expect RH ' O(1).

One subtlety in computing RH is that the lattice mesonic currents need to be renor-

malized to connect them with the continuum currents, before SH could be used to com-

pute RH. For quarks of mass mq, the lattice operators, H(x, t), are multiplicatively

renormalized to

ZH(g2)
(

1 + bH(g2)amq

)
H(x, t), (6.8)

where a is the lattice spacing, g2 = 6/β, and amq = (κ − κc)/2. We use the results

in the MS scheme where the renormalization constants are determined at the scale of

1/a. For non-perturbatively improved clover fermions, the factors ZV ,AV and bV have

been calculated non-perturbatively [186], where the following interpolating formulae are
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found:

ZV =
1− 0.7663g2 + 0.0488g4

1− 0.6369g2
, ZAV =

1− 0.8496g2 + 0.0610g4

1− 0.7332g2
,

bV =
1− 0.6518g2 + 0.1226g4

1− 0.8467g2
. (6.9)

For the other coefficients, we use the expression from the one-loop, tadpole improved

perturbation theory [187]:

ZPS,S = u0

(
1− zPS,Sg̃2

)
, (6.10)

where u0 is the tadpole factor, 〈P 〉 = u4
0, g̃2 = g2/u4

0, and the one-loop coefficients zPS,S

as obtained from [188] are zPS = 0.107−0.019c̃SW +0.017c̃2
SW and zS = 0.026+0.065c̃SW−

0.012c̃2
SW where c̃SW = u3

0cSW . The one-loop order tadpole-improved forms of bH can be

written as

bH =
1

u0

(
1 + b1

H g̃
2
)
. (6.11)

where one obtains from the calculations of [189] the values b1
PS = 0.109, b1

S = 0.070, and

b1
AV = 0.069, computed for the tree-level c̃SW = 1.

For the nucleon operator we used

Nα(x, t) = εabc(Cγ5)βδψ
a
α(x, t)ψbβ(x, t)ψcδ(x, t), (6.12)

where α, β, and γ are Dirac indices, a, b, and c are color indices, ε is the Levi-Civita sym-

bol, and C is the charge conjugation operator. The projection of the correlation function

on to vanishing spatial momentum is performed by the usual means of summing over x

at T = 0 where we imposed periodic boundary conditions in all directions. However, at

finite temperature, anti-periodic boundary conditions must be imposed on quark fields in

the Euclidean time direction. As a result, the screening correlator must be projected to

the lowest Matsubara frequency [128]. The parity projection operators for the correlator

whose propagation is measured in the direction µ is

Pµ± =
1

2
(1± γµ). (6.13)

The zero momentum correlators of the two parities of the nucleon can be fitted to the
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behavior expected of a Wilson fermion—

SN+
(t) = c+ exp [−µ̄N+

t] + c− exp [−µ̄N−(Nt − t)]

SN−(t) = c− exp [−µ̄N−t] + c+ exp [−µ̄N+
(Nt − t)]. (6.14)

Because of the admixture from opposite parity states, these correlators change sign across

the middle of the lattice. It is to be noted that this structure is also expected for the

excited baryon spectrum for both the parities. It is because our construction and the

analysis were always concentrated on the temporal ranges close to the source point in the

forward temporal direction, we did not encounter this behaviour in Chapter 4. In this

work, we study this structural behaviour in the nucleon correlations to study the chiral

symmetry across Tc. For this, we used the absolute value of the correlators above. We

note that RN does not require knowledge of ZN , because the parity partners are generated

by the same lattice operator. For the T = 0 measurement, where µ̄N± = mN± . For the

finite temperature measurement where we replace t by z, we have

µ2
N± = µ̄2

N± − sin2(π/Nt), (6.15)

where we have subtracted the contribution coming from the anti-periodic boundary along

the temporal direction [128].

6.3 The meson sector

κ mπ/Tc mV /Tc mAV /Tc
0.1345 2.20± 0.03 3.55± 0.06 5.6± 0.4
0.1347 1.99± 0.03 3.53± 0.08 5.5± 0.5

Table 6.2: Meson masses in units of Tc at T = 0 and β = 6.03.

The analysis of meson masses at T = 0 follows the procedure described in Section 3.1.

The results are collected in Table 6.2. We choose to express all results in units of Tc for

two reasons. First, because quenched QCD is not open to experimental tests and hence

quoting numbers in MeV units is based on assumptions which cannot be tested. We

prefer to quote ratios of quantities, which are computable in practice. Second, because in

quenched QCD the critical coupling is known with high precision, and Nt = 8 is within
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the scaling region [190], the statistical and systematic errors involved in using this as a

scale are completely under control.

mπ/Tc H µH/Tc µH/mH

2.20 PS 2.18± 0.02 0.99± 0.02
V 3.45± 0.06 0.97± 0.02

AV 5.18± 0.09 0.93± 0.06
1.99 PS 1.97± 0.02 0.99± 0.02

V 3.31± 0.07 0.94± 0.03
AV 5.1± 0.1 0.92± 0.08

Table 6.3: Meson screening masses, µH at T = 0.95Tc in units of Tc and the corresponding
T = 0 meson mass, mH.

The analysis of most mesonic correlators below Tc is equally straightforward. The

only subtlety has been mentioned earlier: since the zero momentum screening correlator is

measured for separations along the z-direction, the three polarizations states of the V and

AV are two spatial and one temporal. The temporal polarizations have behavior distinct

from the spatial polarizations [191]. We measure the screening masses of the spatial

polarizations only. Our main results for the screening masses below Tc are summarized

in Table 6.3. Our results shown in Table 6.3 indicates that the pole mass of the mesons

is hardly affected by temperature.

T = 0 T = 0.95Tc
mπ/Tc Eint/mπ χ2/dof Eint/mπ χ2/dof
2.20 0.6± 0.2 1.92 −0.1± 0.8 0.25
1.99 0.5± 0.2 1.28 0.1± 0.7 0.57

Table 6.4: Eint in units of mπ obtained by fitting the scalar correlator with the fit form
in eq. (6.6).

We treat the scalar correlator separately because of its distinctive behavior in corre-

lation functions compared to those for other mesons as shown in Figure 6.2. Table 6.4

contains the measure of the binding energy (Eint), in units of mπ, extracted by fitting

the scalar correlation functions with the functional form in eq. (6.6) at both T = 0 and

for T < Tc. Eint at T = 0 is non-zero at the 95% significance level for both values of

mπ which we used. While the finite temperature measurements are statistically indis-

tinguishable from these, they are consistent with zero within errors, due to the larger
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fit errors at T > 0. It is interesting to note that the central values of Eint at T > 0 lie

outside the 2σ errors of the T = 0 measurement.
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Figure 6.3: A signal of restored chiral symmetry above Tc is that (a) the PS and S
correlators and (b) the V and AV correlators become degenerate. The continuous curves
are correlation functions in a FFT; in order to remove trivial artifacts, these have been
computed on a lattice of the same size.

As described in the previous section, chiral symmetry restoration in the high temper-

ature phase of QCD is signaled by pairwise equality of correlators which are related to

each other by parity. This is the case shown in Figure 6.32. The figure also shows that the

correlation functions are not too far from those expected in a theory of non-interacting

quarks (also called the free field theory, FFT).

At T = 0 in the V/AV sector we found RV = 0.73 ± 0.02; at T = 0.95Tc this drops

marginally to RV = 0.59 ± 0.02 for both the bare quark masses we have used. This

indicates that chiral symmetry remains strongly broken up to 0.95Tc. A simple model of

V/AV mixing below Tc was presented in [192] using a mixing parameter ε, which can be

adapted to our use by writing schematically

SV (T ) = (1− ε)SV (0) + εSAV (0), and SAV (T ) = (1− ε)SAV (0) + εSV (0). (6.16)

This gives RV (T ) = (1−2ε)RV (0). Using the values quoted above, we find ε = 0.10±0.02.

In the unquenched theory one may expect much larger values of this parameter below

Tc [192]. We observed that at T = 1.5Tc the value of RV drops as a power of the quark

mass, vanishing as mπ vanishes (see Figure 6.4). However, there is no dependence of RS

2The quantity in the x-axis is a dimensionless measure of the lattice extension in units of the tem-
perature, T . It is thus labeled, and runs from 0→ 4, because for the finite temperature lattices LT = 4.
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on the quark mass.
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Figure 6.4: Above Tc, RS is found to be almost independent of mπ/Tc. However, RV goes
to zero as a power of mπ/Tc, showing that correlation functions of the parity partners V
and AV do become exactly degenerate in the limit.

We have extracted screening masses, µH from the correlation functions. We found that

effective masses showed a good plateau which agreed with fits, unlike previous experience

with Wilson quarks at T > Tc [130]. The main reason for this is the use of wall source and

the details are explored in Appendix 6.B instead of a point source, where some effective

mass plateaus are also displayed. Our results for the screening masses are collected in

Table 6.5. The pairwise degeneracy of the masses is quite evident. It is also evident that

the screening masses are close to that expected in a theory of free quarks. The screening

masses in the S/PS channel are 7–9% smaller than that in the free theory, whereas in

the V/AV channel they are within 2–3% of the free theory.

mπ/Tc µPS/T µS/T µV /T µAV /T µN+
/T µN−/T

1.52 5.54± 0.02 5.59± 0.04 5.88± 0.02 5.89± 0.02 8.72± 0.10 8.68± 0.10
2.58 5.56± 0.02 5.59± 0.02 5.90± 0.02 5.91± 0.02 8.75± 0.10 8.73± 0.10
3.31 5.61± 0.02 5.65± 0.02 5.95± 0.02 5.96± 0.02 8.82± 0.08 8.77± 0.09

Table 6.5: Hadron screening masses at T = 1.5Tc for three different masses of quarks.
In FFT all the mesonic (baryonic) screening masses are expected to be 5.99 (8.44),
5.995 (8.456) and 6.01 (8.48) on our lattices, when the bare quark mass is tuned to give
mπ/Tc = 1.52, 2.58 and 3.31 respectively.
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6.4 The baryon sector

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0.5  1  1.5  2  2.5  3  3.5  4

S
N

+
,-
(t

)/
T

c
3

t Tc

m
π
/Tc = 1.99

N+
N-

(a)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0.5  1  1.5  2  2.5  3  3.5

S
N

+
,-
(z

)/
T

c
3

zT

m
π
/Tc = 1.99

N+
N-

(b)

Figure 6.5: Nucleon correlators at (a) T = 0 and (b) T = 0.95Tc. Both sets are asym-
metric, showing that the nucleon, N+ and its parity partner, N−, are not degenerate.

Analysis of baryon correlators requires more care than meson correlators. This is be-

cause states of opposite parity contribute to each parity projected correlator, as explained

in eq. (6.14) and shown in Figure 6.5. This contribution from the parity partners that

are non-degenerate due to chiral symmetry breaking causes the asymmetric behavior in

the nucleon correlation function, as is evident from Figure 6.5(a). As a result, both the

fitting procedure and the extraction of effective masses is more complex than the analysis

for mesons. In addition, the projection of the screening correlator on to zero momentum

requires a twist to compensate for the thermal boundary condition [128]. The subsequent

extraction of a screening mass from the nucleon correlator also requires the subtraction

of (see eq. (6.15)) resulting in additional loss of precision.

In Figure 6.5, it would appear that the finite temperature correlators are more nearly

symmetric than those at T = 0. Whether or not there is an early onset of chiral symmetry

restoration can be probed by constructing the measure RN , defined by eq. (6.7). At

T = 0 we find RN = 0.88 when mπ/Tc = 2.20 and 0.89 at the lower quark mass. At

finite temperature these change to RN = 0.8 and 0.83 respectively. Contrary to the visual

impression created by Figure 6.5, once the covariances between the N± correlators are

accounted for, the correlation functions themselves do not show any tendency towards

early restoration of chiral symmetry. In fact if we adapt the model of eq. (6.16) to this

case, we find a mixing parameter ε = 0.04 in the nucleon sector, which is even smaller

than that found for the V/AV at the same temperature.



Baryons at finite temperature 128

mπ/Tc mN+
/Tc µN+

/Tc mN−/Tc µN−/Tc
2.20 5.10± 0.10 5.3± 0.2 6.8± 0.4 6.6± 0.4
1.99 4.9± 0.1 5.28± 0.14 6.7± 0.5 6.4± 0.7

Table 6.6: Nucleon masses at T = 0 and screening masses at T = 0.95Tc.

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

(m
N

- -
 m

N
+
) e

ff

t

(a)

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

(µ
N
- −

 µ
N
+
) e
ff

z

(b)

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

(m
N

- -
 m

N
+
) e

ff

t

(c)

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

(µ
N
- −

 µ
N
+
) e
ff

z

(d)

Figure 6.6: The analysis of mass splittings between N+ and N− for mπ/T = 2.20 at (a)
T = 0 and (b) T = 0.95Tc and for mπ/T = 1.99 at (c) T = 0 and (d) T = 0.95Tc. The
data points are effective masses, the band between the dashed lines is obtained by taking
the difference of screening masses. The band between the full lines is obtained by direct
fits to the splitting between the two masses, and gives the results shown in eq. (6.17).

The results of fitting the masses is shown in Table 6.6. Here we indeed find some

precursor effects of chiral symmetry restoration in the form of a thermal shift in the mass

splitting between the baryon and its parity partner. We measured the splitting by the
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ratio of the correlators, SN+
/SN− , and extract the mass difference, ∆m, by fitting to an

exponential form exp(−∆mt). Since this method takes care of covariances between the

correlators SN+
and SN− , we expect to control statistical errors better. The fit can be

cross checked against the equivalent of effective masses for the ratio. Such checks are

exhibited in Figure 6.6. The resulting values are

mN− −mN+

Tc
=

1.53± 0.09 (mπ/Tc = 2.20)

1.82± 0.17 (mπ/Tc = 1.99)

and

µN− − µN+

Tc
=

1.15± 0.14 (mπ/Tc = 2.20)

1.24± 0.20 (mπ/Tc = 1.99)
. (6.17)

mπ
Tc

µV
mV

µN+

mN+

µAV −µV
mAV −mV

µN−−µN+

mN−−mN+

2.20 0.97± 0.02 1.05± 0.05 0.86± 0.16 0.75± 0.10
1.99 0.94± 0.03 1.07± 0.04 0.89± 0.22 0.68± 0.12

Table 6.7: Thermal shifts in masses and mass splittings at T = 0.95Tc; µH denotes the
screening length in the hadronic channel H, and mH the mass at T = 0. The ratio of mass
splittings suggest that, unlike in the case of vector-like mesons, nucleonic correlations
show some precursor effects to chiral symmetry restoration immediately below Tc.

In Table 6.7, we show the thermal shifts in the masses and the mass splittings in

nucleonic and vector-like parity partners, in terms of the ratio of masses and the ratio

of mass splittings between non-zero temperature and zero temperature. We find that

µH = mH within 95% confidence limits, indicating no significant thermal effects in the

vector meson, V and nucleon, N+. Nor do we observe a thermal shift in the mass

splittings between the V and the AV (axial vector) mesons. However, we find that in the

nucleon sector the mass of the opposite parity nucleon moves closer to the ground state

immediately below Tc. This is the most definite evidence to date about precursor effects

to chiral symmetry restoration immediately below Tc. The thermal effects in the parity

partner nucleon is, hence, significant and these observations not only constrain models

of quantum hadrodynamics [192], but could also have implications for the analysis of

heavy-ion collision data.

Above Tc the correlators for N± become symmetric and degenerate (see Figure 6.7).

We find RN = 0.230 ± 0.005 when mπ/Tc = 3.31, RN = 0.146 ± 0.006 for mπ/Tc = 2.58
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Figure 6.7: Nucleon and its parity partner correlators at 1.5 Tc. The degeneracy in
the correlators signal the restored chiral symmetry at this temperature. The continuous
curves are correlation functions in a FFT; in order to remove trivial artifacts, these have
been computed on a lattice of the same size.

and RN = 0.076± 0.009 for mπ/Tc = 1.52. These lead to a vanishing of RN as a power of

mπ/Tc. Chiral symmetry restoration is also seen in the fitted screening masses, displayed

in Table 6.5. As in the meson sector, the screening masses are within 3–4% of those

expected in a theory of free quarks.

6.5 Hadrons above Tc and free field theory

Above Tc, at the temperature T = 1.5Tc, we found strong signals of approximate chiral

symmetry restoration in the near degeneracy of screening masses of all the hadronic

parity partners, evident in Table 6.5. We also observed the correlation functions and

screening masses are not far from those obtained in FFT, which is a model of non-

interacting quarks. For mesonic channels, this observation has been already made in

Refs. [129, 132, 130, 131, 134]. To make a quantitative statement on these observation, in

the Figure 6.8, we show the ratio of screening masses for mesonic and nucleonic quantum

channels at T = 1.5Tc in the interacting theory to the free theory. Alongside we also

show the estimates from other lattice calculations. We see that the PS and S screening
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Figure 6.8: The ratio of screening masses measured at T = 1.5Tc in quenched QCD with
those in FFT. Along side we add the estimates for these ratios from earlier computations
with clover [130], overlap [131] and staggered fermions[132, 133]. Unity on the y-axis
indicates that the hadron propagates as freely propagating quarks in the absence of
gluonic fields.

masses are only ∼8% away from the free theory estimates, while the V, AV and nucleonic

channels already are consistent with a model of non-interacting quarks. We also observe

that our estimates agree with previous work using clover quarks [130]. It also agrees with

results of studies using overlap quarks at smaller lattice spacing [131]. However, it seems

that studies with näıve staggered quarks always indicate stronger deviations from FFT

than any of these above studies, indicating strong staggered artifacts in the estimates.

Later studies using dynamical staggered fermions, with appropriate smearing to account

for the staggered cut off artifacts, related to the taste-splitting, have shown that this is

indeed the case and the estimates from this study were found to be much closer to the

FFT [193].

6.6 Summary, conclusions and future prospects

In this work, we studied the hadronic screening correlators above and immediately below

the deconfinement transition temperature, Tc, using non-perturbative lattice method in
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the quenched approximation with lattice spacing 1/8T employing the clover improved

Wilson quarks. We perform simulations at temperatures T/Tc = 0, 0.95 and 1.5. As seen

in the other lattice calculations, we observed no statistically significant thermal effects

in the mesonic correlations immediately below Tc. We also make the observation of the

unphysical quenching artifacts in the scalar screening correlators immediately below Tc

and make a first attempt to understand the thermal effects on the ghost coupling in these

correlators. We found no statistically significant deviations with the available statistics in

these studies also. Above Tc, clear evidence of the chiral symmetry restoration in terms

of the pairwise degeneracy in the parity partner correlators and the weakly interacting

nature of quarks was observed in the mesonic channels.

Above Tc, baryonic correlations also show clear evidence of the chiral symmetry

restoration in terms of the pairwise degeneracy in the parity partner correlators and

propagate as three weakly interacting quarks. Below Tc, we find interesting behavior in

the nucleonic correlations, indicating precursor effects for the chiral symmetry restoration

in the nucleonic channels immediately below Tc. While no such effects have been seen

earlier either in the glue sector or with quarks, these observations are expected to have

implications for the analysis of the heavy ion collision data. These implications clearly

call for follow-up studies of nucleon below Tc.

Appendix

6.A Exceptional configurations

In our calculations we observe certain configurations with widely different behavior in

the pseudoscalar correlator in comparison with the pseudoscalar correlators from the

other majority of configurations. The pseudoscalar correlators in these configurations

were found to be very much asymmetric about the center of the lattice with respect to

the source and oscillating with unexpected features, which is different from the expected

cosine hyperbolic behavior. A typical example of pseudoscalar correlator of a few of such

configurations observed in this work is shown in Figure 6.9.

Configurations with such unexpected behavior have been observed in quenched cal-

culations by various collaborations [130, 194, 195, 196, 197, 198] using the same fermion

discretization as in this work. Pseudoscalar charge [196] in these configurations were

found to show singular behavior below the critical hopping parameter value (κc) indicat-



Baryons at finite temperature 133

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0.5  1  1.5  2  2.5  3  3.5

C
p
s
(t

)/
T

3

zT

all
bad
bad
bad

Figure 6.9: A typical case of appearance of exceptional configurations in pseudoscalar
correlators. The filled circles are identified as correlators in exceptional configurations
based on our analysis. These correlators are at T = 1.5Tc at mps = 250 MeV .

ing a shift in κc value corresponding to these configurations [195, 196]. In literature these

configurations are called as exceptional configurations. An explanation for appearance

of such configurations is as follows. The real part of all the eigenvalues of a discretized

fermion operator (eg. clover improved Wilson fermions) with explicit chiral symmetry

breaking term is not bound to have same signature. It can happen that a subset in the

sampled set of configurations possess an eigenvalue near to −m and hence D +m is not

invertible. In the dynamical simulations, these configurations will not be contributing as

the fermion determinant will be zero. But in quenched calculations the non-zero measure

of configurations having such unphysical zero modes causes unexpected behavior in the

correlation functions and limits the quark mass to values much heavier than the physical

quark mass, that can be studied using such operators[194].

There were attempts to ameliorate this problem in different ways in literature. AL-

PHA collaboration [199] used a twisted mass term in the lattice fermion operator to

remove the singularities in the quark propagator due to the exceptional configurations.

It was, however, shown that the twisted mass term doesn’t solve the problem of excep-

tional configurations in the deconfined phase [200]. In the light hadron spectroscopic

studies, [195] used fat-link improved clover fermions successfully to improve the chiral
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properties of the operator and to suppress the unphysical configurations. However it was

observed that the attractive short distance piece of the potential gets modified by the

fattening. This results in serious systematic errors in the decay constant and quarkonium

spectroscopic studies [201, 202]. Since one of the main objects of our study is the cou-

pling of the scalar with the η′ − π ghost state in the finite temperature scalar screening

correlators, we haven’t used this technique to get rid of these unphysical configurations.

Ref. [196] employs a modified quenched approximation in their work, in which they

push the shifted κc in such configurations back to the average value of κc, which are

determined from the chiral limit of the pseudoscalar masses in the well-behaved config-

urations. The method lacks a systematic way of labeling a configuration as exceptional,

because even two ’well-behaved’ configurations needn’t have same κc always. Moreover,

the overhead calculations needed to determine the zero mode in such configurations is

also significantly large. Ref. [130] reported the observation of configurations with such

unexpected behavior and to get rid of these issues, they handpicked and discarded such

configurations during the analysis. In the present work, we follow a similar approach, but

a systematic procedure developed based on phenomenology of such unphysical configura-

tions. In comparison with most of the other techniques, our analysis requires very little

overhead computation. Also this method could be supplemented in either of the methods

in [196] or [130] to classify such configurations. Here we discuss the naive phenomeno-

logical approach we have employed to exclude the configurations with such unexpected

behavior.

We used the pseudoscalar correlators to define two measures, the measure of symmetry(S)

and the measure of oscillation(O). We defined cuts in these measures such that varying

the measures slightly around the cut will not cause significant changes in the estimates.

Those configurations which lie outside the defined cuts were excluded from the analysis.

Below we discuss the details of the measures we defined and the details of the analysis

done.

• Measure of symmetry (S(i))

We expect the pseudoscalar correlator to be well-behaved and symmetric about

the center in a periodic lattice. S, a measure of the symmetry in the pseudoscalar

correlator, is defined as in eq. (6.18). The superscripts (i) are the configurations

labels.
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S(i) =

Nτ/2+1∑
t=2

α
(i)
t

2
(6.18)

where α
(i)
t =

C(i)(t)− C(i)(Nτ + 2− t)
C(t)

and C(t) =
1

2N

N∑
i=1

(C(i)(t) + C(i)(Nτ + 2− t))

(a) (b)

Figure 6.10: Histograms of the quantity (a) S and (b) O. All the configurations on left
hand side of the blue dotted line are considered as well-behaved configurations.

• Measure of oscillation (O(i))

The pseudoscalar being the lightest, oscillations in the correlator is very unlikely

and can occur only to the level of statistical fluctuations. We introduce a quantity,

O(i), which is a measure of the oscillations observed in a correlator. It is defined as

follows. Those configurations with the minima of the correlator lying outside the

range > ±3 time slices from the center of the lattice with respect to the source point,

are considered ill-behaved. Such configurations are removed before estimating the

measure O(i). In each of the remaining configurations we count the no. of points

a(b) where the slope is positive(negative) in the first(second) half of the correlator

excluding the middle band defined earlier. Then, O(i) is defined to be a+ b.

The histograms of the measures for the lightest pseudoscalar mass at zero temperature

and T = 0.95Tc are shown in Figure 6.10. The blue dotted line is the cut used in the
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Figure 6.11: Scatter plots of S and O. (a) at T = 0, (b) at T = 0.95Tc for mps/Tc1.99.
The blue dotted line closed with the y-axis corresponds to the region of good behavior.
For simplicity the superscript label for the configuration is omitted in the plots.

respective measures to exclude the unphysical configurations. The subplots in Figure

6.11 are the scatter plots of the configurations on these above defined measures, S(i) and

O(i), for mπ/Tc = 1.99 studied at zero temperature and T = 0.95Tc. The blue dotted line

is the cut used in our calculations.
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Figure 6.12: Effective mass plots for pseudoscalar correlators with varying cuts on S and
O. The effective mass is observed to be more sensitive to O than S.

The effective mass (see eq. (3.2)) plots for the pseudoscalar, estimated for various

cuts attributed for the measures S(i) and O(i) are shown in Figure 6.12. It is evident

from the plots that the cut doesn’t affect the results much. In our calculations we took

configurations, which are well-behaved as those with ((S(i) ≤ 10) ∩ (O(i) ≤ 2))′. The (′)
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T/Tc κ N Nr

0 0.1347 100 71
0.95 0.1347 100 94
1.5 0.1355 70 67

Table 6.8: The total no. of configurations (N) generated and the no: of configurations
(Nr) used for the analysis after discarding the configurations with strange behavior at
different temperatures.

is to emphasize that the cuts are applied only in those configurations with well-behaved

pseudoscalar correlator minima, as mentioned in the definition of the measure O. Table

6.8 contains the details regarding the no: of configurations generated and the no: of

configurations used as well-behaved configurations for the analysis.

6.B Wall sources

In this section, we make a detailed comparison of the screening correlator with the cor-

responding correlators in the FFT. We used wall sources for FFT, and compared the

effective masses, m(z), obtained on 322 × 8 × Nz lattices (with Nz = 80), with those

obtained in the interacting theory. Wall source at zero temperature is defined as the

collection of point sources with equal magnitude in all the points on a given time slice.

This is equivalent to a sum of the all the space indices at the source in a point-to-all

quark propagator. This can be expressed algebraically in terms of the point-to-all quark

propagator as

D−1
w (t;x′, y′, z′, t′) =

∑
x,y,z

D−1
p (x, y, z, t;x′, y′, z′, t′), (6.19)

whereDp(x, y, z, t;x′, y′, z′, t′) is the point-to-all quark propagator, with source at (x, y, z, t)

and the sink at (x′, y′, z′, t′).

In Figure 6.13 we compare the PS and V screening masses for our lightest quarks

(corresponding to mπ/T = 1.52 at 1.5Tc) to screening masses in FFT with similar bare

quark mass. In the free theory, the screening correlator for wall source in these two

channels are equal. The results for the FFT were obtained on a lattice with Nz = 80

using the estimator lnC(z)/C(z + 1) for the screening masses. The plateaus in the

effective masses shown is due to the use of a wall source. When a point source is used,

neither the free theory nor the interacting theory shows a plateau [130]. These checks

give us confidence that we are able to extract the asymptotic behavior of the screening
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correlator.

The effective masses for the negative parity nucleon are also shown in Figure 6.13.

In the interacting theory, a reasonable plateau is obtained in the effective mass, C(z) ∼
exp(µ(z) × (Nz − z)). The plateau is more pronounced in our data for heavier quarks.

We see that the effective mass in the interacting theory is larger than that in the free
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theory.

Since we use Ns/Nt = LT = 4 we also check finite volume effects in a theory of free

quarks. In Figure 6.14 we show the screening masses for pseudoscalar meson and nucleon

on lattices with Nt = 8 and varying Ns. With wall sources we find essentially no finite

volume effect in either channels already for LT = 4. Since finite volume effects are larger

in the free theory than in the interacting theory, therefore finite volume effects in our

studies are expected to be small. In contrast, point sources give large finite volume effects

[130].



Chapter 7

Summary and conclusions

This thesis is a combination of two major works on baryons from lattice QCD. The first

part of it, involving charm baryon spectroscopy, is subdivided into two subparts : First

one dealing with the excited state spectroscopy of charm baryons, while the second work

is on charm hadron spectroscopy using overlap fermions. In the second part, we perform

a finite temperature study of screening masses of hadrons, particularly for baryons, where

we analyze the temperature dependence of the hadronic screening correlators above and

immediately below the deconfinement transition temperature.

7.1 Excited state charm baryon spectroscopy

This work constituting first segment of the first work covers major part of the thesis.

This work deals with the first non-perturbative calculation of the excited state spectra

of charm baryons with one, two and three charm quarks. In these calculations, we

extract highly excited states, which are very difficult to extract using the previously

existing lattice QCD techniques, of charm baryons. Utilizing the advanced lattice QCD

techniques like anisotropic lattice formalism, the derivative-based operator construction

and the variational fitting techniques, we extract the spectrum of all the charm baryons

having all possible flavor combinations with well-defined total spin up to 7
2
. We also

perform several studies on various energy splittings between the charm hadrons. Being

first of its kind in the excited charm baryon spectra calculation, this study serves as a

foundation for several follow-up studies, which may help us to address many challenges

in the baryon spectroscopy. A summary of the results from this work is as follows.

We extract approximately 20 states for each of the charm baryons, along with a

140
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reliable identification of the spin-parity quantum numbers for each of these states. Beside

identifying the spin of a state we are also able to decode the structure of operators leading

to that state : whether constructed by relativistic, non-relativistic, hybrids, non-hybrid

types or a mixture of them all. Similar to light and strange baryon spectra [102], we also

find the number of extracted states of each spin in the three lowest-energy bands and the

number of quantum numbers expected based on weakly broken SU(6)×O(3) symmetry

agree perfectly, i.e., all the charm baryon spectra remarkably resemble the expectations

of quantum numbers from non-relativistic quark model [28, 29, 165]. Extracted spectra

do not show the signature of diquark spectra and the chiral symmetry restoration as

predicted by some models [204].

Since the spin dependent energy splittings can provide crucial information about

interaction energy we study various energy splittings, including splittings due to hyperfine

and spin-orbit coupling, for all the charm baryons. We find degeneracy between these

spin-orbit split states is more or less satisfied both for bottom and charm quarks. While

for the splittings, which mimics the binding energy of these states, comparison with the

respective splittings at other quark masses suggest that these splittings can modeled

with a form a+ b/mps derived from heavy quark effective theory. From the fitted results

involving both doubly and triply charm baryons, we are able to predict B∗c −Bc = 80± 8

MeV and Ω∗ccb(3/2
+) = 8050 ± 10 MeV.

However, it is to be noted that pion mass used in this calculation is not physical and is

391 MeV. Furthermore, we have not used any multi-hadron operators in this calculation

which will play a major role at lighter pion masses. Inclusion of those operators, partic-

ularly those involving light quarks, may affect some of the above conclusions, though to

a lesser extent than their influence in the light hadron spectra. To get precise numbers

for the excited spectra one needs to follow up this calculation with physical pion mass

and multi-hadron operators.

The method used here to study charm baryons can also be employed for similar

study for bottom baryons. Ground state bottom baryons have been studied by lattice

QCD [80, 205, 206, 208, 207, 209]. However, so far excited state spectra from Lattice QCD

is limited only to a few low lying states [210] and triply bottom baryons (Ωbbb) [157] using

NRQCD. Considering experimental importance and prospects a comprehensive study,

using this method, is thus quite essential and an immediate extension of our work will

be carried out for bottom baryons in future.
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7.2 Charm hadron spectroscopy using overlap fermions

The second part of the spectroscopy work is precise non-perturbative calculation of the

low lying charm hadrons at multiple lattice spacings with improved control over the

cut off effects. Using a mixed action approach, we utilized the highly desirable features

of small discretization errors and small taste breaking effects of the HISQ action and

the small discretization effects and the low quark mass limit of the overlap fermion

action. We are thus able to study a long range of pseudoscalar meson masses from

230− 5000 MeV. By tuning the charm quark mass using the kinetic mass, we made sure

the discretization errors due to the uncertainty in the charm mass tuning is small. At this

tuned charm quark mass, we extracted the meson and the baryon spectra containing one

or more charm quarks. We made a comparative study between the results obtained in this

method to out previous study on excited charm baryons. Both results are also compared

with other lattice calculations and quark model calculations and experimental results,

where available. The consistency within the lattice calculations and the agreement with

the experimental values validates the credibility in both of our calculations. Thus, this

calculation serves simultaneously as a complementary study to compare the results from

our previous calculations and as an independent study with improved control over the

systematics that gives predictions about the low lying charm hadron spectrum.

It is also worthwhile to consider excited state study using overlap fermions. However,

the distillation method used for charm baryons will be prohibitively costly with extended

baryons. One may consider excited state calculations using only local operators but using

same flavor structures as those used in our study. The extension of overlap formulation

to bottom sector in our current formulation is not possible. However, one may think

about to use a full Fermilab type formulation to check whether it is at all possible to go

to bottom quark mass with minimum discretization error.

7.3 Nucleons at finite temperature

In the second work, we investigate the nature of the strongly interacting matter at high

temperatures using baryonic probes. In this work, we focused on the hadronic correla-

tion lengths that exist in a pure SU(3) gauge theory above and immediately below the

deconfinement transition temperature, Tc. As seen in the other lattice calculations, we

observed no statistically significant thermal effects in the mesonic correlations immedi-

ately below Tc. We also make the observation of the unphysical quenching artefacts in the
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scalar screening correlators immediately below Tc and make a first attempt to understand

the thermal effects on the ghost coupling in these correlators. We found no statistically

significant deviations with the available statistics in these studies also. Above Tc, clear

evidence of the chiral symmetry restoration in terms of the pairwise degeneracy in the

parity partner correlators and the weakly interacting nature of quarks was observed in

the mesonic channels.

Above Tc, baryonic correlations also show clear evidence of the chiral symmetry

restoration in terms of the pairwise degeneracy in the parity partner correlators and

propagate as three weakly interacting quarks. Below Tc, we find interesting behavior in

the nucleonic correlations, indicating precursor effects for the chiral symmetry restoration

in the nucleonic channels immediately below Tc. While no such effects have been seen

earlier either in the glue sector or with quarks, these observations are expected to have

implications for the analysis of the heavy ion collision data. These implications clearly

call for follow-up studies of nucleon around Tc. In future we like to do a comprehensive

calculation of baryonic correlations, including nucleonic, at various temperatures below

Tc and just above Tc.
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