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Synopsis

0.1 Introduction

The dynamical behaviour of systems with many particles can be described in terms of

their time dependent correlation functions. Two examples of such correlation functions

are distributions of residence times (DRT) and first passage times. In general, residence

time is defined as the time spent by a particle in a specified region of space. The first

passage time is defined as the time taken by a stochastic variable crossing a specified

surface in the parameter space for the first time. Residence times and first passage

times have been studied extensively, e.g., in the problem of Brownian motion of particles

mainly in the context of various transport processes [1], in the persistence problem [2].

Trapping time distribution of a system getting trapped inside a region of phase space

has been studied to understand long time tails in correlation functions in Hamiltonian

systems with many degrees of freedom [3]. In diffusion controlled reactions, the reaction

rates of two molecules are related to the residence times of a molecule inside the reactive

range of other molecule [4]. In this thesis I study residence time distribution of grains

in sandpile models which are prototype of self-organized criticality (SOC).

The concept of SOC was proposed by Bak, Tang and Wiesenfeld (BTW) to explain

abundant fractal structures in nature like self similar mountain ranges, river networks,

power law distributed burst like activities in earthquake phenomena etc. BTW intro-

duced a simple model, known in the literature as the BTW sandpile model or Abelian

sandpile model (ASM), to illustrate the mechanism of SOC [5]. Sandpile models are

threshold activated systems (there is a local relaxation only if a variable crosses some

threshold value) which, when driven slowly, organize themselves to a critical non-

equilibrium stationary state without any fine tuning of parameters. The long-ranged

correlation shows up as fractal structures in space. The long-ranged correlation in time

gives rise to 1/fα power spectrum of noise with α < 2.

The issue whether avalanche activities in sandpile models show 1/fα noise has

attracted a lot of attention since BTW proposed the model. The avalanche activities

have different behaviour for two different time scales, the time scale of a toppling event,

i.e., correlation among activities within a single avalanche and for the time scales of
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slow driving, i.e., correlations among separate avalanches. In the first case, Laurson et.

al have shown that the power spectrum is 1/fα with α < 2 [6]. While in the second

case, for some specific one dimensional model [7] it has been shown that long-ranged

temporal correlations between avalanches are related to critical avalanche dynamics and

give rise to 1/fα′

noise where exponent α′ can be expressed in terms of the standard

avalanche exponents of avalanche size distribution.

Although SOC was not seen in experiments on piles of sand [8], piles of long-

grain rice have shown evidence of power law distributed avalanches, and provided a

good experimental realization of a simple system showing SOC. In the Oslo rice pile

experiment [9], Frette et. al. studied the transport properties of rice grain by slowly

adding rice grains at one end of a pile between two closely spaced parallel rectangular

glass plates where grains can leave only at the other end. Coloured tracer grains were

added to measure the residence times of grain and distribution of residence times was

studied. They estimated the average total residence time of grains in a pile of size L

to vary as Lν with ν = 1.5 ± 0.2.

There have also been some numerical and analytical studies of these distributions

later on. Frette proposed a theoretical model, called the Oslo rice pile model [10],

which seems to reproduce the phenomenology of the rice pile experiment well. From

numerical simulations of the Oslo model [11], the exponent characterizing the power law

decay of the probability density of total residence times at large times was estimated

as 2.2 ± 0.1 and exponent ν was estimated to be 1.3 ± 0.1.

Sandpile models are defined on a lattice and configurations are specified by a height

variable which gives the number of grains at each site. There is a threshold condition

for toppling at a site and some specified number of grains are transferred to the neigh-

bouring sites after each toppling. Depending on the threshold condition, there are two

broad classes in sandpile models, critical height type models and critical slope type

models. We call all the slope type models as ricepile models hereafter. We have stud-

ied the distribution of residence times (DRT) in various height and slope type models.

The residence time t of a grain is the time the grain spends inside the pile. The piles

are slowly driven, i.e. the time interval between addition of two grains is chosen long

enough so that all avalanche activities have died before a new grain is added and this

time interval is chosen to be the unit of time in our analysis.

For height type models, we argue that the motion of a grain is diffusive at time-scales
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much larger than the interval between successive grain addition and the jump-rates of

grains at various sites are space-dependent due to the space dependence of avalanche

activity at different sites. We have shown that the DRT, for large residence times and

large system sizes, can be expressed in terms of the survival probability of a diffusing

particle in a medium with absorbing boundaries and space dependent jump rates. The

DRT is of the form L−df(t/Ld) in d-dimensional pile for system size L and f(x) decays

exponentially for large x. However, f(x) is non-universal and depends on how grains

are added in the pile.

For slope type models, there is a significant weight at tail of the DRT due to deeply

buried grains in the pile. These grains take a long times to come out, the cutoff time

scale in the DRT is diverging exponentially with increasing system sizes, and determines

the exponent of the power law tail in the DRT. We show that the DRT is a 1/t2 power

law distribution with a logarithmic correction factor.

0.2 First passage time distribution in random walks

Our first result concerns the problem of first passage time distribution for a random

walker in the presence of absorbing boundaries of various geometries. Diffusion is a

well studied problem with considerable physical interest. We have studied the simple

diffusion of a particle where the particle diffuses in a closed domain of linear size L

and gets absorbed when it reaches the boundary. The probability p(~x, t) that particle

being at position ~x at time t satisfies the diffusion equation

1

D

∂p(~x, t)

∂t
= ∇2p(~x, t) (0.1)

Where D is the diffusion constant. We solved this equation with initial condition

p(~x, 0) = δ(~x− ~a) under the boundary condition p(~x, t)|boundary = 0 in various dimen-

sions where ~a is the centre of the domain. ProbL(T ≥ t) be the probability that the

first passage time T of the walker through the boundary being greater than or equal

to t is given by ProbL(T ≥ t) =
∫

p(~x, t)dd~x in d dimensions. We are interested in the

probability density ProbL(t) = − ∂
∂t
ProbL(T ≥ t) which in all cases shows scaling

ProbL(t) =
1

L2
f(t/L2)

where t is the first passage time. We obtained explicit form of the scaling function

f(χ), for the following geometries of the boundaries: a box in one dimension, circular,
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square and triangular boundaries in two dimensions and cubical box and sphere in

three dimensions. In all cases the scaling function can be expressed in terms of the

Jacobi Theta functions [12].

For example, in the case of an absorbing boundary of a hypercube of volume (2L)d

in d−dimensions, the scaling function f(χ) is expressed as

f(χ) = (−1)d2(
1

2π
)d d

dχ
(yd) where y =

∫ ∞

χ

∂ϑ3(z, q = e−χ̃/d)

∂z
|z=π/4dχ̃ (0.2)

Here χ = dπ2Dt/4L2 and ϑ3(z, q) is the Jacobi theta function of third kind [12].

Similarly in other cases studied, the scaling functions are expressed in terms of theta

functions of various kinds. All these results in this section were published in [13].

0.3 The distribution of residence times in height

type sandpile models

0.3.1 Models

We have considered two height type models: the deterministic Bak-Tang-Weisenfeld

(BTW) model [5] and the stochastic Manna model [14]. Both the models are defined

on a d-dimensional hypercubic lattice of volume Ld. The height h(~x) is the number of

grains at site ~x. The toppling rule in the BTW model in d-dimension is as follows. If

h(~x) ≥ 2d at site ~x, 2d grains are thrown out of the site and each of the 2d nearest

neighbour sites gets one grain. The toppling condition in the Manna model is similar

as in the BTW model, but the transfer rule is not deterministic. In this case, 2d grains

are transferred from a site after each toppling, but each grain is transferred randomly

to any one of the nearest neighbours. Grains are added randomly everywhere and leave

the pile from the boundary sites. The piles are driven slowly, by adding one grain per

unit time. We always topple unstable sites in parallel. The grain added at time n is

labeled by the number n.

We have used an important result from queuing theory, known as Little’s theorem

[15], for the first moment of the DRT in this thesis. From this theorem, it follows that

the average residence times of grains inside a pile is equal to the average number of

grains inside the pile, i.e.,

〈T 〉 = 〈M〉 (0.3)
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where T is the residence time of a grain inside the pile and M is the number of grains

inside the pile.

This result is quite general and valid for sandpile models, irrespective of whether

the toppling rules are height type or slope type.

0.3.2 Bak-Tang-Wiesenfeld model in one dimension.

We have studied the DRT for the BTW model in one dimension where grains are

added, say, at the right end (x = L) and can leave the system from both the ends.

If there are L sites, it can be shown that only (L + 1) configurations occur with non

zero probability in the steady state [16]. Among all these steady state configurations,

L steady state configurations have a site with zero height and other sites with height 1

and one steady state configuration has all sites with height 1. The time evolution of the

sandpile is Markovian and we can construct a transition matrix W for the Markovian

evolution of the system. With one grain marked, the configuration space consists of

L2 configurations. Since this is a Markov process, the DRT must decay exponentially

as exp(−λLt) for large times t, where λL depends on the system size L. We show

that for large L, λL decays as 1/L2. We write λL = KL/L
2 for any finite L where

KL should tend asymptotically to a constant value for large L. We calculated λL

exactly numerically by diagonalizing the Markov matrix W up to L = 150 and plotted

KL = λLL
2 versus L in Fig.0.1. We find the asymptotic value of KL is 3.668 ± 0.003.

When the residence time T is very small compared to L2, and L is large, sand grain

almost always gets ejected from the right end. In the large L limit, the DRT is just

the distribution of first passage (at i = 1) time of a simple unbiased random walker

with 2t step random walk in an infinite domain and we write

ProbL(T = t) =
2t!

t!(t + 1)!
2−(2t+1)

This expression for ProbL(T = t) can be approximated as 1
2
√

π
t−3/2 for t � 1. We

assume that the DRT for the 1d BTW model has a scaling form as given below,

ProbL(T = t) =
1

La
f(

t

Lb
) (0.4)

and we use the first moment condition in Eq.(0.3) and behaviour of the DRT for small

t, to deduce values of the exponents, a = 3 and b = 2. We analytically calculated the

exact asymptotic value of KL for large L. For the 1d BTW case when grains are added
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Fig 0.1: Plot of the coefficient KL of t/L2 in the exponential decay of probability of
residence times versus lattice size L for the 1d BTW model.

at the right most site x = L, the probability of toppling at any site x is x/L. Then the

probability P (x, t) that a marked grain is at site x at time t can be written in terms

of a rate equation where rate of grains jumping out of x to a nearest neighbour site is

x/L. The rate equation is

∂P (x, t)

∂t
=
x− 1

L
P (x− 1, t) − 2

x

L
P (x, t) +

x+ 1

L
P (x+ 1, t) (0.5)

In the continuum limit, this equation becomes

∂

∂τ
P (ξ, τ) =

∂2

∂ξ2
[ξP (ξ, τ)] (0.6)

where ξ = i/L, and τ = t/L2. We have solved the eigenvalue equation d2

dξ2 [ξϕ(ξ)] =

−λϕ(ξ) with the boundary condition ϕ(ξ = 1) = 0. Eigenfunctions are modified

Bessel’s function of order 1 and we calculated the largest eigenvalue λL in terms of the

first zero of the modified Bessel’s function of order 1. We find that λL for large L varies

as K/L2 and K ≈ 3.6705 (correct upto five significant digits).

0.3.3 Generalization to other models and arbitrary dimen-

sions.

It is straight forward to extend our arguments to any other isotropic height type models

where grains are transferred to the nearest neighbour with equal probability and grains



Synopsis xv

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

T
im

e,
 t

Position of Grains, x

Fig 0.2: Motion of three grains starting from x = 20, 50, 80 on a one dimensional
sandpile of length L = 100, where sand grains are added only at the right end.

can leave the system only from the boundary sites. Although avalanches in sandpile can

spread quite far, the typical distance traveled by one marked grain in an avalanche is

much smaller than L, linear size of the system. During its motion to the boundary, the

marked grain would be involved in a large number of avalanches. At time-scales much

larger than unity, the motion is diffusive, with the jump-rate out of different sites being

space-dependent because on the average some parts of the lattice have more avalanche

activity than others. In the steady state, n(~x), the average number of toppling at ~x

per added grain, satisfies the equation (using conservation of sand grains)

∇2n(~x) = −r(~x), (0.7)

where r(x) is the probability of addition at x and we impose n(~x) = 0 at the boundary.

As the path of the grain is an unbiased random walk, we have 〈( ~∆x)2〉 = s, where

s is the average number of jumps the grain makes in this interval. Assuming that

| ~∆x| � L, and that n(~x) is a slowly varying function of ~x, we see that s is proportional

to n(~x)∆t, total no of toppling at site x during time interval ∆t. For large times t, the

probability-density P (~x, t) satisfies the equation
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∂

∂t
P (~x, t) =

1

2
K∇2[n(~x)P (~x, t)] (0.8)

where K is a constant. The initial condition is given by

P (~x, t = 0) = r(~x). (0.9)

The net current between two sites depends on the difference in the product nP at the

two sites, and can be non-zero even if ∇P is zero. We have solved Eq.(0.8) exactly in

some special cases as follows.
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Fig 0.3: Semi log plot of the cumulative distribution ProbL(T ≥ t) as a function of the
scaled residence time t/〈M〉 for four different cases (1) the 1d BTW model, (2) the 1d
Manna model, (3) the 2d BTW model and (4) the 2d Manna model. We have chosen
L = 100 for 1d cases and 70 × 70 cylindrical square lattice for 2d cases.

Case-1. When grains are added at both ends with equal probability in 1d models

(both the BTW and Manna models) with L sites, i.e., r(~x) = 1
2
δ(x− 1) + 1

2
δ(x − L),

the average number of toppling n(x) at site x is constant, independent of x and Eq.(0.8)

becomes a simple diffusion equation. In the case of the 1d BTW model, n(x) = 1/2 and

K = 2, and we have explicitly calculated Prob(T ≥ t). It has a scaling form 1
L
f(t/L2)

and scaling function can be expressed in terms of Jacobi theta function, similar to the

results in Sec.2.

Prob(T ≥ t) = θ3(0, τ) − θ3(π/2, τ), (0.10)
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where τ = π2t/2L2 and θ3(z, τ) is the Jacobi theta function of third kind (putting

q = e−τ ) [12].

Case-2. When grains are added randomly at any sites in a system with arbitrary

shape of the boundary and in an arbitrary dimension, i.e., r(~x) = 1/V where V is the

number of sites in the lattice, the cumulative probability Prob(T ≥ t) is interestingly

a simple exponential

Prob(T ≥ t) = exp(−t/〈M〉). (0.11)

We have checked our theoretical results by simulating the BTW and Manna models in

both one and two dimensions. In one dimension we have chosen system size L = 100

where grains are dissipated at the ends. In two dimensions we have taken a cylindrical

70 × 70 square lattice and grains are dissipated at the two open boundaries of the

cylinder. We have added 106 grains in all four cases. The DRT obtained from Eq.(0.11)

and simulation have been plotted in Fig.0.3.

Our arguments are valid under the conditions of local conservation of sand grains

and isotropy, and are equally applicable to the BTW and Manna models. All these

results for height type models were published in [17, 18].

0.4 The distribution of residence times in slope type

sandpile models

0.4.1 Models

Here we consider two one dimensional ricepile models, the stochastic Oslo rice pile

model [10] and one of the deterministic models defined by Kadanoff et. al. [19]. The

slope zi at site i is defined by zi = hi − hi+1, where hi is the height at site i and

1 ≤ i ≤ L. In Oslo rice pile model, when zi > zc, one grain is transferred to the right.

The threshold value of the slope zc takes values 1 or 2 with probability q and p (with

p + q = 1) after each toppling, independent of any history. Grains are added, say, at

the left end i = 1. In the Kadanoff model, the threshold value of zc is 2 and after

each toppling, two grains are transferred to the right neighbour. In this case, grains

are added randomly everywhere. In both the models grains are lost only at the right

boundary i = L. The piles are driven slowly, by adding one grain per unit time. We

always topple unstable sites in parallel. The grain added at time n is labeled by the
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number n.

Grains at a particular site are stacked vertically, one above the other. Whenever

a grains is added at a site, it sits on top of the stack at the site. When one unstable

grain leaves the stack, it is taken from the top of the stack. In Kadanoff model, two

grains from the top are thrown out from an unstable site to the right nearest neighbour

site. We first take out the topmost grain from the unstable site and put it on the top

of the right nearest neighbour stack, and then we take out the second grain from the

unstable site and put it on the top of the first grain at the right nearest stack.

The DRT has qualitatively different behaviour for ricepile models. The height of

the pile fluctuate between L to 2L around some average height αL where α is the

average slope (1 ≤ α ≤ 2). The grains which are deeply buried inside the pile take a

long time to come out of a site, i.e., until the rare height fluctuation brings the height

at the site close to the minimum. We study the distribution of total residence times

of grains in the pile as well as the residence time of a grain at a site. We define the

residence time Ti at a site i as the time spent by a grain at the site. The average

number of grains in the pile is of order L2 and so the average total residence time is

also varies as L2, using Eq.(0.3). Similarly, the average residence time 〈Ti〉 at site i

varies as (L − i). The average of total residence times has been incorrectly estimated

before as L1.3±0.1 [11, 20].

0.4.2 Distribution of residence time T1 at first site.

We express the average residence time 〈Ti〉 at a site i in terms of probability distribution

ProbL(hi) of height hi at the site, where L is the system size and pi is the average

frequency of addition at site i per unit time, e.g., p1 = 1 for addition of grains at site

1 and p1 = 1/L for uniform addition of grains. The average residence time of grains,

added when hi = h, can be expressed in terms of ProbL(hi) as given below.

〈Ti〉h =
ProbL(hi > h)

piProbL(hi = h)
(0.12)

The behaviour of all Ti’s are qualitatively similar for i not too close to the right edge and

we study distribution of residence time T1 only at site 1. We define ProbL(T1 ≥ t|h1)

be the conditional probability that a grain stays at site 1 for time greater than t, given

that it was added when the height was h1. ProbL(h1) is the probability that height at

site 1 was h1 when the grain was added. So we have, summing over all possible values
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of h1,

ProbL(T1 ≥ t) =
2L
∑

h1=L

ProbL(h1)ProbL(T1 ≥ t|h1).

Approximating ProbL(T1 > t|h1) by a simple exponential and using Eq.(0.12), we

write, for large t,

ProbL(T1 ≥ t) '
2L
∑

h1=L

ProbL(h1)e
−tp1ProbL(h1) (0.13)

In the steady state, the average value of h1 varies as L, and the width σ
h1

varies as Lω1 ,

where exponent ω1 < 1. For large L, the probability distribution of h1 has a scaling

form ProbL(h1) = L−ω1g(h1−h̄
Lω1

) and the scaling function g(x) varies as exp(−|x|α) for

|x| � 1, with α > 1. For large L and t, the terms, which contribute to ProbL(T1 ≥ t)

in Eq. (0.13), correspond to the values of h1 for which h1 � h̄1. Substituting the

scaling form of ProbL(h) in Eq (0.13) and converting the summation into an integral,

we show that,

ProbL(T1 ≥ τLω1) ∼ 1/[τ(ln τ)
α−1

α ] (0.14)

When grains are added randomly everywhere in the pile, e.g., in the Kadanoff model,

the average residence time 〈T1〉h1 of a grain added at height h1 varies as L/[ProbL(h1)]

[see Eq. (0.12]. Now there is an extra 1/L factor inside the exponential in the Eq. (0.13)

and the scaling variable τ = t/Lω1 in Eq. (0.14) is replaced by τ = t/L1+ω1 .

Simulation: We have checked our theoretical arguments by simulating the Oslo

rice pile model. The qualitative behaviour of distributions ProbL(Ti ≥ t) for i = 1

in this model can be seen in the simulation results shown in Fig.0.4 We have done

our simulations for p = q = 1
2
, and different system sizes, L = 20, 25, 35 and 50. We

averaged the data for a total 109 grains which were added in the pile for each L. Fig.0.4

shows the plot of ProbL(T1 ≥ t) versus scaled time t/L0.25 for different values of L.

Interestingly, various curves for different L have steps like structures and the curves for

different values of L cross each other many times. The existence of several steps, whose

positions and logarithmic widths are different for different L’s, implies that simple finite

size scaling cannot hold in this case. However, our scaling theory correctly describes

the envelop function of the staircase. In Kadanoff model We don’t see any steps like

structure. The cumulative probability is smooth and monotonic function of L for a
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Fig 0.4: Scaling collapse of ProbL(T1 ≥ t) against the scaling variable t/L0.25 for the
1d Oslo rice pile model for L = 20, 25, 35 and 50.

fixed t, and has a simple scaling form. Various ProbL(T1 ≥ t) for different values of L

collapse to a single curve when plotted versus t/L1.33.

In an earlier work, Boguna and Corral [20], and Carreras et. al. [21] used a

continuous-time random walk model of the motion of grains, with long trapping times

and a power-law distribution of step sizes, to explain the anomalous diffusion of tracer

grains. The exponent of the power law distribution of trapping times used in their

analysis was not equal to 2 and was incorrect as shown in this thesis. They did not

consider the logarithmic correction factor in the distribution of trapping times and

hence overestimated the exponent.

0.4.3 Distribution of total residence time in the pile.

Similarly, from the results for the distribution of T1, We can expect the behaviour of

the cumulative distribution ProbL(T ≥ t) to be a scaling function of t/Lω, where the

exponent ω is different from ω1 defined earlier. So we write

ProbL(T ≥ t) = f(
t

Lω
) (0.15)

where the scaling function f(x) varies as 1/[x(ln x)δ] for large x, and the exponent

δ would also be different from δ1 defined earlier. Using the condition that the mean
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Fig 0.5: Scaling collapse of ProbL(T ≥ t) against the scaling variable t/L1.25 for the
1d Oslo rice pile model for L = 20, 25, 35 and 50.

residence time in the pile is equal to the mean active mass in the pile, and hence scales

as L2, can be used to determine δ in terms of ω and γ by integrating ProbL(T ≥ t)

over t up to the cut-off time scale exp(κLγ). Now we get,

δ = 1 − (2 − ω)/γ (0.16)

Simulation: For Oslo rice pile, we have plotted ProbL(T ≥ t) versus scaled variable

t/Lω in Fig.0.5 where ω ≈ 1.25. We get the value of δ approximately equal to 0.75 from

Eq. (0.16), assuming γ = 3. The fit is seen to be very good. In the numerical analysis

of Christensen et. al. [11], no logarithmic factor was used, and the data was fitted

with a larger effective exponent, i.e., 1/t1.22 decay. We can expect a similar behaviour

in Kadanoff model. Various ProbL(T ≥ t) for different system sizes collapse to a single

curve when plotted versus t/L1.33 in Kadanoff model.

0.4.4 Probability of large deviations in the Oslo rice pile model.

The function ProbL(h1) can be exactly calculated numerically for small L using the op-

erator algebra satisfied by addition operators [22]. We denote any stable configuration

by specifying slope values at all sites from i = 1 to i = L, e.g., |122.....21〉. Whenever

slope zi becomes 2 after additions or toppling at site i, we denote such slope by 2̄, i.e.,
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|...2̄...〉. The overbar denotes that the site is unstable and may topple with probability

q. Using these two toppling rules repeatedly and the Abelian property of the 1d Oslo

rice pile model, we can relax any unstable configurations.

The probability of maximum slope configuration (i.e., when h1 = 2L) is pL. That

this probability varies as exponentially with L is incorporated in the scaling hypoth-

esis by assuming that the scaling function g(x) of distribution of height h1 varies as

exp(−ax
1

1−ω1 ) for x� 1 where a is a constant.

For small q, the probability of the minimum configuration is O(qm
L ) where we

conjecture m
L

to be exactly L(L+1)(L+2)/6. The coefficient of qm
L in the probability

is harder to compute explicitly for large L. For sufficiently small q, the probability of

the minimum height configuration in the 1d Oslo model varies as exp[−κ(q)L3], where

κ(q) is a q-dependent function. Then, as there is no change in the behaviour of the

Oslo rice pile expected as a function of q, this behaviour should persist for all non-zero

q. For the scaling function, this would imply that g(x) varies as exp[−κ(q)|x|
3

1−ω1 ] for

x � −1. The probability of the minimum slope can be written in a general form as

given below.

Prob(slope = 1) ∼ exp[−κ(q).L3] (0.17)

where κ(0) = ∞ and κ(1) = 0. We have calculated, ProbL(slope = 1), i.e., the proba-

bility of the minimum slope configuration, exactly numerically for q = 0.50, 0.60, 0.75

for L = 1 to 12 and the logarithm of ProbL(slope = 1) has been plotted versus

L(L + 1)(L+ 2)/6 in Fig.0.6.

All these results for critical slope type models have been published in [23].

0.5 Summary

1. We have studied the first passage time distribution of a particle obeying simple

diffusion equation with absorbing boundary. We explicitly calculated the scaling func-

tion, for the following geometries of the boundaries - a box in one dimension, circular,

square and triangular boundaries in two dimensions and cubical box and sphere in

three dimensions.

2. The DRT of sand grains in height type models, in the scaling limit, can be ex-
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Fig 0.6: Logarithm of the probability of the minimum slope configuration (calculated
exactly) is plotted versus L(L + 1)(L + 2)/6 for the 1d Oslo rice pile model for L = 1
to 12.

pressed in terms of the survival probability of a single diffusing particle in a medium

with absorbing boundaries and space-dependent jump rates. This is valid under the

conditions of local conservation of sand grains, transfer of fixed number of grains at

each toppling and isotropy, and are equally applicable to deterministic and stochastic

models.

3. For height type models, the DRT has scaling form L−df(t/Ld). The scaling function

f(x) is non-universal, and depends on the probability distribution according to which

grains are added at different sites. However, the DRT does not have any long time tail

and f(x) decays exponentially for x � 1.

4. For ricepile models, the tail in the DRT at a site, and the DRT of grains inside a

pile, are dominated by the grains that get deeply buried in the pile. We show that, for

a pile of size L, the probabilities that the residence time at a site or the total residence

time is greater than t, both decay as 1/t(ln t)x for Lω � t � exp(Lγ) where γ is an

exponent ≥ 1, and values of x and ω in the two cases are different. This power law tail

is independent of details of the toppling rules, and of the dimensionality of the systems.

5. In the Oslo rice pile model we find that the probability that the residence time
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Ti at a site i being greater than or equal to t, is a non-monotonic function of L for a

fixed t and does not obey simple scaling. We show that the probability of minimum

slope configuration in the steady state, for large L, varies as exp(−κL3) where κ is a

constant.
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CHAPTER 1 1

Introduction

The dynamical behaviour of systems with many particles can be described in terms of

their time dependent correlation functions. Two examples of such correlation functions

are distribution of residence times (DRT) and of first passage times (DFPT). In general,

residence time is defined as the time spent by a particle in a specified region of space.

The first passage time is defined as the time taken by a stochastic variable crossing a

specified surface in the parameter space for the first time. For granular piles, where

once grains are thrown out of the system cannot come back again, these two quantities

first passage time of a grain to the boundary of the pile and residence time of a grain

inside the pile are basically same. The distributions of the residence times and the first

passage times have been studied extensively in the literature. We start with a brief

overview of the literature.

1.1 The distribution of the residence times and the

first passage times in various contexts.

1.1.1 Random Walks.

For example, in the problem of continuous time random walks (CTRW’s), especially

in the context of various transport processes [1], the distribution of first passage times

(DFPT) is of particular interest. The DFPT has been calculated for a simple unbiased

random walker as well as a random walker with long waiting times and long jumps

(Levy flight). For example, the classic Polya problem which is as follows. We consider

a simple unbiased random walker starting from a point x = x0 in one dimension when

mean waiting time and mean square jump length both are finite. It can be shown that

the DFPT to origin is given by F (t) ∼ x0√
Dt3

exp(− x2
0

4Dt
) where F (t)dt is the probability

for the particle to arrive at the origin x = 0 in the time interval t to t + dt. It’s
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asymptotic functional form in long time limit has 3/2 power law tail, F (t) ∼ t−3/2

[2, 3]. In a finite domain of size L, the DFPT has an exponential tail. In the next

chapter we exactly calculate the DFPT of random walkers moving inside domains of

various shapes in various dimensions where random walker gets absorbed whenever it

hits the boundaries. Two other interesting cases are when probability distribution of

waiting time τ between two successive jumps is a power law τ−(1+α) for large τ with

0 < α < 1 (root mean square displacement of the particle 〈x2〉 ∼ tα upto time t) or

when probability distribution of jump length a is a power law a−(1+µ) with 0 < µ < 2

(standard deviation of jump length 〈a2〉 = ∞). In the first case when mean waiting

time diverges but the mean jump length is finite, the DFPT to origin staring from

x = x0 in one dimension has been shown to vary as F (t) ∼ x0t
−(1+α/2) using method of

images [4]. Interestingly in the case of long jumps, long time behaviour of the DFPT

to the origin is same 3/2 power law as in the simple unbiased Brownian motion, i.e.,

F (t) ∼ t−3/2 [5, 6, 7], although a naive guess (however wrong) would be a faster decay

than by t−3/2 due to the much quicker exploration of space by the particle [8, 9, 10].

Other two similar quantities of wide interest are local residence time Tx at a neigh-

bourhood of a point x and the residence time TD inside a sub-domain D of the region

[11]. If X(t) is the position of a random walker at time t, the local residence time at a

point x upto time t is defined as Tx(t) =
∫ t

0
δ[X(t′)−x]dt′ and the residence time TD(t)

upto time t is defined as
∫

D
Tx(t)dx. For example in the case of a simple unbiased

random walker, the distribution of residence time TD(t) of the walker in positive x-axis

upto time t is given by 1

π
√

T
D

(t−T
D

)
. The cumulative probability that the residence

time is less than or equal to T
D

is famous Levy arcsine law 2
π

sin−1(
√

T
D
/t) [2]. The

distribution of residence times has recently attracted particular attention in disordered

systems [12]. In the systems with quenched impurities, one injects a tracer particle

which tends to get stuck to the impurity sites, while diffusing around, until they are

unstuck by thermal fluctuations. The concentration of impurity sites can be inferred

from the local residence time spent by the tracer at that point.

Other than the Brownian motion, the DFPT has been studied for various other

stochastic processes in many other problem, e.g., persistence problem, diffusion limited

aggregation, problem of neuron dynamics, etc which will be discussed briefly in next

sections.
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1.1.2 Persistence.

The persistence problem have attracted a lot of attention in non-equilibrium systems

[13]. Persistence is defined as the probability of a fluctuating quantity being above (or

below) a level at least upto time t once it is above that level. The probability decays

as t−θ for large time t where the exponent θ is defined to be persistence exponent. For

example in the case of simple unbiased random walk in one dimension, this probability

is just the survival probability of the walker at least upto time t, with an absorbing

boundary at the origin, and it is the cumulative DFPT, i.e.,
∫ ∞

t
F (t′)dt′ which varies

as t−1/2 for large time t. So the persistence exponent in this case is θ = 1/2. For other

stochastic processes, the calculation of the persistence exponent is quite difficult, and

only in some cases analytical answers are known.

Some non-stationary stochastic processes can be transformed to a stationary Gaus-

sian process. Therefore the much simpler case where the stochastic process Φ(t) is

stationary and Gaussian, and hence fully characterized only by two point correlation

function 〈Φ(t)Φ(t′)〉 = f(t− t′), has been studied for long time [14]. It has been shown

that if the two point correlation function f(t) falls faster than 1/t, then the persistence

probability falls as a simple exponential exp(−αt) for large t where α is a constant [13].

For a special case where stochastic process is stationary Gaussian Markov process, the

correlation function is purely exponential, i.e., f(t) = exp(−λt) where λ is a constant

and in this case the persistence probability is exactly given by 2
π

sin−1[exp(−λt)] [14].

For large t, this probability goes as exp(−λt).

For a non-Markov and non-stationary process, for example, if we consider Φ(t)

where Φ(t) satisfies a Langevin equation d2Φ(t)
dt2

= η(t) and η is a delta correlated Gaus-

sian noise, the persistence probability goes as t−1/4 [15]. In more complicated cases,

the stochastic process Φ(x, t) may be a function of space variable x and time variable t,

both. For example, if Φ(x, t) satisfies the diffusion equation ∂Φ(x,t)
∂t

= ∇2Φ(x, t) where

initial initial condition Φ(x, t) is a Gaussian random variable, the persistence exponent

θ is non-trivial and has been numerically calculated to be θ ≈ 0.1207, 0.1875, 0.2380

in one, two and three dimensions respectively [13].
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1.1.3 Diffusion Controlled reaction.

There are a variety of problems in chemical physics and biophysics where one is in-

terested in the average time required for a biochemical particle (equivalently rate of

reaction), diffusing under an influence of a potential, to reach a target. For example,

the rates of biochemical reactions involving two molecular partners are determined by

the diffusive process which lead to the necessary encounter of the reactants. Another

problem that has been studied is the diffusion controlled inter-chain reaction of a poly-

mer with two reactive groups attached at two ends [16, 17]. The reaction occurs with

a certain rate whenever two ends of the polymer chain are sufficiently close, and one

likes to know the average time needed for two ends to collide for the first time. So in a

diffusion controlled reaction, reaction rates of two molecules are related to the passage

of a molecule into the reactive range of other molecule.

The average reaction time τ can be calculated from the survival probability S(t)

at least upto time t, i.e., τ =
∫ ∞
0
S(t)dt [3, 18]. The motion of the particle diffusing

in a potential U(x) is governed by a Fokker-Planck equation ∂p(x,t
∂t

= j(x, t) where

p(x, t)dx is the probability of finding the particle between x and x + dx at time t

and j(x, t) = D(x)[ ∂p
∂x

+ β ∂U(x)
∂x

] is the flux at position x at time t. Here D(x) is

the space dependent diffusion constant. The boundary condition one may impose

j(r = a, t) = κp(r = a, t) (”radiation” boundary condition) or Smoluchowski boundary

condition p(r = a, t) = 0. One prevents particle to go out of the system, and imposes

reflecting boundary condition at x = R, j(x = R, t) = 0. In the case of radiation

boundary condition particle can reach x = a many times before getting absorbed, but

in the second case of Smoluchowski boundary condition, particle gets absorbed once it

is reached (hence corresponds to first passage time).

1.1.4 Neuron dynamics.

A neuron is a fundamental unit of a nervous system. A neuron generates a series of

voltage spikes, i.e., intermittent bursts. The train of voltage spikes are detected to post

synaptic neuron so that brain generates a particular sensory information from the input.

The distribution of time interval between these voltage spikes has long been studied

in the literature [19, 20]. Still we do not understand exactly how a stimulus (such as

odour, image or sound) is represented within the nervous systems as a distributed set

of voltage spikes. However, no doubt, a major component of sensory information is
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transmitted to brain uses a code which is based on the time interval of neuron firing,

i.e., inter voltage-spike time duration [21, 22]. Considerable effort has been made to

understand the inter spike interval (ISI) distribution as this provides basic information

about underlying neurophysical processes. The mechanism behind these voltage spikes

is that the polarization level in a neuron changes by a small amount due to excitatory

and inhibitory voltage inputs [3]. When the polarization level in the neuron first exceed

a specific threshold value, the neuron emits a voltage spike and again returns to the

reference level. So the time interval between these voltage spikes is the first passage

time for the polarization to reach a certain value.

There is a simple model for the neuron dynamics which is called the integrate-and-

fire model [23]. Although the model does not incorporate many complexities of real

neuron behaviour, it does provide a starting point for understanding basic features of

ISI distribution. In the model excitatory and inhibitory inputs occur at rate αE and

αI respectively. These inputs causes the polarization increase or decrease by, say, aE

and aI . In the continuum limit the evolution of the polarization is approximated by

a diffusion equation with a bias velocity v = αEaE − αIaI and a diffusion constant

D =
√

αEa2
E + αIa2

I . The neuron will fire if polarization reaches the threshold value

x0. Clearly the ISI distribution is nothing but the first passage time distribution of a

biased diffusing particle which starts from position x0 and gets absorbed at the origin.

So the ISI distribution is given by the simple formula x0√
4πDt3

e−(x0−vt)2/4Dt. To get more

physical features, various other stochastic process, e.g., Ornstein-Uhlenbeck process

[20], or a periodically varying threshold [24], etc have been used instead of the simple

biased diffusion of integrate-and-fire model.

Now we will discuss how the time dependent properties have been formulated in

terms of residence time distribution of grains in sandpile models of self-organized crit-

icality. We shall briefly discuss about the self-organized criticality in the next section.

1.2 Self-organized criticality (SOC).

We start with a short recapitulation of the basic ideas of SOC. The concept of SOC was

proposed by Bak, Tang and Wiesenfeld (BTW) [25] to explain abundant fractal struc-

tures in nature like self similar mountain ranges, river network, power law distributed

burst like activity in earthquake phenomena and rainfall, ubiquitous 1/fα flicker noise

etc.
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For example in the case of mountain ranges, the irregular height profile can be

characterized by mean square height difference ∆h between two points separated by

a distance r which varies as, 〈(∆h)2〉 ∼ rα. The average is taken over spatial points

separated by distance r. The exponent α does not seem to depend on a particular

mountain.

River networks are formed in a time scale of hundred of thousands of years and have

a fractal spatial structure. If drainage area of a stream has an area A as we go down

a distance l along the stream in the network, the area has simple power law relation

with the distance l as A ∼ ly. This law is known as Hack’s law [26].

Phenomena of earthquakes is due to the slow but steady motion of tectonic plates

(a few centimeter per year) which makes earth’s crust. Due to the convection current in

magma (the molten region inside the earth crust), these plates move and consequently

stress develops along the fault line of two plates. When the stress is greater than

frictional force between two plates, energy due to the stress developed between plates

is released and there is an earthquake [27]. It has been known empirically that the

amount of energy E released in an earthquake event is power law distributed and this

is known as Gutenberg-Richter law [28]. Here power law distribution means that there

is no characteristic scale in the underlying physical phenomena.

Rainfall related quantities have been studied since a long time [29], and recently,

high resolution data have been recorded [30] and rain rate was measured. If one defines

an event of rainfall as a sequence of successive nonzero rain rate, the event size M is

defined to be M =
∑

t q(t)∆t where ∆t = 1 minute, q(t) is the rate of rainfall [31], i.e.,

an event size is just the total amount of water released in a container in a particular

event of rainfall. The probability Prob(M ≥ y) that the total amount of rainfall M in

a rainfall event is greater than y is a power law, i.e., Prob(M ≥ y) ∼ y−0.36 [31]. So

rainfall events also do not have any characteristic scale.

Flicker noise is characterized by long-ranged temporal correlation and the power

spectrum S(f) of the noise signal varies with frequency f as 1/fα for low frequency

where 0 < α < 2. The flicker noise has been observed in various seemingly disconnected

context such as in the light from quasars, intensity of sunspot, voltage fluctuation in a

current carrying resistor, sand flow in hour glass etc [25]. Although occurrence of the

flicker noise is ubiquitous in nature, there is no unifying mechanism for it.

Bak, Tang and Wiesenfeld introduced a simple model, called the BTW sandpile
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model (also known as the Abelian sandpile model), which illustrates the mechanism of

SOC [25]. Sandpile models are threshold activated systems (there is local relaxation

only if a variable crosses some threshold value) which, when driven slowly, organize

themselves to a critical non-equilibrium stationary state without any fine tuning of

parameters. The long-ranged correlation shows up as fractal structures in space. The

long-ranged correlation in time gives rise to 1/fα power spectrum of noise with α < 2.

One of the main motivation of BTW in introducing the concept of SOC was to explain

the 1/fα flicker noise. BTW argued that emergence of the self-organized critical state

gives a connection between the 1/fα power spectrum and the fractal spatial structure

of the critical system. Study of time dependent properties of various sandpile models

have gone into two different directions, one is the study of power spectrum of avalanche

activity in sandpile models and other is study of the residence time distribution of grains

in sandpile models. In subsequent sections we shall first discuss about various SOC

models and then the temporal properties of these models [32, 33, 34].

1.2.1 Models of self-organized criticality and universality classes.

Sandpile models are defined on a lattice and configurations are specified by a height

variable which gives the number of grains at each site. There is a threshold condi-

tion for toppling at a site and some specified number of grains are transferred to the

neighbouring sites after each toppling. Depending on the threshold condition, there

are two broad classes in sandpile models, critical height type models and critical slope

type models. We call all the slope type models as ricepile models hereafter. The piles

are slowly driven, i.e. the time interval between addition of two grains is chosen long

enough so that all avalanche activity has died before a new grain is added and this

time interval is measured to be one unit of time in our analysis. Grains can leave the

pile when there is toppling at the boundary sites. Once a grain is out of the pile, it

cannot again come back inside the pile.

Historically, perhaps because of their relation to the earthquake phenomena, studies

of sandpile have generally focused on distribution of avalanche sizes which may be

measured by total number of toppling events after addition of a grain. In the critical

steady state the avalanche size distribution has a power law scaling form s−γsf(s/LDs)

where s is the size of a particular avalanche and γs, Ds are two positive exponents. The

cutoff scale LDs is due to the finite size of the system and the power law distribution
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extends upto infinity in the limit of infinite system size. The long-ranged spatial

correlation in the critical state is characterized by this power law with the exponent γs.

Other quantities of interest are diameter and area of the region affected by the avalanche

activity. These also have power law distribution with another set of exponents in the

steady state. The long-ranged temporal correlation is measured by distribution of

lifetime of an avalanche activity τ which is also a power law and has a finite size

scaling form τ−γτ f(τ/LDτ ). So we see that in the critical state various quantities are

power law distributed and therefore there is no characteristic scale in the system. Below

we describe various sandpile models and discuss various universality classes in sandpile

models.

Height type sandpile models.

In height height type sandpile models, toppling condition at each site depends on the

height, i.e., number of grains, at that site. If height crosses a threshold value, a fixed

number of grains are distributed to the neighbouring sites.

The BTW model: The BTW model is defined in a finite d-dimensional lattice and

there is a variable called height variable h(~x), at a lattice point ~x. The height h(~x) is

number of sand grains at site ~x. The time evolution is very simple, when h(~x) ≥ 2d

the site becomes unstable and there is a toppling event, i.e., all 2d grains are thrown

out of the site and each of the 2d neighbouring site gets one grain. The boundary is

open, and grains are lost when there is a toppling at the boundary sites. Once toppling

starts at a site after addition of a grain, topplings go on till all the sites are stable.

Given more than one unstable sites, it does not matter which way one topples the

unstable sites. The final stable configuration is independent of the order of toppling

the unstable sites (this is called the Abelian property of the BTW sandpile) [35]. The

BTW model has been studied extensively both numerically and analytically. Values

of the standard avalanche exponents in two dimensions are as follows: γs ≈ 1.22 and

γτ ≈ 1.32 [36]. For the recent result see the review [32, 33, 34].

Models with stochastic toppling rules: Manna defined a model with stochas-

tic toppling rules [37]. There are variations of the Manna model, but now onwards we

shall call all models with similar rules as Manna models. For example, one of such

stochastic models is Manna four state model which is defined in a finite d-dimensional
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lattice. The height h(~x) is number of sand grains at site ~x. The time evolution in

Manna model is not deterministic as in the BTW model. The toppling rules are as

follows: whenever h(~x) ≥ 2d, the site becomes unstable and each of the 2d grains are

transferred randomly to any of the neighbour, independent of each other. This model

also has an Abelian property, i.e., the final stable configuration reached from a given

unstable configuration is independent of the order of toppling the unstable sites [34].

Grains are added randomly everywhere and grains are lost at the boundary. Values

of the standard avalanche exponents in two dimensions are as follows: γs ≈ 1.28 and

γτ ≈ 1.47 [38]. However the original stochastic model defined by Manna [37] does not

have the Abelian property and there is hard core interaction between grains, i.e., there

can be only one grain at each site. But the exponents are same as in the case four

state model. For recent results see [34].

Zhang model: In this model, there is a continuous real variable E(~x) defined at

each site ~x of a d-dimensional lattice and the energy E(~x) can take values upto a

threshold Ec. The threshold value Ec is chosen to be 1 [39]. The system is driven by

increasing energy at a randomly chosen site ~x by an amount δ. If the energy at a site

E(~x) ≥ 1, the site becomes unstable. Then it relaxes by transferring the full amount

of energy equally to each of its 2d nearest neighbours and resetting its own energy

to zero. Energy can be lost through the open boundary. This model is not Abelian,

unstable sites are updated in parallel. Although energy at any site can take continu-

ous values upto 1, interestingly energy distribution at a site has 2d distinct peaks in

d-dimensions. For example in two dimensions, the distribution is peaked around four

values E ≈ 0.02, 0.34, 0.66 and 0.98. Using local energy conservation and the isotropy

in energy transfer rule, the distribution of a few quantities have been predicted [39].

For example, the probability distribution of area a of an avalanche cluster has been

argued to have a power law distribution a−γa with γa = 2−2/d in any arbitrary dimen-

sion d. The lifetime τ of an avalanche activity is related to linear size of the avalanche

cluster r as τ ∼ rγτr where γτr = (d + 2)/3 for d ≤ 4. Although the exponents match

with the values from numerical simulations within the error bar, it is not clear why the

arguments given by Zhang do not also work for other isotropic models like the BTW

or the Manna models.

The Directed BTW model: The directed version of the BTW model can be de-

fined on a d-dimensional lattice [40]. For simplicity we consider two dimensional case.
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Generalization to higher dimensions is straightforward. The two dimensional square

lattice is oriented in (1, 1) direction so that edge of the system is at angle of 450 to any

bond of the lattice. One can assume periodic boundary in one direction (cylindrical

shape). Grains are added randomly at any site on the top edge and grain can leave the

pile at the bottom. If h(~x) > 1, there is toppling and two grain are transferred, one

grain to each of the two downward nearest neighbours. This model is also Abelian like

its isotropic version. This model has been solved exactly by Dhar and Ramaswamy

[40]. The distribution of avalanche size s has power law form s−γs with γs = 4/3. The

distribution of lifetime τ is also power law τ−γτ where γτ = 3/2. The values of γs and

γτ for d > 3 are 3/2 and 2 respectively. The relation between avalanche size s and

lifetime τ is given as s ∼ t3/2 in d = 2 and as s ∼ t2 in d ≥ 3 [40]. For d = 3, there are

logarithmic corrections to the power laws in the distributions of s and τ . For example

distribution of lifetime τ varies as (ln τ)/τ 2 in d = 3 [40].

Slope type sandpile models.

In slope type sandpile models, toppling condition at each site depends on the slope

value which is suitably defined from the height variable. If slope crosses a threshold

value, a fixed number of grains are distributed to the neighbouring sites.

KNLZ models: Kadanoff et. al. have studied several slope type models both in

one and two dimensions to investigate different scaling properties and the question of

universality classes in SOC [41]. They have particularly studied distribution of two

quantities, i.e., number of grains that drop off the edge in one avalanche and avalanche

size. These 1D models have nontrivial scaling structure unlike the one dimensional

BTW model. They do not appear to have a simple finite size scaling form, and a

multi-fractal analysis is much better in collapsing data for various system sizes. How-

ever in the case of 2D models, simple finite size scaling works quite well.

In finite size analysis one assumes that in the regime X,L � 1 the distribution

function P (X,L) has a scaling form L−βg(X/Lα) where X is either drop number or

avalanche size and α, β are two positive exponents. But more generally the exponent

β is different in different length scales, i.e., if X is of order Lα, then P (X,L) is of order

Lβ. So β is a function of α, i.e., β = f(α). Now in this case P (X,L) has a general

form P (X,L) ∼
∫

dαµ(α)L−f(α)g(x/Lα) where µ(α) is some function of α. Therefore

when the simple scaling assumption does not work, one uses a multi-fractal form as
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ln[P (X,L)]/ ln(L/L0) = f [ln(X/X0)/ ln(L/L0)] where X0 and L0 are two suitable con-

stants such that one gets a good fit. The quantity ln(X/X0)/ ln(L/L0) is called α and

the fit is called f − α representation [41]. When g(x) is a simple power law, df/dα

equals the usual scaling exponent γ
X

previously discussed for various critical models.

Universality is determined by the scaling exponents α and β in the case of simple power

law scaling, other wise they are determined by the functional form of f(α) [41].

Oslo ricepile model: The Oslo ricepile model is a stochastic model defined by Frette

et. al. [42, 43]. The precise details of the toppling rules will be given later in section

4.1.1.

The question of universality classes in SOC models is well debated in the literature.

It was first discussed by Kadanoff et. al. [41]. They concluded, depending on of

various toppling criteria (height type or slope type) and other symmetry properties

(such as isotropy or directedness), there exists several universality classes. They have

shown that several one dimensional slope type models have nontrivial multi-scaling

structure, unlike the trivial one dimensional BTW model, and on the basis of the

multi-scaling form of the distribution function (i.e., f − α representation), there are

several universality classes exist also in one dimension. Later on many authors [45, 46]

have discussed about universality classes in height type isotropic models. Even though

BTW, Manna and Zhang models have different toppling rules, all these three models

were supposed to be in the same universality class. Pietronero et. al. developed a

RG scheme [47] and argued that BTW and Manna models are in the same universality

class. Biham et. al. have shown from extensive numerical simulation that BTW,

Manna and Zhang models have different exponents of various power law distributions

and hence belong to three different universality classes [45].

1.2.2 Self-organized criticality and 1/fα noise.

The issue whether avalanche activity in sandpile models shows 1/fα noise has attracted

a lot of attention since BTW proposed the model. In this subsection, we will review the

recent literature which explores whether sandpile models show 1/fα noise or not. Here

one should note that the avalanche activity have different behaviour for two different

time scales, the time scale of a toppling event, i.e., correlation among activity within

a single avalanche and for the time scales of slow driving, i.e., correlations among
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separate avalanches. We discuss about these two cases separately below.

In the time scale of an toppling, it has long been debated whether avalanche activity

in the BTW model shows 1/fα power spectrum. Initial simulations pointed that there

is long-ranged temporal correlation in the avalanche activity, but the power spectrum

has 1/f 2 behaviour at low frequency [48, 49], not 1/fα with non-trivial α < 2. Recently,

Laurson et. al have done a more detailed numerical analysis and shown that the power

spectrum is indeed 1/fα with a nontrivial exponent α < 2 [51].

The basis of their analysis is as follows. Let us represent time series of the noise

signal for a avalanche of size s by y(t|s). So the power spectrum S(f |s) is |ỹ(f |s)|2
where ỹ(f |s) is the Fourier transform of the signal, i.e., ỹ(f |s) =

∫

y(t|s)eiftdt. Clearly

ỹ(f = 0|s) ∼ s which is the avalanche size s. The power spectrum S(f |s) has a

scaling form S(f |s) = s2g(f γsts) where γst ia an exponent. The exponent γst relates

a particular avalanche size s to its life time τ as s ∼ τ γst . The scaling function

g(x) varies as 1/x for large x [50, 51]. Now the form of power spectrum S(f) of the

actual signal y(t), which is random superposition of signal y(t|s), can be obtained after

averaging over various avalanche sizes s. So the total power spectrum is given by

S(f) =
∫

P (s)S(f |s)ds where P (s) is the probability distribution of s. Now putting

P (s) ∼ s−γs , we get S(f) to be f−γst(3−τ)
∫ s∗fγst

x2−γsg(x)dx where s∗ is upper cut-off

of avalanche size. Since g(x) ∼ 1/x, the integral varies as 1/f γst and hence α = γst.

Kertesz et. al. [48] and Jensen et. al. [49] have taken wrong form of g(x) ∼ 1/x2 and

got S(f) = 1/f 2.

Laurson et. al. have found the exponent in the power spectrum to be α ≈ 1.59 for

the two dimensional BTW model and α ≈ 1.77 for the two dimensional Manna two

state model. The exponent α is expected to be 2 in dimensions greater than 3 [51].

In the second case, there is no long-ranged correlation found from the simulation

in the avalanche activity in the time scale of addition of grain in BTW or Manna

model [51]. However for some specific one dimensional models, 1/fα power spectra

were found in the mass fluctuation of the pile. None of these two models have simple

power law scaling form of the probability distribution P (s) of avalanche size s, i.e.,

P (s) = s−γsf(s/LDs), however the avalanche size distributions are broad and have

diverging first moment in the limit of large system sizes. For example, the BTW models

were studied for quasi one dimensional geometries (on a ladder, etc.) by some authors

[52, 53]. They analytically found that the power spectrum of total mass fluctuation of
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the pile has the 1/fα form with α = 1.

Davidsen et. al. [54] have studied another one dimensional model called stick-slip

model introduced by de Souza Viera [55] which evolves towards a critical steady state

upon slow driving. They have considered a one dimensional system of finite size where

a continuous variable fi at site i. The variable fi represents force at the respective

site. If fi ≥ fc, relaxation occurs with conservative redistribution of force from this

site to its nearest neighbours. The time signal they have considered the total force in

the system, i.e., y(t) =
∑

i fi(t). They found from the numerical simulation that this

signal has non-trivial long-range correlation 1/fα with α ≈ 1.38. Power spectrum S(f)

has a scaling form S(f) = f−αg(fLβ). Lβ is the cutoff time scale beyond which the

signal gets completely decorrelated. And this decorrelation occurs after all sites have

relaxed at least once and this probability is of the order L−Ds(γs−1) where the probability

distribution of avalanches has a scaling form s−γsf(s/LDs). So we get the exponent

β = Ds(γs − 1). The first moment relation, 〈s〉 ∼ L [55], implies Ds(2 − γs) = 1

and using it we obtain β = (γs − 1)/(2 − γs). This model is conjectured to be in

the universality class of interface depinning with interface pulled at one end [56]. The

standard deviation σ2 = 〈(y − ȳ)2〉 (i.e., σ2 =
∫

S(f)df) has been shown to have the

scaling of L2(Ds−2). Now σ2 has a scaling σ2 ∼ Lβ(α−1) which can be obtained from the

scaling form of the S(f). Comparing these two scaling relation, one gets β(α − 1) =

2(Ds − 2). One gets value of α = (3Ds − 5)/(Ds − 1) = (5γs − 7)/(γs − 1). So the

critical avalanche dynamics and long-ranged temporal correlations between avalanches

are strongly related and produce 1/fα noise and the exponent α, which is equal to

(5γs−7)/(γs−1), can be expressed in terms of standard (static) exponent γs for single

avalanche size distribution.

Recently Baies et. al. have studied one of the sandpile models, local limited model

defined by Kadanaoff et. al., where position of the site, at which a grain is added,

changes according to a random walk, i.e., the site i(t) where grain is added at time

t is chosen randomly between two neighbours of the site where grain has been added

at the previous step i(t − 1). The spatial correlation in grain addition is translated

into intermittent avalanche activity where the power spectrum of avalanche size time

series has 1/f power law spectrum and power law distribution of waiting times between

two successive avalanche activity. Previously Sanchez et. al. [57] have studied run-

ning sandpile [58] with correlation in external driving. They also found broad power

law distribution of waiting times between two successive avalanche activity. However,



CHAPTER 1. Introduction 14

Fig 1.1: A sketch of the experimental setup of the Oslo experiment taken from the
book titled “Self Organized Criticality” by H. J. Jensen (Cambridge Univ. Press,
Cambridge, 1998).

without the correlation in external driving, they found the waiting time distribution is

a simple exponential.

1.2.3 Self-organized criticality in granular pile and the distri-
bution of residence times of grains in the pile.

Although SOC was not seen in experiments on piles of sand [59], piles of long-grain rice

have shown evidence of power law distributed avalanches and provided a good exper-

imental realization of a simple system showing SOC. In the Oslo rice pile experiment

[60], Frette et. al. studied the transport properties of rice grain by slowly adding rice

grains at one end of a pile between two closely spaced parallel rectangular glass plates

(100 cm ×120 cm) where grains can leave only at the other end. See Fig. 1.1 and Fig.

1.2. The separation between the two plates was such that almost three layers of rice

grain are possible. Coloured tracer grains were added (20 grains/min) when the pile

reached the stationary state and the residence times of grains were measured. They
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Fig 1.2: Snapshot of ricepile in the Oslo ricepile experiment by Christensen et. al.

(Phys. Rev. Lett., 77, 107, 1996).

studied distribution of residence times. The probability distribution function PL(T ) of

the residence time T was determined for various system sizes L and the fitting the data

to a scaling form PL(T ) = L−νF (T/Lν) was done with ν = 1.5 ± 0.2. They obtained

that the scaling function F (x) has the following form: F (x) is constant for x < 1 and

F (x) ∼ x−α where α was found to be 2.4± 0.2 by fitting the data to a power law. The

average total residence time of grains in a pile of size L was estimated to be 〈T 〉 ∼ Lν

from the scaling form of the probability distribution function.

There have also been some numerical and analytical studies of these distributions

later on. Frette proposed a theoretical model, called the Oslo rice pile model [61],

which seems to reproduce the phenomenology of the rice pile experiment well. From

numerical simulations of the Oslo model [62], the exponent characterizing the power law

decay of the probability density of total residence times at large times was estimated

as α = 2.2±0.1 and exponent ν was estimated to be 1.3±0.1. However we show in this

thesis that the mean residence time varies as L2 and argue that the form of the scaling

function F (x) is actually 1/[x2(lnx)δ] for large x where δ is a positive exponent.

Boguna et. al. [63] argued that the dynamics of the Oslo model and the Oslo ricepile

experiment can be explained in terms continuous time random walk (CTRW) with Levy

flight and long tailed trapping time for the grain. The trapping time distribution was
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taken to be ψ(t) ∼ 1/t2+β where ψ(t)dt is the probability of a grain being trapped

at some site for time t to t + dt and the exponent 0 < β ≤ 1. The jump length

distribution φ(l) varies as φ(l) ∼ 1/l2+γ with 0 < γ ≤ 1 where φ(l)dl is the probability

of jump length of l to l+dl during an avalanche. For these distributions, mean waiting

time and mean jump length both are finite, but second moment of both the quantities

are infinite. The long time behaviour of the residence time distribution PL(T ) has

a long tail PL(T ) ∼ 1/T 2+β independent of jump length distribution and it implies

that 2 + β = α where the exponent α has been defined in the previous paragraphs.

Small time behaviour of the distribution is PL(T ) ∼ 1/L1+γ which independent of the

residence time T . Assuming a scaling form of PL(T ) = L−νF (T/Lν), it was shown

that β = γ and 1 + γ = ν.

A similar analysis has been done by Carreras et. al. in the context of plasma trans-

port where some of the phenomena observed in plasma, confined in a magnetic field,

have long-ranged space and time correlations. Various data analysis of electromagnetic

fluctuation have suggested that the dynamics is governed by SOC mechanism [64] and

the transport of charged particles in the plasma is governed by avalanche like activity.

They have explained the transport of particles in plasma using a cellular automata

based on a simple sandpile model, called running sandpile [41, 58]. The authors have

studied the underlying transport properties of grains in the pile by following the motion

of a tracer grain in running sandpile [65] where transport is super-diffusive. They were

interested in the ensemble average of various moments of displacement of the tracer

grain 〈|[x(t)−x(0)]|n〉 where x(t) is the position of the tracer grain at time t. They an-

alyzed the behaviour of moments 〈[x(t)−x(0)]n〉 ∼ tnν(n) for 0 < n < 1 and found that

the exponent ν(n) ≈ 0.74 for fractional n [65]. They have modeled the motion of grains

using the following fractional Fokker-Planck equation (A|q|γ − Buβ)P (q, u) = Buβ−1

(0 < γ, β ≤ 1) where P (x, t)dx is the probability of finding the particle between x and

x+ dx at time t and P (q, u) = 1/2π
∫ ∞
0

∫ ∞
−∞ dtdxP (x, t)e−iqxe−ut, i.e., Laplace-Fourier

Transform of P (x, t). The exponents γ and β are related to the exponents of the power

law jump length distribution φ(l) and trapping time distribution ψ(t) as φ(l) ∼ 1/l1+γ

and ψ(t) ∼ 1/t1+β. The behaviour of moments is 〈|x(t) − x(0)|n〉 ∼ tnβ/γ for large t

and therefore the exponent ν defined earlier is equal to β/γ. The values of γ and β

were found directly from the simulation and, putting these in, one finds ν ≈ 0.68 which

agree within error bar with the value of ν found from the direct simulation.
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1.3 Plan of the thesis.

The thesis is organized as follows. In chapter 2, we calculate the first passage time

distribution in simple, unbiased random walks in presence of absorbing boundaries of

various shapes. We have solved diffusion equation with absorbing boundary condition

and obtained explicit solutions for the following geometries of the boundaries - a box

in 1 dimension, circular, square and triangular boundaries in 2 dimensions and cubical

box and sphere in 3 dimensions. The distribution in all cases shows scaling and the

scaling function have been expressed in terms of the Jacobi Theta functions.

In chapter 3, we have studied the distribution of residence times (DRT) of grains

in height type sandpile models. First we describe general formalism for calculating the

residence time distribution of grains in sandpile models in terms of transition matrices.

We illustrate this by numerically calculating the DRT in the one dimensional BTW

model driven by adding grains at one end. Then we discuss analytically the small

time behaviour of the distribution for the 1D BTW model driven at an end and also

derive the continuum equation describing motion of the grains in the hydrodynamic

limit for the same model. We generalize our theoretical argument to higher dimensions

and other isotropic height type models. We have argued that the motion of a grain is

diffusive at time-scales much larger than the interval between successive grain addition

and the jump-rates of grains at various sites are space-dependent due to the space

dependence of avalanche activity at different sites. We have shown that the DRT,

for large residence times and large system sizes, can be expressed in terms of the

survival probability of a diffusing particle in medium with absorbing boundaries and

space dependent jump rates. We have exactly solved the DRT in some special cases.

The DRT is of the form L−df(t/Ld) in d-dimensional pile for system size L and f(x)

has been shown to decay exponentially for large x. In our analysis, the small time

behaviour of the DRT has not been taken care of well due to boundary avalanches. We

study the finite size corrections in the DRT and for the one dimensional BTW model

driven at an end we exactly calculate the leading order correction due to the finite

system size L, i.e., correction of order O(1/L).

In chapter 4, we have studied the DRT at a site and in the pile for slope type sandpile

models. We have defined various slope type models for which we have done Monte Carlo

simulation to check our theoretical arguments. First we discuss relation between the

residence times at a site and the height fluctuation of the pile. The DRT in slope type
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models are qualitatively different than the DRT in height type sandpiles. For slope type

models, there is a significant weight at tail of the DRT due to the deeply buried grains in

the pile. These grains take a long times to come out, the cutoff time scale in the DRT is

diverging exponentially with increasing system sizes. We show that this determines the

exponent of the power law tail in the DRT. To calculate the probability of occurrence

of minimum height of the pile, we have considered the one dimensional Oslo ricepile

model. This model is more tractable analytically because some simplifications occur

due to its Abelian property. We exactly calculated the probability of minimum slope

configuration of the Oslo pile for smaller system sizes both analytically and numerically.

In the limit of system size L being large, we have argued that for stochastic ricepile

models in d dimensions the probability of the minimum slope configuration varies as

exp(−κLd+2). We verify this prediction numerically. The probability of the minimum

slope for large L is so small that one cannot calculate it using a simple Monte Carlo

simulation. The probability of large deviations in height fluctuation of the pile was

studied by Monte Carlo simulation using importance sampling to sample the rare events

with probabilities, say, of order O(10−100). Then we study the DRT in the pile which

is just sum of residence times at various sites. We have shown that the DRT, both at a

site and in the pile, have same 1/t2 power law behaviour. We also point out that the a

1/t2 power law tail of the DRT’ have a logarithmic correction factor which is different

for the residence time at a site and the total residence times in the pile.

In chapter 5, we summarize our results with some concluding remarks.
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First passage time distribution in
random walks.

In this chapter we calculate the first passage time distribution for a random walker

in the presence of absorbing boundaries of various geometries. This is a well studied

problem [2, 3, 66] with considerable physical interest. For example there is classic

Polya’s problem, i.e., distribution of first passage time to origin for a simple random

walker in an infinite domain [2]. The first passage time distribution of a random walker

in one dimension with two absorbing barriers at two ends can be calculated using

repeated reflection principle [2, 3, 66]. The distribution of time between successive

voltage spikes in the modeling of neuron dynamics [3] or the distribution of avalanche

sizes in the modeling of sandpiles (Linear Avalanche Model) [67] can be mapped on to

a first passage time distribution problem. In the later chapters we shall see that the

residence time distribution of grains in the height type sandpile models can be reduced

to a problem of diffusing particle in a medium where jump rates are space dependent

and in some special cases motion of the grains are described by the simple diffusion

equation with absorbing boundary conditions.

The problem we consider is of a random walker performing a simple, unbiased

random walk (equal probability of going in all directions) with absorbing boundaries

of various geometries in 1, 2 and 3 dimensions. We calculate P ?(t|L), the first passage

time distribution, where P ?(t|L)dt is the probability of the walker being absorbed at

the boundary of size L between a time interval, from time t to t+dt. This distribution

shows a scaling form P ?(t|L) = 1
Laf( βt

Lb ) where β is an arbitrary constant and it is easy

to see from the scale transformation of the diffusion equation that the values of both

a and b are 2. The scaling function f(χ) decays exponentially for large χ, we fix the

arbitrary constant β by requiring that limχ→∞ f(χ) exp(χ) tends to a nonzero finite

constant. We have derived the explicit form of the function f(χ) for various geometries
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of the boundaries and expressed it in terms of the Jacobi theta functions.

Though a lot of work has been done in the general area of the first passage time

distribution [2, 3, 66, 68, 69], we did not find any earlier published result for the explicit

form of the scaling function.

2.1 Random walk on discrete lattice

2.1.1 One dimension

We first studied the discrete random walk case in one dimension, where a walker

starting from the origin, at each step, performs a random walk of unit step size with

equal probability of going in either direction. Let P (x,N) be the probability of the

walker being found at the point x at the N -th step it satisfies the Master equation

P (x,N + 1) =
1

2
P (x− 1, N) +

1

2
P (x+ 1, N) (2.1)

where x = 0,±1,±2, .....,±L and N = 0, 1, 2, .....,∞.

We consider absorbing boundaries at x = ±L, i.e., once the random walker reaches

at the site x = ±L, it is absorbed or annihilated and it cannot come back to the site

x = ±(L− 1). Then P (x,N) at x = ±(L− 1) satisfies the equation

P (−L + 1, N + 1) =
1

2
P (−L + 2, N)

P (L− 1, N + 1) =
1

2
P (L− 2, N) (2.2)

which implies that the boundary condition is P (x = ±L,N) = 0. Since the walker

starts from the centre, the initial condition is P (x, 0) = δx,0. Expressing P (x,N) in

Fourier sine-series, we have

P (x,N) =
2L−1
∑

n=1

an(N) sin
nπ(x+ L)

2L
(2.3)

We solve the recursion relation for an(N) by substituting Eq. (2.3) into Eq. (2.1) as

given below.

an(N + 1) = an(N) cos(
nπ

2L
) (2.4)

We obtain the Fourier co-efficients an(0) from the initial condition. Since the initial

distribution P (x, 0) is an even function of x, the solution P (x,N) for the symmetric



CHAPTER 2. First passage time distribution in random walks. 21

random walk at any time N in Eq. (2.3) has the sine modes for which n is odd. The

final solution is

P (x,N) =

L
∑

m=1

(−1)m+1 1

L
cosN(

(2m− 1)π

2L
) sin

(2m− 1)π(x+ L)

2L
(2.5)

The survival probability, S(N |L) is given by
∑(L−1)

−(L−1) P (x,N) which is the probability

of the walker not being absorbed up to the N -th step. So the probability P ?(N |L) of

being absorbed at the N -th step is simply S(N − 1|L) − S(N |L) and is given by

P ?(N |L) =
L

∑

m=1

(−1)m+1 1

L
cosN−1 (2m− 1)π

2L
[2 sin2 (2m− 1)π

4L
]

×
L−1
∑

x=−(L−1)

sin
(2m− 1)π(x+ L)

2L
(2.6)

Doing the sum over x in the above equation we get the final expression for the proba-

bility density P ?(N |L) which is given below.

P ?(N |L) =

L
∑

m=1

(−1)m+1 1

L
cosN−1 (2m− 1)π

2L
sin

(2m− 1)π

4L

× [cos
(2m− 1)π

4L
− cos

(2m− 1)π(4L− 1)

4L
] (2.7)

In the limit N → ∞ L→ ∞, we get

P ?(N |L) =
∞

∑

m=1

(−1)m+1 (2m− 1)π

2L2
exp[−(2m− 1)2π2

8L2
N ] (2.8)

The scaling function f(χ) is defined as

lim
N,L→∞

Prob(aL2 ≤ Nβ ≤ bL2) →
∫ b

a

f(χ)dχ (χ = βN/L2.) (2.9)

where Prob(aL2 ≤ Nβ ≤ bL2) ≡ the probability of the walker being absorbed between

N = aL2/β and N = bL2/β. So, for the box in 1-dimension the function f(χ) is as

follows,

f1box(χ) = − 1

π2

∂ϑ3(z, q = e−χ)

∂z
|z=π/4 (2.10)

where ϑ3(z, q) is the Jacobi theta function [70], defined by

ϑ3(z, q) = 1 + 2

∞
∑

n=1

qn2

cos 2nz (for |q| < 1) (2.11)
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2.1.2 Higher dimensions.

Now we consider a random walker in higher dimensional lattice. The positions of

random walker is specified by ~x in the d-dimensional lattice. The probability of being

present at site ~x ≡ {x1, x2, ...., xd} at N + 1−th step satisfies following difference

equation,

P (~x,N + 1) =
1

2d

∑

~a

P (~x+ ~a,N) (2.12)

where ~a denotes the nearest neighbour lattice sites of ~x. The random walker starts

from the centre. Once it escapes through the surface at xi = L, it cannot again come

back to the domain surrounded by the absorbing boundaries.

For example we consider a random walker in 2-dimensions, starting at the centre,

of an absorbing square boundary. In the discrete case, the equation for the probability

of being present at site (x, y) at N + 1−th step is given by

P (x, y,N +1) =
1

4
P (x−1, y, N)+

1

4
P (x+1, y, N)+

1

4
P (x, y−1, N)+

1

4
P (x, y+1, N)

(2.13)

where x, y = 0,±1,±2, .....,±L and N = 0, 1, 2, ....,∞.

We impose boundary conditions P (x,±L,N) = 0, P (±L, y,N) = 0 which implies

once particle is out of the boundary it cannot come back inside again. We impose

initial condition P (x, y, 0) = δx,0δy,0.

The solution of Eq.(13) is

P (x, y,N) =
∑

m1,m2

(−1)m1+m2
2

(2L)2
[cos

(m′
1 +m′

2)π

4L
cos

(m′
1 −m′

2)π

4L
]N

× sin
m′

1π(x + L)

2L
sin

m′
2π(y + L)

2L
(2.14)

where m′
1 = (2m1 − 1), m′

2 = (2m2 − 1).

Working as in the 1-dimensional case and taking the large N,L limit we obtain

P ?(N |L), the probability of the walker being absorbed at N -th step,

= S(N − 1|L) − S(N |L)

=

∞
∑

m1=1

∞
∑

m2=1

(−1)m1+m2
m′2

1 +m′2
2

m′
1m

′
2

1

L2
exp[−(m′

1
2 +m′

2
2)π2N

16L2
] as N,L→ ∞ (2.15)
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where S(N |L) is the probability of the walker surviving upto time t. Here β = π2

8
and

the scaling function is given by

f2box(χ) =
1

2π2

∂ϑ3(z, q = e−χ/2)

∂z
|z=π/4

∫ ∞

χ

∂ϑ3(z, q = e−χ/2)

∂z
|z=π/4dχ (2.16)

This can be easily generalized to the d-dimensional lattice and in the next section

we solve the first passage time distribution problem in the continuum limit inside a

d-dimensional box.

2.2 Continuum limit: The diffusion equation.

2.2.1 One dimension

First let us go over to the continuum case in one dimension. Let us denote the lattice

spacing by a and the waiting time of the random walker at any lattice point is τ . Now

the difference equation, Eq 2.1, can be rewritten as

P (x, t+ τ) − P (x, t) =
1

2
[P (x+ a, t) − 2P (x, t) + P (x− a, t)] (2.17)

In the continuum limit, a→ 0 and τ → 0, using the Taylor expansion we write,

P (x, t+ τ) = P (x, t) + τ
∂P (x, t)

∂t

P (x± a, t) = P (x, t) ± a
∂P (x, t)

∂x
+
a2

2

∂2P (x, t)

∂x2
. (2.18)

We substitute these in Eq 2.17 and considering only lowest order terms in a and τ we

see that P (x, t) satisfies the diffusion equation

1

D

∂P (x, t)

∂t
=
∂2P (x, t)

∂x2
(2.19)

Where D is the diffusion constant defined by,

D = lim
a→0,τ→0

a2

2τ

It should be noted that the continuum limit is taken in such a way that D is finite.

We solved this equation under the boundary condition P (±L, t) = 0 and initial

condition P (x, 0) = δ(x). Expressing P (x, t) in the Fourier-sine series and using the

initial condition, we get the solution of the Eq.(9) as

P (x, t) =
∑

n

(−1)n+1 1

L
sin

(2n− 1)π(x+ L)

2L
exp[−(2n−1)2ω2t] , ω2 =

π2D

4L2
(2.20)
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Let S(L, t) be the probability of the walker being absorbed after time t and given by

S(L, t) =

∫ L

−L

P (x, t)dx (2.21)

We are interested in the probability of the walker being absorbed between time t and

t + 4t which is P ?(t|L) = −(∂S/∂t) 4 t. Therefore,

P ?(t|L) =

∞
∑

n=1

(−1)n+1D(2n− 1)π

L2
exp[−(2n− 1)2π2D

4L2
t] (2.22)

which gives us the same equation as Eq.(5) and the scaling function f(χ) is also the

same function as in Eq.(7). The results for the first passage time distribution in the

one dimension can be easily generalized to d dimension as discussed next.

2.2.2 Diffusion in a d−dimension with absorbing boundary.

We obtain the diffusion equation in the d- dimensions, in a similar fashion as in 1D,

1

D

∂P (~x, t)

∂t
= ~∇2P (~x, t) (2.23)

where ~x ≡ (x1, x2, ..., xd), a d-tuple. It is easy to see that all the results obtained

previously can be generalized if we consider the problem with an absorbing boundary

of a hypercube of volume (2L)d in d−dimensions with the boundary condition that the

P vanishes at the boundary of the hypercube and the initial condition P (~x, 0) = δd(~x).

The eigenfunctions which satisfy the boundary condition are as given below.

un1 ,n2 ,....,nd
= sin

n1π(x1 + L)

2L
sin

n2π(x2 + L)

2L
× ....× sin

ndπ(xd + L)

2L

where n1 , n2, ......, nd = 1, 2, .....∞. Expanding P (~x, t) in terms of the eigenfunctions as

before and using the initial condition, we can solve Eq. (2.23). The scaling function in

this case can be expressed in terms of Jacobi’s theta function as

fdbox(χ) = (−1)d2(
1

2π
)d d

dχ
(yd) (2.24)

where y =
∫ ∞

χ
∂ϑ3(z,q=e−χ̃/d)

∂z
|z=π/4dχ̃ and β = π2Dd

4
.
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*
(4L/3, 2L/3)

(2L, 2L)

(0, 0) (2L, 0)
X

Y

Fig 2.1: A right angled isosceles triangle as the absorbing boundary. The random
walker starts at the centre of the triangle [coordinates (4L/3,2L/3)].

2.2.3 Diffusion inside a right angled isosceles triangle.

Let us consider a right angled isosceles triangle as the absorbing boundary as shown

in Fig. 2.1. The random walker starts at the centre of the triangle (coordinates

(4L/3,2L/3) in the figure).

Boundary conditions: p(x = 2L, y, t) = 0, p(x, y = 0, t) = 0, p(x, y, t)|x=y = 0

Initial condition: p(x, y, 0) = δ(x− 4
3
L)δ(y − 2

3
L)

The eigenfunctions are as follows

ψn1,n2(x, y) = sin
n1πx

2L
sin

n2πy

2L
− sin

n2πx

2L
sin

n1πy

2L
(2.25)

where n1, n2 = 1, 2, ...∞ and n1 > n2. We can again expand the solution in terms of

these eigenfunctions and obtain p(x, y, t) to be

p(x, y, t) =
∑

n1>n2

1

2L2
[sin

2n1π

3
sin

n2π

3
− sin

2n2π

3
sin

n1π

3
]

ψn1,n2(x, y) exp[−ω2(n2
1 + n2

2)t] (2.26)
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where ω2 = π2D
4L2 . Now defining S(L, t) =

∫ L

0
dx

∫ y=x

y=0
p(x, y, t)dy , we get P ?(t|L) which

is equal to −∂S
∂t

as given below.

P ?(t|L) =
∞

∑

n2=1

∞
∑

n1=1

[(−1)n1+n2+1 sin
2n1π

3
sin

2n2π

3
+ sin

2n2π

3
sin

2n1π

3
]

(n2
1 + n2

2)D

4n1n2L2
exp[−ω2(n2

1 + n2
2)t] (2.27)

and the scaling function is

ftriangle(χ) = − 1

32π2

d

dχ
[ỹ2 + y2] (2.28)

where ỹ =
∫ ∞

χ
∂ϑ4(z,q=e−χ̃/2)

∂z
|z=π/3dχ̃ and y =

∫ ∞
χ

∂ϑ3(z,q=e−χ̃/2)
∂z

|z=π/3dχ̃. Here β = π2D/2

and χ = βt
L2 , and ϑ4 is the Jacobi’s theta function [70] defined by

ϑ4(z, q) = 1 + 2
∞

∑

n=1

(−1)nqn2

cos 2nz (for |q| < 1) (2.29)

2.2.4 Diffusion in a circular disc and sphere.

We can also consider a circular absorbing boundary of radius R with the walker starting

at the origin. In this case the first passage time probability can be expressed in terms

of Bessel’s functions (the eigenfunctions of the problem) as

P ?(t|R) =
∞

∑

n=1

Dxn

J1(xn)R2
exp[−ω2

nt] (2.30)

Where D is the diffusion constant, J1(x) is the first order Bessel’s function, xn are the

zeroes of the zero-th order Bessel’s function J0(x) and ωn = xn

√
D

R
. In this case we

could not find a known function which can express the scaling function into a simple

form.

Lastly, we calculate the probability distribution in the case of an absorbing spheri-

cal shell of radius R. We solve the differential equation in spherical-polar co-ordinate

system.

Boundary condition: p(r = R, θ, φ, t) = 0

Initial condition: p(r, θ, φ, t = 0) = δ(r)

The eigenfunctions in this case are given by the spherical harmonics and the spherical

Bessel’s functions as Y l
m(θ, φ)jl(αr). The symmetry of the problem demands m = 0 and
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Fig 2.2: The scaling functions f(χ) of a box and a sphere are plotted against χ. The
box and sphere have a ratio of sizes 2L

R
=

√
3 where L is the linear size of the box and

R is the radius of the sphere.

l = 0. Thus only j0(αr) which is 1
r
sinαr contributes to the radial function. Expanding

p(r, θ, φ, t) in terms of the eigenfunctions and proceeding as before, we get

P ?(t|R) =

∞
∑

n=1

(−1)n+1 2n2π2D

R2
exp[−n

2π2Dt

R2
] (2.31)

which gives the scaling function as

fsphere(χ) =
1

16

∂2ϑ3(z, q = e−χ)

∂z2
|z=π/4 (β = π2D and χ = βt/R2) (2.32)

where the theta function mentioned above is defined in the Eq(8).

2.3 Concluding remarks

Let us compare the scaling functions of a sphere and a cube

f3dbox(χ) = c′1 exp(−χ) + c′2 exp(−2χ) + c′3 exp(−3χ) + .... (2.33)
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fsphere(χ) = c′′1 exp(−χ) + c′′2 exp(−4χ) + c′′3 exp(−9χ) + ... (2.34)

For large time t, only the first terms are the dominant ones and we can drop the higher

order terms. Demanding the equality of the argument of exponentials in the first term,

we get the condition on the sizes of the cube and sphere as 2L
R

=
√

3. The ratio of the

co-efficients comes out to be
c′1
c′′1

= 32
π3 ≈ 1.032. The series expansion clearly shows that

the two functions are not same and the near equality of the co-efficients of the first

order term suggests that the functions should look very similar for large t. This can

easily be seen in Fig. 2.2 where we have plotted the scaling functions of a box and a

sphere having a ratio of sizes 2L
R

=
√

3. The dependence on shape of the eigenvalues

of a differential equation is an important problem and has been studied very well. M.

Kac posed the problem as “can one hear the shape of the drum” [71, 72].

To summarize, in this chapter, we have obtained the explicit form of the scaling

function for first passage time distribution of a random walker moving inside absorbing

boundaries of various geometries and expressed it in terms of the Jacobi theta functions.
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The distribution of residence times
in height type sandpile models.

In the previous chapter we have calculated the first passage time distribution for a

simple random walker inside a closed domain in presence of the absorbing boundaries

of various shapes. Let us now consider the distribution of residence times of grains

in height type sandpile models. The residence time of a grain is the time spent by

the grain inside the pile. As in the case of a simple random walker considered in the

previous chapter, in the case of sandpile also the residence times of grains are just the

first passage times of grains to the boundary of the pile.

We argue that the problem of determining the distribution of residence times (DRT)

of grains in the height type sandpile models can be reduced to that of finding the

probability distribution of hitting time of a single diffusing particle to the boundary,

diffusing in a medium with site-dependent jump rates. In the scaling limit of large

system sizes, DRT becomes a function of a single scaling variable t/Lb, where t is

the residence time, L is the linear size of the system, and b is some exponent. This

function is non-universal, and is a complicated function of the spatial distribution of

added grains used to drive the pile to its steady state. We determine this function

explicitly for 1-dimensional sandpile when grains are added randomly only at the ends.

When grains are added with equal probability everywhere, we prove that the exact

scaling function of the DRT is a simple exponential. This result is independent of

dimension, and of the shape of the pile.

3.1 Models

We have considered two height type sandpile models: the deterministic Bak-Tang-

Weisenfeld (BTW) model [25] and the stochastic Manna model [74]. Both the models
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Fig 3.1: Transfer rule of grains in BTW model on a 2D square lattice. Four grains
are thrown out from an unstable site and each of the four nearest neighbours gets one
grain.
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Fig 3.2: Transfer rule of grains in stochastic Manna model on a 2D square lattice.
Each of the four grains randomly goes to any one of the four nearest neighbours.

are defined on a d-dimensional hypercubic lattice of volume Ld. The height h(~x) is

the number of grains at site ~x. The toppling rules of these two models have been

given earlier in section 1.2.1. In Fig. 3.1 and Fig. 3.2 we have shown schematically the

transfer rules of grains for these models on a two dimensional square lattice.

Grains are added randomly everywhere and leave the pile from the boundary sites.

The piles are driven slowly, by adding one grain per unit time. We always topple

unstable sites in parallel. If we want to study DRT in sandpile models, we have to

mark the grains. The grain added at time n is labeled by the number n. However,

with marked gains, the model is not Abelian. This is because toppling at two adjacent

unstable sites in different order no longer give the same result. For a full specification

of the rules governing the motion of grains in the model, we have to define precisely in

which order the unstable sites are toppled, and how the grains are transferred under

toppling. We choose the parallel update scheme: make a list of all sites which are

unstable at a time t, choose at random two grains from each of these sites ( if there

are only two grains, both are selected), and randomly assign one of them to go the
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left neighbour, and the other to the right. All these grains which are to be moved are

then added to their destined sites, at the same time. This constitutes a single micro

step of evolution. Then we construct the new list of unstable sites for the next micro

time-step, and repeat.

The constant time elapsed between two successive additions of grains (P micro-

steps) will be called a meso-time step. We measure the residence time in units of

meso-steps. We mark all grains by the meso-time step when they were added to the

pile. Then, if the grain numbered Tin (added at meso-step Tin) gets out of the system

at meso-step Tout, we will say that its residence time is Tout − Tin.

3.2 General formalism for calculating the distribu-

tion of residence times.

3.2.1 The transition matrices.

Any configuration of sandpile is specified by the value of height at each site. In the

steady state, total number of configurations occur is, say, N . These steady state

configurations are called recurrent configurations. Now let us consider configurations

of the sandpile after we add a marked grain. In the presence of the marked grain, any

configuration is specified not only by specifying the height at each site, we also have

to specify the site where the marked grain is located. So corresponding to a recurrent

configuration a, there are, say, na number of sites where the mark grain can stay

(obviously the marked grain cannot stay at the site with height zero). There are total

N configurations with all possible positions of the marked grain, i.e., N =
∑N

a=1 na.

These N number of configurations constitute the vector space and we define transition

probabilities Wi,j which is the probability of transition from j-th configuration to i-th

configuration per unit time. Now the probability Pi(t) that i-th configuration occur at

time step t in the steady state satisfy the evolution equation given below.

Pi(t+ 1) =
N

∑

j=1

Wi,jPj(t) (3.1)

all elements of the transition matrix W are positive and the sum of elements in any

column of W cannot be greater than 1, i.e.,
∑N

i=1 Wi,j ≤ 1 for all j. But it should

be noted that
∑N

i=1 Wi,j < 1 for some j, and therefore there is no steady state of this
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Markov chain, i.e., all the eigenmodes of time evolution operator W decays exponen-

tially with time. Now we define ProbL(T ≥ t) is the probability that the marked grain

is inside the pile of size L at least up to time t, i.e., probability of residence time T of

the marked grain is greater than or equal to t. So we get

ProbL(T ≥ t) =
N

∑

i=1

Pi(t). (3.2)

Once we construct the transition matrix W, it is possible to calculate the cumulative

probability distribution ProbL(T ≥ t) by exactly diagonalizing the matrix W. But in

general, calculating all the elements of the transition matrix W is tedious for large L,

even for 1D BTW model where grains are added randomly everywhere. In the next

section we discuss a simple case where we can construct W and describe the large time

behaviour of ProbL(T ≥ t) for arbitrary L.

3.2.2 A simple Illustration: 1D Bak-Tang-Wiesenfeld model
driven at one end.

As an illustrative example, let us consider the problem in the simplest setting: the

BTW model [25] on a line of L sites, labeled by integers 1 to L. At each site i we

have a non-negative integer height variable hi. The site is stable if hi ≤ hc where we

choose hc = 1. If hi ≥ 2, the site is said to be unstable, and relaxes by toppling. In

this process, hi decreases by 2, and hi−1 and hi+1 increase by 1. The pile is driven by

adding grains at the right end and grains may be lost whenever there is toppling at

any of the ends.

The long-time behaviour under the deterministic evolution is that after an initial

transient period, it falls into a cycle of period L + 1. The stable configurations of

the pile that belong to the cycle are L configurations having all, except one site, with

height 1, and one configuration with all hi = 1.

If we start with the state with all hi = 1, adding a particle at i = L gives a stable

configuration with h1 = 0. Adding a particle again, we get the recurrent configuration

in which h2 = 0. For each new added grain, the position of the zero shifts one step

to the right, till after L steps it is at i = L. Then adding another grain, the zero

disappears. We choose to say that in this case the zero is at i = 0. The number of

toppling to get the next stable configuration is also periodic with the same period :

L→ L− 1 → (L− 2) . . . 1 → 0 → L.
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From our definition, it follows that the probabilities of different paths taken by a

grain are exactly that of an unbiased random walker on the line. This is because when

a grain moves under toppling, it is equally likely to take a step to the right, or to the

left. So, for example, the average number of steps a grain takes before it leaves the

pile is equal to the average number of steps a random walker would take from that

starting point. However, the time between two jumps of the grain is random, and has

very non-trivial correlations with times of previous jumps, and also with jump times

of other particles. This is what makes this problem nontrivial.

To calculate the DRT for the linear chain of L sites, we consider adding a marked

grain into the pile. All other grains are unmarked, and indistinguishable from each

other. Then, stable configurations of the pile are L2 in number. Configuration in

which the site a has height 0, and the marked grain is at site b will be denoted by

Ca,b. All sites other than a and b are occupied by unmarked grains. For each value of

a, 1 ≤ a ≤ L, then there are L − 1 possible configurations corresponding to different

values of b. For the recurrent configuration with all hi = 1, we define a = 0, and in

this case there are L possible positions of b. Thus there are in total L2 possible stable

configurations of the pile.

Now we study the behaviour of the function ProbL(T = t) when t� L2. Since time

evolution of states of the system is a Markov process, there is exponential decay of prob-

abilities of states for large value of time, due to the presence of the absorbing bound-

aries. So the probability distribution ProbL(T = t) must decays as exp(−KLt/L
2)

for very large T . For large L, the coefficient, KL, tends to a constant K and scaling

function f(x) must goes as exp(−Kx) for large x. We define K as a limit given below,

K = − lim
L→∞

[ lim
t→∞

L2 lnProbL(T = t)

t
]

We numerically calculate values of KL’s for various finite lattice sizes by defining

transition probability matrices for the system going from one recurrent configuration

to another. We need to distinguish between different recurrent configurations, with a

specified position of site with height zero, according to different positions of the marked

grain. Configurations with same position of the marked grain can be distinguishable

with respect to the position of the site with height zero. Obviously the marked grain

can be at any site except the site where height is zero.

As an illustrative example, we indicate how to construct such transition matrices for

L = 4. When the site with zero height is at the end, i.e., at i = 4, three distinguishable
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01*1
011*

0*11 *011
10*1
101*

*101
1*01

*110

11*0
1*10

110*

*111
1*11
11*1

111*

Fig 3.3: Possible configurations with a marked grain are shown by the asterisk.

configurations are represented respectively as | ∗ 110〉, |1 ∗ 10〉, |11 ∗ 0〉 where asterisk

denotes the position of marked grain, “1” denotes the site with height one and “0”

denotes the site with height zero. If we keep on adding sand at the right end of the one

dimensional chain, the transitions will occur from one state to another. In this case

transitions will be from

{1110} → {1111} → {0111} → {1011}

→ {1101} → {1110}

(same initial states after L + 1 = 5 time steps).

Here marked grain can be at any one of the sites with height 1. The all possible states

are shown below.

We represent basis states for a particular configuration CY0,j as |Y0, j〉 where j

denotes the position of marked particle and Y0 denotes the index of the site with

height zero. Since marked grain cannot stay at the site with height zero, there are

L − 1 basis states for a particular configuration (i.e. for a fixed Y0). Y0 can take

value from 0 to L. Y0 = 0 means that all sites are with height 1. Whenever we

add sand grain at the right end, there is transition from any of the basis states with

some value of Y0 to any of the basis states with Y0 + 1 (i.e., CY0,j → CY0+1,i). i and j

denote the position of marked sand grain. Now we define the transition matrix element

TY0(i|j) as the transition probability from the j-th state to i-th state where Y0 denotes

that the transition occurs from the configuration with height zero at Y0-th site to the

configuration with height zero at (Y0 + 1)-th site. The transition matrices T1, T2, T3,

T4 and T0 for L = 4 are written below explicitly.

T1 =





1
2

(1
2
)2 (1

2
)3

1
2

(1
2
)2 (1

2
)2

0 1
2

(1
2
)2



 T2 =





1 0 0
0 1

2
(1

2
)2

0 1
2

(1
2
)2
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T3 =





1 0 0
0 1 0
0 0 1

2



 T4 =





1 0 0
0 1 0
0 0 1





T0 =





1
2

(1
2
)2 (1

2
)3

0 1
2

(1
2
)2

0 0 1
2





The full time evolution operator W mentioned in Eq.3.1 in this case can be written in

terms of a matrix containing distinct blocks as given below.

W =













0 T1 0 0 0
0 0 T2 0 0
0 0 0 T3 0
0 0 0 0 T4

T0 0 0 0 0













This operator acts on L(L − 1) + L − 1 = (L2 − 1) dimensional vector space [i.e.,

N = (L2 − 1) in Eq.3.1] considering all possible configurations (see in Fig.3.3) with

marked grain in the steady state of the 1d BTW model on lattice of size L. In this

case however, we did not consider the configuration with marked grain at x = L and

heights are 1 everywhere (first configuration in Fig. 3.3), in our vector space, as this

particular configuration is transient and does not appear in the subsequent time steps.

The transition matrix T (L) =
∏L

Y0=0 TY0 gives back the initial configuration after

the period of time L + 1. The superscript in T (L) is denoting that the marked grain

is added when the initial configuration is with Y0 = L. In general, if the grain is

added with the initial configuration where position of the site with height zero is at

i = Y0, the transition matrix will be T (Y0) = TY0−1TY0−2....TL−1TLT0.. ..TY0−1TY0 . The

different values of Y0 in transition matrices correspond to the addition of sand grains

to the configurations with different sites with height zero. The matrix WL+1 is block

diagonal and blocks are basically T (Y0),s for different values of Y0. For L = 4 it is

written below explicitly.

WL+1 =













T (4) 0 0 0 0
0 T (3) 0 0 0
0 0 T (2) 0 0
0 0 0 T (1) 0
0 0 0 0 T (0)
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Periodic Markov chain for L=4

T T
1 2

T3T4T0

Fig 3.4: Periodic Markov chain in the case of the 1d BTW model driven at right end
for L = 4.

To find out the coefficient KL in the exponential decay of the distribution of resi-

dence time, we diagonalize any matrix T (Y0), say T (L), and take the largest eigenvalue,

λmax. We diagonalize any one matrix of the different transition matrices because the

eigen values for the different transition matrices, T (Y0)s (we get various T (Y0)s just

with cyclic permutation of matrices T0, T2, T3....TL etc.) are same. We diagonalize the

matrix T (Y0) using following algorithm. We take any column vector |X〉 and operate

T (Y0) on the column vector N times, i.e., we get |XN〉 = (T (Y0))N |X〉. When N is very

large, the quantity [ 〈X|XN 〉
〈X|X〉 ]1/N converges to the largest eigenvalue λmax of T (Y0).

λmax = lim
N→∞

[
〈X|(T (Y0))N |X〉

〈X|X〉 ]1/N

For large value of time t (� L2), the cumulative distribution of residence time

decays exponentially as given below.

ProbL(T ≥ t) ∼ (λmax)
t/(L+1) (3.3)

i.e., ProbL(T ≥ t) varies as exp( t
L+1

lnλmax) for t � 1. The coefficient KL is then

given by as below.

KL = − L2

L + 1
lnλmax (3.4)

In the Fig. 3.5 we have plotted KL against the number of sites in the 1-dimensional lat-

tice, L. It shows that KL saturates to the value of K. So the coefficient is independent

of lattice size L for large value of L.
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Fig 3.5: KL has been plotted against lattice size L. KL has been calculated upto
L = 150 and extrapolated using a fit to a straight line. Extrapolated value of KL when
L large is 3.668 ± 0.003.

3.3 Analytic results in 1D Bak-Tang-Wiesenfeld model:

Driving at one end.

3.3.1 Small time behaviour in the limit of large system sizes.

When the residence time T is very small compared to L, sand grains almost always get

ejected from the right end and do not go to the left of the site i = L−T (except for the

case when hi = 1 at all sites at time T = t and grain might be ejected from the left end,

but the probability of this happening is exponentially small). It’s very unlikely that

the marked sand grain meets the site with height zero (the probability ≤ t
(L+1)

which

goes to zero for large value of L). In the limit of L large compared to the residence

time t, the residence time distribution is well approximated by the distribution of the

first passage (at i = 1) time of a simple unbiased random walker with 2t steps random

walk. So, for T << L, We can exactly calculate the residence time distribution [2]

ProbL(T = t) =
2t!

t!(t + 1)!
2−(2t+1)

where ProbL(T = t) is the probability that the marked sand grain gets ejected from the

system immediately after time t. Using Stirling approximation to the above expression,
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we get the function ProbL(T = t) equals 1
2
√

π
1

t3/2 for 1 << t << L. Now we can extend

our result whenever t << L2. The argument is as follows. After time steps T ∼ Lα

where α < 2, the standard deviation of the position of the marked sand grain goes as

Lα/2. So the probability that the marked grain will meet the site with height zero goes

as Lα/2−1 which will tend to zero in the large L limit. Therefore for any 1 << t << L2,

the limiting probability distribution ProbL(T = t) is proportional to t−3/2, the first

passage (at i = 1) time distribution of a simple unbiased random walker with 2t steps

random walk. For the large value of t the distribution function decays exponentially

like exp(−KLt/L
2), as shown in the previous section, where KL tends to a constant

value for large L.

Even though we don’t know the full distribution function ProbL(T = t), we can

find out the first moment of the residence time distribution easily, using an important

result in queuing theory, known as Little’s theorem [75]. We give a proof here. We

define mass of the sandpile as the total number of particles in the pile (i.e.,
∑i=L

i=1 hi).

It’s easy to see that mean residence time 〈T 〉 = 〈Total mass of the pile〉. To prove this,

let us define an indicator function ηn,T as given below.

ηn,t = 1 if the sand grain, added at time n, is in the system

at time t, otherwise ηn,t = 0.

The mean residence time can be written as

〈T 〉 = lim
N ,T →∞

1

N
N

∑

n=1

T
∑

t=1

ηn,t =
1

N
T

∑

t=1

N
∑

n=1

ηn,t

=
1

N
T

∑

t=1

(Total mass of the pile at time t)

= 〈 Total mass of the pile 〉

The average of the total mass in the pile is [ L
L+1

(L − 1) + 1
L+1

L] which goes as L for

large L.

We find out the scaling form of the function ProbL(T = t) using the mean residence

time and the previous limiting distribution. The scaling function f(x) is defined as

f(x)dx = lim
L→∞

La−bProbL(xLb ≤ t ≤ (x + dx)Lb)

So the form of the distribution function ProbL(T = t) is 1
Laf( t

Lb ). Since ProbL(T = t)

varies as t−3/2 for 1 � t � L, f(x) must goes as x−3/2 for very small value of x and
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Fig 3.6: The probability distribution of the total residence time T plotted against T
for L = 25, 50, 100, 150 for the 1d BTW model driven at an end.

therefore 1
Laf( t

Lb ) goes as L(3b/2−a)t−3/2. As ProbL(T = t) is independent of L for

1 � t� L, we get a/b = 3/2. Even though the scaling function f(x) is divergent as x

tends to zero, we can normalize ProbL(T = t) without any problem, since x has lower

cutoff 1
Lb . As f(x) goes as x−3/2, the normalization integral is

Lb−a

∫ ∞

1/Lb

f(x)dx ∼ L3b/2−a

which is independent of L as a/b = 3/2. The mean residence time 〈T 〉 is given by
∫ ∞

0

1

L3b/2
f(t/Lb)tdt ∼ Lb/2

As there is no divergence in the integrand, we can put the lower limit in the inte-

gration zero. Since 〈T 〉 ∼ L, we find b = 2 and therefore can write the scaling form

of the ProbL(T = t) as t−3/2f̃( t
L2 ) for large L. In Fig.1. probability distributions,

ProbL(T = t), of residence time of sand grains are plotted for different lattice sizes

L = 25, 50, 100, 150. In Fig.2. ProbL(T = t) for various system sizes collapse to a

single curve when we plot L3ProbL(T = t) against t/L2.

We can easily extend results to the case when hc = 2 under the toppling rules that

whenever the height at any site is greater than hc = 2, the site becomes unstable and
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for different lattice sizes for the 1d BTW model driven at an end.

there is a toppling at the site. Two grains are thrown out from the unstable site, one

grain of the three goes to right nearest neighbour site, one goes to the left nearest

neighbour site and the other one stays put. It is decided at random which one goes

to the right, which one goes to the left. The probability that a particular grain of the

three going to the right or to the left, or staying there is 1/3. The height of any site is

either 1 or 2, when the system is stable. In the steady state, at most one site has height

1 and all the others have height 2. All configurations in the recurrent configuration

space are equally probable. The number of recurrent configurations is same as before.

The residence time distribution ProbL(T = t), for 1 � t� L, is

t
∑

t′=0

(t+t′)C2t′3
−(t−t′) 2t!

t!(t + 1)!
3−(2t+1) ∼ 1

t3/2
(3.5)

Here also we can extend this result for 1 � t � L2, just as we did in the case for

hc = 1. The probability distribution function has similar scaling form as in the case

with hc = 1. For hc = 2, the mean residence time 〈T 〉 is equal to 2L in the limit when

L is large. So The scaling function f(x) for hc = 1 gets scaled by a factor 2 for hc = 2,

i.e., the scaling function becomes 1
2
f(x/2).

To calculate the coefficient KL, we can construct the transition probability matrix
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exactly in the similar way for the previous case. In this case the number of basis states

is L and KL can be determined as before.

3.3.2 Scaling function of the distribution of residence times.

Consider a particular configuration Ca,b where the site a has height 0, and the marked

grain is at site b. Now we add another (unmarked) grain at i = L. If b < a, then it

is easily seen that the wave of toppling [76] does not reach the marked grain, and the

final configuration is Ca+1,b.

When b > a, the wave of toppling, started at the right end, reaches the site b

and the site will topple. The marked grain will move one step to the left or right,

with equal probabilities. If the marked grain moves to the left, it will move again due

to toppling, unless that site has no grains. In this way, the marked grain can take

zero, one or more consecutive steps to the left in one meso-step. It stops diffusing as

soon as it takes a right step or if the marked grain falls on a. We thus see that on

adding more grain, if b > a, the final configuration is Ca+1,b+∆b, with ∆b taking values

1, 0,−1,−2, . . . , a + 2 − b and a − b with probabilities 2−1, 2−2, 2−3, 2−4, . . . , 2a−b and

2a−b respectively. For b− a large, the mean square displacement 〈(∆b)2〉 tends to 2.
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Fig 3.8: Motion of three grains starting from x = 20, 50, 80 in the 1d BTW sandpile of
length L = 100 where sand grains are added only at the right end.
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Consider a marked grain at b, at some time T , with b = αL, 0 < α < 1, and L large.

We consider the change in its position ∆b after one cycle ( (L+ 1) meso-steps). Fig.1

shows the motion of grains in a cycle in one realization. The grain diffuses for a while,

and is stuck when the zero is to the right of the marked grain. The average fraction of

time it moves is α. A grain at b is hit by b waves of toppling [76] in this interval. The

net displacement ∆b is sum of displacements due to these waves. Each wave causes a

displacement with mean zero, and variance 2. Then by central limit theorem, the net

displacement will be distributed normally with variance given by 2b. Thus ∆b is of

order
√

2αL, and is much smaller than L when L is very large. Then, for times t� L,

we can average over the motion in a cycle, and say that if the marked grain is at i,

it moves to the left or right neighbor with a rate (i/L) per unit time. If P (i, t) is the

probability that the marked grain is at i at time t, the evolution equation for P (i, t)

for times t� 1 is

d

dt
P (i, t) =

i+ 1

L
P (i+ 1, t) +

i− 1

L
P (i− 1, t) − 2i

L
P (i, t). (3.6)

At time t = 0, we can assume that the marked particle is at i = L, so that

P (i, t = 0) = δi,L. Integrating this equation, we determine the survival probability

S(t) =
∑

i P (i, t), and then the DRT is given by

Prob(t|L) = S(t) − S(t+ 1). (3.7)

We introduce the reduced coordinate ξ = i/L, and τ = t/L2 and consider the

Eq.(3.14) when L is large. In terms of these reduced variables, the evolution equation

for the probability density P (ξ, τ) becomes, in the continuum limit,

∂

∂τ
P (ξ, τ) =

∂2

∂ξ2
[ξP (ξ, τ)]. (3.8)

We can integrate this equation numerically using the initial condition P (ξ, t = 0) =

δ(ξ − 1 + 1/L). The scaling function f(x) is given by,

f(x) =

[

d

dτ

∫ 1

0

P (ξ, τ)dξ

]

τ=x

(3.9)

Let ϕj(ξ) be solution to the eigenvalue equation corresponding to eigenvalue λj

d2

dξ2
[ξϕj(ξ)] = −λjϕj(ξ), (3.10)
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Fig 3.9: Survival probability versus residence time t for the 1d BTW model in two cases with
grains added only at one or both ends. The theoretical result(full curve) and the simulation
result(dotted line) match perfectly. L = 100 for both the cases.

where ϕj(ξ = 1) = 0 corresponding to an absorber being present at i = L + 1. At

ξ = 0, we do not need to assume any special condition, as the absorber at i = 0

is automatically taken care of by the fact that rate of jump out of i is 2i/L, which

becomes zero at i = 0.

We look for a solution ϕj(ξ) that does not diverge at ξ = 0. Expanding ϕj(ξ) in a

power series, and matching coefficients, we get

ϕj(ξ) =
∞

∑

n=0

(−λjξ)
n

n!(n + 1)!
= I1(2i

√

λjξ)/(i
√

λjξ),

where I1(x) is the modified Bessel function of order 1[77]. For details see Appendix

A. The eigenvalues λj is obtained by imposing the condition ϕ(ξ = 1) = 0. Thus if

the j-th zero I1(z) occurs at ±2ikj, then λj = k2
j . At large times t, S(t) varies as

exp(−Ct/L2), where we get C = k2
1 = 3.6705. This value is in good agreement with

the value obtained by extrapolation of estimates obtained by measuring the coefficients

of the exponential determined by exact diagonalization of the master equation for finite

L (see section 3.2.2 and Fig.3.5).
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3.4 Generalization to higher dimensions.

3.4.1 Distribution of residence times for isotropic models.

The generalization of these results to d dimensions is straight-forward. We consider

a d-dimensional sandpile model on a lattice with number of sites V . We assume that

when a new grain is added, the site ~x is chosen with probability r(~x). Clearly, the sum

of r(~x) over all sites is 1. In the steady state, n(~x), the average number of topplings

at ~x per added grain, satisfies the equation (using conservation of sand grains)

∇2n(~x) = −r(~x), (3.11)

with n(~x) = 0 at the boundary. The solution of this equation is

n(~x) =
∑

~x′

G(~x, ~x′)r(~x′), (3.12)

where G(~x, ~x′) is the average number of topplings at ~x due to addition of a grain at ~x′,

and is equal to the inverse of the toppling matrix ∆ [35].

The important point to realize is that while avalanches in sandpile can spread quite

far, the typical distance traveled by one marked grain in an avalanche is much smaller

than L. In fact, in many cases, we expect it to be of order 1. During its motion to

the boundary, the marked grain would be involved in a large number of avalanches. At

time-scales much larger than a meso-step, the motion is diffusive, with the jump-rate

out of different sites being space-dependent because on the average some parts of the

lattice have more avalanche activity than others.

Consider a grain at site ~x at time t. Let its position be ~x + ∆~x after ∆t new

grains have been added, where Ld � ∆t� 1. As the path of the grain is an unbiased

random walk, we have 〈( ~∆x)2〉 = s, where s is the average number of jumps the grain

makes in this interval. Assuming that | ~∆x| � L, and that n(~x) is a slowly varying

function of ~x, we see that s has to be proportional to n(~x)∆t, total no of toppling

waves during time interval ∆t. Let us say s = Kn(~x)∆t, where K is some constant.

Writing 〈( ~∆x)2〉 = Γ(~x)∆t, we get

Γ(~x) = Kn(~x), (3.13)
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where the constant K depends on the details of the model. For large times t, the

probability-density P (~x, t) satisfies the equation

∂

∂t
P (~x, t) =

1

2
K∇2[n(~x)P (~x, t)] (3.14)

with the initial condition is given by

P (~x, t = 0) = r(~x). (3.15)

It may be noted that Eq.(3.14) is not the diffusion equation with space-dependent

diffusion constant D(~x), where the right hand side would have been of the form

∇(D(~x)∇P (~x)). The net current between two sites depends on the difference in the

product nP at the two sites, and can be non-zero even if ∇P is zero.

Solving this differential equation, with the condition that P (~x, t) is zero at the

boundary corresponding to the absorbing boundaries, we can determine P (~x, t) at any

time t. Integrating over ~x determines the probability that marked particle remains

in the system at time t, and the DRT is obtained from the survival probability using

Eq.(3.7).

3.4.2 Exact solutions in some special cases.

Consider, as an example, the case of a linear chain with L sites, when we add particles

at each step at either of the two ends with probability 1/2. In this case, we get n(x) = 1
2
,

independent of x, and K = 2. One can then solve the Eq.(3.14) analytically. We get a

simple diffusion equation.
∂

∂t
P (x, t) =

1

2

∂2P (x, t)

∂x
(3.16)

We solve this equation with boundary condition P (x = 0, t) = 0 and P (x = L+1, t) =

0. Since grains are added at both ends with equal probability we choose initial condition

to be P (x, t = 0) = 1
2
δ(x−1)+ 1

2
δ(x−L). Eq. 3.16 can be solved following eigenfunction

method as done previously in section 2.2.1. The general solution can be written in a

sine series as given below.

P (x, t) =

∞
∑

n=1

ane
−

n2π2t
2(L+1)2 sin(

nπx

L+ 1
) (3.17)
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where coefficient an can be obtained from the initial condition. We obtain an to be as

given below.

an =
1

L + 1
sin(

nπ

L+ 1
)[1 + (−1)n+1]

The cumulative probability ProbL(T ≥ t) of the residence time T being greater than

or equal to t is
∫ L+1

0
P (x, t)dx and can be written after integrating Eq. 3.17 as given

below.

ProbL(T ≥ t) =

∞
∑

m=1

2π2

(L + 1)2
(2m− 1)2e

−
(2m−1)2π2t

2(L+1)2 (3.18)

A straightforward calculation now gives ProbL(τ) = θ3(0, τ) − θ3(π/2, τ), where τ =

π2t/2(L+ 1)2 and θ3(z, τ) is the Jacobi theta function [78] defined by

θ3(z, τ) = 1 + 2

∞
∑

n=1

exp(−n2τ)cos(2nz).

In fig 2, we have plotted the analytically computed survival probability S(t) versus

t/L2 for this case and compared with the results of simulation for L = 100 using 106

grains. We have also shown the result of the numerical integration of Eq.(3.6) to deter-

mine the scaling function in the case where the grains are added only at one end, and

compared it with the simulation data obtained for L = 100 using 106 grains. Clearly,

the agreement is excellent. This supports our arguments used to obtain Eq.(3.14).

The Eq.(3.14) is very easy to solve in the special case when sand grains are added

randomly at any sites in the system. Clearly here r(~x) = 1/V where V is the number

of sites in the lattice. Then n(~x) is a solution to the equation

∇2n(~x) = 1/V, (3.19)

The function P (x, t) = T (t), for all x, satisfies Eq.(3.14) in any dimension if

dT (t)

dt
= − K

2V
T (t)

With the initial condition P (x, t = 0) = 1/V , it is easy to see that the full solution

is given by

P (~x, t) =
1

V
exp(−Kt/2V ). (3.20)

The probability of survival upto time t is V P (~x, t), and we see that it decays in time

as a simple exponential. Using the fact that the mean residence time is the average
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Fig 3.10: Semilog plot of the survival probability of a marked grain as a function of scaled
residence time t/M for four different cases: (1) the 1d BTW model, (2) the 1d Manna model,
(3) the 2d BTW model, (4) the 2d Manna model. We have chosen L = 100 in one dimension
and 70 × 70 cylindrical square lattice in two dimensions.

mass M̄ in the pile, we see that K/2V = 1/M̄ . This then implies that

S(t) = exp(−t/M̄). (3.21)

We note that our derivation depends only on Eq.(3.11) and Eq.(3.13). These two

equations are valid under the conditions of local conservation of sand grains, transfer

of fixed number of grains at each toppling and isotropy. Thus, the results would be

equally applicable to models in which toppling conditions are different, or the transfer

of particles is stochastic, as in the Manna model.

In Fig 3., we have shown the results of a MC simulation study of the DRT in four

different models: (a) the 1-dimensional BTW model for L=100, (b) the 2-dimensional

BTW model defined on a cylinder of size 50× 50, (c) the 1-dimensional Manna model

with L = 100 with rule that if zi exceeds 1, then 2 particles are transferred, each

randomly to one of the neighboring sites, and (d) the 2-dimensional Manna model on

50 × 50 cylinder with two grains transferred at each toppling, each grain in randomly

chosen direction. The number of particles used in each simulation was 106. We plot

the probability of survival of the marked grain as a function of time t/M̄ , where M̄ was
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Fig 3.11: The scaled correction term LδS(t|L) versus t/L2 for the 2d BTW and Manna
model for three different values of L = 13, 20, 30. The curve with higher peak is for the
Manna model.

determined from the simulation directly. We see a very good collapse and agreement

with the theoretical prediction that exp(−t/M̄ ) for t� 1.

3.5 Finite size corrections.

For small t, the probability distribution is determined by the grains which are added

very near the boundary. Boundary avalanches are not properly taken care of by our

analysis. In particular, it is easy to see that the probability of added grain coming out

immediately is nonzero in d-dimensions, and varies as 1/L for large L (this being the

ratio of surface to volume). But Eq.(3.20) would give this to be O(L−d). This comes

from the fact that near the boundary the height distribution is modified, resulting in

the effective K becoming different near the boundary. Eq.(3.20) is valid for t� 1.

In Fig 4., we have plotted the difference δS(t|L) between the survival probability

from MC simulation data and the scaling theory prediction [Eq. (3.21)], for a 2-

dimensional BTW and the Manna models on an L × L square lattice for different

values of L. We find that the curves for different L collapse onto each other if LδS(t|L)

is plotted versus t/L2, indicating that the correction δS(t|L) to the Eq. (3.21) has the
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scaling form

δS(t|L) ∼ 1

L
g(t/L2), (3.22)

where the correction-to-scaling function g(x) is different for the two models.

For the one-dimensional BTW model, with grains added everywhere with equal

probability, we can determine exactly the leading O(1/L) correction to the scaling

solutions Eq.(3.21). Thus, from the scaling solution Eq.(3.20), we get Prob(T = 0|L) =

1/L+O(L−2). But a straightforward calculation shows that actually Prob(T = 0|L) =

2/L + O(L−2) (see Appendix A.1). However, Prob(t|L) for t = 1, 2, . . ., is correctly

given to the lowest order by 1/L (see Appendix A.2). Assuming that the remaining

distribution is a simple exponential, we get

S1d BTW (t) =
1

L
δt,0 + (1 − 1

L
)exp[− t

L
(1 − a

L
)], (3.23)

where we have used the normalization condition S(0) = 1, and added a O(1/L) correc-

tion term to the coefficient in the exponential. Using the condition that first moment
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of this distribution is M̄ = L2/(L + 1), we get a = 1/2 (see Appendix A.3). In Fig.

5, we have shown the results of a Monte Carlo simulation of this case for L = 40 and

number of grains= 106, and compared with the theoretical prediction [Eq.(3.23)]. We

see that the agreement is very good.

3.6 Concluding remarks.

It is interesting to note that the DRT [Eq.(3.20)] has a simple universal form, and does

not depend on the critical exponents for the distribution of avalanches, which differ

for BTW and Manna models, and also depend on dimension in a nontrivial way. In

contrast for the Oslo ricepile model, Christensen et al [62] and Boguna and Coral [63]

found that the DRT for the 1-dimension ricepile of size L, with L � 1, does involve

nontrivial exponents, and has the form

Prob(T |L) =
1

Lν
f(T/Lν). (3.24)

The exponent ν ' 1.3 is related to the roughness of the ricepile surface. The

function f(x) takes a constant value for x small, and varies as x−b for large x, with

b ' 2.4.

For the Oslo ricepile model, if we consider only grains those are not permanently

stuck in the pile as constituting “active mass” of the ricepile, all mass above the

minimum slope of the pile is active. The configuration with the minimum slope is

recurrent, and will recur infinitely often in the steady state as grains are added to the

pile. Therefore, all the grains added after the pile has reached the minimum slope have

a finite residence-time in the pile. Then the argument given earlier in this paper implies

that mean active mass of the ricepile should vary as L2. But the result, obtained in [62]

and [63], shows that it varies as L1.3. The reason for the discrepancy in the estimate of

mean mass in [62, 63] is presumably due to the very long residence of the grains which

happen to get deeply embedded, making the estimate of the first moment of the DRT

unreliable from short simulations.
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The distribution of residence times
in ricepile models.

In this chapter we consider the probability distribution of residence times of grains at

a site, and of their total residence times in the pile, in critical slope type slowly-driven

sandpile (equivalently ricepile) models. We define the residence time Ti at a site i is

the time spent by a grain at the site, measured in units of the time interval between

successive addition of grains. The total residence time T is defined similarly.

Granular materials have drawn a lot of attention due to their complex flow be-

haviour under different driving conditions [80]. Slowly driven pile of sand grains serve

as a prototype for self-organized criticality (SOC) [25]. Although SOC was not seen

in experiments on piles of sand [81], but experiments on piles of long grained rice have

shown evidence of power law distribution of avalanche sizes [43, 82, 83]. Studies of

sandpiles [32] have generally focused on the distribution of avalanche sizes. There are

only a few theoretical studies of other interesting quantities such as the distribution

of total residence times of grains in piles, even though the experimental studies by the

Oslo group [43, 82] using coloured tracer grains are now almost a decade old.

In the earlier chapter, we studied the total residence time distribution in the critical

height type sandpile models with both deterministic and stochastic toppling rules. We

reduced the problem to a diffusion problem of a single particle in a medium with space

dependent jump rates and showed that the distribution of the total residence time does

not have any power law tail.

In the slope type sandpile models, the residence time distributions are qualitatively

different from the critical height type models. In critical height models, the distribution

decays exponentially with average total residence time equal to average active mass in

the pile. In critical slope models, there is a possibility that the grain gets buried very
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deep in the pile, and then takes a long time to come out. We shall show that this makes

the cumulative probability distribution of these residence times to have a characteristic

1/t decay for large times t. We show that the probability of the residence time at a

site or the total residence time in the pile, being greater than or equal to t, decays as

1/t(ln t)δ for a very wide range of t. The upper cutoff in both the distributions scales

with system size L as exp(κLγ) where γ is an exponent ≥ 1 and κ is a positive constant.

For the Oslo ricepile model, we describe an unexpected behaviour in the cumulative

probability that a grain staying at a site i at least upto time t, is not a monotonically

increasing function of system size L. We will argue that this implies the cumulative

probability distribution function ProbL(T1 ≥ t) cannot have a simple finite size scaling

form and show that γ = d+ 2 in d dimensions for this model.

Plan of the chapter is as follows. In section 4.1 we define four models studied in

this paper. In section 4.2 we present the simulation results for the residence time T1

at site 1 for the 1d Oslo ricepile model and explain the non-monotonic behaviour of

the cumulative distribution ProbL(T1 ≥ t) with L by relating the residence times of

grains at the site 1 to the statistical properties of height fluctuation at that site. We

also explain the origin of multiplicative logarithmic correction factor appearing in the

1/t decay of ProbL(T1 ≥ t). In section 4.3 we argue that the probability of minimum

slope configuration occurring in the steady state of the 1d Oslo ricepile model, scales

with system size L as exp(−κL3) where κ is some positive constant. In section 4.4 we

discuss the 1/t power law form of ProbL(T ≥ t), where T is the total residence times,

for large t in the 1d Oslo model and show that this also has a multiplicative logarithmic

correction. In section 4.5 we present our simulation results for other models and show

that in all cases the cumulative distributions is qualitatively similar to the 1d Oslo

ricepile model. The last section contains some concluding remarks.

4.1 Definition of the Models

We consider general critical slope type sandpile models where the configurations are

specified by integer height variables h(~x), i.e., number of grains, at any site ~x of a

finite d-dimensional lattice. Whenever height difference between two adjacent sites is

greater than a threshold value, some specified number of grains are transferred to the

neighbouring sites. Piles are driven by adding grains, one at a time, at a fixed, or at a
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randomly chosen site. Grains are added only when there are no unstable sites left in

the system, and can leave the pile from the boundary. We update all unstable sites in

parallel. We have studied four different models both in one and two dimensions : the

Oslo ricepile model and it’s 2d generalization, local limited model and it’s variation.

We now define the precise rules of these four models.

4.1.1 Model-A: The Oslo ricepile model.

The Oslo ricepile model [43] is defined as follows. We consider a one dimensional

ricepile, which is specified by an integer height variable hi at each site i of a one-

dimensional lattice, with 1 ≤ i ≤ L. The slope zi at site i is defined to be hi − hi+1.

Whenever the slope zi at any site i is higher than a critical value zc,i, the site becomes

unstable and one grain from the unstable site goes to the right neighbour, i.e., hi →
hi − 1 and hi+1 → hi+1 + 1. Whenever there is a toppling at site i, zc,i is randomly,

independent of the history, reset to one of the two values, 1 and 2, with probability

q and p respectively, where p + q = 1. Whenever there is a toppling at site i = L

(rightmost end), one grain goes out of the system. Grains are added only at site 1.

The 1d Oslo ricepile model has an Abelian property [44]. The final height config-

uration does not depend on the order we topple the unstable sites. After addition of

total L(L + 1) grains, the pile reaches the critical steady state [44]. Since we have

chosen the values of zc to be 1 or 2, height profile, in the steady state, fluctuates be-

tween slope 1 and 2. For number of sites L, the number of possible configurations in

the critical states are exponentially large, approximately 1+
√

5
2
√

5
(3+

√
5

2
)L, for large L [84].

The probabilities of various configurations in the steady state differ from one another

by many orders of magnitude unlike the BTW model

4.1.2 Model-B : 2d generalization of the Oslo model.

We note that the 1d Oslo model defined above can easily be generalized to two dimen-

sions. We take a triangular region of a square lattice, the sites of which are indexed by

(i, j) with i, j ≥ 1 and i+ j ≤ L+ 1. The height of the pile at site (i, j) is denoted by

h(i, j). Whenever the height difference between site (i, j) and any of it’s neighbouring

sites exceeds a critical value zc(i, j), assigned to the site (i, j), there is a toppling at

site (i, j) and one grain is transferred from this site to the lower neighbouring site

towards the unstable direction. If there are more than one unstable directions, grain
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is transferred towards the greatest slope. If the two directions have equal slope values,

one grain is transferred randomly towards any one of these two directions. Whenever

there is a toppling at a site (i, j), zc(i, j) is reset randomly, independent of the history,

to either 2 or 1 with probability p or q respectively, where p+ q = 1. One grain is lost,

whenever there is a toppling at the boundary sites i.e., along i + j = L + 1 line. The

model defined above in two dimensions is not Abelian because final stable configuration

depends on the order we topple the unstable sites. Grains are added only at the corner

site (1, 1).

4.1.3 Model-C : The local limited model.

The local limited model [41] is a one dimensional model defined as follows. The slope

zi is defined as i.e., zi = hi − hi+1. Whenever value of the slope zi at any site i is

higher than a critical value zc, which we choose to be 2, the site becomes unstable

and two grains from the unstable site go to the right neighbour, i.e., hi → hi − 2

and hi+1 → hi+1 + 2. Slope at any site may be negative in the local limited model.

Whenever there is a toppling at site i = L (rightmost end), two grains go out of the

system simultaneously.

Grains are added uniformly everywhere. This model is also not Abelian. It is easy

to see that in this case the maximum and the minimum slopes are 2 and 1 respectively.

Total number of recurrent configurations in the steady state can be determined exactly,

and varies as 4L

L3/2 for large L [86]. It is known that the probabilities of occurrence of

various configurations in the steady state is not equal, and may differ from one another

by many orders of magnitude.

4.1.4 Model-D : Model with non-nearest neighbour transfer
of grains.

Model-D is a variation of the model-C [41]. Whenever value of the slope zi > 2 at any

site i, the site becomes unstable and two grains from the unstable site are transferred

to the right, one grain transferred to site i + 1 and the other one transferred to site

i+2, i.e., hi → hi − 2, hi+1 → hi+1 +1 and hi+2 → hi+2 +1. If there is a toppling near

the right boundary, grain goes out of the pile. The order we relax unstable sites mat-

ters. The grains are added uniformly everywhere. The local slope can be negative as in

model-C. The minimum and maximum slope in this model are also 1 and 2 respectively.
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h1

Stack at site i=1

1 3 7 8 16

4 11 14 35

5 9 15 98

6 12 19 100

10 13 85

17 97

24

Add 101st grain at height h1

Fig 4.1: Rice pile of size L = 5 after addition of 100 grains. All grains are numbered by the
time they were added to the pile. Minimum slope is denoted by the thick line.

The pile in all four cases is driven slowly, by adding one grain per unit time,

starting with the initial configuration of height zero at all sites. We assume that the

time interval between addition of two grains is chosen long enough so that all avalanche

activity has died before a new grain is added. The grain added at time n will be labeled

by the number n. We think of the grains at a particular site as stacked vertically, one

above the other (Fig. 4.1). Whenever a grains is added at a site, it sits on the top of

the stack. When one unstable grain leaves the stack, it is taken from the top of the

stack. In model-C, when two grains leave a site, we first take out the topmost grain

from the site and put it on the top of right nearest neighbour stack, then we take the

second unstable grain and put it on the top of the first grain at right nearest stack.

In model-D, we transfer the unstable grain, second from the top, to the right nearest

neighbour and transfer the topmost one to next to the right nearest neighbour.

If a particular grain n enters a site i at time tin(i, n) and leaves the site at time

tout(i, n), it’s residence time Ti(n) at site i is defined as the time spent by the grain

at the site i, i.e., Ti(n) = tout(i, n) − tin(i, n). The residence time of the nth grain,

T (n), is the total time spent by the grain inside the pile. For a directed ricepiles in one

dimension where grains move only in one direction and by one step in each toppling,



CHAPTER 4. The distribution of residence times in ricepile models. 56

the residence time T (n) equals to
∑L

i=1 Ti(n) (e.g. in model-A and model-C). We define

the function ProbL(Tj ≥ t) as the probability that a new grain added in the steady

state of the pile will have a residence time at site j is greater than or equal to t, and

ProbL(T ≥ t) as the probability that its total residence time in the pile is greater than

or equal to t. Clearly, we have ProbL(Tj ≥ 0) = ProbL(T ≥ 0) = 1.

4.2 Relation between residence times at a site and

height fluctuations.

We can understand the residence time distribution of grains at any site in terms of the

fluctuation of height at that site. The hi(t) be the height of the pile at a site i just after

the tth grain has been added. The height hi(t) as a function of time t is a stochastic

process and, in the steady state, it fluctuates in time between a upper bound, hmax,

and a lower bound, hmin. In case of the height fluctuation at site 1, hmax = 2L and

hmin = L. The height h1(t) at the site 1 has a stationary probability distribution which

is sharply peaked near its average value h̄1, and has the width σ
h1

which is standard

deviation of the fluctuation of height h1. In the steady state, the average value of h1

varies as L, and the width σ
h1

varies as Lω1 , where exponent ω1 < 1. For large L, the

probability distribution of h1 has a scaling form as given below.

ProbL(h1) = L−ω1g(
h1 − h̄1

Lω1
) (4.1)

In Fig. 4.1 we have shown a scaling collapse of various probability distribution of

height at site 1, ProbL(∆h1), where ∆h1 = h1 − h̄1, for various values of system sizes,

L = 100, 200 and 400 in the 1d Oslo ricepile model. We get a good collapse using

the scaled variable ∆h/Lω1 where ω1 ≈ 0.25. Here the scaling function g(x) is nearly

Gaussian for x near zero. But very large deviations of h1 from the mean value are

not well-described in the Gaussian approximation. Later we shall argue that in the

Oslo model scaling function g(x) varies as exp(−|x|
1

1−ω1 ) for x � 1 and it varies as

exp(−|x|
3

1−ω1 ) for x� −1.

Let us consider variation of height h1 at the first site with time t shown schematically

in Fig. 4.2. Note that h1(t) is piecewise constant line segments, with possible jumps

at the integer time t. Since the value of h1(t) is discontinuous at integer times, it

is not immediately obvious that which value of height is assigned against the integer
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Fig 4.2: Fluctuation of height at first site with time plotted for the 1d Oslo ricepile model
for L = 20. The horizontal line is at h1 = 33 which is the most probable height. The first
and second vertical lines are at t = 14 and t = 42 respectively.

time variable t. We shall use the following convention. The value of h1(t) at time

t is denoted by the line segment which is just at the right of the coordinate t, e.g.,

h1(0) = 33, h1(1) = 34, etc. A grain added at time t, when the height at the first site

is h1(t− 1), leaves the site at time t′, we must have h1(t
′) ≤ h1(t), and h1(t

′′) > h1(t),

for all t′′ satisfying t < t′′ < t′. As an example, for the time series of h1(t) shown in

Fig. 4.2, the grain added at t = 14 stays at site 1 upto time t = 41 and then goes out

of the site 1 at t = 42 (i.e., just after addition of the 42nd grain), and so T1(14) = 28.

As h1(13) = h1(12), the grain added at t = 12 comes out immediately, and hence

T1(12) = 0.

Let ProbL(T1 ≥ t|h1) be the conditional probability that a grain stays at site 1 for

time greater than t, given that it was added when the height was h1. Since ProbL(h1)

is the probability that height was h1 when the grain was added, we have the following,

summing over all possible values of h1.

ProbL(T1 ≥ t) =
hmax
∑

h1=hmin

ProbL(h1)ProbL(T1 ≥ t|h1) (4.2)

But ProbL(T1 > t|h1) can also be written as the conditional probability that the
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height of the pile at site 1 would remain above h1 for an interval ≥ t, given that the

height is h1 in the steady state. This probability can be calculated from the general

theory of Markov chains as the probability of first return to a height less than or

equal to h1, given that we start with height h1 in the steady state, and add one grain

per unit time. The probability that no return has occurred up to time t decreases

as exp[−λ(h1)t] for large t, where λ(h1) is the largest eigenvalue of the the reduced

Markov matrix, with rows and columns corresponding to configurations with heights

at site 1, below or equal to h1, removed [87, 88]. While it is not very easy to calculate

λ(h1) exactly, clearly it decreases as h1 decreases. For h1 = hmax, it is +∞ as the

height at the site cannot be higher than hmax and T1 must always be zero. Also it is

very small for h1 near hmin, as the pile returns to very low values of h1 only rarely.

For large t, in the sum in r.h.s. of Eq.(4.2), only terms with h1 near hmin make a

significant contribution. In this case, it is a reasonable approximation to replace the

function ProbL(T1 > t|h1) by a simple exponential, with λ(h1) = 〈T1〉h1. Thus we

write, for large t,

ProbL(T1 > t|h1) ' exp(−t/〈T1〉h1) (4.3)

It is easy to write the conditional expectation value of the residence time at the first

site, 〈T1〉h1, given that the grain was added at the height h1 in terms of the stationary

probability distribution ProbL(h1) exactly as

〈T1〉h1 =
ProbL(height > h1)

p1ProbL(h1)
(4.4)

where p1 is the probability of adding a grain at site i = 1. When we add grains only

at first site, p1 = 1 and when we add grains uniformly everywhere, p1 = 1/L.

Proof : Define an indicator function ηn,t = 1, if the nth grain is at height h1 at

time t, and zero otherwise. Clearly, the sum of ηn,t over t is the residence time of nth

grain at height h1. Then, averaging over n we get the mean residence time. But the

sum of ηn,t over n and t both gives a contribution whenever there is a grain at height

h1, and hence is equal to NProbL(height ≥ h1) where N is total number of grains

added and N is very large. Dividing this sum by average number of grains added at

height h1, which is equal to p1NProbL(h1), we get 〈T1〉h1. Hence, Eq.(4.4) follows.

We substitute this estimate of 〈T1〉h1 in Eq. (4.3). We note that for large t, the
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Fig 4.3: Scaling collapse of various probability distributions ProbL(∆h1) where ∆h1

is the deviation of height at site 1 from it’s average value, for different system sizes,
L = 100, 200 and 400 for the 1d Oslo ricepile model.

terms in the summation that contribute significantly correspond to h1 near hmin. For

these values of h1, Prob(height > h1) is nearly 1, and 〈T1〉h1 may be replaced, with

small error, by 1/ProbL(h1) (see Eq. 4.4). Then Eq. (4.2) can be approximately written

as given below.

ProbL(T1 ≥ t) '
hmax
∑

h1=hmin

ProbL(h1)e
−tProbL(h1) (4.5)

Thus, the distribution of residence times T1 can be expressed in terms of the prob-

ability distribution ProbL(h1) of height h1.

4.3 Probability of minimum slope configuration in

the Oslo ricepile model

4.3.1 Explicit calculation of ProbL(h1) small L.

The probability of slope of the pile being 1 in the steady state can be exactly calculated

numerically for small L using the operator algebra satisfied by addition operators [44].
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We denote any stable configuration by specifying slope values at all sites from i = 1 to

i = L by a string of 0’s, 1’s and 2’s, e.g., |1202.....212〉. Whenever slope zi becomes 2

after additions or toppling at site i, we denote such slope by 2̄, i.e., |...2̄...〉. Overbar

denotes that the site may topple or become stable with probability q or p respectively

, i.e., |..12̄1..〉 → p|..121..〉 + q|..2̄02̄..〉, etc. Using these two toppling rules repeatedly

and the Abelian property of the 1d Oslo ricepile model, we can relax any unstable

configurations.

Let us now consider the state |2̄2̄ . . . 2̄2̄〉 where all the sites have slope values 2 and

not stable. If we add one more grain at site i = 1 in this state, we get the same state

back (toppling the site with zi = 3 repeatedly) which implies that it is the steady state.

So if we relax this configuration fully, we get probabilities of all the configuration in the

steady state. For example, if we relax |2̄2̄〉 for L = 2, we get the following sequence,

|2̄2̄〉 → p|22̄〉 + q|12̄〉 →

p2|22〉 + pq|12〉 + pq|12̄〉 + q2|2̄1〉 → . . .→

p2|22〉 + (p+ p2)q|12〉 + (p+ p2)q2|21〉 + (p+ p2)q3|02〉 + (1 + p)q4|11〉.

Below we make a table of explicit formulas for probability of the minimum slope for

smaller values of system sizes L = 2, 3, 4.

System size L Probability of the minimum slope

L = 2 (1 + p)q4.

L = 3 (1 + 4p+ 6p2 + 5p3 + 2p4)q10.

L = 4 (1 + 10p+ 45p2 + 125p3 + 241p4 + 341p5+

. 369p6 + 307p7 + 190p8 + 81p9 + 18p10)q20.

4.3.2 Asymptotic behaviour of ProbL(h1) for large L.

The probability of maximum slope configuration (i.e., when h1 = 2L) can be easily cal-

culated. We start with the unstable configuration |2̄2̄...2̄〉. The probability that no site

topples in this unstable configuration is pL and this is the probability of the maximum

slope configuration (i.e. h1 = 2L) in the steady state. That this probability varies as

exponentially with L can be incorporated in the scaling hypothesis by assuming that

the scaling function g(x) in Eq. (4.1) varies as exp(−ax
1

1−ω1 ) for x � 1 where a is a

constant.
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The probability of the minimum slope configuration cannot be calculated so easily.

However we argue below that this probability asymptotically varies as exp(−κL3) where

κ is a constant.

Firstly, the above calculation for L = 2 showed that, in the steady state, the

probability of the minimum slope configuration is O(q4). For L = 3, we calculated this

probability explicitly (see the table in section 4.3.1) which is O(q10). Similar analysis,

for other values of L = 1 to 20, shows that the probability of minimum configuration is

O(qm
L ), where m

L
is exactly given by the formula L(L+1)(L+2)/6. The coefficient of

qm
L in the probability is harder to compute explicitly for large L. We conjecture that

this simple formula holds true for all L. Then for sufficiently small q, the probability

of minimum height configuration in the 1d Oslo model varies as exp[−κ(q)L3], where

κ(q) is a q-dependent function. Then, as there is no change in the behaviour of the

Oslo ricepile expected, as a function of q, this behavior should persist for all non-zero

q. For the scaling function, this would imply that g(x) varies as exp[−κ(q)|x|
3

1−ω1 ] for

x� 1.

We have calculated, ProbL(slope = 1), i.e., the probability of the minimum slope

configuration, exactly numerically for q = 0.50, 0.60, 0.75 for L = 1 to 12 and the

loge[ProbL(slope = 1)] has been plotted versus L(L+1)(L+2)
6

in Fig. 4.4.

More specifically, consider a very low-slope unstable configuration |11...12̄〉 which

has total L number of grains with slopes 1 at all sites except at the last site with slope

2 and estimate the probability to go to the minimum slope from this configuration. To

do this, we have to remove L grains, and each grain has to be moved a distance of O(L)

on the average. Thus we need O(L2) steps for large L, and each step requires a factor

q in probability. Actually the probability of transition from this configuration with

height hmin + 1 to the minimum slope configuration (with height hmin) is O(q
L(L+1)

2 )

and the coefficient of q
L(L+1)

2 in this case is exactly 1. Now the probability of minimum

slope can be written in a general form as given below.

Prob(slope = 1) ∼ exp[−κ(q).L3] (4.6)

where κ(0) = ∞ and κ(1) = 0. The different asymptotic behaviour of large deviations

in g(x) is somewhat unexpected, but has been seen in other problems, such as distri-

bution of the large deviation of current in the asymmetric exclusion process in a ring

[89].
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Fig 4.4: Logarithm of the probability of occurrence of minimum slope configuration (calcu-
lated exactly) is plotted versus L(L + 1)(L + 2)/6 for the 1d Oslo ricepile model for L = 1 to
12.

Large deviations of fluctuation in a system have been studied extensively [91, 92]

and especially recently it has attracted much attention for systems in non-equilibrium

steady state [89, 93, 94, 95, 96, 97]. In the previous section, we have studied the prob-

ability distribution of residence times of grains at a site in the 1d Oslo ricepile model.

We will discuss this in detail in later sections and show that tail of the distribution is

determined by the deeply buried grains which come out only in rare height fluctuations.

4.3.3 Verification by Monte Carlo simulation.

In this subsection, we numerically study the probability of large deviations of steady

state height fluctuation of the pile in the one dimensional Oslo ricepile model and

test our analytic arguments given in the previous subsection. We use a Monte Carlo

algorithm with importance sampling (IS). We show that the probability of minimum

slope configuration of the pile varies as exp(−κL3) for large L where κ is a constant. We

also calculate the probability distribution function P (∆h|L) where ∆h is the deviation

of the height of the pile from it’s average value and get a scaling collapse of data for

various system sizes.
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The probability distribution function Prob(h1|L) decays sharply and the event when

the h1 ≈ L happens very rarely. Now we give an estimate of how small are the

probabilities of occurrences of these rare events. We have calculated probability of

minimum slope configuration in the steady state exactly numerically in the Oslo ricepile

model for L ≤ 12 using a simple code written in C. The number of topplings required

to get to the final stable configuration from |2̄2̄...2̄2̄〉 increases L3, and hence complete

traversal of all possible branches of the different possibilities takes a computer time

that varies as exp(L3). For example for L ≥ 13, the computer CPU time is so large

that it will take years for the code to be over and one certainly cannot calculate this

probability using this simple enumeration algorithm.

Even for system size as small as L = 6 and L = 7, the probabilities of minimum

slope are 4.81 × 10−11 and 1.76 × 10−15 respectively. For L = 12, this probability is

much smaller, 1.23×10−55. In Fig. 4.4 we have plotted Logarithm of the probability of

occurrence of minimum slope configuration versus L(L+ 1)(L+ 2). In the table below

we give exact (upto five significant digits) numerical values of probabilities of the min-

imum slope configuration for L ≤ 12 calculated using the relaxation rules mentioned

in section 4.3.1. We can see that L ≥ 6, it is almost impossible to get this rare event

in a simple Monte Carlo simulation.

System size L Probability of the minimum slope for p = q = 1/2

L = 2 9.3750 × 10−2

L = 3 5.1269 × 10−3

L = 4 6.4540 × 10−5

L = 5 1.4746 × 10−7

L = 6 4.8163 × 10−11

L = 7 1.7660 × 10−15

L = 8 5.6961 × 10−21

L = 9 1.2640 × 10−27

L = 10 1.5074 × 10−35

L = 11 7.5371 × 10−45

L = 12 1.2317 × 10−55

To get probabilities of various steady state configurations, one can relax the unstable

configuration |2̄2̄ . . . 2̄2̄〉 fully. To do this, a random number is assigned to each of the L

sites using a pseudo random number generator which generates number between 0 and
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1 uniformly. When zi = 2̄ at site i, the random number at that site is checked and one

makes the site stable if the random number is less than or equal to p and topple the site

i if it is greater than p. After each toppling at a site, a new random number is generated

at the site, independent of any history. When the slope value at a site increases from

zi = 1 to zi = 2, one assigns a new random number to the site. The site i with zi = 3 is

toppled with probability 1. One has to keep on relaxing |2̄2̄ . . . 2̄2̄〉 until slopes at all the

sites are less than or equal to 2 and the random numbers at all the sites are less than or

equal to p and one gets a stable steady state configuration. So one starts withN number

of initial configurations, all with |2̄2̄ . . . 2̄2̄〉, simultaneously topple all the unstable sites

of each configuration until a stable configuration is reached. At the end, one gets Nmin

configurations with |11..11〉, out of total N number of steady state configurations. Now
Nmin

N
is the required probability of the minimum slope configuration in the steady state.

Clearly simple Monte Carlo algorithm given above cannot sample the low slope

configurations at all when L is large. Because the number Nmin

N
is very small for large

L and therefore, after fully relaxing N initial configurations, one almost always get

Nmin = 0, unless N is too large. Now we explain the idea of importance sampling

for getting the steady state weight of the minimum slope configuration. We use an

important fact in our algorithm that the Oslo ricepile model is Abelian and the order

of toppling the unstable sites does not matter. Since we are not interested in the

probabilities of other stable configurations, we like to topple in such a way that we do

not get trapped in any one of the other stable configurations and at the end, we get

only the minimum slope configuration.

To explain this, let us start with an unstable configuration C0 where there are some

sites with zi = 2̄ and other sites are stable. Now random numbers are assigned to

the sites with zi = 2̄. Consequently some of these sites become stable with zi = 2

and some become unstable. At the next step, after toppling all the unstable sites with

zi = 2 once and then toppling the resultant unstable sites with zi = 3, we can get

a set S of stable configurations, say S1, S2, S3, with cumulative probability P (S) and

a set U of unstable configurations (where zi = 0, 1, 2 or 2̄), say U1, U2, U3, U4, with

probability of each unstable configuration Ui is P (Ui). This is schematically shown in

Fig.4.5. If we reject these stable configurations and directly go to the space of unstable

configurations, then the probability of each unstable configuration P (Ui) is normalized

to be P ′(Ui) = P (Ci)
1−P (S)

. At each step of toppling, we take this factor [1 − P (S)] out

and keep on multiplying the factors at various steps until we reach the minimum slope
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Fig 4.5: Schematic diagram illustrating our algorithm. If we start with unstable con-
figuration C0, at the next step after toppling the unstable sites, we get a set S of stable
configurations S1, S2, S3 and a set U of unstable configurations U1, U2, U3, U4. The prob-
ability of getting any stable configuration is P (S) = Prob(S1) + Prob(S2) + Prob(S3).

configuration |11...11〉.

For example, if we relax |2̄2̄2̄ . . . 2̄〉, using the relaxation rules explained in section

4.3.1, we get the following.

|2̄2̄2̄ . . . 2̄〉 → pL|222 . . . 2〉 + (pL−1 + pL−2 + . . .+ p+ 1)q|12̄ . . . 2̄2̄〉

→ pL|222 . . . 2〉 + (1 − pL)|12̄ . . . 2̄2̄〉

We see that if we start with the configuration |2̄2̄2̄ . . . . . . 2̄〉 (C0), at the first step there

are two possibilities, (1) all the sites becomes stable or (2) at least one site becomes

unstable and topple. In the case of second possibility, after toppling the unstable sites

with zi = 2 once and then toppling all the resultant unstable sites with zi = 3, we
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get an unstable configuration U1 with |12̄2̄ . . . . . . 2̄〉 with probability (1 − pL). We

get the stable configuration |22 . . . . . . 2 with probability pL. Now we reject the stable

configuration |222..2〉 from our list and can directly go to the configuration |12̄ . . . . . . 2̄2̄〉
but with a multiplicative weight factor (1 − pL) to the unstable configuration.

Therefore in the simplest strategy, one thinks of different possible configurations in

the course of evolution at each step t as a branching tree. If we reach a configuration

Ct at a node at the t-th step, the probability of the process dying is say a(Ct), we do

not allow the process to die, and select one of the remaining branches with probability

equal to their original probability, divided by the factor [1−a(Ct)], and the final survival

probability is estimated by product of such factors. This procedure is not satisfactory

for our problem, as there are some nodes have first-generation descendants, but these

descendants do not have any descendants. For example let us consider a case for L = 5.

We start with, say a configuration |2̄1102̄〉. Now the first generation descendants will

eventually die if the last site i = 5 gets stable at the next time step. If one reaches such

a node, the process will die after one more generation, but it is difficult to identify these

directly and avoid them, without a computationally expensive depth-search. Thus, the

resulting process still has a nonzero probability of reaching such a node at the next

step, and the overall probability of survival still decreases exponentially with the depth

of the tree.

In the following we describe a technique that does manage to estimate the small

survival probabilities, but at the cost of having to define and update one additional

random real variable at each site of the lattice.

Algorithm for sampling rare events

We start with a configuration with all sites unstable, and all zi = 2̄. Let x(i, t) be the

random number at site i at the end of the update-step t. Initially, at t = 0, all x(i, 0)

are independent random variables lying between 0 and 1.

The Abelian property of the Oslo model implies that it does not matter in which

order we topple the unstable sites. We choose the following rule: At any time step, we

first topple any unstable sites with zi = 3. When all the unstable sites are with slope

z = 2̄, we topple the site having the largest random number, if the random number is

greater than p. If the number is less than p, the avalanche stops. After the toppling,

the random number at the site is reset to a new value, independent of the previous
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history. This constitutes the end of one update step. Note that one update step may

involve more than one topplings at sites with z = 3, but there is exactly one toppling

at a site with z = 2̄ in each update step.

The toppling history can be specified by giving the site with z = 2̄ selected for

toppling at each update step, and the random number at that site at the time of

toppling. Let j(t) be the site selected for toppling at the t-th update step, and y(t)

be the value of the random number at j(t) at the time, i.e., y(t) = x(j(t), t) which is

the largest among the random numbers associated with slopes z = 2̄. We shall denote

the toppling history as a sequence upto time t by Tt = {[j(t′), y(t′)]; t′ = 1 to t}.
It is straight forward to determine the conditional joint probability distribution of

[j(t+ 1), y(t+ 1)], given only the toppling history Tt. Firstly, given the sites that have

been toppled, one can determine the set of unstable sites u(t) with z = 2̄, out of which

the site with the maximum random number has to be selected at update-step t + 1.

Since we know that x(j, t) for any site j ∈ u has not been selected for toppling earlier

since it was reset, it must be smaller than all the corresponding y’s selected since then.

If it was reset at update step tprev(j, t), we must have

x(j, t) ≤ xmax(j, t) (4.7)

where xmax(j, t) is the maximum value of x(j, t) allowed by these constraints

xmax(j, t) = Min{y(t′) : tprev(j, t) ≤ t′ ≤ t}. (4.8)

Let us now define a function g(ξ) as g(ξ) = ξ, for 0 ≤ ξ ≤ 1, and g(ξ) = 1 for ξ > 1.

Then, the conditional probability distribution of x(j, t), for j ∈ u(t), given the toppling

sequence Tt, is

Prob(x(j, t) ≤ x|St) = g(
x

xmax(j, t)
) (4.9)

In addition, there is no further correlation between the values x(j, t) for j ∈ u(t),

beyond that implied by the conditions that x(j, t) ≤ xmax(j, t), we must have

Prob[y(t+ 1) ≤ y|Tt] = Φt(y) =
∏

j∈u(t)

g(
y

xmax(j, t)
) (4.10)

If we put an additional condition that y(t + 1) > p, the corresponding conditional
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distribution is given by

Prob[y(t+ 1) ≤ y|{Tt, y(t+ 1) ≥ p}] =
Φt(y) − Φt(p)

1 − Φt(p)
(4.11)

Let F (t+ 1) be the probability that y(t+ 1) ≥ p. Clearly, we have

F (t+ 1) = 1 −
∏

j∈u(t)

g(
p

xmax(j, t)
) (4.12)

Also the relative weight of a particular history Tt being realized without the avalanche

getting stopped is
∏t

t′=1 F (t′).

We implement this procedure in the algorithm at follows: As time evolves, we

update the configuration variables zi(t) and also keep an array {xmax(i, t), which is

regularly updated to store what is known about the largest allowed value of the random

number stored at that point.

At t = 0, zi(0) = 2̄ for all i, and xmax(i, 0) = 1. At any later update step t, we

first topple any sites with z = 3. Once this is done, using the toppling process, we

determine the set of unstable sites u(t) where z = 2̄. We randomly select which of the

u has the largest x(j, t) and its value y(t + 1) having the distribution given by 4.11.

We generate the largest x(j, t) using the algorithm given in the next paragraph below.

For example, consider independent random variables x1, x2, x3, x4, x5, which are

known to be uniformly distributed between the respective intervals as given below,

1. x1 ∈ [0, 1]

2. x2 ∈ [0, u]

3. x3 ∈ [0, u]

4. x4 ∈ [0, v]

5. x5 ∈ [0, v]

where we take 1 ≥ u ≥ v without loss of generality. Then the cumulative proba-

bility distribution of y, the largest among these random numbers, is given by

Prob(y ≤ x) = x, for u ≤ x ≤ 1

= x3/u2, for v ≤ x ≤ u;

= x5/(u2v2), for 0 ≤ x ≤ v. (4.13)

To generate a variable y with this distribution, we use the following algorithm: gener-

ate a number z randomly between 0 and 1. Then following cases are possible.
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Fig 4.6: Plot of the probability Prob(xmax < x) versus x.

1. If u < z ≤ 1 we choose the largest random number to be y = z and the maxi-

mum is surely x5.

2. If v3/u2 < z ≤ u, we choose the largest random number to be y = (zu2)1/3 and the

maximum is chosen between x3, x4 and x5 with probability 1/3 each.

3. If 0 ≤ z ≤ v3/u2, we choose the largest random number to be y = (zu2v2)1/5 and

the maximum is chosen between x1, x2, x3, x4 and x5 with probability 1/5 each.

If the resulting value of y is less than p, the value is rejected, and the whole procedure

is implemented afresh. Probability distributions for the maximum of more variables

can be obtained similarly.

We calculate the attrition factor F (t + 1) using Eq.(4.12). We then topple at the

selected site j(t + 1), and update the values of xmax(j(t+ 1)) = 1, and set xmax(j
′) =

y(t+ 1) for j ′ 6= j. And iterate this process. Clearly this process will not die until the

minimum slope configuration is reached. The estimate of probability of the minimum

configuration is obtained by calculating the weight function

Wmin =
∏

τ

F (τ) (4.14)

where the product is over all update steps τ required to reach the minimum config-
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uration. For different realizations, we get different values of Wmin. We average over

different values by taking many realizations.

We illustrate this procedure by a simple example. Consider a rice pile with L = 6.

At t = 0, we have u(0) = {1, 2, 3, 4, 5, 6}, as all sites are unstable. Also, at this stage

xmax(i, 0) = 1 for all sites. In this case, the probability distribution of y(0) is given by

Prob(y(0) ≤ y|y(0) > p) = y6/(1 − p6), for p ≤ y ≤ 1. (4.15)

This can be generated as follows: Select a random number z uniformly distributed

between 0 and 1. If z1/6 > p, put y(0) = z1/6. If not, discard this value, and choose

again. In this case, we get F (1) = (1 − p6). Then, we choose j(0) as one of the sites

from u(0) at random, with equal probability. Say, we get j(0) = 2. Then, we topple at

this site. This makes sites 1 and 3 unstable, and we topple there as well. Toppling at

all unstable sites with z = 3, we finally get the configuration with u(1) = {2, 3, 4, 5, 6},
and because of forced topplings, xmax(i, 1) at all these sites is set to 1. So, now

Prob(y(1) ≤ y|y(0) > p) = y5/(1 − p5), for p ≤ y ≤ 1, (4.16)

and F (2) = (1−p5). Now we choose j(1) at random from u(1), say j(1) = 4. Toppling

at this site induces toppling at other sites, and finally we get the configuration of

unstable sites u(2) = {1, 3, 4, 5, 6}, and we have xmax = 1 at all these sites. We now

generate the variable y(2), which turns out to have the same distribution as y(1). Then

we have F (3) = (1 − p5) again. Now we choose a site from u(2) and so on.

Results.

Since the final product of all the factors in each realization is a very small number, we

keep track of logarithm of these factors and final product. We do the above procedure

for many realizations and take the average of the logarithm of the final weight Wmin.

For a random variable X, we know 〈lnX〉 ≤ ln〈X〉 and therefore the estimated log-

arithm of the probability Wmin is the lower bound of probability of minimum slope.

In Fig.4.7 we have plotted negative of logarithm of the probability of the minimum

slope configuration in the steady state with L(L + 1)(L + 2) and fit it with a straight

line. We have compared our results obtained from two procedures, i.e., exact numerical

calculation and the Monte Carlo simulation and plotted negative of logarithm of the

probabilities against L(L + 1)(L + 2) in Fig.4.8 for L upto 12. In Fig.4.9, we have
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and for L = 20 for the 1D Oslo ricepile model. The data is averaged over 105 initial
realizations.

plotted frequency distribution of the final product at each realization. The total num-

ber of realizations we have taken for the frequency distribution is 105. Although we

cannot estimate 〈log10(Wmin)〉 for large L, we can calculate log10(〈Wmin〉) and show

from the numerical analysis that −log10(〈Wmin〉) varies as L3 for large L. We report, in

the table below, values of log10(〈Wmin〉), 〈log10Wmin〉 and estimate of spread (standard

deviation) in 〈log10(Wmin)〉 for various system sizes.

L log10(〈Wmin〉) 〈log10(Wmin)〉 Spread in 〈log10(Wmin)〉
10 −35.4 −40.7 ±2.9

11 −45.0 −52.0 ±3.4

12 −55.6 −65.2 ±3.9

13 −69.9 −80.4 ±4.4

14 −85.8 −97.8 ±4.9

15 −102.0 −117.4 ±5.4

16 −123.4 −139.4 ±6.0

17 −164.2 −164.2 ±6.6

18 −171.4 −191.7 ±7.2
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is plotted for system sizes L = 10, 20, 40 for the 1d Oslo ricepile model. The data is
averaged over 105 initial realizations.

19 −198.0 −221.9 ±7.8

20 −230.0 −255.1 ±8.3

We can also calculate the full probability distribution ProbL(h1) of height h1 at

site 1. After we start relaxing the unstable configuration |2̄2̄2̄ . . . . . . 2̄〉, the height at

site 1 gradually decreases. At some step of relaxation, the height at first site becomes

h1 ≤ h for the first time in the course of relaxation. We multiply all the previous

factors, F (t)’s, upto this step and this product gives the probability of height at the

first site being less than or equal to h, i.e., ProbL(h1 ≤ h).

ProbL(h1 ≤ h) =
∏

{Ct:h1>h}
F (t) (4.17)

We take the average of this product over many realizations. In Fig.4.10, we have plotted

ProbL(h1 ≤ h) for L = 10, 20, 40. The data is averaged over 105 initial realizations.

In Fig.4.11, we get a good scaling collapse by plotting Lω1ProbL(h1 = h) against the

scaling variable (h1−h̄1)/L
ω1 where ω1 ≈ 0.25. We see from the scaling plot the scaling

function is highly asymmetric about the origin.
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4.4 Residence times in the Oslo ricepile model

4.4.1 Distribution of residence times at site 1

The qualitative behaviour of distributions ProbL(Ti ≥ t) for i = 1 can be seen in the

simulation results shown in Fig. 4.12 and Fig. 4.13. We have done our simulations

for p = q = 1
2

and different system sizes, L = 20, 25, 35 and 50. We averaged the

data for a total 109 grains added in the pile for each L. Fig. 4.12 shows the plot of

ProbL(T1 ≥ t) versus time t for different values of L. Interestingly, various curves

for different L have steps like structures. The curves for different values of L cross

each other many times. The unusual non-monotonic behaviour is not an artifact of

statistical fluctuations. The statistical errors in the data are much smaller than the

step sizes except in the tail region (i.e, t � 106). The crossing of the curves for the

cumulative probabilities persists for quite large system sizes also. In Fig. 4.12, we have

plotted ProbL(T1 ≥ t) versus t for two much bigger system sizes, L = 100 and L = 200.

We see that in this case also the probability that a grain remains in the pile of size

L = 100, for time greater than or equal to 6 × 105, is higher by a factor 1.8 than for

a pile, two times larger size L = 200. Steps like structures are not log periodic as the
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Fig 4.12: The cumulative probability ProbL(T1 ≥ t) versus time t for lattice sizes
L = 20, 25, 35 and 50 for the 1d Oslo ricepile model. A total of 109 grains were added.

height and width of a step in each curve increases when going down the curve even on

the log scale. The existence of several steps, whose positions and logarithmic widths

are different for different L’s, implies that simple finite size scaling cannot hold in this

case.

Now we shall use the knowledge of the behaviour of ProbL(h1) to explain the step-

like structures in the distribution function ProbL(T1 ≥ t).

For h1 � h̄1, the probability distribution of height ProbL(h1) falls very rapidly. Ac-

tually, it will be argued in section 5 that for h1 � h̄1 the ratio ProbL(h1−1)/ProbL(h1)

is of order exp(−aL2) where a is a constant and hence is very much less than 1. The

values of ProbL(h1) for different h1’s could differ by several orders of magnitude from

each other, if h1 is sufficiently near hmin. Now in the interval of 1/ProbL(h1−1) � t�
1/ProbL(h1), only a single term corresponding to h1 contributes significantly to the

summation, and then the summation is nearly independent of t. It is clearly seen from

Fig. 4.14, where ProbL(T1 ≥ t) is plotted versus t for L = 20 in the 1d Oslo model.

We can identify three steps in the plot. Each step in the curve can be associated with

a unique value of h1 (h1 = 28, 29 and 30) and steps appear at the corresponding value

of ProbL(h1) along the y-axis.
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Fig 4.13: The cumulative probability ProbL(T1 ≥ t) versus time t for lattice sizes
L = 100 and L = 200 for the 1d Oslo ricepile model.
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for the 1d Oslo model.
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This explains the steps like structure of ProbL(T1 ≥ t) as a function of t. Also, the

function decays roughly as 1/t since we must have ProbL(h1) ∼ 1/t for the term to

contribute in Eq. (4.5). If h∗1(t) is the value of h1 that contributes most in Eq. (4.5), the

value of h∗1(t) is given by the condition ProbL(h∗1(t)) ≈ 1/t. Substituting this condition

in Eq. (4.1), we get

g(
h∗1(t) − h̄

Lω1
) ≈ Lω1/t (4.18)

Thus the t dependence of h∗1(t) comes through the scaling variable tL−ω1 = τ (say).

Then for τ large the argument establishing the 1/t dependence of ProbL(t1 > t) given

above is quite robust. However, a more careful analysis of Eq. (4.5) shows that there is

also a logarithmic multiplicative correction factor with the 1/t decay of ProbL(T1 ≥ t).

For large L and t, the terms, which contribute to ProbL(T1 ≥ t) in Eq. (4.5),

correspond to the values of h1 for which h1 � h̄1. Substituting the scaling form of

ProbL(h) = 1
Lω1

g(h−h̄1

Lω1
) (see Eq. (4.1)) in Eq (4.5) and putting x = (h − h̄1)/L

ω1 , we

get the following.

ProbL(T1 ≥ τLω1) ∼
∫

dxg(x) exp[−g(x)τ ] (4.19)

where τ = t/Lω1 . We have assumed that the probability distribution ProbL(h1) �
1, but is not rapidly decaying so that ProbL(h1 − 1)/ProbL(h1) ≈ 1, and then the

summation of Eq. (4.5) can be replaced by an integral over the scaled variable x.

Actually in the real simulation (or experiment) for large L, this is the region of t we

explore, we cannot go too far down the tail of ProbL(T1 ≥ t).

Now it is easy to see the origin of logarithmic correction if we choose a particular

form of the scaling function g(x) as exp(−|x|α) for x � 1, with α > 0, and try to

find out the large t behaviour of the above equation in terms of the scaling variable

τ = t/Lω1 . We first substitute s = exp(−|x|α) in Eq (4.19) and get,

ProbL(T1 ≥ τLω1) ∼ 1

α

∫

ds

[−ln(s)]
α−1

α

exp(−sτ) (4.20)

The asymptotic behaviour of the of the above integral for τ large is easy to evaluate,

giving
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Fig 4.15: The cumulative probability ProbL(T1 ≥ t) for residence time at the first site
plotted against the scaled residence time t/L0.25 for lattice sizes L = 300, 400 and 500
for the 1d Oslo ricepile model. A total of 107 grains were added. The scaling function
is fitted with 0.05/(x[lnx]0.5).

ProbL(T1 ≥ τLω1) ∼ 1/[τ(ln τ)
α−1

α ] (4.21)

In Fig. 4.15 we have plotted ProbL(T1 ≥ t) against scaled variable t/Lω1 with

ω1 = 0.25 for large values of system sizes L = 300, 400 and 500 in the 1d Oslo model.

We fit the scaled curves with a functional form given in Eq. (4.21) with α = 2 since

the scaling function g(x) is Gaussian near x = 0.

Now it is clear that there is a logarithmic multiplicative factor in 1/t decay and

we take account of this logarithmic multiplicative correction by writing the cumulative

probability as given below.

ProbL(T1 ≥ t) ' Lω1 [t lnδ1(tL−ω1)]−1 (4.22)

where we have used the fact that the answer is function of the scaling combination

tL−ω1 and δ1 = (α − 1)/α. As a check we calculate the average residence time at site

1 as given below.
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Fig 4.16: The cumulative probability ProbL(T1 ≥ t) for residence time at the first site
has been plotted against the scaled time t/L0.25 for lattice sizes L = 20, 25, 35 and 50
for the 1d Oslo ricepile model. A total of 109 grains were added. The envelop is fitted
with 5/(x[ln x]0.75).

〈T1〉 '
∫ T1,max

1

ProbL(T1 ≥ t)dt ∼ Lω1 ln(T1,max)
1−δ1 (4.23)

The upper cutoff on the timescale is provided by 1/ProbL(h = hmin), which is the

average time interval between successive returns to the minimum height. Assuming

the scaling function g(x) varies as exp(−|x|α) for x � −1 and then putting T1,max =

exp[kLα(1−ω1)] in the above equation, we see that 〈T1〉 is proportional to L.

For the 1d Oslo model, numerical estimate from the simulation gives ω1 ≈ 0.25.

Assuming the value α ≈ 4 (argued in section 5), we get δ1 ≈ 0.75. In Fig. 4.16 we have

plotted ProbL(T1 ≥ t) versus a scaled variable t/Lω1 where ω1 = 0.25 for L = 20, 25, 35

and 50 and fitted the envelop formed by steps in the curves with a function 1/x(ln x)δ1

where δ1 = 0.75. We see that we get a reasonable fit to the data. We note that the

multiplying logarithmic factor is necessary to get a good fit to 1/t dependence.
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4.4.2 Total residence times T in the pile.

The arguments given in the previous section are easily extended to distribution of the

residence times Ti with i 6= 1, and we conclude that they would also have a similar 1/t

distribution with same logarithmic correction factor which is for T1, so long as i is not

near the right end. Hence the distribution of their sum T =
∑

i Ti would also be of

same form.

Even though the cumulative distribution of residence times Ti at any site i has steps

like structure, the step-structure may be washed out in the sum
∑

i Ti.

Results of the numerical simulation for distribution of the total residence times

using a total 5 × 107 grains are shown in Fig. 4.17. We see that the steps are not seen

in the distribution ProbL(T ≥ t) for different values of L for the range of the total

residence times reached in the simulation (T ≤ 108). The function ProbL(T ≥ t) is

much smoother than the function ProbL(T1 ≥ t). However for small values of L (say

for L ≤ 20), various curves of ProbL(T ≥ t) still cross each other at large times. But

for larger values of L, we don’t see any inter-crossing of the curves in the times reached

in our simulation (except at the tail where the data is less reliable due to the statistical

fluctuations).

In analogy with results for the the distribution of T1, We can expect the behaviour

of the cumulative distribution ProbL(T ≥ t) to be a scaling function of t/Lω, where

the exponent ω is different from ω1 defined earlier. So we write

ProbL(T ≥ t) = f(
t

Lω
) (4.24)

where the scaling function f(x) varies as 1/[x(ln x)δ] for large x, and the exponent

δ would also be different from δ1 defined earlier. Using the condition that the mean

residence time in the pile is equal to the mean active mass in the pile, and hence scales

as L2, can be used to determine δ in terms of ω and γ by integrating ProbL(T ≥ t)

over t upto the cut-off time scale exp(κLγ). Now we get,

δ = 1 − (2 − ω)/γ (4.25)

In Fig. 4.18 we have plotted ProbL(T ≥ t) versus scaled variable t/Lω where ω ≈
1.25 [63]. We get the value of δ approximately equal to 0.75 from Eq. (4.25), assuming

γ = 3 (argued in section 5). The fit is seen to be very good. In the numerical analysis
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Fig 4.17: The cumulative probability ProbL(T ≥ t) versus time t for lattice sizes
L = 20, 25, 35 and 50 for the 1d Oslo ricepile model. A total of 5 × 107 grains were
added.

of Christensen et. al. [43], no logarithmic factor was used, and the data was fitted

with a larger effective exponent, i.e., 1/t1.22 decay.

4.5 Generalization to other slope type models

In this section we present the simulation results in other models and show that the

cumulative distributions ProbL(T1 ≥ t) and ProbL(T ≥ t) have same 1/t power law

behaviour for large t, but with different logarithmic corrections.

4.5.1 Distribution of residence times at site 1 in model-B, C,

D.

Model-B: Now we present the simulation results for 2d ricepile model. We add marked

grains at the corner site, i.e., at (1, 1). We simulated this model choosing p = 0.75 and

q = 0.25, and study the residence time distribution of grains at the corner site (1, 1).

The standard deviation σh1,1
of height h1,1 at the corner site about the mean varies as

Lω1 where we estimated ω1 ≈ 0.2 from the simulation. We added total 106 grains.
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Fig 4.18: Scaling collapse of ProbL(T ≥ t) versus scaled residence time t/L1.25 for the
1d Oslo ricepile model for lattice sizes L = 20, 25, 35 and 50. A total of 5 × 107 grains
were added. Scaling function is fitted with 0.26/(x[lnx]0.75).
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Fig 4.19: The residence time distribution ProbL(T1,1 ≥ t) of grains at the corner site
versus time t for model-B for lattice sizes L = 12, 15 and 20. A total of 106 grains were
added.
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Fig 4.20: The cumulative probability distribution function ProbL(T1,1 ≥ t) versus
scaled scaled residence time t/L0.2 for model-B for lattice sizes L = 12, 15 and 20.
A total of 106 grains were added. The envelop formed by the steps is fitted with
2.0/(x[ln x]0.5).

We have plotted various curves for cumulative distribution function ProbL(T1,1 ≥ t)

of residence time T1,1 at the corner site versus times t for L = 12, 15 and 20 in Fig. 4.19

and we see steps like structure appearing for t ≥ 50. Various curves for different L

inter-cross each other many times as seen in the 1dOslo ricepile model. In this case also,

steps like structures are not log periodic as the step-length in each curve increases on

log scale when going down the curve. Any simple finite size scaling in the whole range

of t (t� 1) does not work as in the case of the 1d Oslo ricepile model. The probability

distribution of height at the corner site has a scaling form as given in Eq. (4.1) for

the 1d Oslo ricepile model. From the simulation we determined the exponent ω1 ≈ 0.2

which is very small. Since, for t � Lω1 , ProbL(T1,1 ≥ t) scales with t/Lω1 for large

L (see Eq. (4.19)), we plotted various cumulative distributions ProbL(T1,1 ≥ t) versus

a scaled time t/Lω1 with ω1 = 0.2 in the Fig. 4.20. We see that decay of the envelop

formed by various steps in different curves fit well with the function 2/[x(ln x)0.5] where

the logarithmic correction factor is according to Eq. (4.21).

Model-C : Since in model-C, grains are added randomly everywhere in the pile,

average residence time 〈T1〉h1of a grain added at height h1 varies as 1/[p1ProbL(h1)]
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Fig 4.21: Model-C for lattice sizes L = 50, 70 and 100. A total of 105 grains were added
at the first site. Left panel: The cumulative probability ProbL(T1 ≥ t) versus time
T1. Right panel: Scaling collapse of ProbL(T1 ≥ t). The scaling function is fitted
with 0.41/(x[ln x]0.5).

according to Eq. (4.4). Now there will be an extra 1/L factor inside the exponential

in the Eq. (4.19). Consequently the scaling variable τ = t
Lω1

in Eq. (4.19) is replaced

by τ = t
L1+ω1

and Eq. (4.19) is modified to

ProbL(T1 ≥ τL1+ω1) ∼ 1/[τ(ln τ)
α−1

α ] (4.26)

Similarly average residence time at the first site equals to 〈h1〉/p1 (proof is similar

as for 〈T1〉h1 in Eq. 4.4) which, in this case, varies as L2. This can be checked directly

by integrating the above equation upto the cutoff time scale as done in Eq. (4.23).

Total number of grains added in the pile are different for different L so that 105

grains are added at the first site. The standard deviation σh1 of height fluctuations at

the first site varies as Lω1 with system size L, where ω1 ≈ 1/3 [90]. We have plotted

ProbL(T1 ≥ t) for different values of L in the log scale in the left panel of Fig. 4.21.

We note that, unlike in the 1d Oslo ricepile model, the cumulative probability here is

smooth (except at the tail due to statistical fluctuations) and monotonic function of

L for a fixed t. This is due to the fact that the probability distribution ProbL(h1) of

height at first site is not as sharply decaying function for h1 � h̄1 as it was in the 1d

Oslo model. In fact, in the right panel of Fig. 4.21 we get a good scaling collapse of

various ProbL(T1 ≥ t) for different L using the scaled residence time t/L1+ω1 where

ω1 ≈ 1/3. The scaling function is fitted well with the function 1/[x(ln x)(α−1)/α] for

x� 1, taking α = 2 (see Eq. (4.21)).
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Fig 4.22: Model-D for lattice sizes L = 50, 70 and 100. A total of 104 grains were
added at the first site. Left panel: The cumulative probability ProbL(T1 ≥ t) versus
time t. Right panel: Scaling collapse of ProbL(T1 ≥ t). The scaling function is fitted
with 0.8/(2x[ln 2x]0.5).

Model-D: In the model-D, the standard deviation σh1 of the hight fluctuation at

site 1 scales with L as Lω1 where we found ω1 ≈ 0.33 [90]. In the left panel of Fig. 4.22

we have plotted various ProbL(T1 ≥ t) against the residence time t at the first site for

L = 50, 70 and 100. We added 104 grains at the first site. In the right panel of Fig. 4.22

we have plotted ProbL(T1 ≥ t) versus scaled time t/L1+ω1 with ω1 ≈ 0.33 and get a

good scaling collapse of all the curves for various L. We fit the scaling function with

0.8/[2x(ln 2x)(α−1)/α], using Eq. (4.21) and putting α = 2, as done in the model-C.

4.5.2 Distribution of total residence times in the pile in model-
B, C, D.

Model-B: Using a similar argument to the 1d Oslo model, in this case, we must have

γ = 4. To get to the minimum slope configuration, we will have to topple O(L3) grains

and each grain O(L) times. As the average mass of the pile, in this case, varies as L3,

Eq. (4.25) is modified as given below.

δ = 1 − (3 − ω)/γ.

In the left panel of Fig. 4.23 we have plotted various distribution of the total resi-

dence time, ProbL(T ≥ t), versus time t for different L = 12, 15 and 20. In the right

panel of Fig. 4.23 we have plotted ProbL(T ≥ t) for different L against the scaling

variable t/Lω where ω ≈ 2.0. Now we can estimate δ to be approximately 0.75 from
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Fig 4.23: Model-B for lattice sizes L = 12, 15 and 20. A total of 106 grains were added.
Left panel: The residence time distribution ProbL(T ≥ t). Right panel: Scaling
collapse of various ProbL(T ≥ t) versus scaled variable t/L2.0. The scaling function is
fitted with 0.2/(x[lnx]0.75).

the above equation. In the right panel of Fig. 4.23 we fit the scaling function for

ProbL(T ≥ t) with 0.2/[x(ln x)0.75] which seems to be a reasonable fit.

Model-C : In the left panel of Fig. 4.24 we have plotted various ProbL(T ≥ t)

versus residence time t for lattice sizes L = 50, 70 and 100. Total 106 grains were added

in this case. In the right panel of Fig. 4.24 we have collapsed various ProbL(T ≥ t) for

different L using the scaled variable t/Lω where ω ≈ 1.33. We fit the scaling function

of the cumulative distribution with 0.3/x[ln(x)]δ for x� 1 where δ ≈ 0.5.

Model-D: In the left panel of Fig. 4.25 we have plotted various ProbL(T ≥ t) for

the total residence time versus t for lattice sizes L = 50, 70 and 100. Total 105 grains

were added in this case. In the right panel of Fig. 4.25 we have plotted ProbL(T ≥ t)

versus scaled time t/Lω where ω ≈ 1.33 and we get a good collapse for the scaling

function which fits reasonably well with the function 0.63/(2x[ln(2x)]δ) for δ ≈ 0.55.

4.6 Concluding remarks.

To summarize, in this chapter, we studied distribution of the residence times of grains

in various ricepile models. We reduced the problem of finding the residence time

distribution of grains at a particular site to that of determining the distribution of first

return time of height at the site to the same value. The result that the probability of the

residence times Ti at site i or the total residence time T in the pile, being greater than
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Fig 4.24: Model-C for lattice sizes L = 50, 70 and 100. A total of 106 grains were
added. Left panel: The distribution function ProbL(T ≥ t) versus time t. Right
panel: Scaling collapse of ProbL(T ≥ t) versus scaled time t/L1.33. The scaling
function is fitted with 0.3/(x[ln(x)]0.5).
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Fig 4.25: Model-D for lattice sizes L = 50, 70 and 100. A total of 105 grains were
added. Left panel: The cumulative probability ProbL(T ≥ t) versus time t. Right
panel: Scaling collapse of ProbL(T ≥ t) against the scaled variable t/L1.33. The scaling
function is fitted with 0.63/(2x[ln(2x)]0.55).
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or equal to t, decay as power law 1/t is valid for a large class of sandpile models, where

height fluctuation at a particular site grows with the system sizes, and is independent

of dimensions. It depends only on the fact that there are some deeply buried grains

which come out only in rare fluctuations, i.e., slope of the pile becomes very close to the

minimum slope. It is important to note that, since the total residence time T is sum

of Ti’s, the probability of T = 0 decreases with system size, and clearly our analysis

cannot predict the small t behaviour of the cumulative probability ProbL(T ≥ t), i.e.,

for t < Lω.

We also found that cumulative probability ProbL(T1 ≥ t), for a fixed t, is non-

monotonic with system size L for some of the ricepile models. The non-monotonic

behaviour of the cumulative probability distribution ProbL(Ti ≥ t) of residence times

at site i with system size L is possible when the probability distribution function

ProbL(hi), where hi is the height at site i, sharply decays for hi < h̄i. However this

non-monotonicity is seen only for t � t?(L) where t?(L) increases with increasing

values of L, and hence may be harder to observe in real experiments.

It is important to note that if we change the transfer rule of grains, the distribution

of residence times may change completely. The rule, chosen in this chapter, is called

first-in-last-out rule. We may employ some other rules. For example, a different rule

could be the first-in-first-out rule. In this case we add grains at the top of the stack

but take out grains from the bottom of the stack. Another rule would be to add and

take out grain from a stack in random order. In these cases, there are no sites with

deeply buried grains and the residence time distribution will be similar to that in the

critical height models studied earlier by us.
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Summary

We list the main new results obtained in this thesis as given below.

1. We have studied the first passage time distribution of a particle obeying simple

diffusion equation with absorbing boundary. We explicitly calculated the scaling func-

tion, for the following geometries of the boundaries - a box in one dimension, circular,

square and triangular boundaries in two dimensions and cubical box and sphere in

three dimensions.

2. The DRT of sand grains in height type models, in the scaling limit, can be ex-

pressed in terms of the survival probability of a single diffusing particle in a medium

with absorbing boundaries and space-dependent jump rates. This is valid under the

conditions of local conservation of sand grains, transfer of fixed number of grains at

each toppling and isotropy, and equally applicable to deterministic and stochastic mod-

els.

3. For height type models, the DRT has scaling form L−df(t/Ld). The scaling function

f(x) is non-universal, and depends on the probability distribution according to which

grains are added at different sites. However, the DRT does not have any long time tail

and f(x) decays exponentially for x � 1.

4. For ricepile models, the tail in the DRT at a site, and the DRT of grains inside a

pile, are dominated by the grains that get deeply buried in the pile. We show that, for

a pile of size L, the probabilities that the residence time at a site or the total residence

time is greater than t, both decay as 1/t(ln t)x for Lω � t � exp(κLγ) where γ is an

exponent ≥ 1, and values of x and ω in the two cases are different. This power law tail

is independent of details of the toppling rules, and of the dimensionality of the systems.
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5. For stochastic ricepile models, we find that the probability of the residence time

Ti at a site i, being greater than or equal to t, is a non-monotonic function of L for a

fixed t and does not obey simple finite size scaling.

6. For these models, we show that probability of the minimum slope configuration

in steady state of a d-dimensional pile, for large L, varies as exp(−κLd+2) where κ is a

constant.
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Calculation of eigenfunctions of
Eq. 3.10

Here we solve the eigenvalue equation d2

dx2 [xϕ(x)] = −λϕ(x), which can be written as

below.

x
d2ϕ

dx2
+ 2

dϕ

dx
+ λϕ = 0, (A.1)

where ϕ(x = 1) = 0. We don’t put any particular boundary condition at x = 0, we

only demand that the solution is well behaved and does not diverge at x = 0. We use

Frobenius power series method [79]. It should be noted x = 0 is a singular point of

the Eq. A.1, however it is a regular singular point. So we expect we get at least can a

solution of the form

ϕ(x) =

∞
∑

i=0

aix
i+α (A.2)

where α may take negative values. Putting Eq. A.2 in the Eq. A.1 and equating the

coefficient of lowest power of x to zero, we get the indicial equation [79]

α(α + 1) = 0 ⇒ α = 0 or α = −1.

For two values of α, we get two independent solution of Eq. A.1. If we take α = −1,

the solution in Eq. A.2 has a singularity of 1/x at x = 0. Since the solution diverges

at x = 0 and cannot be normalized in the region [0, 1], we therefore do not consider

solution in Eq. A.2 with α = −1. We take α = 0 when the solution is well behaved in

the region [0, 1] and so can be expanded into Taylor series around x = 0.

Now putting Eq. A.2 in Eq. A.1 and equating coefficient of xi for each i indepen-

dently to zero we get following recurrence relation.

ai =
−λ

i(i + 1)
ai−1 ⇒ ai =

(−λ)i

i!(i+ 1)!
(A.3)
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So we get the solution to be

ϕ(x) =
∞

∑

i=0

(−λ)i

i!(i + 1)!
xi (A.4)

The modified Bessel function of order 1 I1(z) is defined to be

I1(z) = (
1

2
z)

∞
∑

i=0

(1
4
z2)i

i!(i+ 1)!
(A.5)

Now writing 1
4
z2 = −λx, we can easily express ϕ(x) in terms of modified Bessel function

of order 1 as

ϕ(x) = I1(2i
√
λx)/(i

√
λx)
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Finite size corrections

B.1 Calculation for ProbL(T = 0)

In this appendix, we calculate the leading order term of O(1/L) for probability ProbL(T =

0) of the residence time T = 0 for a given system size L in the one dimensional BTW

model when grains are added randomly everywhere. First let us consider the case when

a grain is ejected out of the system from the right end just after addition of the grain.

Now let us make a list of all possible configuration when a grain is added at any site

at right side of the site with height zero.

Configuration Probability of ejection from the right

|0111...11〉 1
(L+1)L

[ 1
2L−1 + 1

2L−2 + . . .+ 1
2
] = 1

(L+1)L
(1 − 1

2L−1 )

|1011...11〉 1
(L+1)L

[ 1
2L−2 + 1

2L−3 + . . .+ 1
2
] = 1

(L+1)L
(1 − 1

2L−2 )

|1101...11〉 1
(L+1)L

[ 1
2L−3 + 1

2L−4 + . . .+ 1
2
] = 1

(L+1)L
(1 − 1

2L−3 )

. . .

|11...011〉 1
(L+1)L

[ 1
22 + 1

2
] = 1

(L+1)L
(1 − 1

22 )

|11...101〉 1
(L+1)L

.1
2

|11...110〉 1
(L+1)L

.0

|11...111〉 1
(L+1)L

[ 1
2L + 1

2L−1 + . . .+ 1
2
] = 1

(L+1)L
(1 − 1

2L )

At the right, for each configuration we write probability of a grain being ejected from

the right side where each term in the series is for the addition at respective site. For

example first term in the first series is for when grains is added at site 2, next term is

for when grains is added at site 3, etc. The factor 1
(L+1)L

comes because the probability

of choosing a particular configuration is 1
L+1

and then we add grain at a particular

site with probability 1
L
. Collecting all the terms written above and summing them

up, we get the probability of grain being ejected from the right end at the same time
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step when the grain is added to the system. This probability is 1
(L+1)L

[L − 1 + 21−L].

Since the probability of a grain being ejected from the left end is also same, we get

ProbL(T = 0) by multiplying this probability by a factor 2, i.e.,

ProbL(T = 0) =
2

(L + 1)L
[L− 1 + 21−L]. (B.1)

Now expanding Eq. B.1 in power series of 1/L for large L, we get

ProbL(T = 0) =
2

L
+

4

L2
+ O(1/L3). (B.2)

B.2 Calculation for ProbL(T = 1)

Now we calculate the leading order term, O(1/L), for probability ProbL(T = 1) of the

residence time T = 1 for a given system size L in the one dimensional BTW model when

grains are added randomly everywhere. This calculation is similar as in the previous

case although more tedious. We calculate ProbL(T = 1) in the limit of large system

size L. When L is large, the site with height zero is likely to be far away from origin.

So the O(1/L) terms come from these configuration when we add grains near the end,

with probability 1/L. Let us consider such an configuration and add a marked grain

to the left of the site with zero height. In a particular case we see what are possible

positions of the marked grain (denoted by star symbol in the figure) added in the pile

after one time step shown in Fig. B.1 when we add grain at site x = xa where xa = 3.

We can easily count the number of all possible ways the marked grain can stay put at

any site after starting from x = 3 in one time step. In general we define N(xa, xf) as

the number of ways the marked grain can come to rest at a site x = xf in one time

step after starting at x = xa. At the next step when we add another grain, the marked

grain has to come out of the system so that the residence time T = 1.

For example in Fig. B.1, the probability Prob(xa = 3, xf = 1) of marked grain,

added at site x = 3, will reach site x = 1 is 3/24. Now the probability that it will

come out of the system from the left end is 1
2
. 3
24 (it cannot come out from the right

end unless all sites have height 1 and then the probability of the grain coming through

the right end is exponentially small). The numbers N(xa, xf) for various values of

xa and xf can be shown to be generated from the algorithm shown in Fig. B.2. We

start from topmost row, add two consecutive numbers and write in the next row in the

specified position shown in the Fig. B.2, go on to next row and repeat this, etc. Now
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N(xa, xf) can be expressed in terms of coefficients Bx of yx in the binomial expansion

of (1 + y)xa+xf−1 =
∑xa+xf−1

x=0 Bxy
x, i.e., N(xa, xf ) =

(xa+xf−1)!

(xa−1)!xf !
.

The probability ProbL(T = 1) is equal to ( 1
2
PR + 1

2
PL) where PR and PL are the

probabilities of the marked grain being ejected from the right end or left end respec-

tively. From symmetry of the problem, we obviously get PR = PL, i.e., ProbL(T =

1) = PL. Now we can express the leading order term (O(1/L)) of ProbL(T = 1) in the

limit of large L as given below,

ProbL(T = 1) = PL =
1

L

∞
∑

xa=1

∞
∑

xf=1

N(xa, xf )
1

2xa+2xf
+ O(

1

L2
) (B.3)

Changing the summation index to n′ = xa − 1 and n = xf , and substituting the

expression for N(xa, xf) in the above equation, we get

ProbL(T = 1) =
1

L

∞
∑

n=1

∞
∑

n′=0

(n+ n′)!

n!n′!

1

4n

1

2n′
+ O(

1

L2
)

=
1

2L

∞
∑

N=1

N−1
∑

n′=0

N !

(N − n′)!n′!

1

4N−n′

1

2n′
+ O(

1

L2
)

=
1

2L

∞
∑

N=1

[(
3

4
)N − (

1

2
)N ] + O(

1

L2
)

=
1

L
+ O(

1

L2
). (B.4)

B.3 Correction in the cumulative distribution

The cumulative distribution S1d BTW (t) is written upto O(1/L) as 1
L
δt,0+(1− 1

L
)exp[− t

L
(1−

a
L
)]. The mean residence time 〈T 〉 =

∑∞
t=1 S1d BTW (t) is given by

〈T 〉 =
∞

∑

t=1

(1 − 1

L
)exp[− t

L
(1 − a

L
)]

= (1 − 1

L
)

e−λ

1 − e−λ
where λ = 1

L
(1 − a

L
).

= (1 − 1

L
)

1 − λ+ O(λ2)

λ− λ2

2
+ O(λ3)

= (1 − 1

L
)

L

1 − a
L

1 − 1
L
(1 − a

L
) + O(1/L2)

1 − 1
2L

(1 − a
L
) + O(1/L2)
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Addition 

1  1  2  1  1  1  1  1  1  1  1 . . . .

1  2  0  2  1  1  1  1  1  1  1 . . . . 

2  0  2  0  2  1  1  1  1  1  1 . . . .

0  2  0  2  0  2  1  1  1  1  1 . . . .

*  0  2  0  2  0  2  1  1  1  1 . . . .

1  *  0  2  0  2  0  2  1  1  1 . . . .

1  1  *  0  2  0  2  0  2  1  1 . . . .

1  1  1  *  0  2  0  2  0  2  1 . . . .

1  1  1  1  *  0  2  0  2  0  2 . . . .

1  1  1  1  1  *  0  2  0  2  0 . . . .

xf

f
xf
xf

=1

=4

=5

=6

xf =2

xf =3

x

Final position x

one time step
of marked grain after

Number of paths for
N(x  , x  )a f =

a given x   and x  

N(3, 4)=15,   Prob(x   =3, x   =4)=15/2

N(3, 5)=21,  Prob(x   =3, x   =5)=21/2

N(3, 2)=6,   Prob(x   =3, x   =2)=6/2

N(3, 3)=10,   Prob(x   =3, x   =3)=10/2

N(3, 6)=28,   Prob(x   =3, x   =6)=28/2

N(3, 1)=3,   Prob(x   =3, x   =1)=3/2

6

9

4

5

7

8

a

a

a

a

a

a f

f

f

f

f

f

a f

1  1  1  1  1  1  1  1  1  1  1 . . . .

.

.

.

.

.

.

.

.

.

..
.
.
.
.

f

A
Site of addition is denoted as ‘A’, i.e., at x=3 (counted from the leftmost site)

Fig B.1: The marked grain is added at the site denoted as ‘A’, i.e., at the site x = 3
from the left. The site with height zero is at the left but far away from the site where
marked grain is added. The star symbol indicates the possible final positions of the
marked grain added at ‘A’.
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0   0   0   0   0   1   0   0   0   0   0

0   0   0   0   0   1   1   0   0   0   0   0

0   0   0   0   1   2   1   0   0   0   0

0   0   0   0   1   3   3   1   0   0   0   0
0   0   0   0   1   4   6   4   1   0   0   0

0   0   0   1   7  21  35  35  21   7   1   0   0

x a
x f

Generating N(x   , x   )a f

.

.

.

.

.

0   0   0   1   6  15  20  15   6   1   0   0

0   0   0   1   5  10  10   5  1   0   0   0

Fig B.2: To generate N(xa, xf ), we add two numbers diagonally one step above the
number N(xa, xf). Therefore N(xa, xf) = N(xa − 1, xf) +N(xa, xf − 1).
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Now collecting terms only upto leading order, we get

〈T 〉 = L[(1 − 1

L
)(1 +

a

L
)(1 − 1

L
)(1 +

1

2L
) + O(1/L2)]

= L[(1 +
a

L
− 3

2L
) + O(1/L2)] (B.5)

We know that the average residence time is equal to the mean number of grains in the

pile, i.e.,

〈T 〉 = 〈M〉 =
L2

L+ 1

= L[(1 − 1

L
) + O(1/L2)] (B.6)

Comparing leading order terms in Eq. B.5 and Eq. B.6, we obtain a = 1/2.
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