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Synopsis

Introduction

Recent developments in string theory and M-theory have led to increased interest and new
progress in the study of three-dimensional quantum field theories. One of the main reasons
for this is that conformal field theories in three dimensions (CFT3’s) involving U(N) gauge
groups are expected to be dual to quantum theories of gravity in 4-dimensional anti-de Sitter
space (AdS4), via the AdS/CFT (or holographic) duality [1]. The primary example of the
AdS4/CFT3 correspondence is the ABJM theory discovered in 2008 [2] which is believed
to describe the low-energy dynamics of multiple M2-branes in a Zk orbifold, and hence is
conjectured to be dual to M-theory on AdS4 × S7/Zk.

An important aspect of the AdS/CFT duality is that the classical limit of the four-
dimensional quantum theory of gravity takes on a new role as a large-N saddle point to the
three-dimensional conformal field theory in a particular strongly interacting limit. Various
authors (e.g., [3, 4, 5, 6, 7]) have therefore been inspired to use gravitational systems as toy
models for strongly interacting quantum systems near a quantum critical point.

Motivated by these developments, in this thesis we study some new examples of strongly
interacting conformal quantum field theories in three dimensions in the large-N limit, using
both holographic (i.e., gravitational) and quantum field theory techniques. This thesis is
based on work communicated in [8], [9] and [10].

We first consider holography of charged dilaton black branes in AdS4 in [8]. The most
interesting feature of the solutions we study is that they have vanishing entropy at zero-
temperature, in contrast with the Reissner-Nordström branes studied earlier. We then con-
sider dyonic charged dilaton black branes in [9]. We are able to calculate various transport
properties of the strongly-coupled field theories dual to these gravitational theories at finite
chemical potential and in the presence of a magnetic field. Our work here builds on previous
studies aimed at modelling strongly interacting quantum systems using holography including
[3, 4, 5, 11, 12, 6, 13, 14, 7], as well as previous work on non-supersymmetric attractors [15].

In addition to exploiting this duality to generate and study new examples of strongly
interacting conformal field theories in three dimensions using gravity; it is also of interest to
find models (particularly non-supersymmetric ones) that can be solved directly from the field
theory side at strong coupling in the large N limit, with a view towards gaining some intuition
into the mechanism behind the duality itself. For this purpose, we conclude with a study [10]
of U(N) Chern-Simons theory coupled to fundamental fermions – a theory that turns out to
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be remarkably educational and (at least partially) exactly-solvable using traditional large N
techniques.

We briefly highlight the main results of these studies below.

Holography of Charged Dilaton Black Branes

The earliest charged black hole solutions to low-energy string theory were found by Garfinkle,
Horowitz and Strominger [16] (and had appeared earlier as part of a family of solutions in
[17]). Those authors studied the Einstein-Maxwell action with the gauge coupling controlled
by a scalar dilaton φ. These black holes, and generalisations thereof, were found to have
thermodynamic properties very different from traditional charged black holes [18, 19]. Hence,
with a view towards generating holographic models with thermodynamic behaviour different
from the usual Reissner-Nordström black branes (which have the unpleasant feature of a
large entropy at zero temperature) previously studied, it is natural to consider their AdS
generalisations.

Gravity solution

We consider the following action,

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − f(φ)F 2 − 2Λ

)
. (1)

which generalises the action studied in [16] to include a negative cosmological constant, and
arbitrary dilaton coupling f(φ). We will focus on the specific case f(φ) = e2αφ, though in [8]
we also briefly consider some other possibilities. The maximally symmetric vacuum solution
for this action is AdS space with AdS scale L determined by Λ = − 3

L2 . We will set L = 1
below.

We will look for electrically-charged black branes solutions of the above action, taking
the metric to be of the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2), (2)

with gauge field

e2αφF =
Q

b(r)2
dt ∧ dr. (3)

We first look for a near horizon solution to the above action by considering the following
scaling ansatz:

a = C2(r − rh)γ , b = C1(r − rh)β, φ = − K log(r − rh) + C3 , (4)

We find that an exact solution is obtained if the exponents take the values

γ = 1, K =
α
2

1 + (α2 )2 , β =
(α2 )2

1 + (α2 )2
. (5)
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The constant C2 is given by

C2
2 =

6

(β + 1)(2β + 1)
. (6)

By rescaling (r − rh), t, x and y, one can set the constant C3 to zero and C1 to unity. Q is
then determined in terms of α by

Q2 =
6

(α2 + 2)
. (7)

In terms of w = r − rh, the exact near-horizon solution is:

a = C2w, b = wβ, φ = − K log(w) . (8)

Interestingly, this solution almost has a Lifshitz scaling symmetry under w → λw, t → λt,
x → λzx, and y → λzy, with Lifshitz exponent z = 1/β; the symmetry is only broken by
constant shifts in the dilaton φ.

The metric component gtt has a second order zero at w = 0, and (8) is thus an extremal
solution. A non-extremal generalisation is the following:

ds2 = C2
2w

2(1− m

w2β+1
)dt2 +

dw2

C2
2w

2(1− m
w2β+1 )

+ w2β(dx2 + dy2), (9)

which depends on the parameter m.

A numerical asymptotically AdS4 solution

In the extremal solution, the gauge coupling gU(1) ∼ e−αφ becomes weak at the horizon,
as φ → ∞. When r → ∞ the gauge coupling becomes very strong; therefore, although
exact, the solution (9) must be understood as a near-horizon geometry of a larger solution
with different asymptotics. (The near-horizon solution appeared in a different coordinate
system in the unpublished work [14], where it appeared unphysical due to this pathology.) In
particular, we would like to find a generalisation of the extremal solution with a controlled
and asymptotically constant dilaton as well as an asymptotically AdS4 geometry.

The strategy for obtaining such a solution is to numerically integrate the equations of
motion following from (1), starting near w = 0 with initial data taken from the near-horizon
solution. However, the near-horizon solution is exact, so numerical integration using initial
data drawn from it would simply reproduce the near-horizon solution unmodified. To nu-
merically integrate to a solution that is asymptotically AdS4, we must also take into account
possible subleading corrections to the near-horizon solution.

We start with a fairly general ansatz for the modification to the metric:

a(w) = C2w (1 + d1w
ν1)

b(w) = wβ (1 + d2w
ν2) (10)

which vanishes as w → 0. The form of the subleading correction to φ is then determined to
be

φ(w) = −K log(w) + C3 + d3w
ν2 (11)
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Figure 1: Numerical solution interpolating between the Lifshitz-like near horizon solution
and AdS4 for α = 1 and d1 = −.514. The second plot shows that a′(r) and b′(r) approach 1.
Solid lines denote a, dashed lines denote b.

where d3 = 2β+ν2−1
2K d2.

After some algebra we find the equations of motion imply that ν1 = ν2 and

d1 =

(
2(1 + β)(1 + 2β)

(2β + 2 + ν)(2β + 1 + ν)
− 1

)
d2. (12)

Numerically integrating Einstein’s equations with initial data drawn from this solution (with
d1 < 0) yields a numerical solution that manifestly approaches AdS4 with a constant dilaton
as r →∞, as shown in Figure 1.

The extremal solution is labelled by two parameters – the total charge of the black brane
Q and the asymptotic value of the dilaton φ0. However, there is essentially only one numerical
solution (for a given α). It is clear from the equations of motion that the metric and (φ−φ0)
only depend on the quantity Q2e−2αφ0 . Starting from the solution for Q = 1, φ0 = 0 one can
rescale r via

r → λr, (t, x, y)→ λ−1(t, x, y) (13)

to obtain a solution for any given value of Q and then shift the dilaton to obtain a solution
with any given value of φ0.

Thermodynamics

Via the AdS/CFT dictionary, quantities calculated in the black hole background correspond
to quantities calculated in a strongly interacting CFT at fixed temperature T and chemical
potential µ. Thermodynamic relations between between the temperature, chemical potential,
energy density ρ, entropy density s, pressure P , and the number density n can be extracted
from the black brane solution.

An important subtlety in this analysis is that our solution is essentially numerical – we
only have analytic expressions for the near-horizon solution and the asymptotic solution.
However, as we will see below, this is enough to analytically calculate thermodynamics in the
regime T � µ, (which is when the solution (9) is valid.) Studying temperatures comparable
to µ would require analysis of a finite-temperature numerical solution.
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The horizon in the solution (9) is located at w = wh, (or r = rh + wh):

w2β+1
h = m. (14)

The resulting temperature can be obtained as usual by continuing to Euclidean space [20]
and comes out to be

T ∼ wh. (15)

The entropy density of the slightly non-extremal black brane is proportional to the area
element of the horizon and is

s = A0CT
2βµ2−2β, (16)

where
C ∼ L2/GN (17)

is the central charge of the CFT dual to the AdS4 background, as follows from substituting
the near-horizon solution into the action (1). The numerical coefficient A0 depends on the
full numerical solution for the slightly non-extremal black hole. We note that the entropy
vanishes at zero temperature.

Let us now consider the relations between charge, number density, and chemical potential
the extremal limit, T = 0. It follows from the Einstein’s equations that in the asymptotic
AdS4 region the solution must take the form

a2 = r2(1− e1
ρ

r3
+
Q2e−2αφ0

r4
+ · · · ) (18)

b2 = r2(1 + · · · ) (19)

φ = φ0 +
φ1

r3
+ · · · . (20)

e1 is a constant which depends on L. Under the rescaling (13), ρ → ρ
λ3 , Q → Q

λ2 , which
implies

ρ = D1(Qe−αφ0)3/2. (21)

The coefficient D1 is a numerical coefficient that is α dependent. A similar scaling argument
tells us that

µ =

∫ ∞
rh

Qe−2αφ

b2
dr (22)

is given by
µ = D2(Qe−αφ0)1/2e−αφ0 (23)

where D2 is again an α dependent coefficient. This gives

ρ = D3Ce
3αφ0µ3. (24)

The coefficient D3 is a another α dependent numerical coefficient. From these relations it
follows that the number density satisfies

n ∝ Q. (25)
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Going to non-zero temperatures, we note that the specific heat is also positive

Cv = T (
ds

dT
)µ = (2β)A0CT

2βµ2−2β . (26)

The Gibbs-Duhem relation
sdT − dP + ndµ = 0, (27)

can be used to obtain the pressure. We find

P =
1

(2β + 1)
A0Cµ

2−2βT 2β+1 +
1

2
D3Ce

3αφ0µ3. (28)

Substituting for P in (27) gives the number density,

n =
(2− 2β)

(2β + 1)
A0CT

2β+1µ1−2β +
3

2
D3Ce

3αφ0µ2. (29)

From (29) we can also compute the susceptibility χ:

χ ≡ (
∂n

∂µ
)T = (1− 2β)

(2− 2β)

(2β + 1)
A0CT

2β+1µ1−2β + 3D3Cµ . (30)

Finally the energy density can be obtained using the relation

ρ = sT + µn− p (31)

which gives,

ρ =
2

(2β + 1)
A0Cµ

2−2βT 2β+1 +D3Ce
3αφ0µ3. (32)

The near-extremal system a simple equation of state

P =
1

2
ρ . (33)

It is clear from the calculations above that thermodynamic properties of the solution are
essentially determined by the Lifshitz-like nature of the extremal near horizon geometry.

Conductivity

The power of the AdS/CFT correspondence is that it allows us to calculate properties of the
dual quantum field theory beyond thermodynamics. The most natural quantities to study are
transport coefficients. These are calculated by considering linearised fluctuations around the
background gravitational solution presented above. Formally, via the AdS/CFT dictionary,
this corresponds to coupling a conserved global U(1) current operator in the dual CFT to
a weak external source and calculating linear response, using the usual Kubo formula, as
a two-point function of the current operator. Physically, this corresponds to studying the
absorption and reflection of electromagnetic and/or gravitational waves by the black brane
geometry.
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Here, we calculate the optical conductivity σ(ω) of the extremal black brane background,
via the AdS/CFT dictionary. Our approach is based on [21]. We first solve for the allowed
fluctuations of the gauge field about our solution. Studying the gauge field equation of motion

∂µ

(√
−ge2αφgµλFλσg

σν
)

= 0,

and the Einstein’s equations, we find that the gtx and Ax fluctuations mix. Luckily, however,
one of the Einstein equations has just the right form to simplify the resulting coupled system,
and we can obtain a second order differential equation for Ax. Defining the variable Ψ =
f(φ)Ax we find

−Ψ′′ + V (z)Ψ = ω2Ψ. (34)

Here, f(φ) = 2 eαφ is the dilaton coupling, and primes denote derivatives with respect to the
variable z, defined via

∂

∂z
= a2 ∂

∂r
. (35)

The potential V (z) is given by

V =
f ′′

f
+
a2Q2

b4f2
. (36)

According to the AdS/CFT dictionary, we have to solve the fluctuation equation subject
to in-going boundary conditions at the horizon. The solution to the fluctuation equation near
the boundary then takes the form

Ax = A(0)
x +A(1)

x /r + . . . .

The conductivity is then given by:

σ(ω) = − i
ω

A
(1)
x

A
(0)
x

(37)

and is essentially determined by a reflection coefficient in the notation of the Schrodinger
problem described above.

Solving for the conductivity at arbitrary frequencies is impossible because we only have
an analytic expression for the near-horizon part of the solution; nevertheless, we are still able
to extract the low-frequency behaviour of the conductivity using careful matching techniques
and various properties of special functions (as will be detailed in the thesis). This illustrates
an important principle – the near-horizon geometry effectively encodes all IR physics of the
dual field theory.

Surprisingly, we find that the conductivity turns out to obey

Re(σ) ∼ ω2/µ2, Im(σ) ∼ µ

ω
. (38)

at low frequencies. The frequency dependence is independent of the Lifshitz parameter of the
near-horizon region. The reason for this is that the shape of the potential in the near-horizon
region is V (z) = 2

z2 , and does not depend on α. While thermodynamics depends non-trivially
on the dilaton coupling α, the transport properties appear to be universal. We do not yet
understand the physical origin of this intriguing result.
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Dyonic Dilaton Black Branes

We next consider generalizing the analysis above to calculate transport properties in the
presence of an external magnetic field [9]. By the AdS/CFT dictionary this corresponds to
studying black branes with both electric and magnetic charge. In the most general setting
in string theory, a dyonic solution is expected to source both a dilaton field as well as an
axion field. An important class of axion-dilaton theories are those invariant under a SL(2, R)
electromagnetic duality. In particular, we consider the following theory1:

S =

∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − 1

2
e4φ(∂a)2 − e−2φF 2 − aF F̃

]
. (39)

which generalises the theory studied in [22] to AdS space.
To see the SL(2, R) duality, we combine the axion a and dilaton as follows:

λ = λ1 + iλ2 = a+ ie−2φ. (40)

Then it is easy to see that under an SL(2, R) transformation

M =

(
ã b
c d

)
(41)

which takes
Fµν → F ′µν = (cλ1 + d)Fµν − cλ2F̃µν (42)

and

λ→ λ′ =
ãλ+ b

cλ+ d
(43)

while keeping the metric invariant, the equations of motion are left unchanged. (This is
discussed in, e.g., [23].)

The electrically charged black brane solution to this action is nothing but the solution to
(1) for α = 1 discussed in the previous section. Starting with this purely electrically charged
solution, we are able to generate solutions with arbitrary dyonic charges and boundary values
of the dilaton-axion using SL(2, R) duality. These solutions all exhibit a Lifshitz-like near-
horizon geometry, and hence have vanishing entropy at extremality.

In [9], we consider the thermodynamics of these dyonic solutions as well as general thermo-
electric linear response, which is characterized by the conductivity and two related transport
coefficients, the thermoelectric coefficient α and the thermal conductivity κ. These are all
tensorial and satisfy the relation(

~J
~Q

)
=

(
σ α
αT κ

)(
~E

−~∇T

)
(44)

where ~E is the electric field, ~∇T is the gradient of the temperature, ~J is the electric current
and ~Q is the heat current.

1 In our conventions F̃µν = 1
2
εµνρκFρκ; εµνρσ has a factor of 1√

−g in its definition and εtrxy > 0.
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Transport Coefficients

In the presence of an external magnetic field, conductivities are described via:

jx = σxxFtx + σxyFty (45)

jy = −σxyFtx + σxxFty. (46)

Upon working through the AdS/CFT dictionary, we find that the linear combinations

σ+ = σ1 + iσ2, σ− = σ1 − iσ2 (47)

both transform in in a very nice way under the SL(2, R) transformation (41):

σ± →
ãσ± + b

cσ± + d
(48)

An immediate and interesting consequence of these transformation rules is that conduc-
tivities σxx and σxy will in general obey “semi-circle” laws, as described in [24] and references
therein.

Using these transformation laws, we are able to obtain the conductivity of a general
dyonic black brane, starting from the conductivity of the purely electric brane in (38). The
results are fairly complicated in general, so we do not present them in this synopsis. However,
we note that the resulting transport fits in nicely with a magnetohydrodynamic formalism
proposed in [5], which states that, at low frequencies, the conductivity of a relativistic plasma
is given by:

σxx = σQ
ω
(
ω + iγ + iω2

c/γ
)

(ω + iγ)2 − ω2
c

(49)

and

σxy = −
(

n

Qm

)
γ2 + ω2

c − 2iγω

(ω + iγ)2 − ω2
c

. (50)

Here σQ, the damping frequency γ, and the cyclotron frequency ωc depend on the magnetic
field (or magnetic charge of the brane) Qm, the temperature T and charge density n.

We find that
σQ ∝ T 2, γ ∝ (Q′m)2T 2, ωc ∝ Q′m. (51)

This qualitative behaviour is in agreement with the results of [11, 12] for the Reissner-
Nordström black brane at small ω.

An interesting feature of the above result is that the DC Hall conductance is proportional
to the attractor value of the axion at the horizon, which thus seems to act as a Chern-Simons
coupling in a low-energy fixed-point effective field theory.

Large-N Chern-Simons Theories with Vector Fermion Matter

The characteristic feature of quantum field theories in three dimensions is the possibility
of the a Chern-Simons kinetic term for the gauge field. As we shall see, this has impor-
tant consequences for the dynamics of quantum field theories in three dimensions and their
connections to string theory. This section is based on [10].
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Consider a level k, U(N) Chern-Simons theory coupled to a single fermion in any repre-
sentation of the gauge group. The only gauge-invariant relevant or marginal terms possible
in the Lagrangian of such a theory in addition to the Chern-Simons term are the fermion
kinetic term and mass term. The resulting quantum field theory thus depends on the two
integers k and N , and a single continuous parameter, the physical mass m of the fermionic
field. At energies E � m, the dynamics of this theory is scale-invariant as well as nontrivial,
due to the fact that the discrete Chern-Simons coupling is an integer and cannot run – this
a conformal field theory can simply be obtained by tuning the physical mass of the fermion
to zero.

Though the parameters k and N labeling the CFT are discrete, in the large-N and
simultaneously large-k limit, the ’t Hooft coupling λ = N

k , (which controls the strength of
interactions), is effectively continuous (exactly as in ABJM theory [2]). For this reason the
discretum of CFTs described by integer values of k and N coalesces into a line of fixed points
in the large-N limit.

We emphasize that a variety of such non-supersymmetric fixed lines exist in three di-
mensions. Choosing the fermions that transform in, say, the adjoint representation of U(N)
gives one such fixed line of theories. Choosing fermions that transform in the bifundamen-
tal of U(N) × U(N) yields another example – one that can be thought of as a minimal,
non-supersymmetric analog of the ABJM theory.

Such lines of fixed points are particularly important from the viewpoint of string theory
and the AdS/CFT correspondence. While at small λ the theories are best described as
weakly interacting quantum field theory; at large λ, when the field theory description be-
comes intractable, the hope is that a relatively simple classical four-dimensional gravitational
description (such as the theories described in previous sections) could emerge.

In this section, we study what appears to be the simplest example (from the field theory
perspective) of such non-supersymmetric fixed lines – the theory of a single fundamental
fermion coupled to a U(N) level k Chern-Simons theory. We are able to obtain several
exact results for this theory, and comment on the nature of its holographic dual, as we
summarize below. (We also mention the related work [25] on Chern-Simons theory coupled
to fundamental scalars, appearing simultaneously.)

Exact Propagator and Free Energy in Light-Cone Gauge

In Euclidean space, the theory is described by the action:

S =
ik

4π

∫
Tr

(
AdA+

2

3
A3

)
+

∫
ψ̄γµDµψ . (52)

We work in an analog of light-cone gauge, defined using the condition

A− =
A1 + iA2

√
2

= 0.

This can be obtained from Wick rotation of the standard lightcone gauge in Lorentzian
signature. Further details about conventions are in [10].
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The choice of this gauge turns out to be crucial in allowing for the derivation of the free
energy for the theory on R2 at temperature 1/β, (i.e., on R2 × S1.)

We first derive the exact fermion propagator at zero temperature. After deriving the
action for the theory in light-cone gauge (using the usual BRST formalism, and noting that
ghosts decouple) we are able to derive the following integral Schwinger-Dyson equation for
the exact fermion propagator in the large-N limit (see [26]):

〈ψm(p)ψ̄n(p′)〉

=
1

ipµγµ
(2π)3δ3(p′ + p)

− 1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ+ 〈ψa(p− q)ψ̄a(−r)〉 γ3 〈ψm(r + q)ψ̄n(p′)〉

+
1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ3 〈ψa(p− q)ψ̄a(−r)〉 γ+ 〈ψm(r + q)ψ̄

n
(p′)〉 .

This expression for the exact propagator is completely analogous to that for the exact prop-
agator in 2d QCD obtained by ’t Hooft [27].

Surprisingly, we are able to the solve this integral equation at zero temperature as well
as finite temperature. Let us very briefly sketch the solution.

First define the self-energy, Σ(p) = Σ = iΣµγ
µ + ΣII −MbareI, of the fermion as follows

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ipµγµ +Mbare + Σ
× (2π)3δ(p− q). (53)

The Schwinger-Dyson equation above can easily be translated into an integral equation for
the Σ; from which it is easy to see that Σ− = Σ3 = 0. Further analysis also reveals that the
remaining components of Σ must take the following form:

ΣI(p) = f0ps

Σ+(p) = p+g0 = p−g0
(54)

where

ps =
√
p2

1 + p2
2 =
√

2|p−| =
√

2|p+| (55)

and f0 and g0 are dimensionless functions of λ. The solution to the resulting integral equations
for f0 and g0 turn out to be remarkably simple

f0 = λ

g0 = −λ2

g0 + f2
0 = 0 .

(56)

The zero-temperature, exact propagator is thus given by:

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ip3γ3 + ip−γ− + i(1− λ2)p+γ+ + λps
× (2π)3δ(p− q). (57)
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The above calculation can be generalized to finite temperature. Furthermore it is also
possible to express the free energy of the theory in terms of the exact fermion self-energy at
finite energy. In the large-N saddle point, the partition function Z = e−SE is given by:

−SE = NV

∫
d3q

(2π)3
Tr

[
ln [iγµqµ + Σ(q)]− 1

2
Σ(q)

(
1

iγµqµ + Σ(q)

)]
. (58)

Using this solution, we find that the free energy of our theory,

F = − 1

β
lnZ,

as a function of temperature and λ, in a box of volume V2 (which is taken to be very large)
is given by

F = −NV2T
3

6π

[
c̃3 1− λ

λ
+ 6

∫ ∞
c̃

dy y ln
(
1 + e−y

)]
(59)

where c̃ is the unique real solution to the equation

c̃ = 2λ ln

(
2 cosh

c̃

2

)
. (60)

(60) has no solutions for |λ| > 1; indeed, our fixed line of theories exists only in the interval
|λ| ∈ [0, 1).

Note that large-N counting (the fact that the leading contribution to the free energy
comes from disc diagrams) implies that the free energy is proportional to N at leading order
in the large N expansion. The nontrivial part of (59) is the function of λ that multiplies the
factor −V2T

3N . This function has an analytic expansion in even powers of λ, about λ = 0.
As |λ| increases in [0, 1), it decreases monotonically from the free value 3

4π ζ(3) to zero, and
suggests a thinning of degrees of freedom at stronger coupling as λ→ 1

Nearly Conserved Currents

We next consider the holographic dual of the theory. Consider the free limit of the theory,
obtained by setting λ = 0. It is well-known that free theories have an infinite number of
conserved currents – one for each spin s > 0. The first few such currents take the following
form:

Jµ = ψ̄γµψ,

Jµ1µ2 = ψ̄γµ1

(−→
∂µ2 −

←−
∂µ2

)
ψ,

Jµ1µ2µ3 =
1

6
ψ̄γµ1

(
3
←−
∂µ2

←−
∂µ3 − 10

←−
∂µ2

−→
∂µ3 + 3

−→
∂µ2

−→
∂µ3 + 2(

←−
∂σ
−→
∂σ)ηµ2µ3

)
ψ,

Jµ1µ2µ3µ4 =
1

6
ψ̄γµ1

(←−
∂µ2

←−
∂µ3

←−
∂µ4 − 7

←−
∂µ2

←−
∂µ3

−→
∂µ4 + 7

←−
∂µ2

−→
∂µ3

−→
∂µ4 −

−→
∂µ2

−→
∂µ3

−→
∂µ4 ,

+2(
←−
∂σ
−→
∂σ)
←−
∂µ2ηµ3µ4 − 2(

←−
∂σ
−→
∂σ)
−→
∂µ2ηµ3µ4

)
ψ .
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These currents, previously studied by [28], can be thought of as a basis for the set of all “single
trace” operators, where by “single trace” we mean operators such as ψ̄iψi, which are formed
out of the contraction of a single fundamental fermionic index with a single antifundamental
fermionic index.

Via the AdS/CFT dictionary, each conserved current corresponds to a gauge field in
the gravitational dual. Hence, it has been conjectured in [29], extending [30], that the free
theory admits a dual description as a Vasiliev higher-spin gauge theory (technically, the
parity-preserving “type-B” theory in [31].)

In the interacting theory, the natural generalisation of these operators is to replace all
derivatives by covariant derivatives, and to subtract a “multi-trace” term, so that the currents
are traceless (with respect to Lorentz indices) and have a well defined spin. These first few
of these currents are given by:

Ĵ (1)
µ = ψ̄γµψ,

Ĵ (2)
µ1µ2

= ψ̄γµ1

(−−→
Dµ2 −

←−−
Dµ2

)
ψ,

Ĵ (3)
µ1µ2µ3

=
1

6
ψ̄γµ1

(
3
←−−
Dµ2

←−−
Dµ3 − 10

←−−
Dµ2

−−→
Dµ3 + 3

−−→
Dµ2

−−→
Dµ3 + 2(

←−
Dσ
−→
Dσ)ηµ2µ3

)
ψ,

Ĵ (4)
µ1µ2µ3µ4

=
1

6
ψ̄γµ1

(←−−
Dµ2

←−−
Dµ3

←−−
Dµ4 − 7

←−−
Dµ2

←−−
Dµ3

−−→
Dµ4 + 7

←−−
Dµ2

−−→
Dµ3

−−→
Dµ4 −

−−→
Dµ2

−−→
Dµ3

−−→
Dµ4 ,

+2
←−−
Dµ2(

←−
Dσ
−→
Dσ)ηµ3µ4 − 2(

←−
Dσ
−→
Dσ)
−−→
Dµ2ηµ3µ4

)
ψ .

While the divergence of currents J
(s)
µ1...µs vanish in the free theory, at nonzero coupling the

currents obey an equation of the schematic form

∂ · J (s) ∼ 1

k
JJ +

1

k2
JJJ . (61)

Although the RHS of (61) is nonvanishing, it is a multitrace contribution, and so contributes
only at subleading order in 1

N when inserted into a two point function. In other words the

currents J (s) are effectively conserved, hence protected, within two point functions. The
conservation fails at the first subleading order in 1

N .
More specifically, we are able to use (61) to demonstrate that the scaling dimensions of

currents J (s) in the interacting theory are not renormalized to leading order in 1
N even as we

turn on interactions. As the anomalous dimension of the current operators are related to the
mass of the corresponding gauge field in the bulk, we conclude that tower of higher-spin gauge
fields remain massless as we turn on interactions. Therefore, even in the strongly interacting
limit, the holographic dual to our theory must be a higher-spin gauge theory.

Discussion

In this thesis, we study various aspects of strongly-interacting quantum field theories in three
dimensions in light of recent developments in string theory which imply that conformal quan-
tum field theories in three-dimensions that admit a large-N limit effectively define quantum
theories of gravity (holographic duals) in four dimensional anti-de Sitter space.
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In [8] and [9], we illustrated how such holographic duals could be used to calculate thermo-
dynamic properties as well as quantities such as transport in strongly interacting conformal
field theories, at finite temperature, chemical potential and in the presence of a magnetic
field. We incorporated dilatonic and axionic couplings to generate models with very realistic
thermodynamic properties – in particular, a vanishing entropy at zero temperature – not
present in the traditional gravitational theories without a dilaton.

From the field theory side, in [10], we considered the specific case of U(N) Chern-Simons
theory coupled to fundamental fermions in the large N limit. We were able to calculate the
free energy of the theory on R2×S1 for all values of the ’t Hooft coupling λ. We also studied
the operator spectrum of the theory – the results suggest that the holographic dual is some
sort of higher-spin gauge theory, even in the strongly interacting limit. It is, however, very
interesting to note that a much wider class of Chern-Simons theories exist, that, although
non-supersymmetric, are conformal and have a large N limit (e.g., the U(N)×U(N) Chern-
Simons theory coupled to a massless fermion in the bifundamental representation mentioned
earlier.) Some of these theories could well arise as conformal field theories describing the
behaviour of a various of quantum systems near a quantum critical point, and it is eminently
reasonable to conjecture that their dynamics at strong coupling is described by relatively
simple gravitational duals based on traditional Einstein theories of gravity.

We are eagerly looking forward to future developments in this field.
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Chapter 1

Introduction

Recent developments in string theory and M-theory have led to increased interest and new
progress in the study of three-dimensional quantum field theories. One of the main reasons
for this is that conformal field theories in three dimensions (CFT3’s) involving U(N) gauge
groups are expected to be dual to quantum theories of gravity in 4-dimensional anti-de Sitter
space (AdS4), via the AdS/CFT (or holographic) duality [1, 32, 33]. The primary example of
the AdS4/CFT3 correspondence is the ABJM theory discovered in 2008 [2] which is believed
to describe the low-energy dynamics of multiple M2-branes in a Zk orbifold, and hence is
conjectured to be dual to M-theory on AdS4 × S7/Zk.

Motivated by the AdS4/CFT3 correspondence, this thesis presents some new examples
of strongly interacting conformal quantum field theories in three dimensions in the large-N
limit, using both holographic (i.e., gravitational) and quantum field theory techniques.

This is thesis is based on [8], completed in collaboration with Kevin Goldstein, Shamit
Kachru, and Sandip Trivedi; [9] completed in collaboration with Kevin Goldstein, Norihiro
Iizuka, Shamit Kachru, Sandip Trivedi and Alexander Westphal; and [10] completed in col-
laboration with Simone Giombi, Shiraz Minwalla, Sandip Trivedi, Spenta Wadia, and Xi Yin.
In this introduction, we explain the motivation and results of these works, as well as briefly
review some relevant results already existing in the literature.

1.1 Holography of Dilaton Black Branes

Via the AdS/CFT duality, classical four-dimensional gravity in anti-de Sitter space takes
on a new role as a large-N saddle point to a three-dimensional conformal field theory in
a particular strongly interacting limit. Various authors (e.g., [3, 4, 5, 34, 6, 7, 35]) have
been inspired to use gravitational systems as toy models for strongly interacting conformal
field theories that arise in condensed matter (e.g., [36]). Here we sketch the general ideas
underlying their approach. (For excellent reviews see [37, 38, 39, 40].)

A generic system of strongly interacting electrons near a quantum critical point would be
described by an effective conformal field theory containing a conserved U(1) current that can
be coupled to an external electromagnetic field. Conductivity in the linear approximation is
related – via a Kubo formula – to a two point function of the U(1) current. Schematically, in
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the presence of a weak time-varying external field Ej(t, x) = |Ej |eiωt, we find the expectation
value of the current 〈J i(y)〉 given by

〈J i(y)〉 =

∫
[Dψ] e−Seff−

∫
d3xJµ(x)Aµ(x) J i(y)

≈
∫

[Dψ] e−Seff
(

1−
∫
d3xJ j(x)

(
i

ω

)
Ej

)
J i(y)

=
i

ω
〈
∫
d3xJ j(x)J i(y)〉Ej(x) ≡

∫
d3xσji(y, x)Ej(x) .

This fits in very nicely with the AdS/CFT dictionary [32, 33] which enables us to calculate
correlation functions of gauge invariant operators using the classical gravitational theory.

For each conserved current in the field theory, there is a corresponding field in the bulk
– the conserved stress tensor corresponds to the bulk metric and the conserved U(1) current
corresponds to a Maxwell field. The simplest gravitational theory one can use to model a
strongly interacting condensed matter system is therefore Einstein-Maxwell theory with a
negative cosmological constant. A great deal of very interesting work has been done (e.g.,
[3, 4, 5, 6, 41, 7, 42, 35]) to model strongly interacting quantum critical points based on this
minimalistic bulk theory. In these investigations and others, one is interested in studying the
conformal field theory at finite temperature and chemical potential – which requires one to
study charged black brane solutions in the bulk.

One potential source of concern with the program outlined above is that the charged black
brane solutions (known as Reissner-Nordström black branes) of Einstein-Maxwell theory have
a non-vanishing entropy at zero temperature, unlike most real world systems. While this is
not necessarily a problem – for instance, instabilities caused by including a charged scalar
field could allow for a phase transition to a zero-entropy state at low temperatures [34, 21] –
it would be nice to enlarge the range of holographic models studied to include models with
different thermodynamic properties.1

With these motivations in mind, in Chapter 3 (based on work published in [8]) we consider
holography of charged dilaton black branes in AdS4. Using a combination of analytic and
numeric techniques, we study black brane solutions to the following theory:

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (1.1)

The most interesting feature of the solutions we study is that they have vanishing entropy at
zero-temperature, in contrast with the Reissner-Nordström black branes previously studied.

The near-horizon geometry of our solutions is Lifshitz-like [13] with a non-trivial dynam-
ical exponent 1/β (where β < 1 is determined by the details of the dilaton coupling to the
gauge field). Departures from extremality give rise to an entropy density s growing as a

1It has recently been suggested that the large entropy of the Reissner-Nordström brane can perhaps be
interpreted as arising from some analogue of a “fractionalized Fermi liquid” phase in the boundary theory
[43]. Some support for the existence of such a phase, at least in some AdS/CFT dual pairs, accrues from
explicit lattice models with localized fermions in string constructions, where AdS2 regions arise from bulk
geometrization of the lattice spins [44]. Another, complementary approach to the entropy problem is developed
in [45, 46].
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power law s ∼ T 2β, with a positive specific heat. Numerically, we are able to show that the
Lifshitz-like near horizon geometries can be extended to asymptotically AdS4 spacetimes.

After a detailed study of the thermodynamics of these solutions, we calculate the optical
conductivity σ(ω) of the extremal black brane background, via the AdS/CFT dictionary. Our
approach is based on [21], and is slightly subtle because we only have analytic expressions
for the black brane background in the near-horizon and near-boundary regions. Surprisingly,
we find that the conductivity turns out to obey

Re(σ) ∼ ω2/µ2, Im(σ) ∼ µ

ω
. (1.2)

at low frequencies. The frequency dependence is independent of the Lifshitz parameter of the
near-horizon region. While thermodynamics depends non-trivially on the dilaton coupling
α, the transport properties appear to be universal. We do not yet understand the physical
origin of this intriguing result.

1.2 Dyonic Dilaton Black Branes

We next consider generalizing the analysis above to calculate transport properties in the
presence of an external magnetic field [9]. By the AdS/CFT dictionary this corresponds to
studying black branes with both electric and magnetic charge. In the most general setting in
string theory, a dyonic solution is expected to source both a dilaton field as well as an axion
field. An important class of axion-dilaton theories are those invariant under an SL(2, R)
electromagnetic duality. In particular, we consider the following theory:

S =

∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − 1

2
e4φ(∂a)2 − e−2φF 2 − aF F̃

]
. (1.3)

which generalizes the theory studied in [22] to AdS space.
To see the SL(2, R) duality, we combine the axion a and dilaton as follows:

λ = λ1 + iλ2 = a+ ie−2φ. (1.4)

Then it is easy to see that under an SL(2, R) transformation

M =

(
ã b
c d

)
(1.5)

which takes
Fµν → F ′µν = (cλ1 + d)Fµν − cλ2F̃µν (1.6)

and

λ→ λ′ =
ãλ+ b

cλ+ d
(1.7)

while keeping the metric invariant, the equations of motion are left unchanged. (This is
discussed in, e.g., [23].)
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The electrically charged black brane solution to this action is nothing but the solution to
(1.1) for α = 1 discussed in the previous section. Starting with this purely electrically charged
solution, we are able to generate solutions with arbitrary dyonic charges and boundary values
of the dilaton-axion using SL(2, R) duality. These solutions all exhibit a Lifshitz-like near-
horizon geometry, and hence have vanishing entropy at extremality.

Transport Coefficients

We consider the thermodynamics of these dyonic solutions as well as general thermo-electric
linear response, which is characterized by the conductivity and two related transport coeffi-
cients, the thermoelectric coefficient α and the thermal conductivity κ. These are all tensorial
and satisfy the relation (

~J
~Q

)
=

(
σ α
αT κ

)(
~E

−~∇T

)
(1.8)

where ~E is the electric field, ~∇T is the gradient of the temperature, ~J is the electric current
and ~Q is the heat current.

In the presence of an external magnetic field, conductivities are described via:

jx = σxxFtx + σxyFty (1.9)

jy = −σxyFtx + σxxFty. (1.10)

Upon working through the AdS/CFT dictionary, we find that the linear combinations

σ+ = σ1 + iσ2, σ− = σ1 − iσ2 (1.11)

both transform in in a very nice way under the SL(2, R) transformation (41):

σ± →
ãσ± + b

cσ± + d
. (1.12)

An immediate and interesting consequence of these transformation rules is that conduc-
tivities σxx and σxy will in general obey “semi-circle” laws, as described in [24] and references
therein.

Using these transformation laws, we are able to obtain the conductivity of a general dyonic
black brane, starting from the conductivity of the purely electric brane in (1.2). The resulting
transport fits in nicely with a magnetohydrodynamic formalism proposed in [5], which states
that, at low frequencies, the conductivity of a relativistic plasma is given by:

σxx = σQ
ω
(
ω + iγ + iω2

c/γ
)

(ω + iγ)2 − ω2
c

(1.13)

and

σxy = −
(

n

Qm

)
γ2 + ω2

c − 2iγω

(ω + iγ)2 − ω2
c

. (1.14)

Here σQ, the damping frequency γ, and the cyclotron frequency ωc depend on the magnetic
field (or magnetic charge of the brane) Qm, the temperature T and charge density n.
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We find that
σQ ∝ T 2, γ ∝ (Q′m)2T 2, ωc ∝ Q′m. (1.15)

This qualitative behavior is in agreement with the results of [11, 12] for the Reissner-
Nordström black brane at small ω.

An interesting feature of the above result is that the DC Hall conductance is proportional
to the attractor value of the axion at the horizon, which thus seems to act as a Chern-Simons
coupling in a low-energy fixed-point effective field theory.

1.3 A Chern-Simons Vector Model

In addition to exploiting this duality to generate and study new examples of strongly in-
teracting conformal field theories in three dimensions using gravity; it is also of interest to
find models (particularly non-supersymmetric ones) that can be solved directly from the field
theory side at strong coupling in the large N limit, with a view towards gaining some intu-
ition into the mechanism behind the duality itself. For this purpose, in Chapter 4 (based on
[10]) we conclude with a study of level-k U(N) Chern-Simons theory coupled to fundamen-
tal fermions – a theory that turns out to be remarkably educational and (at least partially)
exactly-solvable using traditional large N techniques.

Chern-Simons theories are fascinating from several points of view. The attractive features
of these theories, unique to three dimensions, had been recognized early on, notably in [47]
and [48]. They arise, for example, in the study of knot invariants [49] and in the study
of the quantum Hall effect [50, 51]. More recently, superconformal Chern-Simons theories
(e.g., [52, 53, 54, 55, 56, 57, 58]) have been shown to play a crucial role in the AdS/CFT
correspondence [2].

The Chern-Simons kinetic term for the gauge field takes the form:

SCS = − k

4π

∫
tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
. (1.16)

Under a gauge transformation, the action changes by a total derivative. Single-valuedness of
eiS implies that the Chern-Simons level k must be an integer. The fact that k is an integer
means that, unlike the Yang-Mills coupling, it cannot flow under the renormalization group.

Consider a level k, U(N) Chern-Simons theory coupled to a single fermion in any repre-
sentation of the gauge group. The only gauge invariant power counting relevant or marginal
operators in such a theory are the fermion kinetic term and mass term. A continuum quan-
tum theory built from such a Lagrangian depends on two discrete parameters, k and N , and a
single continuous parameter, the physical mass m of the fermionic field. At energies E � m,
the dynamics of this theory is scale invariant as well as non-trivial. Non-triviality is ensured
by the fact that the discrete Chern-Simons coupling, which induces interactions among the
fermions, cannot run and so is nonvanishing even at arbitrarily high energy. The nontrivial
CFT that controls the high energy behavior of this system is most directly constructed by
choosing the bare mass to set the physical mass m of this system to zero.

The parameters k and N labeling the CFT are discrete. However it is well known that
the loop counting parameter in a U(N) Chern-Simons theory is the ’t Hooft coupling λ = N

k
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whenever all matter fields transform in representations whose dimension does not grow faster
with N than N2. In the large N (and simultaneously large k) limit λ is effectively a continuous
parameter (exactly as in ABJM theory [2]). For this reason the discretum of CFTs described
by integer values of k and N coalesces into a fixed line in the large N limit.

Lines of fixed points parameterized by a coupling constant are especially interesting from
the viewpoint of the AdS/CFT correspondence. Such lines of d dimensional CFTs have the
potential of interpolating between a simple field theoretic description at weak coupling and
a relatively simple bulk gravitational description at strong coupling, as demonstrated by the
famous supersymmetric examples [1, 2].

Now when d ≥ 4, lines of fixed points appear to be rather exotic. The examples we know
of (like the large N Banks-Zaks fixed line of QCD) involve theories with a parametrically
large number of flavors of matter fields. It is interesting, on the other hand, that effective
fixed lines of large N Chern-Simons theories coupled to matter fields are plentiful and very
easily constructed in 2+1 dimensions even with very simple matter content2.

We emphasize that a variety of such non-supersymmetric fixed lines exist in three dimen-
sions. Choosing the fermions that transform in, say, the adjoint representation of U(N) gives
one such fixed line of theories. Choosing fermions that transform in the bifundamental of
U(N)×U(M) yields another example – one that preserves parity when N = M and the two
Chern-Simons levels are equal and opposite3.

The study of fixed lines of large N Chern-Simons theories with matter and their bulk duals
appears to be an interesting program. For examples with a large amount of supersymmetry
this programme was spectacularly initiated by ABJM [2] and carried forward in several follow
up papers [59, 60, 61]. In Chapter 4, we initiate a detailed study of perhaps the simplest
of the non-supersymmetric fixed lines – the theory of a level k U(N) Chern Simons theory
coupled to a single fundamental fermion.

The Chern-Simons gauge field has N2 components; superficially, the large N limit of
these theories is governed by the summation over a complicated web of planar graphs. The
complexity is illusory, as pure Chern-Simons theory has no propagating degrees of freedom
– the only propagating degrees of freedom in our system are the fundamental fermions.
Consequently, the theory we investigate is a vector model with N degrees of freedom. Large
N limits of vector theories are much simpler than their matrix counterparts, and sometimes
prove to be exactly solvable. Indeed, both in terms of diagrammatics and canonical structure,
the theory we study bears a close resemblance to ’t Hooft’s solution of two-dimensional QCD
in the large-N limit using light-cone gauge [27].

Exact Propagator and Free Energy in Light-Cone Gauge

In Euclidean space, the theory is described by the action:

S =
ik

4π

∫
Tr

(
AdA+

2

3
A3

)
+

∫
ψ̄γµDµψ . (1.17)

2We thank O. Aharony for discussions on this point.
3The ease of construction of conformal field theories in d = 3 intriguingly suggests that it is particularly

easy to construct non supersymmetric quantum theories of gravity in d = 4.
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We work in an analog of light-cone gauge, defined using the condition

A− =
A1 + iA2

√
2

= 0.

This can be obtained from Wick rotation of the standard lightcone gauge in Lorentzian
signature. Further details about conventions are in Chapter 4.

The choice of this gauge turns out to be crucial in allowing for the derivation of the free
energy of the theory on R2 at temperature 1/β, (i.e., on R2 × S1).

We first derive the exact fermion propagator at zero temperature. After deriving the
action for the theory in light-cone gauge (using the usual BRST formalism, and noting that
ghosts decouple) we are able to derive the following integral Schwinger-Dyson equation for
the exact fermion propagator in the large-N limit (see [26]):

〈ψm(p)ψ̄n(p′)〉

=
1

ipµγµ
(2π)3δ3(p′ + p)

− 1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ+ 〈ψa(p− q)ψ̄a(−r)〉 γ3 〈ψm(r + q)ψ̄n(p′)〉

+
1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ3 〈ψa(p− q)ψ̄a(−r)〉 γ+ 〈ψm(r + q)ψ̄

n
(p′)〉 .

This expression for the exact propagator is completely analogous to that for the exact prop-
agator in 2d QCD obtained by ’t Hooft [27].

Surprisingly, we are able to the solve this integral equation at zero temperature as well
as finite temperature. Let us very briefly sketch the solution.

First define the self-energy, Σ(p) = Σ = iΣµγ
µ + ΣII −MbareI, of the fermion as follows

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ipµγµ +Mbare + Σ
× (2π)3δ(p− q). (1.18)

The Schwinger-Dyson equation above can easily be translated into an integral equation for
the Σ; from which it is easy to see that Σ− = Σ3 = 0. Further analysis also reveals that the
remaining components of Σ must take the following form:

ΣI(p) = f0ps

Σ+(p) = p+g0 = p−g0
(1.19)

where

ps =
√
p2

1 + p2
2 =
√

2|p−| =
√

2|p+| (1.20)

and f0 and g0 are dimensionless functions of λ. The solution to the resulting integral equations
for f0 and g0 turn out to be remarkably simple

f0 = λ

g0 = −λ2.
(1.21)
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The zero-temperature, exact propagator is thus given by:

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ip3γ3 + ip−γ− + i(1− λ2)p+γ+ + λps
× (2π)3δ(p− q). (1.22)

The above calculation can be generalized to finite temperature. Furthermore it is also
possible to express the free energy of the theory in terms of the exact fermion self-energy. In
the large-N saddle point, the partition function Z = e−SE is given by:

−SE = NV

∫
d3q

(2π)3
Tr

[
ln [iγµqµ + Σ(q)]− 1

2
Σ(q)

(
1

iγµqµ + Σ(q)

)]
. (1.23)

Using this solution, we find that the free energy of our theory,

F = − 1

β
lnZ,

as a function of temperature and λ, in a box of volume V2 (which is taken to be very large)
is given by

F = −NV2T
3

6π

[
c̃3 1− λ

λ
+ 6

∫ ∞
c̃

dy y ln
(
1 + e−y

)]
(1.24)

where c̃ is the unique real solution to the equation

c̃ = 2λ ln

(
2 cosh

c̃

2

)
. (1.25)

(1.25) has no solutions for |λ| > 1; indeed, our fixed line of theories exists only in the interval
|λ| ∈ [0, 1).

Comment added: This result assumes that the holonomy of the gauge field around the
thermal circle is the identity matrix; however, it is possible, and essentially straightforward,
to generalize the calculation to nontrivial holonomy backgrounds. See the note added at the
end of chapter 4.

Note that large-N counting (the fact that the leading contribution to the free energy
comes from disk diagrams) implies that the free energy is proportional to N at leading order
in the large N expansion. The nontrivial part of (1.24) is the function of λ that multiplies the
factor −V2T

3N . This function has an analytic expansion in even powers of λ, about λ = 0.
As |λ| increases in [0, 1), it decreases monotonically from the free value 3

4π ζ(3) to zero, and
suggests a thinning of degrees of freedom at stronger coupling as λ→ 1

Nearly Conserved Currents

We next consider the holographic dual of the theory. Consider the free limit of the theory,
obtained by setting λ = 0. It is well-known that free theories have an infinite number
of conserved currents – one for each spin s > 0. In section 4.3.1, we present an explicit
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generating function for all currents with s ≥ 1. The first few such currents take the following
form:

Jµ = ψ̄γµψ,

Jµ1µ2 = ψ̄γµ1

(−→
∂µ2 −

←−
∂µ2

)
ψ,

Jµ1µ2µ3 =
1

6
ψ̄γµ1

(
3
←−
∂µ2

←−
∂µ3 − 10

←−
∂µ2

−→
∂µ3 + 3

−→
∂µ2

−→
∂µ3 + 2(

←−
∂σ
−→
∂σ)ηµ2µ3

)
ψ,

Jµ1µ2µ3µ4 =
1

6
ψ̄γµ1

(←−
∂µ2

←−
∂µ3

←−
∂µ4 − 7

←−
∂µ2

←−
∂µ3

−→
∂µ4 + 7

←−
∂µ2

−→
∂µ3

−→
∂µ4 −

−→
∂µ2

−→
∂µ3

−→
∂µ4 ,

+2(
←−
∂σ
−→
∂σ)
←−
∂µ2ηµ3µ4 − 2(

←−
∂σ
−→
∂σ)
−→
∂µ2ηµ3µ4

)
ψ .

The set of all such currents are a basis for the set of all “single trace” operators, where by
“single trace” we mean operators such as ψ̄iψi, which are formed out of the contraction of a
single fundamental fermionic index with a single antifundamental fermionic index.

Via the AdS/CFT dictionary, each conserved current corresponds to a gauge field in the
gravitational dual. Hence, it has been conjectured in [29], extending [30], (see also [62] and
[28]) that the free theory admits a dual description as a Vasiliev higher-spin gauge theory
(technically, the parity-preserving “type-B” theory [63, 64, 31, 65]; see also [66, 67, 68]).

In the interacting theory, the natural generalization of these operators is to replace all
derivatives by covariant derivatives (and to subtract a “multi-trace” term, so that the currents
are traceless (with respect to Lorentz indices) and have a well defined spin.)

While the divergence of currents J
(s)
µ1...µs vanish in the free theory, at nonzero coupling the

currents obey an equation of the schematic form

∂ · J (s) ∼ 1

k
JJ +

1

k2
JJJ. (1.26)

Although the RHS of (1.26) is nonvanishing, it is a multitrace contribution, and contributes
only at subleading order in 1

N when inserted into a two point function. In other words the

currents J (s) are effectively conserved, hence protected, within two point functions. The
conservation fails at the first subleading order in 1

N .
More precisely, we are able to use (1.26) to demonstrate that the scaling dimensions of

currents J (s) in the interacting theory are not renormalized to leading order in 1
N even as

we turn on interactions. As the anomalous dimensions of the current operators are related
to the masses of the corresponding gauge fields in the bulk, we conclude that the tower of
higher-spin gauge fields remain massless as we turn on interactions. The seems to imply
that, even in the strongly interacting limit, the holographic dual to our theory must be a
higher-spin gauge theory.

1.4 Summary

In this thesis, we study various aspects of strongly-interacting quantum field theories in three
dimensions in the large-N limit.
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We analyze charged dilatonic branes in considerable detail in Chapters 2 and 3, focusing
on their thermodynamics and especially their transport properties. The dilaton case dif-
fers significantly from the Reissner-Nordström one in thermodynamics: while the Reissner-
Nordström brane has a macroscopic ground-state entropy, the dilatonic black brane has
vanishing entropy at zero temperature. Despite this significant difference in thermodynam-
ics, our results show that many of the transport properties of dilaton black branes are quite
similar to those of the Reissner-Nordström case. Overall, we feel that charged dilaton black
branes in AdS provide a rich playground for studying black hole physics and holographic
condensed matter.

In Chapter 4, we initiate the task of determining an exact solution to a simple but
nontrivial fixed line of quantum field theories, namely U(N) Chern-Simons theories coupled to
fermionic fundamental matter. We have been able to exactly compute the finite temperature
partition function and prove that the scaling dimensions of a large class of operators in the
theory are protected in the large N limit, thereby allowing us to comment on the nature of
the theory’s holographic dual. It is interesting to note that our results imply that the theory
(or any conformal vector model in three dimensions) cannot be dual to an Einstein theory of
gravity – to obtain a field theory that may be dual to a traditional theory of gravity would
require bifundamental or adjoint matter, and these theories are naturally much harder to
solve from the field theory side than vector models. This illustrates the importance of the
holographic techniques used in Chapters 2 and 3; they are expected to apply to precisely those
theories (theories with matrix matter) that would otherwise have been the most difficult to
solve within the traditional quantum field theory framework.

We hope the results of this thesis will, in combination with the work of others in the field,
prove useful in the larger task of mapping out the range of physical behaviors possible in
strongly interacting conformal field theories.
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Chapter 2

Holography of Charged Dilaton Black
Branes

This chapter is based on work presented in [8] and was completed in collaboration with Kevin
Goldstein, Shamit Kachru, and Sandip Trivedi.

2.1 Introduction

Extremal black holes have been a fruitful source of theoretical questions and enigmas for
several decades. The earliest charged black hole solutions to low-energy string theory were
found by Garfinkle, Horowitz and Strominger [16] (and had appeared earlier as part of a
family of solutions in [17]). Those authors studied the Einstein-Maxwell action with the
gauge coupling controlled by a scalar dilaton φ.

S =

∫
d4x
√
−g
(
−R+ 2(∇φ)2 + e−2φF 2

)
. (2.1)

This action admits remarkably simple extremal magnetically charged black hole solutions:

ds2 = −(1− 2M

r
) dt2 + (1− 2M

r
)−1 dr2 + r(r − Q2e2φ0

M
) dΩ2 , (2.2)

with dilaton profile

e−2φ = e−2φ0 − Q2

Mr
(2.3)

and with gauge field
F = Q sin(θ) dθ ∧ dϕ . (2.4)

Here, θ and ϕ are standard angular coordinates on the S2 spatial slices in (2.2), and φ0 is

the asymptotic value of the dilaton. At extremality, M =
√

2Qeφ0 .
The action and the black hole solution are motivated by the low-energy α′ expansion

of heterotic string theory; one may obtain an equally simple electrically charged solution
by exchanging φ → −φ, while simultaneously exchanging the field strength F with its dual
F̃µν = 1

2e
−2φε λρ

µν Fλρ.
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The dilaton e2φ blows up at the horizon of the extremal magnetically charged black hole,
(2.2), (2.3), which lies at

r =
Q2e2φ0

M
. (2.5)

Therefore quantum loop corrections will become important close to the horizon. In the
electrically charged case, although the dilaton vanishes at horizon, the string frame curvature
blows up and therefore higher derivative corrections become important close to the horizon.
This feature is quite common in dilatonic black holes – near the horizon, either string loop
corrections or higher derivative corrections become significant and these corrections frustrate
any attempt to calculate properties which depend sensitively on the near-horizon geometry.
The simplest way to avoid this problem is to consider a slightly non-extremal black hole. For
fixed charge and φ0 the non-extremal hole has a horizon at a slightly larger value of r and as
a result, the dilaton does not run to either infinity or zero value at the horizon. Adjusting the
value of φ0 appropriately, one can control the behaviour of the dilaton with a temperature
much smaller than the charge and the properties of the resulting near-extremal black hole
can be reliably calculated in the classical supergravity approximation.

These black holes, and generalizations thereof with general dilatonic coupling e−2αφF 2

for α ≥ 0, were found to have thermodynamic properties radically different from traditional
charged black holes [18, 19]. The authors of [18, 19] found that the physics of extremal
charged dilaton black holes (like that of extremal Reissner-Nordström black holes) exhibits
a breakdown of the thermodynamic description. However, the conceptual reasons for the
breakdown depend on details; and the relevant physics can be quite different for different
values of α.

Why pursue their AdS generalization?

AdS/CFT may provide a powerful tool for studying strongly-coupled toy models of condensed
matter systems (for excellent reviews see [37, 38, 39, 40]). In flat space, the extremal dilaton
black holes exhibit features quite different from their extremal Reissner-Nordström cousins.
Hence we expect that their AdS generalizations may widen the range of qualitative behaviors
seen in simple and potentially relevant gravity models.

In particular, unlike the extremal Reissner-Nordström solutions, the solutions we study
turn out to have vanishing entropy at extremality. Indeed, the large ground state degeneracy
of the Reissner-Nordström AdS black branes is (at least superficially) in tension with the third
law of thermodynamics, and suggests to some that they may be highly atypical holographic
states of matter1. Since abelian gauge fields with dilatonic couplings parameterized by various
values of α are fairly common in string compactifications, these may provide one generic class
of simple bulk theories where the charged black holes do not have an undesired macroscopic
ground-state entropy. (In the context of holographic superconductors [34, 6], another class
of black branes with vanishing entropy at T = 0 was recently found in [70, 71, 21]).

1The large degeneracy is almost certainly an artifact of the large N approximation. S. Trivedi acknowledges
discussions with A. Dabholkar and A. Sen in the course of preparing [69], and also with T. Senthil, in this
regard.
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Another motivation for this study is that the phenomena discussed in [19, 18] for flat-
space charged dilaton black holes strongly suggested that, at least for some values of the
parameters, charged dilaton black branes in AdS could provide novel holographic duals of
insulators. While the bulk theory clearly has excitations at arbitrarily low-energy (it has
uncharged Schwarzschild black brane solutions,) in the sector with non-trivial charge density,
one may have expected a gap in the charged excitations in analogy with [19, 18]. We will find
that this is not so, at least in the absence of a dilaton potential and for the well-motivated
simple forms of the gauge coupling function that we consider..

A final motivation for this investigation comes from the study of extremal black hole/brane
solutions. It is now well known that these extremal configurations exhibit the attractor mech-
anism regardless of supersymmetry – their near-horizon geometry is universal and indepen-
dent of the asymptotic values taken by the moduli. Different kinds of attractors correspond
to different kinds of universal behaviour. In the context of AdS/CFT characterizing the dif-
ferent kinds of attractors tells us about the different kinds of IR behaviour which can arise
in the dual CFT which is at zero temperature but is now deformed by the addition of a
chemical potential (or charge). This is clearly of interest as we develop the AdS/CFT dic-
tionary further. From the point of view of possible connections to condensed matter physics,
an early and important paper on the subject, [4], noted that the optical conductivity of the
dual CFT in 2 + 1 dimensions at finite temperature (and zero chemical potential) is actually
independent of frequency and temperature and thus very universal. The attractor mechanism
tells us that there should be some considerable universality as we deform the CFT along the
chemical potential direction instead of temperature as well. And the extent of allowed varia-
tion should be determined by the different classes of attractors. Understanding the different
classes of attractors is therefore of interest from this new point of view. A brief comment
on the literature: There is by now considerable literature on the attractor mechanism. The
seminal paper is [72]. For a recent review with a good collection of references, see [73]. Some
references on attractors without supersymmetry are [74, 75, 76, 15, 77].

In this chapter, we will study extremal and non-extremal black branes in dilatonic gravity.
We first analytically find the form of the near-horizon geometry for electrically charged ex-
tremal dilaton black branes as a function of α and then numerically extend our near-horizon
solutions of §2 to provide full black brane solutions with AdS asymptotics. We then use the
near-horizon geometry to compute the entropy and specific heat as a function of α, and see
that the extremal branes have vanishing entropy and positive specific heat for all α ≥ 0; we
also discuss other thermodynamic quantities. In section 2.5, we compute the conductivity in
a controlled approximation as one approaches the extremal limit, using techniques similar to
those in [21]. We find that somewhat surprisingly, in the simple cases we check (including the
electrically charged black branes for all values of α), the result is that σ(ω) ∼ ω2 at T = 0
and low frequency.

While the results in the chapter were being readied for submission to [8], the papers
[78, 79], which have some overlap in motivations with this work, appeared.
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2.2 Gravity solution

We consider the following action,

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (2.6)

which generalizes the action studied in [16] to include a negative cosmological constant, and
a dilaton coupling parameterized by α. The maximally symmetric vacuum solution for this
action is AdS space with AdS scale L given by Λ = − 3

L2 . We will set L = 1 below.
We look for electrically-charged black branes solutions of the above action2. Our metric

ansatz is of the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2), (2.7)

with corresponding gauge field

e2αφF =
Q

b(r)2
dt ∧ dr. (2.8)

Extremizing (2.6) implies the equations of motion for a(r), b(r) and φ(r):

(a2b2)′′ = −4Λb2 (2.9)

b′′

b
= −(∂rφ)2 (2.10)

∂r(a
2b2∂rφ) = −αe−2αφQ

2

b2
, (2.11)

as well as a first order constraint,

a2b′2 +
1

2
a2′b2

′
= φ′2a2b2 − e−2αφQ

2

b2
− b2Λ . (2.12)

Here and below, primes denote derivatives with respect to r.
We first look for a near horizon solution to the above action by considering the following

scaling ansatz:

a = C2(r − rh)γ , b = C1(r − rh)β, φ = − K log(r − rh) + C3 , (2.13)

We find that an exact solution is obtained if the exponents take the values

γ = 1, K =
α
2

1 + (α2 )2 , β =
(α2 )2

1 + (α2 )2
. (2.14)

The constant C2 is given by

C2
2 =

6

(β + 1)(2β + 1)
. (2.15)

2Related work finding charged black brane solutions in dilaton gravity with a Liouville-type potential
appears in e.g. [80, 81].
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By rescaling (r − rh), t, x and y, we can set the constant C3 to zero and C1 to unity. Q is
then determined in terms of α by

Q2 =
6

(α2 + 2)
. (2.16)

In terms of w = r − rh, the exact near-horizon solution is:

a = C2w, b = wβ, φ = − K log(w) . (2.17)

Interestingly, this solution almost has a Lifshitz scaling symmetry under w → λw, t → λt,
x → λzx, and y → λzy, with Lifshitz exponent z = 1/β. The symmetry is only broken by
the fact that the dilaton φ shifts by a constant under such a rescaling.

The metric component gtt has a second order zero at w = 0, and (2.17) is thus an extremal
solution. A non-extremal generalization is the following:

ds2 = C2
2w

2(1− m

w2β+1
)dt2 +

dw2

C2
2w

2(1− m
w2β+1 )

+ w2β(dx2 + dy2), (2.18)

which depends on the parameter m, with unchanged gauge field and dilaton. [14]
Note that the solution (2.17) is mildly singular; though all curvature invariants are finite,

it is geodesically incomplete at w = 0 (see [38]). By restricting our attention to slightly
non-extremal black branes, this singularity would be hidden. (See [82].)

2.2.1 A numerical asymptotically AdS4 solution

In the extremal solution, the gauge coupling gU(1) ∼ e−αφ becomes weak at the horizon, as
φ → ∞. When r → ∞ the gauge coupling becomes very strong; therefore, although exact,
the solution (2.18) must be understood as a near-horizon geometry of a larger solution with
different asymptotics. In particular, we would like to find a generalization of the extremal
solution with a controlled and asymptotically constant dilaton as well as an asymptotically
AdS4 geometry.

The strategy for obtaining such a solution is to numerically integrate the equations of
motion following from (2.6), starting near w = 0 with initial data taken from the near-
horizon solution. However, the near-horizon solution is exact, so numerical integration using
initial data drawn from it would simply reproduce the near-horizon solution unmodified.
To numerically integrate to a solution that is asymptotically AdS4, we must also take into
account possible subleading corrections to the near-horizon solution.

This is completely analogous to the case of the Reissner Nordström black brane. The
near horizon geometry AdS2 × R2 is an exact solution to the equations of motion; however
corrections (which are subleading in the near-horizon limit) are permitted which allow it
to be embedded in an asymptotically AdS4 spacetime. (This is analogous to the case of
an extremal Reissner-Nordström black hole – the near horizon-solution is an exact solution
to the equations of motion, however, subleading near-horizon corrections are permitted and
allow the black hole to be embedded in asymptotically flat spacetime.)

We start with a fairly general ansatz for the modification to the metric:

a(w) = C2w (1 + d1w
ν1)

b(w) = wβ (1 + d2w
ν2) (2.19)
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which vanishes as w → 0. The form of the perturbation of φ is determined from the ansatz
for b by the equation of motion (2.10):

φ(w) = −K log(w) + C3 + d3w
ν2 (2.20)

where d3 = 2β+ν2−1
2K d2.

We first note that ν1 = ν2. This can be seen by substitution of the ansatz into (2.9).
Since we require both ν1 and ν2 to be positive, the two terms proportional to wν1 and wν2

cannot separately cancel, so ν1 = ν2 ≡ ν. (Even if we allow negative solutions, it turns out

that allowing ν1 6= ν2 yields only one consistent perturbation: ν1 = −4+3α2

4+α2 for which d2 = 0.
This solution can also be obtained considering the perturbation with ν1 = ν2.)

We now substitute the ansatz into (2.9) and (2.11), which we solve to leading order in w.
We will use one of the equations to solve for d1 in terms of d2 and ν. Substituting into the
remaining equation will result in a quartic equation for ν. There will be no constraint on d2,
which is a free parameter that determines the strength of the perturbation. (The structure
is similar to that of an eigenvalue problem: We are looking for vectors (d1 d2) in the kernel
of some 2× 2 matrix. The matrix depends on ν and ν2, hence we expect the condition that
the determinant of the matrix vanishes to yield a quartic equation for ν.)

Substituting the ansatz into (2.9) implies

d1 =

(
2(1 + β)(1 + 2β)

(2β + 2 + ν)(2β + 1 + ν)
− 1

)
d2 . (2.21)

Using this expression for d1, (2.11) is satisfied to leading order if ν satisfies the following
quartic equation:

(ν + 1)(4β + ν)
(
−4β2 + (2β + 1)ν − 6β + ν2 − 2

)
= 0 . (2.22)

The only positive root is

ν =
1

2

(
−2β +

√
(2β + 1)(10β + 9)− 1

)
=
−3α2 +

√
57α4 + 184α2 + 144− 4

2 (α2 + 4)
. (2.23)

To find all allowed perturbations we must also consider values of ν for which (2.21) is
singular – either d1 = 0 or d2 = 0. This happens if (2β + 2 + ν)(2β + 1 + ν) = 0. Both these
roots are negative, so they do not concern us here. However, for reference we note that the
finite temperature solution (2.26) is obtained from choosing ν = −2β−1 = −3α2+4

α2+4
for which

d2 = 0. We have not explored what happens when we consider the other negative values of
ν, perhaps they also give rise to interesting solutions.

Finally, we observe that the constraint (2.12) is satisfied for ν given by (2.23) and d1

given by (2.21), as required.
The final form of the perturbed solution is (2.19) and (2.20) with ν given by (2.23), and

d1 related to d2 according to (2.21).
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Figure 2.1: Numerical solution interpolating between the Lifshitz-like near horizon solution
and AdS4 for α = 1 and d1 = −.514. The second plot shows that a′(r) and b′(r) approach 1.
Solid lines denote a, dashed lines denote b.
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Figure 2.2: Numerical solution for φ, for α = 1.
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Numerically integrating Einstein’s equations with initial data drawn from this solution
(with d1 < 0) yields a numerical solution that manifestly approaches AdS4 with a constant
dilaton as r →∞, as shown in Figures 2.1 and 2.2.

Initial data for numerical integration is taken from the modified near-horizon solutions
(2.19) and (2.20). Figures 2.1 and 2.2 show the resulting solution for α = 1. The strength of
the perturbation was chosen to be d1 = −.514219, so that the solution meets the condition
that b′(r)→ 1 as r →∞. (For other negative values of d1, b′(r) approaches a constant which
is different from one, a coordinate transformation then brings the solution back to a form
with the standard asymptotics of AdS4 space. For positive d1 the numerical solution becomes
singular.) The numerical integration above is shown for α = 1 but a similar numerical solution
can also obtained for other values of α.

The extremal solution is labelled by two parameters – the total charge of the black brane
Q and the asymptotic value of the dilaton φ0. However, there is essentially only one numerical
solution (for a given α) – the numerical solution above corresponds to a particular value of
the two parameters Q and φ0, determined by the choice of gauge for the near-horizon solution
(2.17). It is clear from the equations of motion that the metric and (φ− φ0) only depend on
the quantity Q2e−2αφ0 . Starting from the numerical solution, we can rescale r via

r → λr, (t, x, y)→ λ−1(t, x, y) (2.24)

to obtain a solution for any given value of Q and then shift the dilaton to obtain a solution
with any given value of φ0.

2.3 Thermodynamics

Via the AdS/CFT dictionary, quantities calculated in the black hole background correspond
to quantities calculated in a strongly interacting CFT at fixed temperature T and chemical
potential µ. Thermodynamic relations between between the temperature, chemical potential,
energy density ρ, entropy density s, pressure P , and the number density n can be extracted
from the black brane solution.

An important subtlety in this analysis is that our solution is essentially numerical – we
only have analytic expressions for the near-horizon solution and the asymptotic solution.
However, as we will see below, this is enough to analytically calculate thermodynamics in
the regime T � µ, (which is when the solution (2.18) is valid.) Studying temperatures
comparable to µ would require analysis of a finite-temperature numerical solution.

The horizon in the solution (2.18) is located at w = wh, (or r = rh + wh):

w2β+1
h = m . (2.25)

The resulting temperature can be obtained as usual by continuing to Euclidean space [20]
and comes out to be

T ∼ wh . (2.26)

The entropy density of the slightly non-extremal black brane is proportional to the area
element of the horizon and is

s = A0CT
2βµ2−2β, (2.27)
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where
C ∼ L2/GN (2.28)

is the central charge of the CFT dual to the AdS4 background, as follows from substituting
the near-horizon solution into the action (2.6). The numerical coefficient A0 depends on the
full numerical solution for the slightly non-extremal black hole. We note that the entropy
vanishes at zero temperature.

Let us now consider the relations between charge, number density, and chemical potential
the extremal limit, T = 0. It follows from the Einstein’s equations that in the asymptotic
AdS4 region the solution must take the form

a2 = r2(1− e1
ρ

r3
+
Q2e−2αφ0

r4
+ · · · ) (2.29)

b2 = r2(1 + · · · ) (2.30)

φ = φ0 +
φ1

r3
+ · · · . (2.31)

e1 is a constant which depends on L. Under the rescaling (2.24), ρ → ρ
λ3 , Q → Q

λ2 , which
implies

ρ = D1(Qe−αφ0)3/2 . (2.32)

The coefficient D1 is a numerical coefficient that is α dependent. A similar scaling argument
tells us that

µ =

∫ ∞
rh

Qe−2αφ

b2
dr (2.33)

is given by
µ = D2(Qe−αφ0)1/2e−αφ0 (2.34)

where D2 is again an α dependent coefficient. This gives

ρ = D3Ce
3αφ0µ3 . (2.35)

D3 is an α dependent numerical coefficient (that can be determined in terms of D1 and D2).
From these relations it follows that the number density satisfies

n ∝ Q . (2.36)

Going to non-zero temperatures, we note that the specific heat is also positive

Cv = T (
ds

dT
)µ = (2β)A0CT

2βµ2−2β . (2.37)

The Gibbs-Duhem relation
sdT − dP + ndµ = 0, (2.38)

can be used to obtain the pressure. We find (using (2.42) below to fix the temperature-
independent part)

P =
1

(2β + 1)
A0Cµ

2−2βT 2β+1 +
1

2
D3Ce

3αφ0µ3 . (2.39)
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Substituting for P in (2.38) gives the number density,

n =
(2− 2β)

(2β + 1)
A0CT

2β+1µ1−2β +
3

2
D3Ce

3αφ0µ2 . (2.40)

From (2.40) we can also compute the susceptibility χ:

χ ≡ (
∂n

∂µ
)T = (1− 2β)

(2− 2β)

(2β + 1)
A0CT

2β+1µ1−2β + 3D3Cµ . (2.41)

Finally the energy density can be obtained using the relation

ρ = sT + µn− p (2.42)

which gives,

ρ =
2

(2β + 1)
A0Cµ

2−2βT 2β+1 +D3Ce
3αφ0µ3 . (2.43)

The near-extremal system a simple equation of state

P =
1

2
ρ . (2.44)

It is clear from the calculations above that thermodynamic properties of the solution are
essentially determined by the Lifshitz-like nature of the extremal near horizon geometry.

2.4 Attractor Behavior

Consider a more general theory with a Lagrangian of the form,

S =

∫
d4x
√
−g
(
R− 2Λ− 2(∂φi)

2 − fab(φ)F aF b − 1

2
f̃abεµνρσF

a
µνF

b
ρσ

)
, (2.45)

which has i = 1 · · ·N scalars with standard kinetic energy terms and a = 1, · · ·M gauge
fields.

Let us search for an extremal black brane solution to this action with both electric and
magnetic charge. In terms of the metric ansatz, (2.7); the gauge fields are given by

F a = fab(Qeb − f̃bcQcm)
1

b2
dt ∧ dr +Qamdx ∧ dy, (2.46)

where Qam and Qea determine the electric and magnetic charges of the system and fab is the
inverse of the gauge coupling function fab.

The three equations of motion for the metric and scalars, corresponding to (2.9), (2.10),
and (2.11), can be obtained by varying the one-dimensional action,

S =

∫
dr
(
− 2a2bb′′ − 2a2b2(∂rφi)

2 − 2
Veff
b2

+
6b2

L2

)
(2.47)
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with the effective potential Veff given by

Veff = fab(Qea − f̃acQcm)(Qeb − f̃bdQdm) + fabQ
a
mQ

b
m. (2.48)

For the special case we studied above, (2.6), Veff = e−2αφQ2. We must also impose the
following equation as a constraint, corresponding to (2.12):

a2b′2 +
1

2
a2′b2

′
= (φ′i)

2a2b2 −
Veff
b2

+ 3
b2

L2
. (2.49)

In a generic attractor situation, Veff would have a critical point at some finite point in
moduli space φi∗ 6=∞. The resulting extremal black brane has a horizon where the scalars are
drawn to their critical values, φi∗, regardless of their asymptotic values at infinity. gtt = a2

has a second order zero at the horizon, while the metric component b2 has a non-zero value
b2h at the horizon. As a result the near-horizon geometry is of the form AdS2 × R2 with
an SO(2, 1) isometry arising from the AdS2 factor. The entropy density of the black brane
s ∼ b2h. From the constraint (2.49), it follows that b2h is determined by the value of effective
potential at the critical point,

b4h =
L2Veff (φi∗)

3
. (2.50)

In contrast in the situation we have studied above, the effective potential is of “run-away”
form, Veff = e−2αφQ2, with a critical point which lies at infinity. At the critical point, the
effective potential vanishes. As a consequence, the entropy of the solution vanishes and the
near horizon geometry is Lifshitz-like, where the scalar runs towards its infinite critical value
and where the entropy vanishes. It is easy to see that from the equations of motion, (2.9)-
(2.12) that the full solution for the metric only depends on the combination Q2e−2αφ0 , where
φ0 is the asymptotic value of the dilaton. But the attractor mechanism implies that the
near-horizon metric is independent of the dilaton φ0. It then also implies that the scaling
solution is independent of the charge parameter Q, which is consistent with our previous
result (2.17).

This Lifshitz-like near horizon geometry can arise as an attractor in more general situ-
ations. As an example, consider a situation with several scalars, and a run-away potential
which depends on a linear combination of these scalars,

Veff = V0e
−αiφi . (2.51)

After a field redefinition this maps to the single scalar case above. As another example
consider an effective potential which has a critical point at a finite value in field space for all
but one of the scalars. The one remaining scalar runs away to infinity driving the potential
to zero in an exponentially rapid fashion. In this case the same attractor geometry, with
appropriate scaling exponents, will arise. Finally consider a situation where there are several
scalars with a potential

Veff =
∑
i

Vie
−2αiφi (2.52)

with all Vi > 0. Again the near horizon region is Lifshitz-like:

a ∼ w, b ∼ wβ, φi ∼ −Ki log(w) + Ci , (2.53)
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now with

β =
1

(1 + 4
∑ 1

α2
i
)

(2.54)

Ki =
2β

αi
. (2.55)

Other kinds of attractors

To complete this discussion let us also consider other possible attractor solutions which can
arise. We list some of these possibilities below. We work in the coordinate system (2.7) below
with w = r− rh. In all the cases we consider below a ∼ w in the near horizon region, so that
the gtt component has a second order zero at w = 0. Though the scaling solution (2.13) is an
exact solution to the equations of motion, the solutions we write down below are not exact
solutions; they only describe the leading near-horizon behaviour for the metric and dilaton
in these cases.

1) Suppose the effective potential takes the form,

Veff = V0 + V1e
−2αφ (2.56)

where V0, V1 > 0. This results in a run-away situation, but the critical value of V is now V0

and does not vanish. In this case we find that

b = bh +
C1

log(w)
(2.57)

b4h =
L2V0

3
(2.58)

φ =
1

2α
log(− log(w)). (2.59)

Since a ∼ w and bh 6= 0 the near horizon geometry is AdS2 × R2. Interestingly though the
scalar does not become a constant in the near-horizon region going instead to infinity as
w → 0.

2) Next consider the case where the potential vanishes at the critical point but as a
power-law rather than an exponential:

Veff =
V0

φp
. (2.60)

we find

b ∼ 1

log(w)
p
8

(2.61)

φ ∼ (− log(w))1/2 . (2.62)

The power law nature of the potential results in b and φ varying more slowly than in the
Lifshitz-like solution (2.13).
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3) We can also contrast this with a potential that vanishes more rapidly than an expo-
nential:

V = Q2e−A(eαφ). (2.63)

We find

b ∼ w +
C1w

log(w)
(2.64)

φ ∼ 1

α
log

(
− 1

A
log (h(w))

)
(2.65)

h(w) =
3

2Q2α2
w4(− log(w))−2 + . . . . (2.66)

The metric component b is almost linear in w resulting in the near horizon geometry being
approximately AdS4, with a very slowly varying scalar.

4) Finally we can consider a situation where the four-dimensional theory contains a po-
tential which depends on the scalar field. We write the effective one-dimensional Lagrangian
as

S =

∫
dr

(
−2a2bb′′ − 2a2b2(∂φ)2 − 2

Veff
b2

+ 6
b2

L2
− 2V1(φ)b2

)
(2.67)

where V1(φ) is the extra field-dependent potential. There are now several possibilities. Let
us only discuss one of these here. If bh and φ∗ can be found which solve the two equations,
(as would generically be the case)

∂φVeff (φ∗)

b2h
+ ∂φV1(φ∗)b

2
h = 0 (2.68)

and

(
3

L2
− V1(φ∗))b

4
h = Veff (φ∗). (2.69)

then it is easy to see that an AdS2 × R2 near-horizon solution arises, where the metric
component b2, (2.7), takes a constant value b2h and the scalar takes a constant value φ∗.

2.5 Conductivity

The power of the AdS/CFT correspondence is that it allows us to calculate properties of the
dual quantum field theory beyond thermodynamics. The most natural quantities to study are
transport coefficients. These are calculated by considering linearized fluctuations around the
background gravitational solution presented above. Formally, via the AdS/CFT dictionary,
this corresponds to coupling a conserved global U(1) current operator in the dual CFT to
a weak external source and calculating linear response, using the usual Kubo formula, as
a two-point function of the current operator. Physically, this corresponds to studying the
absorption and reflection of electromagnetic and/or gravitational waves by the black brane
geometry.

Here, we calculate the optical conductivity σ(ω) of the extremal black brane background,
via the AdS/CFT dictionary. Our approach is based on the conductivity calculation in [21],
and we crucially rely on some generalizations of various formula in [83, 84]..
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2.5.1 Fluctuations

We first solve for the allowed fluctuations of the gauge field about our solution. Studying the
gauge field equation of motion

∂µ

(√
−ge2αφgµλFλσg

σν
)

= 0, (2.70)

and the Einstein’s equations, we find that the gtx and Ax fluctuations mix:

∂r

(
e2αφa2∂rδAx

)
− e2αφb2F

(0)
rt ∂r(b

−2δgtx) + ω2e2αφa−2δAx = 0 (2.71)

where F
(0)
rt is the background gauge field (2.8). Luckily, as was the case in [83, 84, 21], one

of the Einstein equations has just the right form to simplify the resulting coupled system –
the xt component of the trace-reversed Einstein equations gives

Rxr = 2e2αφ
(
−FrtFtxgtt + FrxFxtg

xt
)

= 2iωe2αφF
(0)
rt a

−2δAx (2.72)

with

Rxr = −iω∂r (gxxδgtx)

2gttgxx
= −1

2
iωa−2b2∂r

(
b−2δgtx

)
(2.73)

in our coordinate system. Substituting into (2.72) into (2.71) we can obtain a second order
differential equation for Ax:

a2∂r

(
a2e2αφ∂rδAx

)
= 4a2e4αφF 2

rtδAx − ω2e2αφδAx . (2.74)

Defining the variable Ψ = f(φ)δAx we find

−Ψ′′ + V (z)Ψ = ω2Ψ . (2.75)

Here, f(φ) = 2 eαφ is the dilaton coupling, and primes denote derivatives with respect to the
variable z, defined via

∂

∂z
= a2 ∂

∂r
. (2.76)

The potential V (z) is given by

V =
f ′′

f
+
a2Q2

b4f2
. (2.77)

Let us now use the AdS/CFT dictionary to a formula for the conductivity, in the presence
of a weak external electric field. The electromagnetic part of the bulk action is

Sem =

∫
d4x
√
−g1

4
f2(φ)FµνF

µν (2.78)

and the metric, in terms of the coordinate z, is given by

ds2 = a2(−dt2 + dz2) + b2(dx2 + dy2) . (2.79)
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Asymptotically (as z → 0), the metric approaches AdS4 and a2 = b2 = z−2. The horizon is
located at z = −∞.

In the boundary theory, the current 〈jx〉 can be obtained by

〈jx〉 =
δ log(Z)

δAx
. (2.80)

The standard AdS/CFT dictionary then tells us that in the bulk,

〈jx〉 = f2(φ)Fzx

∣∣∣
z→0

. (2.81)

The electric field at the boundary is Ex = Ftx

∣∣∣
z→0

. Thus studying solutions of the Einstein’s

equations subject to the boundary condition Ftx

∣∣∣
z→0

= Ex allows us to determine the response

of the system to an external electric field. Solving the linearized fluctuation equation for the
gauge field around our background solution (taking into account the backreaction) gives the
(linear) response of the system to a weak external field.

According to the now well-established procedure, e.g., [21], we have to solve the fluctu-
ation equation subject to in-going boundary conditions at the horizon. The solution to the
fluctuation equation near the boundary then takes the form

Ax = A(0)
x +A(1)

x z + . . .

The conductivity (defined via σ = 〈jx〉/Ex) is then given by:

σ(ω) =
i

ω
f2(φ0)

A
(1)
x

A
(0)
x

(2.82)

and is essentially determined by a reflection coefficient in the notation of the Schrödinger
problem described above

σ =
1−R
1 +R

. (2.83)

2.5.2 Conductivity for ω � µ

Solving for the conductivity at arbitrary frequencies analytically is impossible because we only
have an analytic expression for the near-horizon part of the solution. Nevertheless, posessing
only the near horizon solution, we are still able to extract the low-frequency behaviour of
the conductivity using careful matching techniques. This illustrates an important principle
– the near-horizon geometry effectively encodes all IR physics of the dual field theory. Our
approach is similar in spirit to [7].

We find, using the solution for eαφ in section 2.2, that in the near-horizon region:

V (z) =
c

z2
. (2.84)

It further transpires that the constant c is independent of the value of α:

c = 2 . (2.85)
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This is similar to the universality seen, in a different context, in §5.3 of [21]. We will never-
theless continue our discussion with arbitrary values of c, for possible use in related problems.

The change of variables from z to w takes the near-horizon region to z = −∞ and the
boundary to z = 0. Therefore, the scattering problem we wish to study has incoming plane
waves with energy ω2 at 0.

Because the potential has a 1
z2 form, the WKB approximation does not apply. However,

we can still solve this problem using the method of matched asymptotics, developed in roughly
this context in [83]. Define χ via

Ψ =

√
−πωz

2
χ . (2.86)

Then the Schrödinger equation satisfied by Ψ becomes

z2∂
2χ

∂z2
+ z

∂χ

∂z
+ (z2ω2 − ν2)χ = 0 , ν2 = c+

1

4
. (2.87)

Ingoing modes

The AdS/CFT correspondence instructs us to choose modes which are purely ingoing at
the horizon. The solutions to the differential equation (2.87) are Hankel functions; the
purely ingoing solution, at the horizon, is given by

χ = H(1)
ν (−ωz) ∼

√
2

−πωz
exp

(
−iωz − i(ν +

1

2
)
π

2

)
(2.88)

where after ∼ we give the behaviour as z → −∞. Including time dependence, this yields a
wavefunction

ψ ∼ exp

(
−iω(t+ z)− i(ν +

1

2
)
π

2

)
. (2.89)

This is the desired, purely ingoing, mode at the horizon.

Matched Asymptotics

We now solve for the ω-dependence of the resistivity by a method of matched asymptotics in
the regime ω � µ. Our strategy is as follows: For small ω, the ω2 term in the Schrödinger
equation is only relevant in the regions where the potential can be made arbitrarily small.
This happens at z → −∞ (the horizon) and at the boundary z → 0. Therefore, away from
these regions, we can neglect the ω-dependent terms entirely, and use the approximation
that V (z) is the dominant term in the Schrödinger equation. We therefore start with the
solution of the ω-dominated equation near the boundary, and show that we can continue it
(still using a near-boundary approximation) to a solution in the potential-dominated region
– potential domination happens even very near the boundary, for sufficiently small ω. We
then continue the resulting solution all the way to the near-horizon, while remaining in the
potential dominated region – which introduces no new ω dependence. Finally, using the exact
near-horizon solution (2.89) and the conservation of flux between infinity and the horizon,
we are able to determine the ω-dependence of the coefficient of the reflected wave.
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Step 1: Near-boundary analysis

For r � rhorizon, we have

a2 ∼ r2, z ∼ −1

r
, V (z) ∼ c2z

2 . (2.90)

We can therefore neglect the potential in the Schrödinger equation if we satisfy

c2z
2 � ω2 → r � 1

ω
. (2.91)

This close to the AdS boundary, the equation has solutions

Ψ(z) = D1e
−iωz + D2e

iωz . (2.92)

Now, choose a point z1 with z2
1 � ω2. It follows that in the small frequency limit, we also

have |z1| � 1
ω . Therefore we can Taylor expand our wavefunction (2.92), yielding:

Ψ ∼ (D1 +D2) + iω(−D1 +D2)z . (2.93)

Now, still in the near-boundary region, we can choose a point z2 where the potential now
dominates the ω2 term in the Schrödinger equation. This only requires z2

2 � ω2, and is
possible in the near-boundary region for small ω. Let us suppose that while V (z) � ω2 in
the vicinity of this point, in truth both terms are negligible in the Schrödinger equation. The
conditions for this to hold are that:

V (z)(∆z)2 � 1, ω2(∆z)2 � 1, ∆z ≡ |z2 − z1| . (2.94)

These conditions can be satisfied for small frequency; they simply require that ω � |z2| � 1.
Then in reaching z2 from z1, we can neglect both potential and frequency terms in the

Schrödinger equation, which means we can simply use linear extrapolation from z1 to z2.
Hence:

Ψ ∼ E1 + E2z, (2.95)

and matching with (2.92) we find that

E1 = D1 +D2, E2 = iω(D2 −D1) . (2.96)

Step 2: Near-horizon analysis

We will momentarily try to match the wavefunction extrapolated from z2, to a wavefunction
in the near-horizon region. What is the appropriate wave-function there? For z approaching
−∞, as we have already discussed,

V (z) ∼ c

z2
, z ∼ −1

r − rh
. (2.97)
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We can find points in the near-horizon region where V (z) dominates ω2; this simply requires
|ωz| � 1, and is true for arbitrarily large |z| for small enough ω. Let us choose such a point,
z3. In this region, |ωz3| � 1, the Hankel function reduces to

Ψ ∼
√
−π

2
ωzH(1)

ν (−ωz) ∼
√
−π

2
ωz (Jν(−ωz) + iNν(−ωz))

∼
√
−π

2
ωzi
−(ν − 1)!

π

(
−2

ωz

)ν
. (2.98)

Step 3: Matching

Now, we need to match the wavefunction (2.95) with coefficients (2.96) to the wavefunction
(2.98). This involves using the Schrödinger equation to integrate from the point z2 (near the
boundary) to the point z3 (near the horizon). The key point, however, is that in the entire
intermediate region, we can neglect the frequency dependence in the Schrödinger equation.
Therefore, the frequency dependence of E1 and E2 in (2.96) can be determined from the
frequency dependence we see in (2.98). This yields

E1, E2 ∼ ω
1
2
−ν → D1 +D2 ∼ ω

1
2
−ν , D2 −D1 ∼ ω−

1
2
−ν . (2.99)

Next, how do we determine the conductivity σ? The key point, as observed in [21]
following [83], is that the exact Schrödinger equation has a conserved flux

F = i (Ψ∗∂zΨ−Ψ∂zΨ
∗) . (2.100)

Evaluating the frequency dependence close to the horizon, we find

F ∼ ω . (2.101)

Now at the boundary, we can write [21]

F ∼ |D1 +D2|2 ω (Re(σ)) . (2.102)

This immediately fixes
Re(σ) ∼ ω2ν−1 . (2.103)

Finally, noting that for all values of α, ν = 3/2, we find

Re(σ)|dilaton black hole ∼ ω2 . (2.104)

The ω2 behaviour of the conductivity, independent of the value of α, is intriguing. We
do not have a good understanding for this universal result. Mathematically it arises because
the coefficient c in the near-horizon potential always takes the value 2, (2.85). However one
gets the feeling that something deeper is at work here which merits further understanding.
The same behaviour of the conductivity was also obtained in some cases in [21], and has been
proved to hold in general for black branes with a near-horizon AdS2 geometry in [85, 86].
However, here we find that this behaviour emerges under far more general circumstances.
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More general attractors

One might suspect that the universal low-frequency behaviour of the conductivity found
above continues to be true even for some of the other classes of attractors considered above.
Here we present some additional evidence in support of this, leaving a more detailed analysis
for the future.

Consider as an example case 3) which is a limiting situation where the potential vanishes
very rapidly. In this case the effective potential takes the form

Veff (φ) = Q2 Exp
(
−Aeαφ

)
, (2.105)

which would arise in a theory where the gauge coupling function f2 is characterized by

1

4
f(φ)2 = Exp

(
Aeαφ

)
. (2.106)

Expressing everything in terms of z, and substituting the solution (2.64) into the effective
Schrödinger potential (2.77), we find

V (z) =
2

z2

(
1 +

3

log(−z)
+ . . .

)
. (2.107)

The leading order potential near the horizon, where |z| → ∞, is therefore still 2/z2. As
a result we expect the low frequency conductivity to behave as σ ∼ ω2 in this case as well.

2.6 Summary and Discussion

In this chapter, we have shown that charged dilaton black branes in AdS provide a rich
playground for studying black hole physics and holographic condensed matter physics. The
basic features for the standard charged dilaton branes with gauge-coupling function f2 ∼ e2αφ

are:

• The near-horizon metric of the black holes has a Lifshitz-like symmetry in the metric, with
a dynamical critical exponent z that depends on α, although the full background solution
breaks the symmetry. This near-horizon structure is universal for black holes of arbitrary
charge and asymptotic coupling, at fixed α; this represents a generalization of the attractor
mechanism to this class of (much less symmetric) black branes.

• The ground state at finite charge density has vanishing entropy at extremality, and posi-
tive specific heat, as expected for a garden-variety condensed matter system. At finite but
low temperature, there are plentiful low-energy degrees of freedom. Compared to a 2+1
dimensional CFT where the entropy density (and shear viscosity [3]) scale like T 2 at low
temperature, our system has s ∼ T 2β (with a similar behaviour for the viscosity). Since
β < 1, there are more low-energy degrees of freedom in these states with finite charge density
than would be present in a CFT.

• In the range, T � ω � µ AC conductivity exhibits an intriguing universality and behaves
(apart from a delta function at zero frequency) as σ(ω) ∼ c(α) ω2 for all values of α.
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Chapter 3

Holography of Dyonic Dilaton Black Branes

This chapter is based on work published in [9], completed in collaboration with Kevin Gold-
stein, Norihiro Iizuka, Shamit Kachru, Sandip Trivedi, and Alexander Westphal.

3.1 Introduction

In this chapter, we continue the study of dilatonic black branes, expanding our discussion to
dyonic branes in a more general class of theories involving an axion field as well as a dilaton.

We begin by completing our study of the electrically charged black brane solutions of the
previous chapter by calculating the temperature dependence of their AC conductivities at
low temperatures (in the range ω � T � µ). In this regime, we find that the conductivity is
Re (σ) ∼ T 2 (with an additional delta function at ω = 0).

The field theory dual to the theories we are studying has a global conserved U(1) current
– the conductivity we calculate is the linear response of the theory, in the presence of a
chemical potential µ, to an external electric field coupled to the U(1) current. To further
characterize the field theory it is natural to consider linear response in the presence of not
only a chemical potential but also a background magnetic field. This also corresponds to
turning on a magnetic field in the gravity dual, which is achieved by considering black brane
solutions posessing not only electric but also magnetic charge. See, e.g., [5, 11].

Once we allow for a bulk magnetic field it is natural to consider bulk theories containing
not only a dilaton but also an axion (which will be denoted as λ1(x))1. A particularly
interesting case is when the bulk theory has an SL(2, R) symmetry.2 Here, the behavior
of a system carrying both electric and magnetic charges is related to the purely electric
case by an SL(2, R) transformation. Under an SL(2, R) transformation the dilaton-axion,
λ = λ1 + ie−2φ, transforms like

λ→ ãλ+ b

cλ+ d
.

1It is reasonable to believe that varying the boundary value of the axion corresponds to adjusting the value
of a Chern-Simons coupling in the boundary theory [87]; we briefly expand on this comment below.

2This symmetry is expected to only be approximate and would receive corrections beyond the classical grav-
ity approximation; for instance, in many quantum string theories, it is broken to SL(2, Z) non-perturbatively.
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We find that the two complex combinations of the conductivity3 σ± = σyx ± iσxx also trans-
form in exactly the same way,

σ± →
ãσ± + b

cσ± + d

. An interesting feature of our results is that the DC Hall conductivity agrees with the
attractor value of the axion, in accord with expectations that the axion determines the
coefficient of the Chern-Simons coupling in the boundary theory (which in turn determines
the Hall conductivity.)

We also calculate the thermoelectric and thermal conductivity for a general system car-
rying both electric and magnetic charges. These are related to the electric conductivity by
Weidemann-Franz type relations which are very analogous to those obtained in the non-
dilatonic case [5, 11].

Finally we consider a more general class of bulk theories containing a dilaton-axion but
without SL(2, R) symmetry. For some range of parameters we find that the deep infra-red
geometry is an attractor and changing the asymptotic value of the axion does not lead to
a change in this geometry. Outside this parametric range, however, the attractor behavior
appears to be lost and a small change in the asymptotic value of the axion results in a solution
which becomes increasingly different in the infrared.

3.2 Review of Earlier Results

Here we very briefly summarize some of the results of the previous chapter and [8]. Consider
a four-dimensional system consisting of a dilaton coupled to a gauge field and gravity with
action

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (3.1)

Λ = − 3
L2 is the cosmological constant. We will often set L = 1 in the discussion below.

The metric of a black brane has the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2) . (3.2)

For an electrically charged brane the gauge field is

e2αφF =
Q

b(r)2
dt ∧ dr. (3.3)

The extremal black brane is asymptotically AdS4 and characterized by two parameters,
the charge Q and φ0 - the asymptotically constant value of the dilaton. In the extremal case,
the near-horizon region is universal and independent of both these parameters, due to the
attractor mechanism.4 The metric is of the Lifshitz form [13]5

ds2 = −(C2r)
2dt2 +

dr2

(C2r)2
+ r2β(dx2 + dy2), (3.4)

3 Note that the conductivities σxx, σyx, are frequency dependent and hence complex so σ± are not complex
conjugates of each other.

4The curvature scale in the near-horizon region is set by the cosmological constant Λ.
5See also [88].
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with dynamical exponent

z =
1

β
. (3.5)

The near-horizon solution is valid when

r � µ (3.6)

where µ ∝
√
Q is the chemical potential.

The dilaton in the near-horizon region is

φ = −Klog(r) . (3.7)

The constants which appear in the metric and dilaton above are given in terms of α, the
coefficient in the dilaton coupling (3.1):

C2
2 =

6

(β + 1)(2β + 1)
, β =

(α2 )2

1 + (α2 )2
, K =

α
2

1 + (α2 )2 . (3.8)

This class of solutions, but with different asymptotics than those of interest to us, was
discussed in [14] (the solutions there were asymptotically Lifshitz, and have strong coupling
at infinity; for other asymptotically Lifshitz black hole solutions, see [89, 90, 91, 92, 93, 94,
95, 96, 97, 98]).

The entropy of the extremal black brane vanishes. For a near-extremal black brane
the temperature dependence of entropy and other thermodynamic quantities is essentially
determined by the near-horizon region. (For a careful discussion of how the global embedding
affects the thermodynamics, see appendix A of [99]; see also the recent paper [100] for a
discussion of how the non-extremal branes embed into AdS.).

The bulk theory above is dual to a 2 + 1 dimensional boundary theory which is a CFT
with a globally conserved U(1) symmetry. The electrically charged black brane is dual to the
boundary theory in a state with constant charge density determined by Q.

The black brane geometry can be used to calculate transport coefficients in the boundary
theory. In particular, the real part of the longitudinal electric conductivity (Re (σ) ≡ σxx =
σyy) at zero temperature and small frequency6 is found to be

Re (σ) = C
ω2

µ2
. (3.9)

Here C is a constant which depends on α and φ0. We note that the frequency dependence
of Re (σ) is universal and is independent of α. The conductivity is dimensionless in 2 + 1
dimensions. This fixes the dependence on µ - the chemical potential- once the dependence
on ω is known.

More generally, at finite temperature and frequency, σ is a function of two dimensionless
variables σ(Tµ ,

ω
µ ). Eq.(3.9) gives the leading dependence when T � ω � µ. We also note

that in the purely electric case the Hall conductivity σxy vanishes.

6There is a delta function Drude peak at ω = 0 in addition which we have subtracted.
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3.3 The DC Conductivity

In this section we calculate the leading behavior of the conductivity, σ, when

ω � T � µ. (3.10)

Our analysis will closely follow the discussion in the previous chapter and section 3 of [8]
(which itself used heavily the results of [21]). We consider a perturbation in Ax, which mixes
with the metric component gxt, impose in-going boundary conditions at the horizon, and then
carry out a matched asymptotic expansion which determines the behavior near the boundary
and hence the conductivity. We skip some of the details here and emphasize only the central
points.7

The leading behavior of the conductivity in the parametric range (3.10) will turn out to
be

Re (σ) = C ′
T 2

µ2
. (3.11)

This is independent of ω. The DC conductivity defined as the limit ω → 0 of the above
formula then just gives (3.11) as the result. Actually there is an additional delta function
contribution at ω = 0; we will comment on this more in the following subsection. C ′ in (3.11)
is a constant that depends on φ0.

We begin by observing that the variable

Ψ = f(φ)Ax (3.12)

satisfies a Schrödinger equation,

−Ψ′′ + V (z)Ψ = ω2Ψ. (3.13)

Here, f(φ) = 2 eαφ is the dilaton coupling, as discussed in eq.(3.10) of [8], and primes denote
derivatives with respect to the variable z, defined as

∂

∂z
= a2 ∂

∂r
. (3.14)

The potential V (z) is given by

V =
f ′′

f
+
a2Q2

b4f2
. (3.15)

In the near-boundary region, Ψ takes the form

Ψ = (D1 +D2) + iω(−D1 +D2)z. (3.16)

The resulting flux is
F ∼ |D1 +D2|2ωRe (σ). (3.17)

7The result of this section has also been obtained in [101], which appeared while our paper was being
readied for publication. Other related papers which appeared recently include [102, 103, 104, 105, 106, 107].
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We are interested here in a slightly non-extremal black brane. This has a near-horizon
metric

ds2 = −C2
2r

2
(

1− (
rh
r

)2β+1
)
dt2 +

dr2

C2
2r

2
(
1− ( rhr )2β+1

) + r2β(dx2 + dy2). (3.18)

The temperature is
T ∼ rh. (3.19)

The dilaton is the same as in the extremal case. The near-horizon form of the metric above is
valid for r � µ. The temperature dependence of the conductivity is essentially determined by
the near-horizon region, as long as T

µ � 1. This is similar to what happens for the frequency
dependence when ω

µ � 1.
In the near-horizon region rh is the only scale, as we can see from (3.18). It is therefore

convenient, in the discussion below, to rescale variables by appropriate powers of rh. We
define

r̂ =
r

rh
(3.20)

â2 ≡ a2

r2
h

= C2
2 r̂

2

(
1− 1

r̂2β+1

)
(3.21)

and
∂

∂ẑ
≡ 1

rh

∂

∂z
= â2 ∂

∂r̂
. (3.22)

The Schrödinger equation then becomes,

− d2Ψ

dẑ2
+ V̂Ψ =

ω2

r2
h

Ψ (3.23)

where the rescaled potential, V̂ , is dependent on the rescaled variable ẑ alone without any
additional dependence on rh .

Very close to the horizon, V̂ goes to zero and we have

ψ ∼ e−iω(t+z) = e−iωte
−i( ω

rh
ẑ)

(3.24)

resulting in the flux
F ∼ ω. (3.25)

From (3.17), (3.25) we see that the conductivity is

Re (σ) ∼ 1

|D1 +D2|2
. (3.26)

Now, consider the region of the near-horizon geometry where

µ

T
� r̂ � 1 . (3.27)
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Since the temperature is small (3.10), these conditions are compatible. In this region the
temperature dependent terms in the metric are subdominant and a2 ' C2

2r
2. Eq.(3.22) then

leads to

ẑ = − 1

C2
2 r̂

(3.28)

and (3.15) to a potential,

V̂ =
c

ẑ2
, (3.29)

with the constant
c = 2. (3.30)

Now since the frequency is even smaller than the temperature, (3.10), ω/T � 1 and (3.27)
and (3.19) imply that

r̂ � ω

rh
. (3.31)

In terms of z this becomes
1

ẑ2
�
(
ω

rh

)2

. (3.32)

It follows that the frequency term in the Schrödinger equation (3.23) is subdominant
compared to the potential term in this region. The resulting solution becomes

Ψ ' ẑ1/2
(a1

ẑν
+ b1ẑ

ν
)

(3.33)

with

ν =

√
c+

1

4
. (3.34)

From the condition r̂ � 1 and (3.28) we see that in this region

|ẑ| � 1. (3.35)

As a result, the first term on the RHS of (3.33) dominates8 giving

Ψ ∼ a1(rhz)
1
2
−ν . (3.36)

Here we have used the fact that ẑ = rhz.
We have seen above that once r lies in the region which meets the condition (3.27) both the

temperature and frequency effects can be neglected. Moving outwards towards the boundary
this continues to be true all the way till the near boundary region. This region is described
in Step 1 of section 2.5.2 in the previous chapter. As a result, one gets

D1 ∼ D2 ∼ r
1
2
−ν

h . (3.37)

8This would not be true if a1 was suppressed compared to b1 by a power of ω. However, this does not
happen, as we discuss further in Appendix A of this chapter.
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From (3.26), (3.19), (3.30) and (3.34), this gives

Re (σ) ∼ r2ν−1
h ∼ T 2ν−1 ∼ T 2. (3.38)

The dependence on µ then follows from dimensional analysis, leading to (3.11).
Finally we note that it is simple to see that the Hall conductivity continues to vanish at

finite temperature as well.

3.3.1 The pole in Im (σ) and related delta function in Re (σ)

The real part of σ has a delta function contribution at ω = 0, which arises because the system
has a net charge and it is transported in a momentum conserving manner. A Kramers-Kronig
relation relates the delta function to a pole in the imaginary part of σ. It will be important
to keep track of this pole and the related delta function when we turn to the discussion of
the system in a magnetic field, so let us discuss it in some more detail here.

As discussed in section 2.5 of the previous chapter, following [21], the conductivity is
given in terms of the reflection coefficient R by

σ =
1−R
1 +R

(3.39)

(the extra term in eq.(3.12) of [8] drops out since f ′(0) vanishes like z3 towards the boundary).
Now in the notation of section 3.2 of [8] close to the boundary Ψ is

Ψ = D1e
−iω(t+z) +D2e

−iω(t−z), (3.40)

giving

σ =
D1 −D2

D1 +D2
. (3.41)

The coefficients D1, D2 can be related to E1, E2 which govern the solution in the not-so
near boundary region. This region is defined in Step 1 of section 2.5.2 in the previous chapter.
and corresponds to taking |ω| � z � 1. The coefficients E1, E2 are defined by

D1 +D2 = E1, D1 −D2 = i
E2

ω
, (3.42)

giving from (3.41)

σ = i
E2

E1

1

ω
. (3.43)

E1 and E2 are obtained by starting from the near horizon region where in-going boundary
conditions are imposed and integrating out towards the boundary. The zero temperature,
leading order solution in the near-horizon region, is of the form ψ = Cz1/2−ν , as discussed in
section 2.5. Integrating this out towards the boundary gives E2/E1 to be real and of order
unity in units of the chemical potential. Similarly, at non-zero temperature in the parametric
range (3.10), the solution in the near-horizon region (3.27) is given by (3.36). Integrating out
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towards the boundary again gives E2/E1 to be real and of order unity. Thus we learn that
near ω = 0

Im (σ) = C ′′
µ

ω
(3.44)

where C is a coefficient of order unity and we have restored the µ dependence on dimensional
grounds. As a result, there is a pole at ω = 0 in Im (σ) and hence a delta function in Re (σ)
at ω = 0.

In the presence of disorder the frequency dependence changes, ω → ω+i/τimp [5], and the
pole acquires an imaginary part. The delta function peak in Re (σ) is therefore broadened
out, as will be discussed further in section 3.6.

3.4 Purely Magnetic Case

Next, as a warm-up for general dyonic branes, we consider the case of a black brane which
carries only magnetic charge. The action is given by (3.1), but we are now interested in the
case where the gauge field strength is

F = Qmdx ∧ dy. (3.45)

It is easy to see that the equations of motion for the system are invariant under a duality
transformation which keeps the metric invariant (this is the Einstein frame metric) and takes

φ→ −φ, Fµν → e2αφF̃µν . (3.46)

Here

F̃µν =
1

2
εµνρσF

ρσ. (3.47)

So we see that the duality transformation takes us from the purely electric case (3.3), to the
purely magnetic one (3.45). The value of Qm is

Qm = Q. (3.48)

As a result, the metric for the extremal magnetic case in the near horizon region is still
of the Lifshitz form (3.4). To avoid confusion we denote the dilaton after duality by φ′ in the
subsequent discussion; it is given by

φ′ = K log r (3.49)

where the constants which appear in the metric and in the dilaton continue to be given by
(3.8). The gauge coupling is (g′)2 = e−2αφ′ . From (3.49), (3.8) we see that the theory now
gets driven to strong coupling, (g′)2 → ∞, near the horizon, and if a string embedding is
possible this would mean that quantum loop effects would get important near the horizon.
By considering a slightly non-extremal black brane such effects can be controlled.

The behavior of the dilaton can also be understood in terms of the effective potential [15].
In general, with electric and magnetic charges the effective potential is (from section 2.4 of
the previous chapter and eq.(2.19) of [8]):

Veff = e−2αφQ2
e + e2αφQ2

m . (3.50)
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Since after duality, Qe = 0, Qm = Q, we get,

Veff = Q2e2αφ′ (3.51)

so that the minimum does indeed lie at e2αφ′ → 0, or equivalently e−2αφ′ →∞.
In mapping the magnetic case to the boundary theory it is best to think of weakly gauging

the global U(1) symmetry of the boundary theory. Then the magnetic case corresponds to
turning on a constant magnetic field in the boundary theory. The electric-magnetic duality
therefore has an interesting consequence. In the electric case, the electric field is a normaliz-
able mode and corresponds to a state in the boundary theory at constant number density or
chemical potential. In contrast, in the magnetic case, the magnetic field is a non-normalizable
mode and corresponds to changing the Lagrangian of the boundary theory.

The metric in the slightly non-extremal case is also unchanged by duality and hence given
in the near-horizon region by (3.18). We now elaborate on the resulting thermodynamics.

3.4.1 Thermodynamics

Let us begin by briefly reviewing the purely electric case. From the Maxwell term in the
action

Sem = −
∫
d4x
√
−ge2αφFµνF

µν (3.52)

using standard techniques in AdS/CFT and the definition of Q, (3.3), we learn that the the
charge density n in the boundary theory is

n = 4Q. (3.53)

A purely electric system satisfies the thermodynamic relation

TdS = dE + pdV − µdN . (3.54)

From this relation, using electric-magnetic duality, one can obtain the thermodynamic quan-
tities in the magnetic case. For this purpose it is convenient to take the independent thermo-
dynamic variables in the electric case to be (E, V, T, n), since these can be mapped directly to
the independent variables (E, V, T,Qm) in the magnetic case. Here Qm is the magnetic field.
(The magnetic field is usually denoted by H or B, but Qm is more natural for us in view of
the duality transformation.) Since the Einstein frame action is duality invariant (E, V, T ) are
left unchanged in going from the electric to the magnetic case. And from (3.53) and (3.48)
it follows that n→ 4Qm. Thus, the four independent variables can be easily mapped to one
another.

Expressing the number N = nV = 4QV = 4QmV we get from (3.54) in the electric case
that

TdS = dE + (p− 4µQ)dV − 4µV dQm. (3.55)

Comparing (3.55) with the standard thermodynamic relation in the purely magnetic case (as
discussed in e.g. Reif, Fundamentals of Statistical and Thermal Physics, 11.1.7)

TdS = dE + pdV +MdH , (3.56)
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and noting that the magnetic field is Qm in our notation, we get that the magnetization is

M = −4µV (3.57)

and the pressure in the magnetic case is

pmag = pel − 4µQ = pel +
MH

V
. (3.58)

In the electric case the chemical potential is a function of the energy density ρ, T, n, µ(ρ, T, n).
In the formulae above for the magnetic case, (3.57), (3.58), the chemical potential should now
be interpreted as a function of ρ, T,Qm given by µ(ρ, T, 4Qm).

It is worth discussing the extremal situation in the magnetic case further. The energy
density (see eq.(2.52) of [8]) is given by

ρ = CQ3/2e−3αφ0/2 = C(Veff0)3/4 (3.59)

where we have used the definition of the effective potential in (3.50). The subscript “0” on
Veff indicates that it is to be evaluated at ∞, where the dilaton takes value φ0.

The chemical potential is

µ =
∂ρ

∂n
=

3

8
CQ1/2e−3αφ0/2 =

3

8
C(Qm)1/2e3αφ′0/2 (3.60)

where we have used (3.48) and (3.46). We see from (3.57) that the magnetization is opposite
to the magnetic field. As a result, the susceptibility for this system is negative, and the
theory is diamagnetic.

Using pel = ρ/2, ([8] eq.(2.53)), the pressure in the magnetic case is

pmag = −ρ = −CH3/2e3αφ′0/2 . (3.61)

It seems puzzling at first that that this is negative, since one would expect the boundary
theory to be stable. This turns out to be a familiar situation in magnetohydrodynamics, see
the discussion around eq.(3.10) in [5]. In the presence of a magnetic field the pressure and
spatial components of stress energy are different and related by

T xx = T yy = pmag −
MH

V
. (3.62)

Stability really depends on the sign of T xx, which determines the force acting on the system.
From (3.58), we see that T xx = pel, and is thus positive.9

3.4.2 Controlling the flow to strong coupling

We saw above, (3.51), that for the magnetic case e2αφ′ → 0 and thus the gauge coupling
g2 = e−2αφ′ gets driven to strong coupling at the horizon. In a string theory embedding one
would expect the string coupling to become large and thus quantum corrections to become

9In fact this had to be true since T xx, T yy are duality invariant and in the electric case pel = T xx = T yy.
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important near the horizon. To control these corrections one can consider turning on a small
temperature and dealing with the near-extremal brane instead. From (3.48), (3.19), and (3.8)
we see that if the temperature is T ∼ rh the coupling at the horizon is

e−2αφ′ ∼ 1

T 4β
. (3.63)

The only other dimensionful quantity in the boundary theory is the magnetic field, so the
dependence on magnetic field can be fixed by dimensional analysis. An explicit bulk analysis
also shows that this dependence is correct. In addition there is a dependence on the asymp-
totic value of the dilaton φ′0. It is easy to see that φ′0 only enters in the combination Qme

αφ′0

with the magnetic field and as (φ′−φ′0) with the varying dilaton. This is enough to fixed the
φ′0 dependence of (3.63) and we get

e−2αφ′ ∼ e−2αφ′0

(
Qme

αφ′0

T 2

)2β

. (3.64)

For the temperature to be small and the brane to be near-extremal,

T 2 � Qme
αφ′0 . (3.65)

Thus to make e−2αφ′ � 1 we need to adjust the asymptotic value of dilaton and start with
a theory which is at very weak coupling

e−2αφ′0 �
(

T 2

Qmeαφ
′
0

)2β

. (3.66)

Once this is done the coupling will continue to be small all the way to the horizon.

3.4.3 Dyonic case with only dilaton

Most of this section has dealt with the purely magnetic case. Below we will turn to a dyonic
system with an axion. Before doing so though let us briefly discuss the dyonic case in the
presence of only a dilaton without an axion. From (3.50) we see that the dilaton now has the
attractor value φ∗ with,

e2αφ∗ =

∣∣∣∣ QeQm

∣∣∣∣ . (3.67)

From the equations of motion it then follows that the metric component b2, (3.2), at the
horizon is

b2h ∼
√
Veff (φ∗) ∼

√
|QeQm|. (3.68)

The resulting entropy is then

s ∝ b2h/GN ∼ C
√
|QeQm| (3.69)

where C ∼ L2/GN is the central charge of the AdS4. As has been discussed above the
purely electric case has no ground state degeneracy. Once a magnetic field is also turned
on we see that such a degeneracy does arise. By itself this is not surprising. However,
the resulting entropy formula, (3.69), is quite intriguing and understanding it better should
provide important clues for the microscopic dual of the purely dilatonic case.
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3.5 The SL(2, R) Invariant Case

In this section we discuss a theory which has SL(2, R) duality symmetry, in the presence of
an axion, with action10

S =

∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − 1

2
e4φ(∂λ1)2 − e−2φF 2 − λ1FF̃

]
. (3.70)

Comparing with (3.1) we see that the gauge coupling function here corresponds to taking
α = −1. We will mostly follow the notation of [22] below (see also [23]) and denote the
complexified dilaton-axion by

λ = λ1 + iλ2 = λ1 + ie−2φ. (3.71)

It is easy to see that under an SL(2, R) transformation

M =

(
ã b
c d

)
(3.72)

which takes
Fµν → F ′µν = (cλ1 + d)Fµν − cλ2F̃µν (3.73)

and

λ→ λ′ =
ãλ+ b

cλ+ d
(3.74)

while keeping the metric invariant, the equations of motion are left unchanged. (This is
discussed for example in [23] around eq.(18) with (ML)ab → −1). Note that we are denoting
M11 = ã (as the axion field is often called a in the literature) and the axion by λ1 to avoid
confusion. (The metric element b(r) = gxx will always contain an explicit r-dependence, so
no confusion should arise with the matrix element M12 = b.) Also, since M is an element of
SL(2, R)

ãd− bc = 1. (3.75)

Thus starting from the purely electric case where only the dilaton is non-trivial and
carrying out a general duality transformation, we can obtain a dyonic brane with both axion
and dilaton excited. In the discussion below we will follow the conventions established above
of referring to parameters obtained after duality with a prime superscript.

The starting electric brane is characterized by four parameters: a mass M , a charge Q,
and asymptotic values of the dilaton and axion, λ20 ≡ e−2φ0 , λ10 ≡ λ1(∞). The axion is
radially constant. The SL(2, R) transformation adds three additional parameters11, resulting
in a 7 parameter set of solutions. Two of these parameters are redundant, though, since the
general dyonic brane solution only has only 5 independent parameters: M ′, Q′e, Q

′
m, λ

′
20, λ

′
10.

This redundancy can be removed by setting λ10 = 0 in the electric case, and also setting
Q = 1.12 In the discussion below we will set λ10 = 0, but not necessarily set Q = 1.

10 In our conventions F̃µν = 1
2
εµνρκFρκ and εµνρσ has a factor of 1√

−g in its definition, thereby making the
axionic coupling independent of the metric. We have chosen conventions εtrxy > 0.

11det(M) = 1 so there is one constraint among the 4 matrix elements.
12More correctly the scaling symmetry allows one to set |Q| = 1.
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The gauge field can be written in terms of the electric and magnetic charges as follows

F ′ =
(Q′e −Q′mλ′1)

b(r)2
(λ′2)−1dt ∧ dr +Q′mdx ∧ dy . (3.76)

It can be seen that Q′e, Q
′
m being constant solves the gauge field equations of motion and

Bianchi identities. From (3.76) we see that

F ′xy = Q′m. (3.77)

Using (3.73) this gives,
Q′m = −cλ2F̃xy = cQ. (3.78)

Similarly from (3.76) we see that

λ′2F
′
tr =

(Q′e − λ′1Q′m)

b(r)2
. (3.79)

And (3.73) now gives

F ′tr = (cλ1 + d)Ftr − cλ2F̃tr = dFtr = d
Q

λ2b(r)2
(3.80)

where we have used (3.78) and the fact that λ1 = 0 and F̃tr = 0 in the electric case. Together
these imply

Q′e =

(
λ′2
λ2
d+ λ′1c

)
Q. (3.81)

Using (3.74), and relation ãd− bc = 1 then gives

Q′e = ãQ. (3.82)

It is now easy to see that the effective potential, which is given by

V ′eff = (Q′e −Q′mλ′1)2(λ′2)−1 + (Q′m)2λ′2 , (3.83)

is in fact duality invariant and thus equal to its value in the purely electric frame,

Veff =
Q2

λ2
. (3.84)

Thermodynamic quantities of a system carrying electric charge in a magnetic field satisfy
the relation

TdS = dE + pdV − µdN +MdQm . (3.85)

We will be particularly interested in the extremal case where the TdS term vanishes. Writing
E = ρV,N = nV we get in this case,

(dρ− µdn+
M

V
dQm)V + (ρ− µn+ p)dV = 0 . (3.86)
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From this it follows that both,

dρ− µdn+
M

V
dQm = 0 (3.87)

and
ρ− µn+ p = 0. (3.88)

We are interested in applying these relations to the dyonic case obtained after duality.
The energy density is duality invariant, since it can be extracted from the Einstein frame
metric which is duality invariant. Thus we get,

ρ′ = ρ = C(Veff0)3/4 = C
[
(Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20

]3/4
. (3.89)

The subscript “0” on Veff and the moduli indicates that the effective potential must be evalu-
ated at r =∞ where the moduli take values λ′20 ≡ e−2φ′0 , λ′10. Straightforward manipulations
then give us that

µ′ =
1

4

∂ρ′

∂Q′e
=

3C

8
(Veff0)−1/4

(
Q′e − λ′10Q

′
m

λ′20

)
(3.90)

where we have used the fact that n′ = 4Q′e. The magnetization per unit volume is

M ′

V
= − ∂ρ′

∂Q′m
= − 3C

2(Veff0)1/4λ′20

[
Q′m(λ′220 + λ′210)− λ′10Q

′
e

]
(3.91)

and the pressure is

p′ = µ′n′ − ρ′ = − C

(Veff0)1/4λ′20

[
(Q′m)2(λ′220 + λ′210)− 1

2
(Q′2e + λ′10Q

′
eQ
′
m)

]
. (3.92)

In (3.90)-(3.92) the moduli take their values at infinity. From (3.91) it follows that the
susceptibility is negative, and thus the system is diamagnetic. From (3.92) we see that the
pressure can be positive or negative. The stress energy tensor component T xx = T yy = ρ/2
and is always positive.

Finally, we discuss the compressibility of this system. This is defined to be

κ = − 1

V

∂V

∂p

∣∣∣
TQmN

. (3.93)

The partial derivative on the RHS is to be evaluated at constant temperature T , magnetic
field Qm and total number N = V n. For a system of fermions which has precisely enough
particles to fill an integer number of Landau levels, reducing the volume while keeping the
magnetic field Qm fixed would change the available number of states in the occupied Landau
levels. But since the total number of fermions is not being changed in the process, and there
is a large gap to the next available Landau level, this cannot happen without significant
energetic cost, and as a result the compressibility vanishes. This happens for example in
quantum Hall systems. For our case, from (3.87) (3.88) we have that

∂p

∂V

∣∣∣
TQmN

= n
∂µ

∂V

∣∣∣
TQmN

= n
∂µ

∂n

∣∣∣
TQm

∂n

∂V

∣∣∣
N
. (3.94)
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This gives

κ =
1

n2

(
∂n

∂µ

) ∣∣∣
TQm

. (3.95)

From the expression for µ′ (3.90) it is easy to see that (∂µ
′

∂n′ )
∣∣∣
TQ′m

cannot go to infinity for finite

Veff and non-vanishing λ20, and thus the compressibility cannot vanish except in extreme
limits. So the system at hand cannot become incompressible, except when Veff → 0 and/or
e−2φ → 0. We will see that some of the natural attractor flows in SL(2, R) invariant theories
do result in incompressible states of holographic matter.

3.6 Conductivity in the SL(2, R) Invariant Case

We now turn to calculating the conductivity in the SL(2, R) invariant case discussed in the
previous section. The conductivity is defined as follows

jx = σxxFtx + σxyFty (3.96)

jy = σyxFtx + σyyFty. (3.97)

Under a rotation by π/2, which is a symmetry of the system, (x, y)→ (y,−x). Transforming
all quantities appropriately in the above equations we learn that

σxx = σyy, σxy = −σyx. (3.98)

Thus there are two independent components in the conductivity tensor. In the discussion
below we will use the notation

σ1 =
σyx
4
, σ2 =

σxx
4
. (3.99)

Below we will use the bulk description to calculate jx, jy, in terms of the boundary value
of gauge fields. From the resulting equations we will find that the two complex combinations

σ+ = σ1 + iσ2 (3.100)

σ− = σ1 − iσ2 (3.101)

both transform in the same way as the axion dilaton under an SL(2, R) transformation.
Namely

σ± →
ãσ± + b

cσ± + d
(3.102)

under the transformation (3.72). Note that the conductivity components σxx, σyx are in
general complex. Thus σ+ and σ− are not complex conjugates of each other. Starting from
the purely electric case, for which the conductivity has already been obtained above, and
using the transformation properties, (3.102), we can then easily obtain the conductivity for
a general dyonic case.

The electromagnetic part of the bulk action is

Sem =

∫
d4x
√
−g
[
λ2FµνF

µν − λ1FF̃
]
. (3.103)
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In the subsequent discussion it is useful to work in a coordinate system where the metric
takes the form

ds2 = a2(−dt2 + dz2) + b2(dx2 + dy2) . (3.104)

Asymptotically, the metric approaches AdS4 and a2 = b2 = z−2. In the boundary theory, the
current 〈jx〉 can be obtained by

〈jx〉 =
δ log(Z)

δAx
. (3.105)

The standard AdS/CFT dictionary then tells us that in the bulk,

〈jx〉 = 4 [λ2Fzx − λ1Fty]z→0 (3.106)

(here we have chosen conventions so that εtzxy > 0). Similarly,

〈jy〉 = 4 [λ2Fzy + λ1Fty]z→0 . (3.107)

In this section we will be mainly concerned with using these formula to calculate the conduc-
tivity. For ease of notation in the subsequent discussion we will not specify that the moduli
and field strengths which appear are to evaluated at the boundary, z → 0.

From (3.106), (3.107), (3.96), (3.97) and (3.100) we get

λ2Fzx − λ1Fty = σ2Ftx − σ1Fty (3.108)

λ2Fzy + λ1Ftx = σ2Fty + σ1Ftx. (3.109)

A general SL(2, R) transformation can be obtained by a product of two kinds of SL(2, R)
elements. The first, which we denote as Tb, is of the form(

1 b
0 1

)
. (3.110)

And the second, which we denote by S, is(
0 −1
1 0

)
. (3.111)

To show that (3.108), (3.109) transform in a covariant way under a general SL(2, R) trans-
formation when σ± transform as given in (3.102), it is enough to show this for the transfor-
mations Tb, S.

Under Tb the field strength Fµν does not change, (3.73). The dilaton-axion transform
as λ1 → λ1 + b, (3.74), and σ1 → σ1 + b, (3.102). So we see that (3.108), (3.109) are left
unchanged. The LHS of (3.108) can be written as,

[λ2Fzx − λ1Fty] = −λ
2

(F+)ty −
λ̄

2
(F−)ty (3.112)

where F± = F ± iF̃ . Under a general SL(2R) transformation

F+ → F ′+ = (cλ+ d)F+ (3.113)

F− → F ′− = (cλ̄+ d)F−. (3.114)
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From this it follows that under S the LHS of (3.108) goes to

[λ2Fzx − λ1Fty]→ Fty. (3.115)

The RHS of (3.108) can be written as

RHS = σ2Ftx − σ1Fty =
1

2i
[σ+ (Ftx − iFty)− σ− (Ftx + iFty)] . (3.116)

Under a general SL(2, R) transformation this becomes

RHS → 1

2i

[( ãσ+ + b

cσ+ + d

){
(cλ1 + d) (Ftx − iFty)− cλ2

(
F̃tx − iF̃ty

)}
−
(
ãσ− + b

cσ− + d

){
(cλ1 + d)(Ftx + iFty)− cλ2

(
F̃tx + iF̃ty

)} ]
. (3.117)

From (3.102) after some algebra it then follows that under S

RHS→ 1

σ+σ−
[σ2(λ1Ftx + λ2Fzy) + σ1(λ1Fty − λ2Fzx)] . (3.118)

Using (3.108), (3.109) this becomes,

RHS→ 1

σ+σ−
[σ2(σ1Ftx + σ2Fty) + σ1(σ1Fty − σ2Ftx)] = Fty . (3.119)

Thus the LHS and RHS of (3.108) transform the same way if the conductivity transforms
as given in (3.102). A similar result can be obtained for (3.109) thereby establishing that
(3.102) is the correct transformation law for σ±.

Similarly, some algebra shows that if σ transforms as in (3.102) the RHS of (3.108)
becomes,

σ2Ftx − σ1Fty →
1

σ2
1 + σ2

2

[σ2(λ1Ftx + λ2Fzy)− σ1(λ2Fzx − λ1Fty)] . (3.120)

Upon using (3.108) this gives
σ2Ftx − σ1Fty → Fty (3.121)

which is indeed equal to the transformation of LHS, as seen in (3.115). Similarly (3.109)
can also be shown to be covariant under S. This proves that (3.108), (3.109) transform in a
covariant manner under SL(2, R).

Since a general dyonic system can be obtained by starting from a purely electric one and
carrying out an SL(2, R) transformation, we can now obtain the conductivity for the general
dyonic case using (3.102). We will follow the conventions of the previous section and refer to
quantities in the electric frame without a prime superscript and in the dyonic frame with a
prime superscript. In the purely electric case we have σxy = σyx = 0. Thus σ = iσxx/4. Also,
it is enough to consider the case with the axion set to zero, λ1 = 0, in the electric frame.
Thus λ = iλ2. Then using (3.102) we get

σ′xx =
σxx

d2 + c2
(
σxx

4

)2 (3.122)
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and

σ′yx = 4
ãc(σxx4 )2 + bd

d2 + c2(σxx4 )2
. (3.123)

To complete the analysis one would like to express the SL(2, R) matrix elements which
appear on the RHS of (3.122), (3.123) in terms of parameters in the dyonic frame.

As discussed in the previous section, the most general dyonic case can be obtained by
starting with a purely electric case with axion set to zero and Q = 1. From (3.82), (3.78) we
see that with Q = 1

Q′e = ã, Q′m = c. (3.124)

The invariance of the effective potential gives, from (3.83), (3.84),

λ−1
20 = (Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20. (3.125)

This allows the asymptotic value of the dilaton in the electric frame to be expressed in terms
of quantities in the dyonic frame. Using this and (3.81) we learn that d is

d =
Q′e − λ′10Q

′
m

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (3.126)

And then, finally, using the relation ãd− bc = 1 gives

b =
λ′10Q

′
e −Q′m(λ′210 + λ′220)

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (3.127)

3.6.1 More on the conductivity

The formulae obtained for the conductivity (3.122) (3.123) are valid in general. Let us
discuss the resulting behavior of the conductivity at small frequencies and temperatures in
the parametric range (3.10) more explicitly.

To start it is useful to state the parametric range (3.10) in a duality invariant manner.
The SL(2, R) transformation with b = c = 0, ã = 1/d is a scaling transformation. Starting
with the purely electric case, this SL(2,R) transformation yields Q′e = Qe/d,Q

′
m = 0. From

(3.90), (3.74), it follows that the chemical potential and dilaton transform as

µ′ = µd,
√
λ′2 =

√
λ2/d, (3.128)

so that µ
√
λ2 is invariant under the rescaling. This combination can in fact be expressed

in terms of the effective potential, which is duality invariant, as µ
√
λ2 ∼ (Veff0)1/4. The

frequency ω and temperature T are duality invariant.13 Thus the duality invariant way to
state the parametric range of interest is

ω � T � (Veff0)1/4. (3.129)

13The duality invariance of the temperature follows from that of the Einstein frame metric.
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In the purely electric case, the conductivity to leading order is

σxx = C ′
T 2

µ2
+ iC ′′

µ

ω
. (3.130)

Under the rescaling discussed in the previous paragraph, σ′xx = σxx/d
2. From this and (3.128)

it follows that C ′ is independent of φ0 while C ′′ ∝ (λ2)3/2. Both Re (σxx) and Im (σxx) have
corrections, which result in a fractional change of order ω2,

Re (σxx) = C ′
T 2

µ2

(
1 +O(ω2)

)
, Im (σxx) = C ′′

µ

ω

(
1 +O(ω2)

)
. (3.131)

Plugging (3.130) into the transformation laws (3.122), (3.123), gives the conductivity for the
general dyonic case.

Let us consider the Hall conductance first. When the magnetic field is non-zero, c 6= 0
and the pole in the imaginary part of σxx will dominate the low frequency behavior. As a
result, we get

σ′yx = 4
ã

c
+O(ω2) . (3.132)

From (3.124), (3.53) we see that the leading behavior is

σ′yx =
n′

Q′m
(3.133)

where n′, Q′m are the charge density and the magnetic field respectively. This result in fact
just follows from Lorentz invariance.

Intuitively, one would expect that the DC value of the Hall conductivity agrees with the
coefficient of the Chern-Simons term of the dual field theory in the far infra-red, which in
turn should be given by the value of the axion close to the horizon in the bulk. From (3.74)
it follows that the axion after the duality transformation is given by

λ′1 =
ãcλ2

2 + bd

c2λ2
2 + d2

. (3.134)

Near the horizon in the electric case λ2 →∞; thus, the attractor value of the axion is

λ′1∗ =
ã

c
(3.135)

which is indeed proportional to the value of the Hall conductance (3.133) (the factor of 4,
which is the proportionality constant, follows from (3.108), (3.109)).

Actually, it turns out that the O(ω2) terms in (3.132) can also be calculated reliably in
terms of C ′, C ′′. From (3.123) and (3.130) we get that

σ′yx =
n′

Q′m

[
1 + ω2

(
−4

(
T 2C ′

C ′′µ3

)2

+
64d

µ2n′(Q′m)2(C ′′)2

)
+O(ω4)

]
. (3.136)

48



Next let us consider the longitudinal conductivity. From (3.122) we get,

σ′xx = −i 16

(Q′m)2

ω

C ′′µ

[
1 + i

C ′

C ′′
ωT 2

µ3
+O(ω2)

]
. (3.137)

Here C ′, C ′′ are the coefficients as given in (3.130) and µ is the chemical potential in the
electric theory. We see that the longitudinal conductivity vanishes as ω → 0. This result
also follows from Lorentz invariance in the presence of a magnetic field. We also see that the
imaginary part does not have a pole after the duality transformation; this shows that there is
no delta function at zero frequency in the real part of σxx. The absence of this delta function
again is to be expected on general grounds, since in the presence of the background magnetic
field, momentum is not conserved.

It is worth comparing our results with the general discussion of conductivity for a relativis-
tic plasma in [5]. From general reasoning based on linear response in magnetohydrodynamics
it was argued in [5] (see also [11]) that at small frequency

σxx = σQ
ω
(
ω + iγ + iω2

c/γ
)

(ω + iγ)2 − ω2
c

(3.138)

and

σxy = −
(
n′

Q′m

)
γ2 + ω2

c − 2iγω

(ω + iγ)2 − ω2
c

. (3.139)

Here σQ, γ, ωc depend on the magnetic field Q′m, T and charge density n′. γ is the damping
frequency and ωc is the cyclotron frequency. Expanding in a power series for small ω gives

σxx = −i
σQω

γ

[
1 +

iγω

γ2 + ω2
c

+O(ω2)

]
(3.140)

and

σxy =
n′

Q′m

[
1 +

ω2

γ2 + ω2
c

]
. (3.141)

Comparing with (3.136), (3.137) we see that14

γ

γ2 + ω2
c

=
C ′T 2

C ′′µ3

1

γ2 + ω2
c

=
64d

n′Q′2mC
′′ − 4

(
T 2C ′

C ′′µ3

)2

σQ
γ

=
16

(Q′m)2C ′′µ
(3.142)

These three relations determine σQ, γ, ωc in terms of the parameters of our calculations. To
express the answer in terms of the dyonic duality frame variables we should bear in mind
that d is given in terms of the charges etc in (3.126), µ

√
λ20 ∼ (Veff0)1/4, and λ20 is given in

(3.125). Also while C ′ is independent of λ20, C ′′ ∝ λ3/2
20 .

14Our convention for σxy differs from that of [11] by a sign.
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The equations in (3.142) are valid for small temperature (3.129) and arbitrary n′, Q′m.
It is easy to solve them and obtain σQ, γ and ωc in a small T expansion. While we do not
present the results in detail, let us note that one finds at small T and also small magnetic
field Q′m that σQ, γ, ωc scale as,

σQ ∝ T 2, γ ∝ (Q′m)2T 2, ωc ∝ Q′m. (3.143)

This qualitative behavior is in agreement with the results of [11, 12] for the Reissner-
Nordström black brane at small ω and Q′m.

3.6.2 Thermal and thermoelectric conductivity

There are two transport coefficients related to the conductivity, the thermoelectric coefficient
α and the thermal conductivity κ. Both should be thought of as tensors. These are defined
by the relations, (

~J
~Q

)
=

(
σ α
αT κ

)(
~E

−~∇T

)
(3.144)

where ~E is the electric field, ~∇T is the gradient of the temperature, ~J is the electric current
and ~Q is the heat current.

It is easy to see, using the second law, that Qi is given by15

Qi = T ti − µJ i (3.145)

where T ti is a component of the stress energy tensor and ~J is the electric current.16

In AdS/CFT the source term corresponding to the electric field is a non-normalizable
mode of the bulk gauge field Ai, while the source corresponding to a thermal gradient ∇iT
corresponds, to a combination of the non-normalizable mode for the metric component git
and Ai. By turning these on and calculating the response we can calculate the thermoelectric
and thermal conductivities.

The thermoelectric conductivity

The thermoelectric coefficient α can be determined by calculating the heat current ~Q gener-
ated in response to an electric field in the absence of a temperature gradient. In AdS/CFT
we turn on a non-normalizable mode for Ai and calculate the resulting value for Qi. We
will take the time dependence to be of the form e−iωt throughout. To begin we consider the
SL(2, R) case (3.70) but in fact our results will be quite general and we comment on this at
the end of the subsection.

15Ambiguities in the definition of the heat current can arise because entropy is not conserved. However they
enter in higher orders and are not important in linear response theory.

16Some of the literature, e.g., [5], defines transport coefficients in terms of currents where a magnetization
dependent term is subtracted out. It is straightforward to relate our answers to those obtained after such a
subtraction.
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For a metric

ds2 = −a2dt2 +
dr2

a2
+ b2(dx2 + dy2) + 2gxtdxdt+ 2gytdydt (3.146)

and with action given by (3.70) we find that the xt component of the trace-reversed Einstein
equations gives

Rxr = 2λ2(−FrtFtxgtt + FryFxyg
yy + FrxFxtg

xt + FrtFxtg
yt + FrtFxyg

yt) (3.147)

with

Rxr = −iω∂r(g
xxgtx)

2gttgxx
. (3.148)

The standard procedure to calculate the stress tensor in terms of the extrinsic curvature
[108, 109] gives

Ttx = [a∂rgtx − 2gtx] (3.149)

where the right hand side is to be evaluated close to the boundary as r →∞.
While we skip some of the steps in the analysis below, it is easy to see that close to the

boundary, the leading behavior on the RHS of (3.147) comes from the first two terms. Thus,
we get close to the boundary from (3.148), (3.147)

− iω∂r(g
xxgtx)

2gttgxx
' 2λ2

(
−FrtFtxgtt + FryFxyg

yy
)
. (3.150)

Substituting (3.76) for the field strength then yields,

Ttx =
2

iω

[
−2

(Q′e − λ′10Q
′
m)

a
E′x + 2λ′2Q

′
mF
′
rya

]
. (3.151)

Some of the notation we have adopted here is potentially confusing. The superscript prime
here denotes a dyonic configuration with both electric and magnetic charge as in the previous
sections. In particular, the variable λ′10 denotes the asymptotic axion in the system with both
electric and magnetic charge. The variable a in the equation above stands for the redshift
factor in the metric.

Using the relation between the variable r used above and z used in (3.104) we see that

λ′2F
′
ry = − 1

a2
λ′2F

′
zy = − 1

a2

(
j′y
4
− λ′10E

′
y

)
(3.152)

where on the RHS we have also used (3.107).
To complete the calculation we need to express Ttx in terms of boundary theory coordi-

nates. This requires us to multiply the RHS of (3.151) by a factor of a. After doing this we
get in the boundary theory

Ttx =
1

iω

[
−4
(
Q′e − λ′10Q

′
m

)
E′x − j′yQ′m + 4λ′10Q

′
mE
′
y

]
. (3.153)
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Finally using the relation

Qx = T tx − µJx = −Ttx − µJx = TαxxEx + TαyxEy (3.154)

gives

α′xx =
(n′ − 4λ′10Q

′
m)

iωT
+
Q′m
iωT

σ′yx −
µ′

T
σ′xx (3.155)

α′xy =
1

iωT
[σ′yyQ

′
m − 4λ′10Q

′
m]− µ′

T
σ′xy (3.156)

where we have used the relation n′ = 4Q′e. By symmetries α′yy = α′xx, α
′
yx = −α′xy.

We have considered the action (3.70) in the analysis above, but it is easy to see that the
relations (3.155), (3.156) stay the same for the more general case

S =

∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − h(φ)(∂λ1)2 − λ2F

2 − λ1FF̃
]
, (3.157)

with h(φ) and λ2 being general functions of φ.
The results above are quite analogous with those in [11], which studied transport prop-

erties in the AdS Reissner-Nordström case. It is instructive to compare the cases with and
without a dilaton-axion. Consider first the purely electric case. We have seen earlier that
the thermodynamics in the extremal limit for the cases with and without a dilaton are quite
different, since the entropy vanishes in the presence of a dilaton. Despite this difference, we
have also seen that the electric conductivity at both small and large frequency and small and
large temperature qualitatively agree. In this subsection, we find that the relation between
the thermoelectric and electric conductivities is essentially the same in the two cases. Thus,
the thermoelectric conductivity also agrees qualitatively in the two cases. Once a magnetic
field is turned on, in the presence of an axion the thermodynamics of the extremal situation
continues to behave differently from the extremal Reissner-Nordström case, with vanishing
entropy, while we saw in the previous subsection that the electrical conductivity is still quite
similar. Here we see that the thermoelectric conductivity gets additional contributions due
to the presence of the axion, but these only affect the imaginary part and not the dissipative
real part at non-zero frequency. Thus, the thermoelectric conductivity continues to be quite
similar.

Thermal conductivity

Next we turn to the thermal conductivity. It is easy to see using a Kubo formula that the
thermal conductivity κij is related to the retarded two-point function of the heat current Qi
[11],

κij = −〈Qi, Qi〉
iωT

. (3.158)

Using the definition of Qi (3.145) one then gets

〈Qi, Qj〉 =
〈
(T ti − µJi),−µJj)

〉
+ 〈T ti , T tj 〉 − µ

〈
Ji, (T

t
j − µJj)

〉
− µ2 〈Ji, Jj〉 . (3.159)
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Now it is easy to see from the rules of AdS/CFT that〈(
T ti − µJi

)
, Jj
〉

=
〈
Jj , (T

t
i − µJi)

〉
so that the first and third terms on the RHS can be related to each other. Further using the
definition of thermoelectric and electric conductivity,〈(

T ti − µJi
)
, Jj
〉

= (−iωT )αij , 〈Ji, Jj〉 = (−iω)σij (3.160)

then gives
〈Qi, Qj〉 = iωµT (αij + αji) + iωµ2σij + 〈T ti , T tj 〉. (3.161)

As we will see in Appendix B

〈T ti , T tj 〉 =
ρ

2
δij (3.162)

where ρ is the energy density. Substituting the last few equations in (3.158) then finally gives
the relation

κij = −µ(αij + αji)−
µ2

T
σij +

i

2ωT
ρδij . (3.163)

We note that this relation follows essentially from the Kubo formula and is valid in general.
For the case where there is no magnetic field we get from (3.155) and (3.163)

Re (κxx) =
µ2

T
Re (σxx). (3.164)

This is a Weidemann-Franz like relation, and is analogous to those obtained in the non-
dilatonic case studied in [5, 11]. At low temperature and frequency, we have seen in section

3 that Re (σ)xx ∼ T 2

µ2 , leading to a linear behavior of thermal conductivity

Re (κxx) ∼ T. (3.165)

The derivation of (3.162) is discussed in Appendix B. We note that the result in (3.162) is
independent of momentum, and is therefore a contact term. Often in AdS/CFT calculations
such contact terms are simply discarded. We do not delve into this issue here any further
except to note that [11] discusses it and does subtract this term from the final answer.

3.6.3 Disorder and power-law temperature dependence of resistivity

So far we have neglected the effects of disorder. Disorder can be incorporated in a phenomeno-
logical way by adding a small imaginary part to the frequency, following [5], ω → ω + i/τ .
We focus on the resulting effects on electric conductivity in the discussion below.

To begin, consider the purely electric case. The conductivity, at small frequency, is given
by (3.130)

σxx =
C ′T 2

µ2
+ iC ′′

µ

(ω + i/τ)
, (3.166)
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with σxy = 0. For very small frequencies, ω � 1/τ the disorder will dominate the imaginary
part of σxx and we get,

σxx ' C ′′µτ +
C ′T 2

µ2
. (3.167)

The first term on the RHS is a Drude-like contribution to the conductivity which is propor-
tional to the relaxation time τ . For small disorder, µτ � 1 and we see that first term on the
RHS of (3.167) is large17. In the theory without disorder Im (σxx) has a pole and Re (σxx)
has a corresponding delta function at ω = 0. We see from (3.167) that after adding disorder,
the pole and the delta function have both disappeared as expected, leaving a large, but finite,
Drude-like contribution in Re (σxx).

Now consider the purely magnetic case obtained by carrying out an S transformation,
(3.111) on the purely electric case. Since ã = d = 0 we see from (3.123) that σ′yx = 0 and
since c = 1 from (3.122) that the resistivity,

ρ′xx =
1

σ′xx
=
σxx
16

. (3.168)

Thus the large Drude-like contribution in σxx discussed above turns into a large resistivity in
the magnetic case, scaling with the relaxation time τ . In addition we see that the resistivity
now grows as T 2 with increasing temperature.

The S duality transformation is also a symmetry of the dilaton theory without an axion
for all values of the coupling α defined in (3.1). Thus our results apply to these cases as well.
More generally, see e.g. [101], once an additional potential is added for the dilaton-axion,
one expects that the conductivity in the purely electric case can vary with temperature in
ways different from the T 2 dependence we have found. This will then result in a different
dependence for the resistivity in the purely magnetic case. In particular, we expect that one
can obtain a linear dependence ρxx ∼ T reminiscent of strange metal behavior in this manner.

3.6.4 SL(2, R) and SL(2, Z) in the boundary theory

It is natural to ask how the SL(2, R) symmetry is implemented in the boundary theory.
The gauge symmetry in the bulk corresponds to a global symmetry in the boundary. To
implement the SL(2, R) in the boundary one needs to gauge this global symmetry [110].
This is because, starting with a state which carries only electric charge in the bulk, one gets
after a general SL(2, R) transformation a system with both electric charge and a magnetic
field. Now, the magnetic field corresponds to a non-normalizable deformation and therefore
requires a change in the boundary Lagrangian. Once the global symmetry is gauged in the
boundary theory, there is a boundary gauge field aµ, and the required change in the boundary
Lagrangian can be identified as turning on a background magnetic field.

Tb

The SL(2, R) symmetry is generated by the two elements Tb and S discussed in (3.110)
and (3.111). Under Tb the axion shifts, λ1 → λ1 + b. It is natural to identify this with a

17 C′′ which is dimensionless is O(1).
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change in the coefficient of the Chern-Simons term for the gauge field in the boundary theory
[87]. In fact, this cannot be the whole story. The reason is that, even for abelian gauge
fields, the Chern-Simons term must appear with a quantized coefficient [110]. In defining the
Chern-Simons term on a three-manifold Σ3, one chooses an extension of the gauge field to a
four-manifold Σ4 with ∂Σ4 = Σ3, and writes∫

Σ3

A ∧ dA =

∫
Σ4

F ∧ F . (3.169)

Of course, to avoid arbitrariness in the definition, (3.169) must yield an answer which is
independent of the choice of Σ4 and the extension of the gauge field – or more precisely, the
action S(A) should depend on this choice only up to shifts by integer multiples of 2π, so
that eiS is invariant. This condition leads to a precise quantization of the coefficient of the
Chern-Simons term.

Now, this poses a mystery, because in our system the Hall conductance takes arbitrary
rational values (once we relax the full SL(2, R) symmetry to the more realistic SL(2, Z)).
However, this does not require violation of the quantization condition. Rather, consider a
(toy, boundary) Lagrangian of the form

S =
1

4π

∫
d3x

(
k εµνρAµ∂νAρ −

1

2π
aµεµνρ∂νAρ

)
. (3.170)

This is the sort of Lagrangian that one finds in effective field theory descriptions of the quan-
tum Hall effect; Aµ is to be identified with the “emergent” gauge field (so the electromagnetic
current is Jµ = 1

2π εµνρ∂
νAρ) and aµ is the external electromagnetic field. Integrating out

Aµ, one finds an effective Lagrangian for aµ which gives fractional Hall conductance, and is
roughly a Chern-Simons theory at level 1/k [111]. Identifying Jµ with the global current in
our boundary theory, and aµ with the boundary gauge field, we see how “effective” fractional
Hall conductances can arise in a theory with well-quantized Chern-Simons terms. The gen-
eralization to describe arbitrary fractional quantum Hall states is discussed in, for instance,
[111].

S

The S transformation is more complicated. It action in the boundary theory has been dis-
cussed in [110]. In 2 + 1 dimensions (at least in the absence of charged matter) the gauge
field aµ is dual to a scalar φ. The dual scalar theory has a global symmetry, φ → φ + c.
The S transformation requires gauging this global symmetry and turning on a magnetic field
for the resulting dual gauge field. This prescription for implementing S also roughly agrees
with the discussion in [5] in which the S duality acts by turning electrically charged particles
into vortices. Electrically charged particles of the gauge field aµ are vortices under the global
symmetry for φ. Gauging the global symmetry corresponds to turning on a gauge field which
couples (via local couplings) to these vortices.

In the bulk, SL(2, R) invariance means that the theory comes back to itself with a dif-
ferent electric and magnetic field and altered dilaton-axion. This means in the boundary,
starting with the gauge theory containing the gauge field aµ and carrying out the SL(2, R)
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transformation should give back the same gauge theory with the new magnetic field and
couplings corresponding to the new dilaton-axion and in a state with the new charge.

SL(2, R) vs SL(2, Z)

In string theory, one does not expect that the SL(2, R) symmetry is exact. Instead it will
be broken to an SL(2, Z) subgroup generated by the elements Tb=1, S. It is this SL(2, Z)
subgroup which should be a symmetry (in the sense described above) of the boundary theory
as well. The breaking of SL(2, R) to SL(2, Z) occurs due to stringy or quantum corrections
in the supergravity action; it can also be understood as being related to charge quantization.
In any case, at the level of bulk solutions, if the supergravity approximation we are working
with here is good, at large values of the charges the supergravity will have an approximate
SL(2, R) symmetry and the approximation we make discussing the full SL(2, R) is a good
one. This means our conductivity and thermodynamic calculations using the SL(2, R) to
relate situations with different electric and magnetic charges should be accurate, and the
SL(2, R) transformations in the boundary theory should be approximately valid. One can
always restrict consideration to SL(2, Z) transformations acting on the electrically charged
brane with minimal charge, to get a more accurate picture.

3.7 Attractor Behavior

3.7.1 Attractor behavior in systems with SL(2, Z) symmetry

In this section, we discuss the structure of attractor flows in the dilaton-axion plane. We
will only discuss the flows governed by the action (3.70), which has a classical SL(2, R)
symmetry, though quantum effects and/or an explicit potential for the dilaton-axion can
break the symmetry to Sl(2, Z). The main feature of interest here is that the SL(2, Z)
symmetry acts to relate different attractor flows to one another; in the field theory, this
would mean that different RG trajectories are related by the modular group. In the system
without a potential, the endpoints of the flows have rational σxy and vanishing longitudinal
conductivity.

In addition to the intrinsic interest of the subject, we are motivated to point out the action
of SL(2, Z) on these flows because SL(2, Z) (or more properly, its subgroup Γ0(2)) has been
argued to organize the phase diagrams of real systems of charged particles in background
magnetic fields. Discussions in the context of the fractional quantum Hall system can be
found in [112, 113, 114, 115], and a nice review appears in [116]. Needless to say, it would
be very interesting to modify our system to give incompressible phases and analogues of Hall
plateaux, but we do not pursue this here. Discussions of holography and the quantum Hall
system can be found in [87, 117, 118, 119, 120, 121].

Before proceeding, we should emphasize that there is an obvious difficulty with controlling
the RG flows of greatest interest in our system. With a magnetic field turned on, the IR-
attractor lies along the real axis in λ, at strong coupling. To the extent that one can trust the
analysis it is attractive for both the dilaton and axion directions. More correctly, close enough
to the fixed point, supergravity breaks down and corrections would have to be included to
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study the nature of the RG flow in more detail. In this section, we will simply take the
attractor flows at face value.

One wide class of attractor flows in the SL(2, R) invariant case are easily determined,
as follows. The flows in the original electric solutions of [8] are extremely simple, involving
logarithmic variation of the dilaton (running to weak coupling at the horizon). Using the
SL(2, R) transformation properties of the dilaton-axion (5.5), one can translate these dilaton
trajectories into more non-trivial dilaton-axion trajectories, governing the flow to dyonic
black holes in the extremal limit. By the general properties of SL(2, R) transformations, it
is easy to see that these trajectories must form semi-circles in the λ1-λ2 plane. It is also clear
from the nature of the SL(2, R) duality, which relates the axion to e−2φ, that the axion is
attracted to its fixed-point value in a power-law manner.

All of the fixed points in this case lie on the real λ axis, with rational values of λ1 (and
hence σxy) and vanishing σxx. Because of the extreme value of the dilaton at infinity, these
states are also incompressible. This is happily rather similar to the flows in the quantum
Hall system, but the underlying physics of our charged fluid is perhaps quite different.

3.7.2 Attractor behavior in more general system without SL(2, R) symme-
try

In this section, we study a more general theory which does not have SL(2, R) symmetry. The
action we study has one parameter α 6= −1,

S =

∫
d4x
√
g

(
R− 2Λ− 2 (∂φ)2 − 1

2
e4φ (∂λ1)2 − e2αφF 2 − λ1FF̃

)
. (3.171)

We will analyze the attractor mechanism for dyonic black branes in this theory. Of course
other parameters in the action (3.171) could have also been varied from their values in the
SL(2, R)-invariant case. We do not carry out a full analysis of the resulting set of theories
here, but the limited class we do study already exhibit rather interesting phenomena.

The effective potential is now given by

Veff (φ, λ1) = e−2αφ (Qe − λ1Qm)2 + e2αφQ2
m, (3.172)

where Qe, Qm are the electric and magnetic charges. The extremum of the potential arises
at

λ1 = λ1∗ =
Qe
Qm

, e2αφ → −∞. (3.173)

We work in the coordinate system (3.2) below. If the axion takes its attractor value λ1∗ at
r →∞, it is constant everywhere and the resulting solution is that of a purely magnetically
charged dilatonic brane. This has a near horizon metric given in (3.4) and the near-horizon
dilaton

φ = K log(r), (3.174)

with the constants C2, β,K taking values given in (3.8).
To investigate if this magnetic solution is an attractor, we take the asymptotic value of

the axion at infinity to be slightly different from its attractor value and study the resulting
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solution. As we will see below, in the ranges α > 0 and α ≤ −1 we find attractor behavior,
with the axion settling down to its attractor value exponentially rapidly in r (except for the
special case α = −1 discussed in section 3.6 and 3.7.1, where the attractor is power-law in
nature). In the range −1 < α < 0 we find that there is no attractor behavior. Instead,
starting with a value for the axion at infinity which is slightly different from its attractor
value, one finds that the solution increasingly deviates from the purely magnetic case for
small enough r. We have not been able to find the end point of the attractor flow in this
case.

Attractor behavior for α > 0, α < −1

The axion equation of motion is

∂r

(
e4φa2b2∂rλ1

)
=

4e−2αφQ2
m

b2
(λ1 − λ1∗) . (3.175)

Putting in the solution for φ, a2, b2 in the near horizon region of the purely magnetic case
gives

∂r

(
r4K+2β+2∂rλ1

)
=

D

r2β+2αK
(λ1 − λ1∗) (3.176)

where D > 0 is a constant.
Define the variable x as

x =
1

|4K + 1 + 2β|
1

r4K+1+2β
. (3.177)

In terms of x (3.176) becomes a Schrödinger-type equation,

∂2
xλ1 = D̃x−P (λ1 − λ1∗) (3.178)

where D̃ > 0 is a constant and

P =
4K − 2αK + 2

4K + 1 + 2β
. (3.179)

By rescaling x the constant D̃ can be set to unity18. To avoid notational clutter, we
continue to refer to this rescaled variable as x below. Also, to simplify things, we henceforth
take (λ1 − λ1∗)→ λ1, i.e., from now on we use λ1 to denote the deviation of the axion from
its attractor value. This gives

∂2
xλ1 = x−Pλ1 . (3.180)

There are two separate cases of interest.

18This does not work for the case P = 2 which arises when α = 0,−1. The α = −1 case has SL(2, R)
invariance and has been extensively discussed above. The α = 0 case needs to be dealt with separately because
here the dilaton does not enter in the gauge kinetic energy or the effective potential.
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Case A

The first case arises when
4K + 1 + 2β > 0 . (3.181)

Here we see from (3.177) that x→∞ as r → 0. When

P < 2 (3.182)

a solution to (3.180) can be found in the WKB approximation. It is of the form

λ1 ∼ e−S , (3.183)

with

S =
x1−P/2

1− P/2
. (3.184)

We see that as x → ∞, S → ∞ and λ1 → 0, so the axion goes to its attractor value in
the near horizon region exponentially rapidly. In finding the solution we have neglected
the backreaction of the axion on the other fields; this is now seen to be a self-consistent
approximation. Since the other fields vary in a power law fashion with r, the backreaction of
the axion on them is small.

Substituting for the constants from (3.8) in the conditions (3.181) (3.182), we find that
the solution (3.183) is valid in the range

α > 0, or α < −2. (3.185)

Case B

The second case arises when
4K + 2 + 2β < 0 . (3.186)

Now the variable x→ 0 as r → 0.
A solution to (3.180) can be found in the WKB approximation when

P > 2. (3.187)

It is again of the form given in (3.183), with S being

S =
x1−P/2

P/2− 1
. (3.188)

The conditions, (3.186), (3.187) are valid when α lies in the range

− 2 < α < −1. (3.189)
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No attractor when −1 < α < 0

Our discussion above left out the region −1 < α < 0. In this region, we will see below that
there is no attractor behavior.

First, consider the case when 4K + 1 + 2β > 0 and P > 2, which corresponds to −2/3 <
α < 0. In this case, we see from (3.177) that x→∞ in the near horizon region where r → 0.
The equation for the axion (3.180) has two solutions in the near-horizon region where x→∞.
Both solutions can be expressed as a power series in x. The first is

λ1 = c1x+ c2x
α + · · · . (3.190)

For the second term on RHS to be subdominant compared to the first when x→∞

α < 1. (3.191)

Substituting (3.190) in (3.180) and equating powers of x gives,

α = 3− P. (3.192)

Requiring that condition (3.191) is met gives,

P > 2 (3.193)

which is indeed true. This solution blows up as x→∞.
The second solution to (3.180) is

λ1 = c0 + c1x
α + · · · , (3.194)

with the condition,
α < 0. (3.195)

Substituting in (3.180) and equating powers of x gives

α = 2− P, (3.196)

so that (3.195) is again met. Equating coefficients determines c1 in terms of c0.
In summary we learn that for the axion to be non-zero (i.e. away from its attractor value )

and for it to not blow up at the horizon, it must be of the form (3.194) with c0 non-vanishing.
Thus, λ1 does not vanish as x→∞ and we do not get attractor behavior in this case.

Next consider the case when 4K+ 1 + 2β < 0 and P < 2, which corresponds to −1 < α <
−2/3. Here x → 0, when r → 0. In this case there is a solution in which the axion attains
its attractor value as x → 0. A straightforward analysis shows that this takes the form, for
small x,

a = c1x+ c2x
p, p > 1 . (3.197)

However, since the approach to the attractor value is a power-law in x and thus in r, one now
finds that the resulting back-reaction of the axion in the equations of motion for the other
fields cannot be neglected, and in fact in some cases dominates over the other contributions.
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Thus, again, the resulting solution will deviate significantly from the purely magnetic case,
leading to a loss of attractor behavior.

In this last case especially, one might hope to find a fully corrected solution which rep-
resents the end point of the attractor flow, in which all fields behave in a power-law fashion
near the horizon, and in which the back-reaction of the axion is completely incorporated.
However, a reasonably thorough analysis failed to find any purely power-law solution of this
kind.

3.7.3 Comments

In the cases where we did get attractor behavior above, we saw that the axion approached its
attractor value exponentially rapidly in the near-horizon region. This exponential behavior
is intriguing from the point of view of a dual field theory. The radial direction r is roughly
the RG scale in the boundary theory and a power-law dependence on r of a field in the bulk
is related to the anomalous dimension of the corresponding operator in the boundary. In
contrast an exponential dependence, of the kind we find here, leads to a beta function for the
dual operator in the boundary in which the RG scale appears explicitly.

The exponentially rapid approach also means that in cases where we do get attractor
behavior, the black brane in the near-horizon region can be taken to be the purely magnetic
dilatonic brane up to small corrections. This means the behavior of the dyonic black brane at
small temperature and frequency in these cases is given by that of the dyonic brane with the
asymptotic axion set to its attractor value, up to small corrections. For example, from (3.126)
we see that when λ1∞ = λ1∗ the SL(2, R) matrix element d vanishes. The conductivity can
then be read off from (3.136), (3.137) keeping this in mind. Similarly the thermoelectric and
thermal transport coefficients can also be found easily from (3.155), (3.156).

3.8 Discussion

We have analyzed charged dilatonic branes in considerable detail in this paper, focusing on
their thermodynamics and especially their transport properties. Our results show that many
of the transport properties are quite similar to those of the Reissner-Nordström case. This
is true despite the fact that the Reissner-Nordström and dilaton cases differ significantly in
their thermodynamics: while the Reissner-Nordström brane has a macroscopic ground-state
entropy, the dilatonic black brane has vanishing entropy at extremality.

More concretely, in [8] it was already noted that the optical conductivity at zero temper-
ature and small frequency has the behavior Re (σ) ∼ ω2, and this behavior is independent
of the parameter α which governs the dilaton coupling, (3.1). In particular, it is the same as
in the Reissner-Nordström case which has α = 0 [85, 86]. In this paper we find something
analogous for the DC conductivity at small temperature, which goes like19 Re (σ) ∼ T 2, and
is independent of α again. In the presence of a magnetic field, the DC Hall conductivity is
σyx = n

B , where n,B are the electric charge density and the magnetic field, while the DC

19There is an additional delta function strictly at ω = 0.
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longitudinal conductivity vanishes, as required by Lorentz invariance. The DC Hall conduc-
tance is related to the attractor value of the axion. In more detail, the frequency dependence
fits the form derived from general considerations of relativistic magnetohydrodynamics in [5].
These features in the presence of a magnetic field, being general in their origin, also agree
with the Reissner-Nordström case. We also found that the thermoelectric and the thermal
conductivities of the dyonic case satisfy Weidemann-Franz like relations which relate them to
their electrical conductivity. In this respect too then the dyonic system behaves in a manner
quite analogous to the Reissner-Nordström case. It is worth pointing out that, in contrast
to these similarities, the viscosity of a near-extremal dilaton-axion system is much smaller
than in the Reissner-Nordström case. In both cases the famous relation η/s = 1/4π [122]
is satisfied. However, the vanishing entropy of the extremal dilaton-axion system makes its
viscosity much smaller.

The overall picture is that the charged dilatonic brane behaves like a charged plasma.
The electrical conductivity, which is suppressed at small temperature and grows like T 2,
suggests that strong repulsion prevents the transmission of electric currents in this system.
The spectrum is not gapped in the conventional sense above the ground state, since this
would lead to a conductivity vanishing exponentially quickly at small temperature. Rather,
the system has a “soft” gap, resulting in a power-law vanishing as T → 0.20 It should be
pointed out that the entropy density s also scales in a power-law fashion as s ∼ T 2β, and since
β < 1, it decreases more slowly near extremality (as T → 0) than the charge conductivity.
This makes physical sense: only some fraction of all the degrees of freedom can carry charge
and contribute to electrical conductivity.

A case we investigated in considerable detail was the one with an SL(2, R) symmetry.
Here, the complex conductivities σ± transform like the dilaton-axion under an SL(2, R) trans-
formation. Once quantum corrections to the bulk action are included (or charge quantization
is imposed), one expects this symmetry to be broken to an SL(2, Z) subgroup. The trans-
formation law for σ± is an elegant result, and one has the feeling that its full power has not
been exploited in the discussion above. Perhaps suitable modifications of the bulk theory,
with an additional potential for the dilaton-axion preserving the SL(2, Z) symmetry and/or
with disorder put in, might prove interesting in this respect. These modifications might lead
to similarities with systems exhibiting the quantum Hall effect, and the transformation law
of the conductivity could then tie in with some of the existing discussion in this subject on
RG flows between different fixed points characterized by the various subgroups of SL(2, Z)
[112, 113, 114, 115, 116].

We have not shown that the dilaton-axion theories considered here can arise in string
theory. However, the Lagrangians we consider are quite simple and generic, and as discussed
above many of our results are quite robust. These facts suggest that an embedding in string
theory should be possible. String embeddings of Lifshitz solutions have been described in
[98, 123, 124], and simple generalisations of those ideas may well suffice to capture our
geometries as well (since the near-horizon physics is governed by a Lifshitz-like metric).

We are not aware, at the moment, of condensed matter systems or model Hamiltonians

20Strictly speaking, our calculations break down at extremality, so these comments apply for temperatures
much smaller than the chemical potential, but not very close to zero. The precise condition can be obtained
using reasoning analogous to (3.66) in the magnetic case.
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which give rise to such a power-law behavior in the conductivity. (The systems we are
considering here do not have any disorder. In the presence of disorder such power laws are
well known to arise [125]. We thank P. Raichaudhuri and N. Trivedi for related discussions.)
It would be quite interesting to construct or find such examples, and attempt to relate their
behavior to the kinds of gravitational systems studied here.

Appendix A

In this appendix we carry out a more careful examination of the Schrödinger equation (3.23)
and show that the coefficient a1 in (3.33) is of order unity and not suppressed by a power of
ω.

The potential V (z) is given by (3.15). In the scaling region where r � µ, after a suitable
rescaling the metric and dilaton are given by (3.18), (3.7), with coefficients given in (3.8).
The constant Q2 which appears in the potential takes the value ( (2.12) of [8])

Q2 =
6

α2 + 2
. (3.198)

We use the notation
ω̂ =

ω

rh
(3.199)

below.
At the horizon, where a2 vanishes, the potential has a first order zero and for

r̂ − 1� 1 (3.200)

it takes the form
V = A(r̂ − 1), (3.201)

where A is a coefficient of order unity. Also in this region the variable ẑ (3.22) is given by

ẑ =

∫
dr̂

â2
' 1

B
ln(r̂ − 1) (3.202)

where B is again a coefficient of order unity.
We begin in the very near horizon region where

|r̂ − 1| � ω̂2

A
. (3.203)

In this region the potential is subdominant compared to the frequency in the Schrödinger
equation and as a result, the solution with the correct normalization to obtain the required
flux is (3.24)

ψ = e−iω̂ẑ (3.204)

(there is an additional e−iwt factor but it will not be important in the discussion of this
section and we will omit it below).
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Now suppose one is close enough to the horizon so that (3.203) is met, but not too close,
so that

|ŵẑ| '
∣∣∣∣ω̂ ln(r̂ − 1)

B

∣∣∣∣� 1. (3.205)

Then the exponential in (3.204) can be expanded and the solution in this region becomes

ψ ' 1− iŵẑ. (3.206)

The condition (3.205) is

r̂ − 1� e−
B
ω̂ (3.207)

which is compatible with (3.203) for ω̂ � 1.
Next consider the region

1� r̂ − 1� ŵ2

A
. (3.208)

In this region the frequency term in the Schrödinger equation is now subdominant compared
to the potential term. Moving even further away from the horizon the frequency will continue
to be unimportant all the way to the region µ � r̂ � 1 where the coefficient a1 is defined.
So it is enough to understand the solution in the region (3.208) for establishing that the
coefficient a1 is unsuppressed by further powers of ω.

By carrying out a change of variables

x ≡ e
Bẑ
2

√
4A

B2
=

√
(r̂ − 1)4A

B2
, (3.209)

where in obtaining the last equality we have used the relation (3.202), we can recast the
Schrödinger equation in the region (3.208) in the form

− x2d
2ψ

dx2
− xdψ

dx
+ x2ψ = 0. (3.210)

This is closely related to the standard Bessel equation. From (3.209) and (3.208) we see that
in this region

x� 1. (3.211)

The solution to (3.210) then takes the form,

ψ = C0 + C1 ln(x) = C0 + C̃1ẑ. (3.212)

Now notice that (3.206) and (3.212) are of the same form. There is in fact a good reason
for this. As we will see below we can extend the solution from the region (3.207) where
(3.206) is valid to the region (3.208) where (3.212) is valid by neglecting both the potential
and the frequency dependent terms in the Schrodinger equation. Neglecting these terms gives
a free Schrödinger equation at zero energy,

d2ψ

dẑ2
= 0, (3.213)
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with the solution which agrees with (3.206), (3.212).
The coefficients C0 and C̃1 can therefore be fixed by equating (3.206) and (3.212) giving

C0 = 1, C̃1 = −iω̂ . (3.214)

In the region (3.208) it follows from (3.202) that

|C̃1z| ∼ |ω̂ ln(r̂ − 1)| ≤ |ω̂ ln(ω̂)| � 1, (3.215)

where the last inequality follows from the fact that ω̂ � 1. Thus to good approximation we
can take

ψ = C0 = 1 (3.216)

in this region.
We see therefore that the solution is of order unity in this region (without any power law

suppression by a factor of ω̂). And it follows then that going further away from the horizon
to the region where µ/T � r̂ � 1 the coefficient a1 will also be of order unity.

To complete the argument let us discuss how to extend the solution from the region
(3.207) to (3.208). Choose a point with coordinate

r̂1 − 1 = c1
ω̂2

A
. (3.217)

Here c1 is a constant which does not scale with ω̂ and meets the condition c1 � 1 so that the
condition (3.203) is met. Since ω̂ � 1 and c1 does not scale with ω̂ we see that (3.207) is also
met and this point lies in the region (3.207). Next choose a second point with coordinate

r̂2 − 1 = c2
ω̂2

A
, c2 � 1 (3.218)

such that r̂2 � 1. This point lies in the region (3.208). Using (3.202) we see that the change
in ẑ in going from r̂1 to r̂2 is

δẑ =
1

B
ln(

c2

c1
) (3.219)

and is independent of ω̂.
For the frequency dependent term in the Schrodinger equation to be neglected in the

process of continuing the solution from r̂1 to r̂2, the condition

ω2(δẑ)2 � 1 (3.220)

must be met. Since ω̂ � 1 we see that this is true. Similarly for the potential dependent
term to be negligible the condition

V (z)(δẑ)2 ∼ (r̂ − 1)(δẑ)2 ∼ ω̂2(δẑ)2 � 1 (3.221)

must be met. This condition is also true, thereby completing the argument.
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Appendix B

Here we discuss how (3.162) is obtained. In AdS/CFT the metric is dual to the boundary
stress tensor. So (3.162) is obtained by doing a bulk path integral with a fixed boundary
metric and then obtaining the two-point function from it. It is well known that after using
the equations of motion, the resulting answer is obtained in terms of the extrinsic curvature
of the boundary. In the SL(2, R) invariant case we are dealing with here, this calculation is
particularly simple since the metric is invariant under SL(2, R). Thus one can work in the
purely electric case which is a considerable simplification. This gives the result (3.162) as we
will see shortly. Transforming to the dyonic frame then keeps the result unchanged since the
energy density is invariant.

To calculate (3.162) in the purely electric case we go back to (3.149) but now are more
careful since a non-normalizable mode for gtx is also turned on. This requires the first
subleading corrections in a2, b2 to be kept,

a2 = r2

(
1− κ2ρ

r3

)
(3.222)

b2 = r2 + · · · . (3.223)

Here we have reinstated the factors of κ2; the action (3.70) has an overall factor of 2κ2 in
front of it. We are also working in units where radius of AdS space is set to unity L = 1.
The ellipses on the RHS of the equation for b2 indicate corrections which fall sufficiently fast
and can be neglected in the calculation below. Keeping these corrections in (3.149) leads to

〈Ttx〉 =

(
1

2κ2

)[
a3∂r

(gtx
a2

)
+ 2gtx(∂ra− 1)

]
(3.224)

=

(
1

2κ2

)[
a3∂r

(gtx
a2

)
+ 2

gtxκ
2ρ

r3

]
. (3.225)

Eq.(3.150) then becomes

∂r

(gtx
a2

) a2

b2
+
gtx
a2

(
a2

b2

)′
=

2

iω

(
a2

b2

)[
2λ2 − FrtFtxgtt

]
. (3.226)

Leading to

〈Ttx〉 = −ρgtx
2r3
− 4

iω

(
Q′eE

′
x

a

)
. (3.227)

Now differentiating with respect to gtx and converting to gauge theory variables gives (3.162)
for i = j = x. In the absence of a magnetic field there is no cross-talk between the gxt and
gyt perturbations so 〈Ttx, Tty〉 = 0, which is the second relation contained in (3.162).
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Chapter 4

A Chern-Simons Vector Model

This chapter is based on [10], which was completed in collaboration with Simone Giombi,
Shiraz Minwalla, Sandip Trivedi, Spenta Wadia and Xi Yin.

4.1 Introduction

The characteristic feature of quantum field theories in three dimensions is the possibility of a
Chern-Simons kinetic term for the gauge field. As has been well studied, (e.g., [48, 49, 50, 51,
52, 53, 54, 56, 57, 55, 58, 2]) this has important consequences for the dynamics of quantum
field theories in three dimensions and their connections to string theory.

Consider a level k, U(N) Chern-Simons theory coupled to a single fermion in any repre-
sentation of the gauge group. The only gauge-invariant relevant or marginal terms possible
in the Lagrangian of such a theory in addition to the Chern-Simons term are the fermion
kinetic term and mass term. The resulting quantum field theory thus depends on the two
integers k and N , and a single continuous parameter, the physical mass m of the fermionic
field. At energies E � m, the dynamics of this theory is scale-invariant as well as nontrivial,
due to the fact that the discrete Chern-Simons coupling is an integer and cannot run – this
conformal field theory can simply be obtained by tuning the physical mass of the fermion to
zero.

Though the parameters k and N labeling the CFT are discrete, in the simultaneous
large-N and large-k limit, the ’t Hooft coupling λ = N

k , (which controls the strength of
interactions), is effectively continuous (exactly as in ABJM theory [2]). For this reason the
discretum of CFTs described by integer values of k and N coalesces into a line of fixed points
in the large-N limit.

We emphasize that a variety of such non-supersymmetric fixed lines exist in three di-
mensions. Choosing the fermions that transform in, say, the adjoint representation of U(N)
gives one such fixed line of theories. Choosing fermions that transform in the bifundamen-
tal of U(N) × U(N) yields another example – one that can be thought of as a minimal,
non-supersymmetric analog of the ABJM theory.

Such lines of fixed points are particularly important from the viewpoint of string theory
and the AdS/CFT correspondence [1, 2]. While at small λ the theories are best described
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as weakly interacting quantum field theory; at large λ, when the field theory description be-
comes intractable, the hope is that a relatively simple classical four-dimensional gravitational
description could emerge.

In this chapter, we study what appears to be the simplest example (from the field theory
perspective) of such non-supersymmetric fixed lines – the theory of a single fundamental
fermion coupled to a U(N) level k Chern-Simons theory. The field theory turns out to be
(at least, to some extent) exactly solvable. In section 4.2 we calculate the free energy of the
theory on R2 at finite temperature (that is, the free energy on R2×S1), exactly in the large N
limit, for all values of λ. To do this, we use light-cone gauge and a dimensional regularization
scheme, detailed in section 4.2. Our results imply that the theory does not exist for λ > 1,
we comment on this below.

We then study the operator content of the theory. From the AdS/CFT dictionary, con-
served currents in the field theory correspond to gauge fields in the bulk.1 Our theory, in
the free limit, is a theory of free fermions (in the singlet sector) and has an infinite tower
of conserved currents – one for each spin s ≥ 1 – and was therefore conjectured [28] to be
dual to a particular higher-spin gauge theory [63, 64, 31, 65], containing an infinite tower of
gauge fields – one for each spin s ≥ 1. To address the nature of the bulk dual at finite λ,
we study the non-conservation of these currents as we turn on interactions. More precisely,
the masses of the bulk fields are directly related to the anomalous scaling dimensions of the
corresponding operators in the dual field theory. In section 4.3 we will explicitly construct
the tower of spin-s current operators in the field theory. We then present a simple argument
based on conformal representation theory that the scaling dimensions of these operators must
be protected in the large-N limit. The non-conservation of these currents is subleading in N ;
their divergences calculated in the classical theory translate directly into an expression for
the order λ2 contribution to the 1

N correction to the scaling dimensions.
The fact that our theory contains an infinite tower of higher spin currents whose scaling

dimensions are protected in the large-N limit seems to be enough to conclude that the bulk
dual to our theory at finite λ, should it exist, must also be some higher-spin gauge theory.
Because the anomalous dimensions of the nearly-conserved currents vanish in the large-N
limit even at finite λ means that the corresponding bulk gauge fields must be locally massless
in the classical limit, even at finite λ.

4.2 Free Energy on R2 at Finite Temperature

In this section we will evaluate the free energy of our theory (a single species of massless
fundamental fermions coupled to a Chern-Simons gauge field) in the t’ Hooft large N limit.
Our theory is taken to be at temperature T , and lives on a spatial R2 whose regulated volume
we denote as V2.

1Of course, there may be several descriptions of the bulk theory with varying amounts gauge symmetry.
(Gauge symmetry is, after all, a redundancy in description.) So the situation may be a bit more delicate than
the statement “conserved currents in the field theory correspond to gauge fields in the bulk” seems to imply,
especially for theories with an infinite number of gauge fields. We hope future investigations shed more light
on this issue.
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In order to evaluate the free energy of our theory, we first fix a gauge. We work in the
lightcone gauge A− = 0. This gauge is defined in terms of an analytic continuation from
Lorentzian space. For this reason A− = 0 does not imply A+ = 0. Alternatively one can
work in Lorentzian space and analytically continue to Euclidean space (after integrating out
the gauge fields) in (4.2.13). The gauge boson self interaction term vanishes in this gauge,
a feature that enormously simplifies analysis. 2 Computations in pure Chern-Simons theory
on R3 in this Euclidean continuation of the light-cone gauge were done previously in [126],
[127].

In our analysis below we will encounter divergent integrals that need to be regulated. We
choose to regulate all integrals in the scheme of dimensional reduction. More specifically we
evaluate all integrals as follows. We evaluate γ traces, ε contraction etc in d = 3. This process
leaves us with a set of scalar integrals. We then evaluate the resultant integrals by analytic
continuation from d = 3−ε dimensions. This regularization scheme is widely employed in the
previous literature on Chern-Simons matter theories (see e.g. [128, 129, 130, 131, 52, 56]).
It is manifestly Lorentz invariant, and also respects gauge invariance at least up to two-
loops (see [131]). We will assume without proof in what follows that our regularization
scheme is indeed gauge invariant. If this is indeed the case then the theory defined by this
regularization scheme must be Lorentz invariant even though we work in a gauge that breaks
Lorentz invariance. We will find some evidence for the Lorentz invariance of our final results
giving some a posteriori evidence for our assumption that our regularization scheme respects
gauge invariance.

As we will explain below, the finite temperature free energy of our theory is completely
determined by the fermion self energy on R2 × S1 (see (4.2.62)). In order to evaluate the
free energy we proceed as follows. As a preliminary step to our analysis, we first determine
the exact fermion propagator of our theory on R3. We then determine the exact fermion
propagator on R2×S1. Finally, we proceed to use this result to determine the free energy of
our theory.

Comment: The calculation below assumes that the holonomy of the gauge field around
the thermal circle is the identity matrix; however, it is possible to generalize the calculation
of this section to nontrivial holonomy backgrounds. See the note added at the end of this
chapter.

4.2.1 Conventions for Propagators and Gauge Conditions

The Euclidean action for our theory is

S =
ik

4π

∫
Tr

(
AdA+

2

3
A3

)
+

∫
ψ̄γµDµψ, (4.2.1)

where
Dµψ = ∂µψ − iAaT aψ.

2This feature is also true of the more straightforward “temporal” or axial gauge A3 = 0. Feynman diagrams
in this gauge are, however, plagued by logarithmic divergences that we have found difficult to interpret and
deal with. In contrast the divergences in the lightcone gauge employed in this subsection are relatively tame,
and are easy to interpret and deal with. We thank S. Bhattacharyya and J. Bhattacharya for extensive
discussions on perturbation theory and its divergences in Axial gauge.
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We have

ε123 = ε123 = 1,

γi = σi, (i = 1 . . . 3)

ψ̄α = (ψα)∗,

(4.2.2)

where σi are the ordinary Pauli matrices. Note then that all γµ are Hermitian. This implies
that ψ̄ψ and ψ̄γµψ are real, while

∫
dxψ̄γµ∂µψ is imaginary. The gauge field will be taken

to be AaTa where Ta is the fundamental generator normalized so that TrT 2
a = 1

2 . Note that∑
a

(T a)nm(T a)qp =
1

2
δqmδ

n
p . (4.2.3)

Lightcone gauge

Let us define

x± =
x1 ± ix2

√
2

,

A± = A∓ =
A1 ± iA2

√
2

,

p± = p∓ =
p1 ± ip2

√
2

,

p2
s ≡ p2

1 + p2
2 = 2p+p−.

(4.2.4)

We define the lightcone gauge in Euclidean signature by the condition A− = 0. This can
be obtained from Wick rotation of the standard lightcone gauge in Lorentzian signature.
However, in this paper we often think of x1, x2 as purely spatial coordinates. In particular,
in the finite temperature calculation, the thermal time direction is orthogonal to the complex
lightcone direction.

Note that under a rotation in the 12 plane A− → eiαA−. Consequently rotations in the
12 plane commute with the condition A− = 0.

Defining the momentum space fields

Aµ(x) =

∫
d3p

(2π)3
eip·xAµ(p),

ψα(x) =

∫
d3p

(2π)3
eip·xψµ(p),

ψ̄α(p) = (ψα(−p))∗,

(4.2.5)

the momentum space action in lightcone gauge is

S =
−ik
2π

∫
d3p

(2π)3
TrA3(−p)p−A+(p) +

∫
d3p

(2π)3
iψ̄(−p) (γµpµ +Mbare)ψ(p)

− i
∫

d3p

(2π)3

∫
d3q

(2π)3
ψ̄(−p)(γ+A+(−q) + γ3A3(−q))ψ(p+ q),

(4.2.6)
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where A = AaTa.
It follows from this action that3

〈ψ(p)nψ̄
m(−q)〉 = δmn

−iγµpµ
p2

× (2π)3δ(p− q),

〈Aa3(p)Ab+(−q)〉 = −〈Ab+(p)Aa3(−q)〉 = −4πi

k

1

p+
× (2π)3δ(p− q)δab.

(4.2.7)

Adopting the notation

〈Aaµ(p)Abν(−q)〉 = (2π)3δ(p− q)Gµν(p)δab,

we have

G+3(p) = −G3+(p) =
4πi

kp+
. (4.2.8)

Temporal gauge

The temporal gauge is defined by the condition A3 = 0 (Wick rotating the Lorentzian tem-
poral gauge A0 = 0). In this gauge, the gauge field propagator is written in position space
as

〈Ai(x)Aj(0)〉 =
2πi

k
εijsign(x3)δ2(~x), (4.2.9)

and in momentum space,

〈Ai(p)Aj(−q)〉 =
2π

k
εij

[
1

p3 + iε
+

1

p3 − iε

]
(2π)3δ3(p− q)

=
4π

k
εij

p3

(p3)2 + ε2
(2π)3δ3(p− q).

(4.2.10)

Feynman gauge

We may add to the action a covariant gauge fixing term of the form

SF =
k

4π

∫
d3x ξTr(∂µA

µ)2. (4.2.11)

The Feynman gauge is obtained in the limit ξ → ∞, in which case the propagator for Aµ
becomes simply

〈Aaµ(p)Abν(−q)〉 = −4π

k
δabεµνρ

pρ

p2
(2π)3δ3(p− q). (4.2.12)

3The propagator for a theory whose Euclidean action is

S =
1

2

∫
d3p

(2π)3
φa(−p)Qab(p)φb(p)

is given by
〈φa(p)φb(−q)〉 = (2π)3δ(p− q)Q−1

ab (p).

This rule is correct for both bosons as well as fermions. In the case of the gauge field we have Q3+ = −Q+3 =
−ikp−

4π
. In the case of the fermionic field we have Qψ̄ψ = ipµγ

µ +Mbare and Qψψ̄ = ipµ(γµ)T +Mbare.
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4.2.2 Exact fermion propagator on R3

The starting point of our analysis is the path integral representation of the partition function

Z =

∫
DψDψ̄DAµe

−S

where the action S is the Euclidean space lightcone gauge action for our field theory, listed
explicitly in (4.2.6). The gauge fields appear quadratically in in (4.2.6) and may be integrated
out. Integrating out the gauge field from (4.2.6) yields the path integral4

Z =

∫
DψDψ̄e−S

where the action S is now given by

S = i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

+
2πi

k

∫
d3p

(2π)3

d3r

(2π)3

d3q

(2π)3

1

q+
ψ̄m(−p)γ+ψn(p− q)ψ̄n(−r)γ3ψm(r + q) .

(4.2.13)

Starting from the bilocal action (4.2.13), one can conveniently derive the Schwinger-Dyson
equation for the fermion self-energy (as in [26]) via

0 =

∫
DψDψ̄

δ

δψ̄m(−p)
(
e−Sψ̄n(p′)

)
(4.2.14)

=

∫
DψDψ̄

(
δnmδ

3(p′ + p)− δS

δψ̄m(−p)
ψ̄n(p′)

)
e−S (4.2.15)

which gives the following relation involving the exact fermion propagator and four-point
functions,

(2π)3δ3(p′ + p) =ipµγ
µ 〈ψm(p)ψ̄n(p′)〉

+
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ+ 〈ψa(p− q)ψ̄a(−r)γ3ψm(r + q)ψ̄n(p′)〉

− 2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ3 〈ψa(p− q)ψ̄a(−r)γ+ψm(r + q)ψ̄

n
(p′)〉 .

(4.2.16)

In the large-N limit, this factorizes to yield

〈ψm(p)ψ̄n(p′)〉 =
1

ipµγµ
(2π)3δ3(p′ + p)

− 1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ+ 〈ψa(p− q)ψ̄a(−r)〉 〈γ3ψm(r + q)ψ̄n(p′)〉

+
1

ipµγµ
2πi

k

∫
d3r

(2π)3

d3q

(2π)3

1

q+
γ3 〈ψa(p− q)ψ̄a(−r)〉 γ+ 〈ψm(r + q)ψ̄

n
(p′)〉 .

(4.2.17)

4In integrating out the gauge field, we absorb the factor coming from the determinant of the gauge field
kinetic operator in the normalization of the path integral. In other words, we normalize the pure Chern-Simons
partition function to 1.
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Let the exact fermion propagator be given by

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ipµγµ +Mbare + Σ
× (2π)3δ(p− q). (4.2.18)

Then

Σ(p) =
N

2

∫
d3q

(2π)3

(
γµ

1

iγαqα +Mbare + Σ(q)
γν
)
Gµν(p− q), (4.2.19)

where
〈Aaµ(p)Abν(−q)〉 = (2π)3δ(p− q)Gµν(p)δab

is the bare gluon propagator.5 Here Mbare is the mass term that appears in the bare La-
grangian. In what follows we will adjust Mbare to ensure that the physical fermion mass
vanishes (this choice corresponds to tuning the theory to the conformality).

The equation (4.2.19) applies in fact in any ghost free gauge in which all gluon interactions
vanish. In this section we will solve (4.2.19) in the lightcone gauge.

Exact solution of the gap equation

In the this subsection we will solve the gap equation (4.2.19) in light-cone gauge:

Σ(p) = −i2πλ
∫

d3q

(2π)3

(
γ3 1

iγµqµ +Mbare + Σ(q)
γ+ − γ+ 1

iγµqµ +Mbare + Σ(q)
γ3

)
1

(p− q)+
.

(4.2.20)
Let us first better understand the matrix structure of the self energy Σ. Let A represent

an arbitrary 2× 2 matrix

A = AII +A+γ
+ +A−γ

− +A3γ
3.

For use below and in later sections we define the matrix valued functions of A, H+(A) and
H−(A) as

H+(A) ≡ γ3Aγ+ − γ+Aγ3 = 2
(
AIγ

+ −A− I
)
, (4.2.21)

H−(A) ≡ γ3Aγ− − γ−Aγ3 = 2
(
−AIγ− +A+I

)
. (4.2.22)

The gap equation (4.2.20) may be rewritten as

Σ(p) = −i2πλ
∫

d3q

(2π)3

(
H+

[
1

iγµqµ +Mbare + Σ(q)

]
1

(p− q)+

)
. (4.2.23)

In the discussion which follows we will sometime abbreviate the notation Σ(p) to Σ for brevity.
Now let

Σ = iΣµγ
µ + ΣII −MbareI. (4.2.24)

Using
1

iγµ(qµ + Σµ) + ΣI
=
−iγµ(pµ + Σµ) + ΣI

(p+ Σ)2 + Σ2
I

5The factor of 1
2

in (4.2.19) has its origin in the 1
2

on the RHS of (4.2.3).
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together with (4.2.21), we may rewrite (4.2.23) as

Σ(p) = −i4πλ
∫

d3q

(2π)3

γ+ΣI + iI(q + Σ(q))−
(qµ + Σµ(q))(qµ + Σµ(q)) + ΣI(q)2

1

(p− q)+
. (4.2.25)

Plugging (4.2.24) into the LHS of (4.2.25) and equating the coefficients of linearly independent
matrices, it follows immediately that

Σ− = Σ3 = 0, (4.2.26)

and that

Σ+(p) = −4πλ

∫
d3q

(2π)3

ΣI

((q + Σ(q))2 + ΣI(q)2)

1

(p− q)+

ΣI(p)−Mbare = 4πλ

∫
d3q

(2π)3

q−
((q + Σ(q))2 + ΣI(q)2)

1

(p− q)+
.

(4.2.27)

What can we say about the dependence of Σ+(p) and ΣI(p) on p? First note that the that
the RHS of the two equations in (4.2.27) is independent of p3. It follows that Σ is a function
only of the in plane momenta p1 and p2 but is independent of p3. Rotational invariance in
the 12 plane and requirement of conformality (i.e. the requirement that no mass scale enter
the physical propagator) then together completely fix the momentum dependence of Σ+ and
ΣI :

ΣI(p) = f0ps

Σ+(p) = p+g0 = p−g0,
(4.2.28)

where

ps =
√
p2

1 + p2
2 =
√

2|p−| =
√

2|p+|, (4.2.29)

and f0 and g0 are dimensionless numbers (that are functions of the coupling constant λ).
Plugging (4.2.29) and (4.2.26) into (4.2.27) we find

g0 = −4πλ

p−

∫
d3q

(2π)3

qsf0

q2
3 + q2

s(1 + g0 + f2
0 )

1

(p− q)+

f0|p| −Mbare = 4πλ

∫
d3q

(2π)3

q+

q2
3 + q2

s(1 + g0 + f2
0 )

1

(p− q)+
.

(4.2.30)

We will now proceed to determine the numbers g0 and f0 as functions of λ.
We first note that the integrals on the RHS of (4.2.30) are (power counting) linearly

divergent. In order to proceed we need to regulate these divergences. We adopt a regulator
that is manifestly Lorentz invariant as well as plausibly gauge invariant. Our regularization
procedure is simply the following: we analytically continue all diagrams to 3− ε dimensions.
Two of these dimensions span the 1-2 plane. We integrate over the remaining 1−ε dimensions
using the formula ∫ ∞

−∞

d1−εx

a2 + x2
=

Aεπ

|a|1+ε
. (4.2.31)
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Here A is a number of order unity which is easily computed. However, as we will see below,
none of the integrals we compute in this paper have a 1

ε type divergence (this corresponds to
an absence of logarithmic divergences, were we to use a momentum cutoff). The only effect
of the dimensional regularization cut off procedure, employed in our paper, is to discard
linear (and below also cubic) divergences in a gauge and Lorentz invariant manner. For that
reason, when we take ε → 0 at the end of the calculation, we effectively set A to unity.
Hence we immediately set A to unity instead of carrying it around in our computation. The
regularization procedure we employ here is essentially the dimensional reduction scheme used
in [131], adapted to our light-cone gauge.

Using (4.2.31) in (4.2.30) yields

g0 = −2πλ

p−
f0√

1 + g0 + f2
0

∫
d2q

(2π)2

1

qεs(p− q)+

f0ps −Mbare = 2πλ
1√

1 + g0 + f2
0

∫
d2q

(2π)2

q+

q1+ε
s (p− q)+

.

(4.2.32)

In order to do the integrals we move to polar coordinates in the 12 plane. The integrals we
need to evaluate are∫

d2q

(2π)2

q+

q1+ε
s (p− q)+

=
1

(2π)2

∫ ∞
0

q1−ε
s dq

∫ 2π

0
dθ

ps cos θ − qs
q2
s + p2

s − 2psqs cos θ∫
d2q

(2π)2p−
q1−ε
s

qεs(p− q)+
=

2

(2π)2ps

∫ ∞
0

q1−ε
s dq

∫ 2π

0
dθ

ps − qs cos θ

q2
s + p2

s − 2psqs cos θ
.

(4.2.33)

Using contour techniques it is not difficult to verify that for q > p∫ 2π

0

dθ

q2 + p2 − 2pq cos θ
=

2π

q2 − p2∫ 2π

0

dθ cos θ

q2 + p2 − 2pq cos θ
=
p

q

2π

q2 − p2
.

(4.2.34)

It follows that ∫ 2π

0
dθ

psqs cos θ − q2
s

q2
s + p2

s − 2psqs cos θ
= 0 (qs < ps)∫ 2π

0
dθ

psqs cos θ − q2
s

q2
s + p2

s − 2psqs cos θ
= −2π (qs > ps)∫ 2π

0
dθ

psqs − q2
s cos θ

q2
s + p2

s − 2psqs cos θ
= 2π (qs < ps)∫ 2π

0
dθ

psqs − q2
s cos θ

q2
s + p2

s − 2psqs cos θ
= 0 (qs > ps).

(4.2.35)

It follows that (4.2.32) reduces to

g0 = − λf0√
1 + g0 + f2

0

,

f0ps −Mbare = − λ√
1 + g0 + f2

0

∫ ∞
ps

q−εdq =
λ√

1 + g0 + f2
0

ps .

(4.2.36)
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It follows from (4.2.36) that Mbare = 0 (this is a consequence of our use of dimensional
regularization; Mbare is linearly divergent in a cut off regulator, as is clear from the second
of (4.2.36)). The remaining equations reduce to

g0 = − λf0√
1 + g0 + f2

0

,

f0 =
λ√

1 + g0 + f2
0

.

(4.2.37)

The solution to (4.2.37) is remarkably simple

f0 = λ,

g0 = −λ2,

g0 + f2
0 = 0 .

(4.2.38)

In other words, the self energy receives contributions from one and two loop graphs but not
at any higher order in perturbation theory! This completes our solution of the gap equation.

We emphasize that our final result (4.2.38) depends in a crucial way on our choice of
regularization scheme. Were we, for instance to regulate the integrals (4.2.30) by modifying

the gauge boson propagator with a Gaussian damping factor e−
(p−q)2

2Λ2 , then we would have
found g0 = 0 (from the integral over the angle in the vector p − q). It is of course quite
clear that a crude cut off on the gauge boson momentum does not preserve either gauge or
Lorentz invariance. We hope on the other hand that the more sophisticated dimensional
regularization scheme preserves both these symmetries. This assumption, which is as yet
unproved, is the main weakness in the analysis presented in this section. We will return to
this point at the end of the section.

In summary, the exact fermion propagator, at leading order in large N , is given by

〈ψ(p)mψ̄(−q)n〉 = δnm
1

ip3γ3 + ip−γ− + i(1− λ2)p+γ+ + λps
× (2π)3δ(p− q). (4.2.39)

(Here m,n are color indices and we have suppressed the spinor indices).

Rewriting the field theory as a path integral over singlet fields

In this subsection we will reformulate the path integral that evaluates the partition function
of our field theory as a path integral over singlest fields. The new path integral is weakly
coupled in the large N limit (the action in terms of the new variables is proportional to N).
The gap equation (4.2.20) follows as the classical equation of motion of this large N action.

While the work of this subsection is considerably more complicated than that of the
previous subsection, it has one significant advantage; it reveals how the solution of the gap
equation is related to the value the partition function of the theory. While the value of the
partition function is of no physical significance for the theory on R3, it is of great significance
on R2 × S1 (as it determines the thermal partition function of the theory on R2). For this
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reason the results of this subsection will prove very useful in our discussion of the finite
temperature partition function in the next section.

We now introduce some convenient shorthand notation. Let

M(P, q) =
1

N

∫
dq3

2π
ψm(

P

2
+ q)ψ̄m(

P

2
− q) . (4.2.40)

M is a 2× 2 matrix in spinor space but a singlet in color space. While one of its arguments,
P , is a 3 momentum, its second argument q is a 2 momentum (in integral on the RHS of
(4.2.40) is over the 3 component of q). (4.2.13) may be rewritten as

S = i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

− 2πiN2

k

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2

1

(q − q′)+
Tr
(
M(P, q)γ+M(−P, q′)γ3

)
= i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

− πiN2

k

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2

1

(q − q′)+
Tr
[(
M(P, q)γ+M(−P, q′)γ3

)
−
(
M(P, q)γ3M(−P, q′)γ+

)]
(4.2.41)

(the flip in sign is due to the fact that we had to take one fermionic field through three
others). Expanding the matrix M in a complete basis of 2× 2 matrices

M = M+γ
+ +M−γ

− +M3γ
3 +MII, (4.2.42)

we find that (4.2.41) reduces to

S = i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

+
8πiN2

k

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2

1

(q − q′)+
M−(P, q)MI(−P, q′),

(4.2.43)

where we have used
Tr
(
[γ−, γ+]γ3

)
= −4. (4.2.44)

Note in particular that M+ and M3 drop out of this expression.
We will now rewrite the interaction term (the term quadratic in M) in (4.2.43) in terms

of a Lagrange multiplier field
Σ = Σ+γ

+ + ΣII. (4.2.45)

where Σ will turn out to be the self energy of the fermion field. To this end we define the
“inverse” Greens function G−1(p) by the requirement that∫

d2q

(2π)2
G−1(p− q) 1

(q − r)+
= (2π)2δ2(p− r) . (4.2.46)
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Note that G−1 is an odd function of its argument. Note also that∫
d2r

(2π)2

1

(q − r)+
G−1(r − p) = (2π)2δ2(q − p) . (4.2.47)

These are the only properties of G−1 that we will need in this paper; in particular we will
never need the explicit form of the function G−1.

Now it is obvious that

Z =

∫
DψDΣ−DΣIe

−(S+E)∫
DΣ−DΣIe−E

, (4.2.48)

where we have chosen

E = 2× N

4πiλ

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2[(
Σ+(P, q)− 4πiλ

∫
d2r

(2π)2
MI(P, r)

1

(r − q)+

)
×G−1(q − q′)

×
(

ΣI(−P, q′)− 4πiλ

∫
d2r′

(2π)2

1

(q′ − r′)+
M−(−P, r′)

)]
.

(4.2.49)

Note that E is a function of the two new Lagrange multiplier fields Σ− and ΣI . The path
integral in the denominator in (4.2.48) is simply a number of order unity and we will omit to
write it in the equations that follow. The effective action in the numerator, S +E, evaluates
to

S = i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

+

∫
d3P

(2π)3

d3q

(2π)3
ψ̄(
P

2
− q)Σ(−P, q)ψ(

P

2
+ q)

+
N

2πiλ

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2
Σ+(P, q)G−1(q − q′)ΣI(−P, q′) .

(4.2.50)

In the second line above we have used the fact that

−2(Σ+M− + ΣIMI) = −TrΣM = − 1

N

∫
dq3

2π
TrΣψψ̄ =

1

N

∫
dq3

2π
ψ̄Σψ

Using (4.2.44) the last line in (4.2.43) may be rewritten as a trace, yielding

S = i

∫
d3p

(2π)3
ψ̄(−p)γµpµψ(p)

+

∫
d3P

(2π)3

d3q

(2π)3
ψ̄(
P

2
− q)Σ(−P, q)ψ(

P

2
+ q)

− N

8πiλ

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2
G−1(q − q′)Tr

(
γ−Σ(P, q)γ3Σ(−P, q′)

)
.

(4.2.51)
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The action (4.2.51) may be rewritten as

S =

∫
d3P

(2π)3

d3q

(2π)3
ψ̄(
P

2
− q)

(
(2π)3δ3(P )iγµqµ + Σ(−P, q)

)
ψ(
P

2
+ q)

− N

8πiλ

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2
G−1(q − q′)Tr

(
γ−Σ(P, q)γ3Σ(−P, q′)

)
.

(4.2.52)

The dependence of (4.2.52) on fermionic fields is quadratic, so the later may be integrated
out. Performing this operation yields

Z =

∫
DΣ−DΣIe

−S (4.2.53)

where

S = −NTr ln
(
(2π)3δ3(P )iγµqµ + Σ(−P, q)

)
− N

8πiλ

∫
d3P

(2π)3

d2q

(2π)2

d2q′

(2π)2
G−1(q − q′)Tr

(
γ−Σ(P, q)γ3Σ(−P, q′)

)
.

(4.2.54)

Notice that (4.2.54) is written purely in terms of singlet fields, and is multiplied by an overall
factor of N . (4.2.54) represents an exact rewriting of the partition function of the original
theory as a partition function over the singlet fields Σ; this path integral is weakly coupled
in the large N limit.

The action, (4.2.54), is somewhat formal, as it is written in terms of a determinant
over an infinite dimensional matrix. However the equivalent of (4.2.54) is much simpler for
translationally invariant Σ configurations of the form

Σ(P, q) = (2π)3δ(P )Σ(q).

The form of this action is perhaps most clearly obtained by retreating to (4.2.52), which
reduces, for translationally Σ configurations to

S =

∫
d3p

(2π)3
ψ̄(−p) [iγµpµ + Σ(p)]ψ(p)− NV

8πiλ

∫
d2q

(2π)2

d2q′

(2π)2
G−1(q−q′)Tr

(
γ−Σ(q)γ3Σ(q′)

)
.

(4.2.55)
V here is a factor of the volume of spacetime, and we have used[

(2π)3δ(P )
]2

= V (2π)3δ(P )

in the last term of the last line.
Integrating out the fermions in (4.2.55) yields a very explicit special case of (4.2.54)

S = −NV
∫

d3q

(2π)3
Tr ln (iγµqµ + Σ(p))− NV

8πiλ

∫
d2q

(2π)2

d2q′

(2π)2
G−1(q−q′)Tr

(
γ−Σ(q)γ3Σ(q′)

)
.

(4.2.56)
While all terms in the action in (4.2.56) are proportional to N , the fields in that action are
gauge singlets. At leading order in the large N expansion it follows that the free energy for
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our theory may evaluated simply by minimizing (4.2.56) w.r.t. Σ. The variational equation
we encounter in this minimization process is∫

Tr

[
d2q

(2π)2
δΣ[q]

∫ (
d2q′

(2π)2

−1

8πiλ
G−1(q − q′)

(
γ3Σ(q′)γ− − γ−Σ(q′)γ3

)
−
∫
dq3

2π

1

iγµqµ + Σ

)]
= 0 .

(4.2.57)
In terms of the function H− defined (4.2.22)∫

Tr

[
d2q

(2π)2
δΣ[q]

∫ (
d2q′

(2π)2

−1

8πiλ
G−1(q − q′)

(
H−

(
Σ(q′)

))
−
∫
dq3

2π

1

iγµqµ + Σ

)]
= 0 .

(4.2.58)
The equation (4.2.58) is of the form∫

Tr

[
d2q

(2π)2
δΣ[q]B(q)

]
= 0, (4.2.59)

where

B(q) =

∫ (
d2q′

(2π)2

−1

8πiλ
G−1(q − q′)

(
H−

(
Σ(q′)

))
−
∫
dq3

2π

1

iγµqµ + Σ

)
.

As δΣ is an arbitrary matrix of the form (4.2.45) it follows that

B−(q) = BI(q) = 0,

i.e., that
H+(B) = 0.

(see (4.2.21)) Using the fact that

H+(H−(Σ)) = 4Σ,

and integrating both sides of (4.2.58) against the kernel 1
(p−q)+ and using the defining property

of the function G−1, it follows from H+(B)) = 0 that

Σ(p) = −2πiλ

∫
d3q

(2π)3

(
γ3 1

iγµqµ + Σ
γ+ − γ+ 1

iγµqµ + Σ
γ3

)
1

(p− q)+
, (4.2.60)

in precise agreement with (4.2.20).
The value of the Euclidean action on the saddle point, (4.2.56), may be rewritten as

S = −NV
∫

d3q

(2π)3
Tr ln (iγµqµ + Σ(q)) +

NV

16πiλ

∫
d2q

(2π)2

d2q′

(2π)2
G−1(q − q′)Tr

(
H−[Σ(q)]Σ(q′)

)
= −NV

∫
d3q

(2π)3
Tr

[
ln (iγµqµ + Σ(q)) +

1

8
H−(Σ(q))H+

((
1

iγµqµ + Σ(q)

))]
= −NV

∫
d3q

(2π)3
Tr

[
ln [iγµqµ + Σ(q)]− 1

2
Σ(q)

(
1

iγµqµ + Σ(q)

)]
,

(4.2.61)

where we have used the equation of motion in going from first to the second line. In going
from the second to the third line we have used the fact that for an arbitrary matrix A

Tr (H−(Σ)H+(A)) = −4Tr (ΣA) .
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4.2.3 The finite temperature theory

In this section we study the logarithm of the path integral of our system on R2 × S1 where
the circumference of the S1 is taken to be β. This path integral determines the free energy
of the field theory at temperature T = β−1.

The formulas that determine the path integral on R2 × S1 are straightforward general-
izations of the formulas on R3. Every equation in subsection 4.2.2 carries through with the
replacement ∫

dp3

(2π)
f(p3)→ 1

β

∑
n∈Z+ 1

2

f(
2πn

β
),

V → V2β

so that

V

∫
d3p

(2π)3
→ V2

∫
d2p

(2π)2

∑
n

.

In particular the Euclidean action is given by

S = NV2

∑
n

∫
d2q

(2π)2
Tr

[
ln [iγµqµ + ΣT (q)]− 1

2
ΣT (q)

(
1

iγµqµ + ΣT (q)

)]
, (4.2.62)

where T , the temperature is β−1 and the function ΣT (q) obeys the gap equation

ΣT (p) = −2πiλ
1

β

∑
n

∫
d2q

(2π)2

(
γ3 1

iγµqµ + ΣT (q)
γ+ − γ+ 1

iγµqµ + ΣT (q)
γ3

)
1

(p− q)+
,

(4.2.63)
where n is an integer and

q3 =
2π(n+ 1

2)

β
.

In order to determine the free energy at finite temperature T , we need to solve the gap
equation (4.2.63) and plug the solution into (4.2.62). We take up these exercises in turn.

The finite temperature gap equation

As in subsection 4.2.2 it follows immediately that ΣT is a linear combination of γ+ and I,
and that it is independent of p3. Rotational symmetry and the constraints of conformality
then imply

ΣT (p) +MbareI = f(βps)psI + ig(βps)p
−γ+

for some as yet unknown functions f(βps) and g(βps). Note that the new dimensionful scale
β, now allows f and g to be functions of ps, generalizing the pure numbers f0 and g0 of the
previous section. The zero temperature results of the previous subsection imply that

lim
y→∞

f(y) = f0 = λ,

lim
y→∞

g(y) = g0 = −λ2 .
(4.2.64)
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The analogue of (4.2.27) is

psf(psβ)−Mbare = 4π
λ

β

∫ ∑
n

d2+εq

(2π)2

q+(
2π(n+ 1

2
)

β

)2

+ q2
s(1 + g(qsβ) + |f(qsβ)|2)

1

(p− q)+
,

(4.2.65)

g(psβ)p− = −4π
λ

β

∫ ∑
n

d2+εq

(2π)2
qs

f(qSβ)(
2π(n+ 1

2)
β

)2

+ q2
s(1 + g + f2(qsβ))

1

(p− q)+
. (4.2.66)

The summations in these equations are easily carried out using the formula∫
dqε

∞∑
n=−∞

1(
n+ 1

2

)2
+ a2 + q2

=
π

|a|1−ε
tanh(π|a|), (4.2.67)

(this is the analogue of (4.2.31) in the previous section - as in the previous section we have
set ε to zero in every place where it will be inessential for regularization) yielding

fps −Mbare = 2πλ

∫
d2qq−εs
(2π)2

tanh

(
βqs
2

√
1 + g + f2

)
q+

qs(p− q)+
√

1 + g + f2
, (4.2.68)

gp− = −2πλ

∫
d2qq−ε

(2π)2
tanh

(
βqs
2

√
1 + g + f2

)
f√

1 + g + f2

1

(p− q)+
, (4.2.69)

where we have left implicit the fact that the f and g are functions of ps on the LHS of
(4.2.68)(4.2.69), but are functions of qs on the RHS of the same equations.

In each of (4.2.68) and (4.2.69) we move to polar coordinates and use use (4.2.34) to
perform the angular integrals to obtain

fps = −λ
∫ ∞
p

q−εdqs tanh

(
βq

2

√
1 + g + f2

)
1√

1 + g + f2
, (4.2.70)

g = −2λ

∫ p

0

q1−ε
s dqs
p2
s

tanh

(
βqs
2

√
1 + g + f2

)
f√

1 + g + f2
. (4.2.71)

Adding and subtracting q−ε from the integrand of (4.2.70) and doing the integral on the
trivial piece we find

f = λ− λ
∫ ∞
p

dqs
ps

tanh
(
βqs
2

√
1 + g + f2

)
√

1 + g + f2
− 1

 , (4.2.72)

g = −2λ

∫ p

0

qsdqs
p2
s

tanh
(
βqs
2

√
1 + g + f2

)
f√

1 + g + f2
. (4.2.73)

In terms of the variable
x =

q

p
,
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f(y) = λ− λ
∫ ∞

1
dx

tanh
(
yx
2

√
1 + g(yx) + f(yx)2

)
√

1 + g(yx) + f(yx)2
− 1

 , (4.2.74)

g(y) = −2λ

∫ 1

0
xdx

tanh
(
yx
2

√
1 + g(yx) + f(yx)2

)
f(yx)√

1 + g(yx) + f(yx)2

 , (4.2.75)

where the variable
y = pβ.

Equivalently

f(y) = λ− λ

y

∫ ∞
y

dx

tanh
(
x
2

√
1 + g(x) + f(x)2

)
√

1 + g(x) + f(x)2
− 1


g(y) = −2

λ

y2

∫ y

0
xdx

tanh
(
x
2

√
1 + g(x) + f(x)2

)
f(x)√

1 + g(x) + f(x)2
.

(4.2.76)

The exact solution

Quite remarkably it is possible to find the exact solution to (4.2.76). We start with (4.2.76)
written in the form

y (f(y)− f0) = −λ
∫ ∞
y

dx

tanh
(
x
2

√
1 + g(x) + f(x)2

)
√

1 + g(x) + f(x)2
− 1


y2g(y) = −2λ

∫ y

0
xdx

tanh
(
x
2

√
1 + g(x) + f(x)2

)
f(x)√

1 + g(x) + f(x)2
.

(4.2.77)

Differentiating both equations w.r.t. y we obtain

yf ′(y) + f(y) = λ
tanh(y2

√
1 + g(y) + f(y)2)√
1 + g + f2

,

yg′(y) + 2g(y) = −2λf(y)
tanh(y2

√
1 + g(y) + f(y)2)√
1 + g + f2

.

(4.2.78)

Multiplying the first equation by 2f and add it to the second equation, we cancel the
RHS and obtain

y
d

dy
(g + f2) + 2(g + f2) = 0. (4.2.79)

From this we solve
g(y) + f(y)2 =

c

y2
, (4.2.80)
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where c is a constant. Now the first equation in (4.2.78) becomes simply

yf ′(y) + f(y) = λ
tanh(y2

√
1 + c

y2 )√
1 + c

y2

. (4.2.81)

Integrating we have

f(y) =
λ

y

∫ y

0
dz

tanh( z2
√

1 + c
z2 )√

1 + c
z2

+
c̃

y
=

2λ

y
ln

cosh
[

1
2

√
c+ y2

]
cosh

[√
c

2

]
+

c̃

y

g(y) =
c

y2
− f(y)2.

(4.2.82)

Here c̃ is another integration constant.
While the solution to a differential equation depends on integration constants, the solution

to an integral equation is unique (it does not have undetermined integration constants). The
appearance of c and c̃ in our solutions above is an artifact of our having solved by converting
the integral equation into a differential equation. The integral equations (4.2.76) are actually
solved by (4.2.82) only for a particular choice of c and c̃.

We first note that the function f must tend to f0 at large y. This is automatic in all our
solutions (it does not impose any constraints on c or c̃). However a further requirement is
that the expansion of f about this constant value (at large y) should start at 1

y2 rather than
1
y (this follows immediately upon plugging (4.2.80) into the RHS of the first of (4.2.77); the

RHS of that equation is manifestly ∝ 1
y ). The requirement that

f(y) = f0 +O(1/y2) (4.2.83)

determines

c̃ = 2λ ln

(
2 cosh

√
c

2

)
. (4.2.84)

Let us now turn to the small y behavior of f and g. At small y

f(y) =
c̃

y
+O(y),

g(y) =
c− c̃2

y2
+O(y0).

(4.2.85)

Plugging (4.2.80) into the RHS of the second of (4.2.77), however, we find that the RHS
evaluates to O(y2) at small y implying that g(y) = O(y0) at small y. It follows that

c = c̃2. (4.2.86)

Plugging this relation into (4.2.84) yields the following equation for c̃

c̃

2λ
= ln

(
2 cosh

c̃

2

)
. (4.2.87)
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Note that c̃ is an odd function of λ. |c̃| is a monotonically increasing function of λ, which
diverges at |λ| = 1. (4.2.87) has no solution for |λ| > 1, indicating that the theory does not
exist for |k| > N . At leading order in at small λ we have

c̃ = 2λ ln 2 +O(λ3). (4.2.88)

As λ approaches unity we have

c̃ = ln
2

(1− λ)
− ln

(
ln

2

1− λ

)
+O

(
ln ln ln

2

1− λ

)
. (4.2.89)

In order to physically interpret the divergence of c̃ as λ → 1 note that the exact thermal
propagator has a pole whenever

p2 + c̃2T 2 = 0.

In other words c̃ has a simple physical interpretation; it is the thermal mass of the field ψ
in units of the temperature. It follows that the fermion thermal mass diverges in this limit
λ→ 1.

Using (4.2.87) and (4.2.86) we may rewrite our solutions for f and g as

f(y) =
2λ

y
ln

(
2 cosh

√
c̃2 + y2

2

)
,

g(y) =
c̃2

y2
− f(y)2.

(4.2.90)

with c̃ given by (4.2.87). In the large y limit

f(y) = λ

√
1 +

c̃2

y2
+O(e−y),

g(y) = −λ2 +
c̃2
(
1− λ2

)
y2

+O(e−y),

(4.2.91)

while at small y

f(y) =
c̃

y
+
λy

2c̃
tanh

(
c̃

2

)
+O(y3),

g(y) = −λ tanh

(
c̃

2

)
+O(y2).

(4.2.92)

Free energy as a function of temperature

As we have explained above, the path integral of our theory on the manifold R2 × S1, with
the circumference of the S1 equal to β, is given by e−ST where

ST = NV2

∑
n

∫
d2q

(2π)2
Tr

[
ln [iγµqµ + ΣT (q)]− 1

2
ΣT (q)

(
1

iγµqµ + ΣT (q)

)]
. (4.2.93)
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Let us define

S0 = −NV2β

∫
d3q

(2π)3
Tr

[
ln [iγµqµ + Σ(q)]− 1

2
Σ(q)

(
1

iγµqµ + Σ(q)

)]
. (4.2.94)

Then the partition function
Z = Tre−βH

of our system in a flat spatial box of volume V2 is given by

lnZ = S0 − ST ,

so that the finite temperature free energy, F (T ), of the theory is given by

F (T ) =
ST − S0

β
.

We will now proceed to use our exact solution to the finite temperature gap equation to
compute ST − S0.

Explicit evaluation of the free energy

In order to find an explicit expression for the free energy, we find it convenient to use the
expressions in the second line of (4.2.93) and (4.2.94). ST − S0 may be written as

ST − S0 = −NV2

∑
n

∫
d2q

(2π)2
Tr ln (iγµqµ + ΣT (q)) +NV2

∫
d3q

(2π)3
Tr ln (iγµqµ + ΣT (q))

−NV2β

∫
d3q

(2π)3
Tr ln

(iγµqµ + ΣT (q))

(iγµqµ + Σ(q))

+
NV2

2

∑
n

∫
d2q

(2π)2
Tr

(
qsf(βqs) + ig(βqs)q+γ

+

iγµqµ + ΣT (q)

)
− NV2β

2

∫
d3q

(2π)3
Tr

(
f0qs + ig0p+γ

+

iγµqµ + Σ(q)

)
.

(4.2.95)

The integral on the first line of (4.2.95) is convergent and evaluates to

−NV2

∑
n

∫
d2q

(2π)2
ln
(
q2

3 + q2
s + c̃2T 2

)
+NV2β

∫
d3q

(2π)3
ln
(
q2

3 + q2
s + c̃2T 2

)
= −2NV2

∫
d2q

(2π)2
ln
(

1 + e−β
√
c̃2T 2+q2

s

)
= −2NT 2V2

∫
d2x

(2π)2
ln
(

1 + e−
√
c̃2+x2

s

)
= −2NT 2V2

2π

∫ ∞
|c̃|

dy y ln
(
1 + e−y

)
.

(4.2.96)
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The second line of (4.2.95) has a linear divergence, which however disappears in our dimen-
sional reduction scheme

−NV2β

∫
d3−εq

(2π)3
ln

(
q2 + c̃2T 2

)
(q2)

= −NV2T
2|c̃|3

∫
d3−εy

(2π)3
ln
y2 + 1

y2

= −NV2T
2|c̃|3

2π2

∫ ∞
0

dyy2−ε ln

(
1 +

1

y2

)
=
NV2T

2|c̃|3

6π
,

(4.2.97)

where in the last step we integrated by parts and used∫ ∞
0

y2−ε

1 + y2
= −π

2

in the limit of small ε. Let us now turn to the third line of (4.2.95). The second term in the
third line simply vanishes under dimensional regularization. The first term in the third line
may be evaluated as follows

NV2

2

∑
n

∫
d2q

(2π)2

2q2
sf

2(βqs) + q2
sg(βqs)

q2
3 + q2

s + T 2c̃2

=
NV2

4

∫
d2q

(2π)2

(
2q2
sf

2(βqs) + q2
sg(βqs)

)
tanh

√
q2+c̃2

2√
q2
s + T 2c̃2

=
NV2T

2

4

∫ d2q

(2π)2

(
2q2
sf

2(qs) + q2
sg(qs)

)
tanh

√
q2+c̃2

2 − λ2
(
c̃2 + q2

)
− c̃2√

q2
s + c̃2

+

∫
d2q

(2π)2

λ2
(
c̃2 + q2

)
+ c̃2√

q2
s + c̃2

]
.

(4.2.98)

The first term in (4.2.98) is finite and evaluates to

NV2T
2

4π
|c̃|3

(
λ2

6
− 1

6|λ|
− 1

2|λ|
+

1

2

)
. (4.2.99)

The second term in (4.2.98) is divergent. In dimensional regularization it evaluates to

− NV2T
2|c̃|3

4π

(
λ2

6
+

1

2

)
. (4.2.100)

The third line of (4.2.95) is given by the sum of (4.2.99) and (4.2.100) and evaluates to

− NV2T
2|c̃|3

6π|λ|
. (4.2.101)
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Putting it all together we find that the free energy is given by

F = −NV2T
3

6π

[
|c̃|3 1− |λ|

|λ|
+ 6

∫ ∞
|c̃|

dy y ln
(
1 + e−y

)]
. (4.2.102)

Although it is not manifest, the free energy can also be written in the form

F = −NV2T
3

6π

[
c̃3 1− λ

λ
+ 6

∫ ∞
c̃

dy y ln
(
1 + e−y

)]
. (4.2.103)

and is an analytic function of λ in the interval (−1, 1).6 To see this more explicitly, note that
we can write the term in square brackets in (4.2.102) as

|c̃|3

|λ|
− |c̃|3 + 6

∫ ∞
0

dy y ln
(
1 + e−y

)
+ 6

∫ |c̃|
0

dy

(
y2

2
− y ln

(
2 cosh

y

2

))
=

9

2
ζ(3) +

c̃3

λ
− 6

∫ |c̃|
0

dy y ln
(

2 cosh
y

2

)
,

(4.2.104)

where in the last line we used |c̃|3/|λ| = c̃3/λ, as follows from (4.2.87). Note that the integral
in the last term is clearly an even function of |c̃|, and so the absolute value can be omitted.
This shows that one may effectively rewrite (4.2.102) as in (4.2.103), which is manifestly
analytic. Indeed its small λ expansion is given by

F = −NV2T
3

[
3ζ(3)

4π
− 2(log 2)3

3π
λ2 − (log 2)4

2π
λ4 +O(λ6)

]
. (4.2.105)

Note that it contains only even powers of λ, consistently with parity. A plot of the free energy
as a function of λ is given in Fig. 4.1. We see that −F decreases monotonically from the free
field value −F = 3NV2T 3

4π ζ(3) to zero at λ = 1.
In the limit that |λ| → 1, |c̃| is large and the integral in (4.2.102) may be approximated

by ∫ ∞
|c̃|

dy y ln
(
1 + e−y

)
= |c̃|e−|c̃| + e−|c̃| +O(e−2c̃|).

At leading nontrivial order this evaluates to

c̃2 1− |λ|
2

,

and the free energy is given by

F = −NV2T
3(1− |λ|)
6π

[
|c̃|3 + 3c̃2 +O(c̃)

]
, |λ| → 1 , (4.2.106)

where c̃ is given by (4.2.89).

6Theories with massless bosons usually do not have an analytic expansion of their free energy in terms
of the coupling constant. Such non-analytic behavior in Chern-Simons-matter theories with massless bosons
was observed explicitly e.g. in [56], [132]. This non-analyticity has its origin in infrared divergences which are
absent in our theory because the only propagating degrees of freedom are the fermions which lack a zero-mode
along the thermal circle.
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Figure 4.1: The free energy on S1 × R2 as a function of λ.

4.2.4 Consistency of our gauge and regularization scheme

As we have emphasized on multiple occasions, we have obtained the beautiful result (4.2.102)
by employing a rather unusual gauge (a lightcone like gauge in Euclidean space) and the
regularization scheme of dimensional reduction, which we have assumed preserves the gauge
invariance of our theory. In this section we list the independent evidence that the procedure
employed in this section defines a sensible and Lorentz invariant theory.

1. The exact fermion propagator (4.2.39) develops poles only when p2 = 0, a condition
that is Lorentz invariant. This is a necessary condition for the Lorentz invariance of
fermion scattering processes in our theory. 7 The Lorentz invariance of the poles of
the propagator is far from automatic, and is in fact violated in several regularization
schemes. In, for instance, the regularization scheme described just below (4.2.38) we
find g0 = 0 but f0 6= 0 (in fact f0 obeys the equation f0 = − λ√

1+f2
0

with this regulator).

The poles of the fermion propagator with this regulator occur at p2
3 + p2

s(1 + f0) and
are not Lorentz invariant.

2. In Appendix C of [10] we have demonstrated that the expectation value, at one loop,
of the gauge invariant Wilson line operator is Lorentz invariant and moreover agrees
with the result obtained in the manifestly Lorentz invariant Feynman gauge.

7Particle scattering is, strictly speaking, not well defined in our theory (or any conformal theory) due
to infrared divergences. We could cure these divergences in our theory softly breaking conformal invariance
with a fermion mass. Scattering processes in this deformed theory are presumably well defined. The poles
of the mass deformed theory are clearly physical and must be Lorentz invariant. As our computation of the
propagator of massless theory, presented in this paper, exhibits no IR divergences, it must equal the zero mass
limit of the mass deformed propagator, and hence must be Lorentz invariant.
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3. Our results above indicate that our theory is infinitely strongly coupled at λ = 1, and
that the theory does not exist (at least as a conformally invariant theory) for λ > 1.
There is in fact a very simple interpretation of this result. It is well-known that the
bare Chern-Simons level can acquire a finite shift at 1-loop order in perturbation theory.
This effect is regularization dependent. It was demonstrated by [131] that the Chern-
Simons matter theory defined using the dimensional reduction scheme, employed in
this paper, does not acquire a 1-loop shift of k. On the other hand, if the theory is
regulated by the addition of a small Yang Mills term, the bare level, which we denote
kYM , gets shifted by sign(kYM )N . Therefore the results of [131] imply that the two
regularizations yield the same physical theory provided

|k| = |kYM |+N.

Let us define λ = N
k as we have done in this paper, and |λYM | = N

|kYM | . It follows that

|λYM | =
|λ|

1− |λ|

and

|λ| = |λYM |
1 + |λYM |

.

In particular as |λ| → 1, we have |λYM | → ∞. Now a Chern-Simons theory regulated
by the addition of a small Yang Mills term clearly exists at all values of |λYM |. However
it follows from the discussion above that this only requires the dimensionally regulated
theory to exist for |λ| ≤ 1. Moreover the limit |λ| → 1 should be interpreted as the
approach to strong coupling. Our exact result for the finite temperature free energy
is perfectly consistent with this interpretation. The theory ceases to exist for |λ| > 1.
Moreover the limit |λ| → 1 displays the extreme thinning of degrees of freedom that is
plausible in an extreme strong coupling limit.8

4. In Appendix F of [10], we have explicitly computed the two loop anomalous dimension,
at first subleading order in 1

N , of the scalar operator ψ̄ψ. The result so obtained agrees
perfectly with the result of the same computation performed in Feynman gauge.

The points listed above make it at least plausible that our gauge choice is free of prob-
lems, and that our regularization scheme preserves gauge invariance and so defines a Lorentz
invariant theory. While the direct evidence for these claims is substantial, it is not over-
whelming. Significant additional evidence for the Lorentz invariance of our final theory could
be obtained by demonstrating the Lorentz invariance of four Fermi scattering at one loop.
We will not, however, attempt that consistency check in this paper.

8Note that (4.2.106) expressed in terms of kYM takes the form

F = −|kYM |V2T
3

6π

(
ln

N

|kYM |

)3

+ · · · , λ→ 1.

This behavior in the λ→ 1 limit could be consistent with a weakly coupled boson description (see [56]).
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4.3 Operator Spectrum

We now study the spectrum of gauge-invariant operators in our theory. We focus to operators
whose dimension is held fixed as N is taken to infinity. By large-N factorization, all such
operators are products of single trace operators, which, in the context of the vector models we
are considering, are naturally defined as those constructed by contracting a single operator
in the fundamental representation of U(N) with a single operator in the anti-fundamental
representation of U(N) – i.e., fermion bi-linears such as ψ̄iγµψi.

We demonstrate below that the spectrum of single-trace operators in our theory includes
one scalar and one current of spin s for s = 1 . . .∞. A simple argument based on conformal
representation theory shows that the scaling dimension of these operators are protected in the
large N limit. For all values of λ, the scaling dimension of the scalar operator is 2 +O(1/N)
and the dimension of the spin s-current J (s) is given by ∆s = s+ 1 +O(1/N). We will also
see that the currents J (s) are “almost” conserved; more precisely that these currents obey
the anomalous conservation law listed schematically in (4.3.10).

These results immediately allow us to make some very general comments about the possi-
ble holographic dual to the theory. In particular, the free theory (obtained in the limit λ→ 0)
has been conjectured [28] to be dual to a particular higher-spin gauge theory constructed by
Vasiliev, containing an infinite tower of gauge fields – one for each conserved current J (s). By
the AdS/CFT dictionary the masses of these gauge fields in the bulk are directly related to
the anomalous dimensions of the corresponding operators; the fact that the higher spin cur-
rents have vanishing anomalous dimensions in the large-N limit implies that the bulk gauge
fields (should a bulk dual description exist) must remain locally massless even for finite λ.

4.3.1 The free limit

In this subsection we review several well-known properties of Chern-Simons theory coupled
to fundamental fermions in the free (λ→ 0) limit. In this limit our theory reduces to a theory
of free fundamental fermions subject to a U(N) singlet Gauss law constraint; this limit has,
of course, been studied in the previous literature (see e.g. [28]). In this section we gather
those results that will help us study the theory at finite λ.

“Single trace” conformal representation content of the free theory

In this subsection we compute the single-trace operator content of the theory of free fermions.
The results of this subsection were already presented in [28]; however we rederive them here
for completeness9.

Let ∆ represent the scaling dimension and s the z component of the angular momentum
of any operator. We now compute the partition function

Trx∆µs (4.3.1)

over all single trace operators in our theory. As “single traces” are obtained by multiplying an
arbitrary fundamental field with an arbitrary anti-fundamental, the trace over “single traces”

9This was worked out in collaboration with J. Bhattacharya.
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is simply the product of the partition function for elementary fundamental fields with the
partition function for elementary antifundamental fields.

The partition function over elementary fundamental fermionic fields (including arbitrary
numbers of derivatives but modulo equations of motion) is simply the character of the (1, 1

2)
representation of the conformal group and is given by

FF (x, µ) =
x(µ

1
2 + µ−

1
2 )

(1− µx)(1− µ−1x)
. (4.3.2)

The partition function over antifundamentals is given by the same formula, and so the “single
trace” partition function is given by F 2

F .
It is not difficult to decompose this partition function into the contribution of primary

operators and their descendents. In order to accomplish this we note that[
x(µ

1
2 + µ−

1
2 )

(1− µx)(1− µ−1x)

]2

=
1

(1− µx)(1− µ−1x)(1− x)

[
x2(1− x)(2 + µ+ µ−1)

(1− µx)(1− µ−1x)

]
=

1

(1− µx)(1− µ−1x)(1− x)

[
x2 +

∞∑
s=1

(
xs+1χs(µ)− xs+2χs−1(µ)

)]

= χ2,0(x, µ) +

∞∑
s=1

χs+1,s(x, µ) .

(4.3.3)

where χ∆,s(x, µ) is the character of a representation of the conformal algebra with dimension
∆ and spin s and we have used the character formulae listed in section 4.3.8. It follows that
single trace operators are given by primaries that transform in the representations

(2, 0) +

∞∑
j=1

(j, j + 1)

together with their descendents.
It will be important below that the only long operator that appears in this decomposition

is (2, 0) (see section 4.3.8); all other operators in the list above appear in short representations
of the conformal algebra.

Explicit form of the primary operators

As we have explained above, the primary field content of the free fermion theory is given by

the (2, 0) operator ψ̄ψ plus symmetric traceless currents J
(s)
µ1...µs for all s ≥ 1. As we have seen

above, the currents are primaries that head short representations of the conformal algebra;
the shortening condition is simply the statement that the currents obey the conservation
equation

∂µJ (s)
µµ1...µs−1

= 0 . (4.3.4)
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Single trace currents J (s) that have dimension s+ 1, spin s and are conserved are unique up
to a choice of scale in the free fermion theory. We have found explicit expressions for each
of the currents J (s). Following [66] we find it convenient to package these expressions in the
form of a generating function O(x, ε) defined by

O(x; ε) =
∑

J (s)
µ1µ2...µsε

µ1 . . . εµs (4.3.5)

where εµ is an arbitrary vector. As all currents are bilinear in the fermions, the generating
function is given by an expression of the form

O(x; ε) = ψ̄F (~γ,
−→
∂µ,
←−
∂µ,~ε)ψ . (4.3.6)

Making a convenient choice for the overall scale of each J (s) we find, (see section 4.3.9 for
the derivation),

F = ~γ.~εf(
−→
∂µ,
←−
∂µ,~ε) (4.3.7)

where

f(~u,~v,~ε) =
exp (~u · ~ε− ~v · ~ε) sinh

√
2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε√

2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε
. (4.3.8)

The Taylor expansion

f = 1 + ε(u− v) +
1

6
ε2
(
3u2 − 10uv + 3v2 + 2w

)
+ε3

(
u3

6
− 7u2v

6
+

7uv2

6
+
uw

3
− v3

6
− vw

3

)
+

1

120
ε4
(
10(u− v)2(2w − 4uv) + (4uv − 2w)2 + 5(u− v)4

)
+O(ε5)

(above, w = ~u · ~v, u = ~u · ~ε, v = ~v · ~ε.) implies the following explicit expressions for the first
four currents

Jµ = ψ̄γµψ,

Jµ1µ2 = ψ̄γµ1

(−→
∂µ2 −

←−
∂µ2

)
ψ,

Jµ1µ2µ3 =
1

6
ψ̄γµ1

(
3
←−
∂µ2

←−
∂µ3 − 10

←−
∂µ2

−→
∂µ3 + 3

−→
∂µ2

−→
∂µ3 + 2(

←−
∂σ
−→
∂σ)ηµ2µ3

)
ψ,

Jµ1µ2µ3µ4 =
1

6
ψ̄γµ1

(←−
∂µ2

←−
∂µ3

←−
∂µ4 − 7

←−
∂µ2

←−
∂µ3

−→
∂µ4 + 7

←−
∂µ2

−→
∂µ3

−→
∂µ4 −

−→
∂µ2

−→
∂µ3

−→
∂µ4 ,

+2(
←−
∂σ
−→
∂σ)
←−
∂µ2ηµ3µ4 − 2(

←−
∂σ
−→
∂σ)
−→
∂µ2ηµ3µ4

)
ψ

where all indices above are understood to be symmetrized.
The existence of spin s conserved currents gives rise to a large symmetry algebra, called

the higher spin algebra, of the free fermion theory.
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4.3.2 Non-renormalization of the scaling dimension of the current opera-
tors

As we have explained above, the single trace operator content, in the free limit, is given in
terms of representations of the conformal algebra by

(2, 0) +
∞∑
j=1

(j + 1, j).

With the exception of the scalar operator, these representations are all of the form (s+ 1, s)
and are short. Operators that transform in these representations can only develop anomalous
dimensions after combining with a long representation with quantum numbers (s+ 2, s− 1)
(see (4.3.29)).

The operators in the (2, 1) and (3, 2) conformal representations are the conserved currents
for the U(1) fermion flavor symmetry and the fermionic stress tensor respectively. These
operators are exactly conserved currents so cannot develop anomalous dimensions at any
value of λ. Let us now consider the operator that transforms in the (4, 3) representation of
the conformal algebra in the free theory. This operator can develop an anomalous dimension
only upon combining with an operator in the representation (5, 2). However the only spin
two single trace operator, the stress tensor, transforms as (3, 2) for all values of λ.

We now make a key assumption that we justify in more detail below: we assume that, as
far as the analysis of leading large N scaling dimensions is concerned, we can simply ignore
all mixing of single-trace and multi-trace operators. It follows that, at leading order in 1

N , the
operator in the (4, 3) representation cannot develop an anomalous dimension at any value
of λ, simply because at no value of λ can there exist a single-trace operator in the (5, 2)
representation with which the (4, 3) operator can combine to form a long representation.

This argument can now be repeated recursively, to demonstrate that the scaling dimen-
sions of all “single trace” spin s operators are exactly protected (at leading order in N) at all
values of λ. The only way this argument could fail is if the theory underwent a severe phase
transition at a finite value of λ, across which the spectrum of the theory was not continuous.

Note that the non-renormalization theorem relies on the assumption of non-mixing of
single and multi trace operators (which we will justify in detail below) and the the sparsity of
single trace operators in our system. As we will see explicitly below, our non-renormalization
theorem will be violated by 1

N corrections.
Finally note that nothing in the argument we have presented so far prevents the operator

ψ̄ψ from developing an anomalous dimension. However we will proceed to argue below that
this is also impossible; the scaling dimension of this operator is also protected (as a function
of λ) in the interacting theory.

4.3.3 Explicit form of the current operators

In subsection 4.3.1 above we have determined the explicit form of the primary operators that
transform in the (s+1, s) representation of the conformal algebra. In the previous subsection
we have argued that the interacting theory has primaries with the same quantum numbers
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at all values of λ. In this subsection we will determine the explicit form of these primary
operators, in the interacting theory, in terms of the bare fermionic fields ψ.

In the interacting theory at finite λ let Ĵ (s) denote the currents obtained from the following
procedure: replace all derivatives in the expression for J (s) in the free theory (see subsection
4.3.1) with covariant derivatives. Explicitly, for s = 1 . . . 4 we have

Ĵ (1)
µ = ψ̄γµψ,

Ĵ (2)
µ1µ2

= ψ̄γµ1

(−−→
Dµ2 −

←−−
Dµ2

)
ψ,

Ĵ (3)
µ1µ2µ3

=
1

6
ψ̄γµ1

(
3
←−−
Dµ2

←−−
Dµ3 − 10

←−−
Dµ2

−−→
Dµ3 + 3

−−→
Dµ2

−−→
Dµ3 + 2(

←−
Dσ
−→
Dσ)ηµ2µ3

)
ψ

Ĵ (4)
µ1µ2µ3µ4

=
1

6
ψ̄γµ1

(←−−
Dµ2

←−−
Dµ3

←−−
Dµ4 − 7

←−−
Dµ2

←−−
Dµ3

−−→
Dµ4 + 7

←−−
Dµ2

−−→
Dµ3

−−→
Dµ4 −

−−→
Dµ2

−−→
Dµ3

−−→
Dµ4 ,

+2
←−−
Dµ2(

←−
Dσ
−→
Dσ)ηµ3µ4 − 2(

←−
Dσ
−→
Dσ)
−−→
Dµ2ηµ3µ4

)
ψ

where all indices on the RHS are understood to be symmetrized.
The currents Ĵ (s) are not automatically tracelessness in their vector indices. The reason

for this lack of tracelessness is that covariant derivatives, unlike their ordinary counterparts,
do not commute. However the commutator of two covariant derivatives is a field strength.
Now according to the classical Chern-Simons equation of motion

(Fµν)ij =
π

k
εµνρψ̄

iγρψj (4.3.9)

where the i and j indices are color indices. Now consider a factor of the field strength F
inserted inside a “single trace” fermion bilinear. By the equation of motion cited above10,
this insertion splits the “single trace” into a “double trace” operator divided by k. Further
factors of F inside any of the new resultant “traces” repeats this operation. It follows that
the spin s− 2, s− 4 etc components of the current Ĵ (s) is given (via the equations of motion)
by ‘multi trace’ operators that are schematically take the form sm

km−1 where s represents any
“single trace” operator so sm stands for an m trace operator.

The fact that the operators Ĵ (s) are not traceless means that these currents are not of
definite spin; they include components of spin s, spin s− 2 etc. Let us define the interacting
currents J (s) as the projection of Ĵ (s) to its spin s component, i.e. the projection that removes
all traces from Ĵ (s). J (s) is, by definition, a spin s current, and is of power counting dimension
s+ 1. As we have explained above, J (s) and Ĵ (s) differ only by “multi trace” expressions.

Now the primary operator that transforms in the (s+1, s) representation of the conformal
algebra is necessarily an expression of spin s and of power counting dimension s + 1 (we
use a renormalization scheme in which operators can mix only if they have equal classical
dimension). The full set of such operators is easily enumerated; in the free theory it consists
of those descendents of the primaries (j+ 1, j) that are of dimension s+ 1 and spin s (clearly
this requires j ≤ s). Note that (in the free theory) these are all single trace operators. All
spin s multitrace operators in the free theory have dimension greater than or equal to s+ 2.

10While the equation (4.3.9) was derived classically, we believe it also applies quantum mechanically, in an
appropriate regulator scheme, as the current J(1) is the unique dimension two, spin one operator in the theory.
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In the interacting theory, the full set of operators of spin s and classical dimension s+ 1,
is given by replacing all derivatives by covariant derivatives in the free answer and then
projecting onto the spin s component (i.e. removing all traces). As above, the projection
onto spin s leaves the “single trace” part of the operator untouched, but adds “multi trace”
operators to the mix.

Now let us compute the divergence of the most general possible spin s, classical dimension
s+1 current listed above in the interacting theory. The computation of this divergence differs
from the same computation in the free theory in three ways. First covariant derivatives do
not commute, and that results in extra factors of the field strength; as we have explained
above such factors modify the multi trace parts of the answer but leave the “single trace” part
of the answer untouched. Second, as explained above, the current J (s) has extra multitrace
operators as compared to the free current. This additional complication also affects only the
multi trace parts of the answer. Finally the fermion equation of motion could be quantum
mechanically modified, but any such modification is necessarily in terms of ‘multi trace’
operators.

In other words the single trace part of the divergence of the general spin s current in
the interacting theory is identical to the result of the same computation in the free theory
(after replacing derivatives with covariant derivatives). However the interacting divergence
includes, in addition, several multi trace contributions that are absent in the free theory.

Now in subsection 4.3.1 we computed the unique operator of dimension s+1 and spin s, in
the free theory, that is also conserved. The interacting theory possesses no exactly conserved
operator of this dimension. The operator J (s) comes closest to a conserved current, in that
it is the unique current that obeys the schematic equation

∂ · J (s) ∼ 1

k
JJ +

1

k2
JJJ (4.3.10)

(on the RHS of the equation above the symbol J refers either to a current or to a descendent
of a current; the important point in this equation is that the RHS contains no single trace
pieces). 11 In other words J (s) is the unique spin s and classical dimension s+ 1 field in the
interacting theory whose divergence has no single trace component.

As we will see below, the operator J (s) constructed above, may be identified with unique
dimension s + 1 spin s primary of the interacting theory. Before proceeding we will first,
however, give an example of how our abstract and exact construction of J (s), (as the projector
onto the spin s sector of the current J̃s) may actually be practically implemented at leading
order in λ, for the special case of the current J (3). For this purpose in the next subsection
we evaluate the current J (3) and its divergence using the classical (but interacting) field
equations. In the subsequent subsection we return to the demonstration that the dimension
of J (s) is s+ 1.

11The absence of higher trace operators on the RHS of this equation follows from a consideration of quantum
numbers. The is of spin s−1 and classical dimension s+2. Recall that ∆−s ≥ 1 for all single trace operators.
It follows that ∆− s ≥ m for m trace operators, and so m ≤ 3.
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J (3) as an example

The trace of Ĵ (3) is given by

Ĵ (3)
µν

ν =
1

6

[
ψ̄γµ(

−→
D2 +

←−
D2)ψ + ψ̄γν([

−→
Dν ,
−→
Dµ] + [

←−
Dµ,
←−
Dν ])ψ

]
. (4.3.11)

Using the identities listed in Appendix 4.3.9

Ĵ (3)
µν

ν = − 1

12
ψ̄F ρσερσν(γνγµ + γµγ

ν)ψ

= −1

6
ψ̄F ρσερσµψ

=
π

3k
(ψ̄ψ)(ψ̄γµψ).

In the last line we used the equation of motion for the field strength F (see Appendix 4.3.9).
Upon projecting out the trace we find

J (3)
µ1µ2µ3 − Ĵ (3)

µ1µ2µ3
= − π

5k
η(µ1µ2

(ψ̄ψ)(ψ̄γµ3)ψ). (4.3.12)

As we have explained, the currents J (s) are not expected to be exactly divergence free for
s ≥ 3. On the other hand the divergence of the currents J (1) and J (2) vanishes even in the
interacting theory (this is obvious for J (1) and is also true for the stress tensor Tµν as it can
be explicitly checked). In Appendix 4.3.9 we have also explicitly computed the divergence of
J (3) in the classical but interacting fermion theory. Our result is (see Appendix 4.3.9)

∂µJ (3)
µν1ν2

= −16π

5k

[
ην1ν2

(
∂µJ (0)

)
J (1)
µ − 3

(
∂(ν1

J (0)
)
J

(1)
ν2) + 2J (0)∂(ν1

J
(1)
ν2)

]
. (4.3.13)

We have presented our result in terms of the scalar “current” J (0) = ψ̄ψ and the vector

current J
(1)
µ = ψ̄γµψ.

The equation (4.3.13) has been derived classically; it could certainly receive quantum
corrections. However all such corrections are necessarily of higher order in λ; at small λ
(4.3.13) gives the leading order contribution to the divergence of J (3).

4.3.4 Anomalous dimensions of the current operators

We will now use the fact that the operators J (s) obey equations of the form (4.3.10) to argue
that the scaling dimension of the operator J (s) is s+ 1 up to corrections of order 1

N . We will
also explain how the knowledge of the precise form of the RHS of (4.3.10) can immediately
be converted into a computation of the anomalous dimensions of J (s) at leading order in 1

N ,
and systematically in the 1

N expansion.
Let us first review how it follows that a conserved spin s current has ∆ = s+ 1. For this

purpose we use the state operator map, and denote the state dual to the operator O by |O〉.
The standard argument takes the schematic form

〈∂J |∂J〉 = 〈J |[K,P ]|J〉 = (∆− s− 1)〈J ||J〉
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(see below for the argument with all indices in place). If 〈∂J |∂J〉 vanishes then it follows
immediately that ∆ = s+ 1. In the our theory 〈∂J |∂J〉 does not quite vanish (see (4.3.10)).
However as we will argue below, (4.3.10) determines it to be a 1

N times a product of known
two point functions.

In order to all see this in detail we start with some preliminaries. In radial quantization,

J
(s)
µ inserted at the origin corresponds to a state |J (s)

µ 〉 on the sphere. For convenience we

introduce a set of differently normalized currents, j
(s)
µ , whose corresponding states |j(s)

µ 〉 obey

〈j(s)
µ |j(s′)

ν 〉 = δss′δµ,ν (4.3.14)

where δµ,ν is 1 if µ, ν are the same set of indices up to permutation and 0 otherwise. J (s) and

j(s) are related by J
(s)
µ = asj

(s)
µ , where the tree level result for the normalization constant

as is computed in section 4.3.9. Using the inversion x′µ = xµ/x
2, the two point function in

position space is related by

〈j(s)
µ (x)j(s)

ν (0)〉 = (−)sx−2−2δs ∂x
′σ1

∂xµ1
· · · ∂x

′σs

∂xµs
〈j(s)
σ (x′)|j(s)

ν (0)〉

= (−)sx−2s−2−2δs

s∏
i=1

(δσiµi −
2xσixµi

x2
) · 〈j(s)

σ |j(s)
ν 〉.

(4.3.15)

where δs is a possible anomalous dimension for J (s). In the second step we moved j
(s)
σ (x′)

to j
(s)
σ (0) at no cost, since the difference is a conformal descendant, which is orthogonal to

|j(0)〉. One can analogously work out the momentum space two point function.
We can also translate (4.3.10) into the language of states in radial quantization, schemat-

ically of the form

Pµ|j(s)
µµ1···µs−1〉 =

1√
N
A|jj〉+

1

N
B|jjj〉. (4.3.16)

Taking its norm (using that P † = K), we have

〈j(s)
µµ1···µs−1 |KµP ν |j(s)

νν1···νs−1〉 =
1

N
A2〈jj|jj〉+O(

1

N2
) . (4.3.17)

Since |j(s)
νν1···νs−1〉 is a conformal primary, it is annihilated by Kµ. Using the conformal algebra,

the LHS of (4.3.17) is equal to

〈j(s)
µµ1···µs−1 |[Kµ, P ν ]|j(s)

νν1···νs−1〉 = 2〈j(s)
µµ1···µs−1 |(δµνD +Mµν)|j(s)

νν1···νs−1〉

= 2

[
(s+ 1 + δs)〈j(s)

µµ1···µs−1 |j
(s)
µν1···νs−1〉+ (δµνδνρ − δννδµρ)〈j(s)

µµ1···µs−1 |j
(s)
ρν1···νs−1〉

+

s−1∑
i=1

(δµνiδνρ − δννiδµρ)〈j
(s)
µµ1···µs−1 |j

(s)
νν1···νi−1ρνi+1···νs−1〉

]
= 2δs〈j(s)

µµ1···µs−1 |j
(s)
µν1···νs−1〉.

(4.3.18)
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In the last step we used the fact that j
(s)
µ1···µs is traceless. The order 1/N contribution to the

RHS of (4.3.17) comes from the disconnected four-point function, i.e. schematically

〈jj|jj〉 = 〈j|j〉〈j|j〉+O(
1

N
). (4.3.19)

This relates the anomalous dimension δs at order 1/N to the product of two two-point
functions of J of lower spins in the free theory. Note that this method cannot be used in the
s = 0 case, which we handle separately below.

As an explicit example, let us consider the spin 3 current J
(3)
µνρ, which obeys the anomalous

current conservation relation (4.3.13). In terms of states in radial quantization, we have the
(tree level) relation

|ψν1ν2〉 ≡ Pµ|j(3)
µν1ν2

〉 = c
[
δν1ν2P

µ|j(0)〉 ⊗ |j(1)
µ 〉 − 3P(ν1

|j(0)〉 ⊗ |j(1)
ν2)〉+ 2|j(0)〉 ⊗ P(ν1

|j(1)
ν2)〉
]

(4.3.20)
where c = −16π

5k
a0a1
a3

. Taking its norm and using the conformal algebra commutation relations,
we find, in particular,

〈ψµν |ψµν〉 = 252|c|2

= 2δ3〈j(3)
µνρ|j(3)

µνρ〉 = 20δ3,
(4.3.21)

and so

δ3 =
63

5
|c|2 =

252

625

λ2

N
, (4.3.22)

to the leading nontrivial order, i.e. two-loop order. There are both planar and non-planar
corrections at higher orders in λ and in 1/N .

A relation of the form (4.3.17) holds to higher order in 1/N as well; we would however
need the connected four-point functions etc., as well as potential 1/N corrections to the
relation (4.3.10), in order to compute the next order contribution to δs in 1/N .

4.3.5 Anomalous current conservation relations within correlation func-
tions

As we have explained above, the primary operators that transform in the (s+1, s) representa-
tion (in the large N limit) obey anomalous conservation equations of the form (4.3.10). The
equation obeyed, in particular, by J (3) (in the classical interacting theory) is listed in (4.3.13).
The nonlinear equations of form (4.3.13) carry a lot of information, as we will explore in this
subsection.

Let us first investigate the implication of anomalous conservation equations on three point
functions of spin J (s) operators at leading order in N . 12. We find the schematic equation

∂µ〈Jµ...JJ〉 =
1

k
〈JJJJ〉+

1

k2
〈JJJJJ〉 . (4.3.23)

While the leading behavior of the second term in (4.3.23) (which comes from factorizing the
5 pt function into the product of a 2 and 3 pt function) is O(1) (and so subleading in the

12We have seen in the previous section that the operators J(s) are effectively conserved within two point
functions at leading order in N
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large N limit) the leading behavior of the first term on the RHS (this comes from factoring
the 4 pt function into a product of two point functions) is O(N) and so of leading order. It
follows that our current operators are not, in general, conserved within three point functions
even at leading order in the O(1/N) expansion. By equating scaling dimensions on the LHS
and RHS of (4.3.23) it follows immediately that the RHS of (4.3.23) can be nonzero only
when s ≥ s1 + s2. In other words the three point function

〈J (s)J (s1)J (s2)〉 (4.3.24)

can obey anomalous conservation equations (rather than genuine conservation equations) only
if s1, s2 and s3 violate or saturate the triangle inequality. In all the explicit computations we
perform below, it will turn out that the RHS of (4.3.23) is nonzero only when the triangle
inequality is explicitly violated (i.e. it vanishes when s1 = s2 + s3). It is possible that this is
a general exact result that could perhaps be proved by an analysis of allowed structures for
3 point functions, but we will not attempt such an analysis here.

4.3.6 Non-renormalization of the scalar operator J (0)

Let us now apply the arguments of the previous subsection to the three point correlator
〈J (3)(x)J (1)(y)J (0)(z)〉. According to the arguments of the previous subsection, and (4.3.13),
the divergence of this three point function w.r.t the variable x is schematically proportional (in
the large N limit) to a term proportional 〈∂J (0)J (0)〉〈J (1)J (1)〉 plus another term proportional
to 〈J (0)J (0)〉〈∂J (1)J (1)〉. The weight under overall scaling of each of these expressions is
5 + 2∆0 where ∆0 is the as yet unknown scaling dimension of the current operator J (0).
On the other hand the weight under scaling of the divergence of the three pt function is
6 + ∆0. Equating these weights we find that ∆0 = 2. We conclude that, just like their spin s
counterparts, the scaling dimension of the scalar current J (0) is not renormalized as a function
of λ.13 This non-renormalization result may be argued for more intuitively as follows: the
LHS of (4.3.13) is of dimension 5. The RHS of the same expression is also of dimension 5 if
and only J (0) has dimension 2.

4.3.7 Vector models are dual to higher spin gauge theories

The non-renormalization of single trace currents in U(N) Chern-Simons-fermion theory at
leading order in 1/N indicates that its holographic dual has a free spectrum of purely higher
spin gauge fields, of spin s = 0, 1, 2, 3, · · · , and their bound states (which are dual to multi-
trace operators). The divergences of the single trace currents are mixed with double and

possibly triple trace operators, and the mixing is suppressed by N−
1
2 . By comparing two and

three point functions of the currents, we see that N−
1
2 should be identified with the bulk

coupling constant.
Classically, the bulk nonlinear equations of motion must therefore preserve the higher

spin gauge symmetries as well, for otherwise they would introduce extra longitudinal degrees
of freedom for the higher spin fields even in the zero coupling limit. This means that the dual

13We thank O. Aharony for discussions on this topic.
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bulk theory is a pure higher spin gauge theory. On the other hand, the higher spin symmetry
in the Chern-Simons-fermion theory is broken by 1/N corrections, and we expect the HS
gauge symmetry to be broken in the bulk by boundary conditions through loop effects,14 and
the HS gauge fields become massive through the mixing of its longitudinal mode with bound
states.

Our argument of non-renormalization of singlet bilinear currents extends to general vector
models coupled to Chern-Simons gauge fields, such as the various supersymmetric extensions
of the Chern-Simons-fermion theory discussed so far. We therefore anticipate all such theories
to be dual to some higher spin gauge theory in the bulk. The bulk theory is generally not
parity invariant.

4.3.8 Appendix: Unitary Representations of the d = 3 Conformal Group

Unitary representations of the conformal group are labeled by the spin s and a scaling di-
mension ∆ of their primary states. When s ≥ 1 these labels are subject to the inequality
∆ ≥ s+ 1. In this case representations that saturate the inequality are short; the null states
in this representation fall into a (long) representation with ∆ = s+ 2 and spin =s− 1.

In the special case s = 1
2 it turns out that ∆ ≥ 1. The representation with ∆ = 1 is short

and its null states fall into a (long) representation with ∆ = 2 and spin =1
2 . The later is the

representation of a free fermionic field, and the character (4.3.1) FF (x, µ) of this field is given
by

FF (x, µ) =
x(µ

1
2 + µ−

1
2 )

(1− µx)(1− µ−1x)
. (4.3.25)

Finally, when s = 0 we have ∆ = 0 or ∆ ≥ 1
2 . The representation with ∆ = 0 has a single

state. The representation with ∆ = 1
2 has null states in a representation with ∆ = 5

2 and
s = 0. The states of a free scalar field fall into this representation; the character FS(x, µ) of
this representation is given by

FS(x, µ) = x
1
2

(1 + x)

(1− µx)(1− µ−1x)
. (4.3.26)

We now present character formulae for all unitary representations of the 3d conformal
algebra. Let us define

χs(µ) =

s∑
j=−s

µj (4.3.27)

χs(µ) is the SU(2) character at spin s (here s is a positive integer or half integer). Let us
also define

G∆,s =
x∆χs(µ)

(1− x)(1− µx)(1− µ−1x)
. (4.3.28)

G∆,s is the partition function over states that are obtained by acting on an SU(2) primary
of spin s with an arbitrary number of derivatives, and so yields the character of any long

14This has been shown to occur, for instance, in Vasiliev’s A-type theory in AdS4 with the ∆ = 2 boundary
condition, dual to the critical O(N) model [68].
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representation of the conformal algebra (i.e. any representation with ∆ > s+ 1 for s ≥ 1 or
∆ > 1 for s = 1

2 or ∆ > 1
2 for s = 0).

Characters χ(x, µ) of short representations of the conformal algebra are obtained by evalu-
ating the character of a hypothetical long representation of that algebra and then subtracting
out the character of its null states. It follows that, for s ≥ 1

χs+1,s(x, µ) = Gs+1,s(x, µ)−Gs+2,s−1(x, µ) . (4.3.29)

For s = 1
2

χ1, 1
2
(x, µ) = G1, 1

2
(x, µ)−G2, 1

2
(x, µ) = FF (x, µ) (4.3.30)

while for s = 0
χ 1

2
,0(x, µ) = G 1

2
,0(x, µ)−G 5

2
,0(x, µ) = FS(x, µ) . (4.3.31)

4.3.9 Appendix: Primary Operators in Free and Interacting Fermion The-
ories

In this appendix we present the details of some slightly tedious computations involving free
and interacting fermions.

The generating function of conserved currents for free fermions

As we have explained in section 4.3 above, the single-trace primary operators of the free
fermion theory satisfy the condition that their scaling dimension, ε and spin s satisfy the
relation ε = s+ 1, with the exception of ψ̄ψ, which has scaling dimension 2 and spin 0. Here,
we will determine explicit expressions for the corresponding primary operators.

How can we produce an operator of spin s and dimension s+1 in a theory of free fermions
in d = 3? We are interested in operators built out of fermion bilinears (with color indices
contracted). As ψ and ψ̄ each have unit scaling dimension, the operator of interest must
contain exactly s − 1 derivatives. As s − 1 derivatives can give rise to at most s − 1 free
traceless vector indices the remaining index (to make our operator spin s) must come from a
γ matrix. 15 Consequently if we define the generating function F such that

O(x; ε) = ψ̄F (~γ,
−→
∂µ,
←−
∂µ,~ε)ψ =

∑
J (s)
µ1µ2...µsε

µ1 . . . εµs (4.3.32)

then F must take the form
F = ~γ.~εf(

−→
∂µ,
←−
∂µ,~ε) . (4.3.33)

Following [66] we denote the arguments of f as vectors u and v, so that ~u =
←−
∂ and ~v =

−→
∂ .

The fermion equation of motion gives

~u.~γ = ~v.γ = u2 = v2 = 0 . (4.3.34)

15As γ(µγν) = ηµν we cannot have more than one of the current indices come from a γ matrix. Also, the
equations of motion tell us that a γ matrix contracted with a derivative vanishes in its action on a fermion. The
contraction of a derivative with a γ matrix, sandwiched by other γ matrices, can also be reduced to a form with
a single γ matrix and derivatives using the equations of motion, (e.g. γ(µγρ∂

ργν) = −γ(µ∂
ργν)γρ + γ(µ∂

ρην)ρ

where the first term on the RHS vanishes by the equations of motion and the last term has a single γ matrix).
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It is convenient to change variables to ~y ≡ ~u− ~v and ~z ≡ ~u+ ~v. Then we have:

~z · ~γ = ~y · ~γ = ~y · ~z = 0, − ~y2 = ~z2 = 2~u · ~v 6= 0 . (4.3.35)

Terms in f will be of the form:

f = A+B~ε · ~y + C~ε · ~z +D~u · ~v~ε · ~ε+ . . . (4.3.36)

where each coefficient is a number.
If we define w ≡ (~u ·~v)~ε ·~ε, z ≡ ~ε · ~z, and y = ~ε · ~y, then f can be thought of as a function

of three variables f(z, y, w).
The condition that each current is conserved can be expressed as:

(
←−
∂µ +

−→
∂µ)

∂

∂εµ
F = 0 (4.3.37)

which translates into the following condition on f :

z∂wf + ∂zf = 0 . (4.3.38)

The condition that each current is traceless can be expressed as:

∂

∂εµ
∂

∂εµ
F = 0 (4.3.39)

which translates into:(
5∂w + 2w∂2

w − ∂2
y + ∂2

z + 2z∂z∂w + 2y∂y∂w
)
f = 0 . (4.3.40)

The solution to (4.3.38) is f(w, y, z) = g(y, w− z2

2 ). If we define t = w− z2

2 , the equation
for g(y, t) is (

4∂t + 2t∂2
t − ∂2

y + 2y∂y∂t
)
g(y, t) = 0 . (4.3.41)

The general solution satisfying g = 1 at t = y = 0 is:

g = e2ky sinh 2k
√

2t+ y2

2k
√

2t+ y2
(4.3.42)

where k is any constant, which we take to be 1/2.
The final form for f is thus

f(~u,~v,~ε) =
exp (~u · ~ε− ~v · ~ε) sinh

√
2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε√

2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε
. (4.3.43)

Expanding the above expression in a power series around ~ε, we obtain:

f = 1 + ε(u− v) +
1

6
ε2
(
3u2 − 10uv + 3v2 + 2w

)
+ε3

(
u3

6
− 7u2v

6
+

7uv2

6
+
uw

3
− v3

6
− vw

3

)
+

1

120
ε4
(
10(u− v)2(2w − 4uv) + (4uv − 2w)2 + 5(u− v)4

)
(above, w = ~u · ~v, u = ~u · ~ε, v = ~v · ~ε.) which yields the currents reported in (4.3.9).
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Two-point functions of primary operators in the free theory

In this subsection we explicitly compute the two-point function of conserved currents

〈O(~x;~ε1)O(0;~ε2)〉 (4.3.44)

determined in the previous subsection, and demonstrate that the two point functions of
currents of different spin are orthonormal. We take the two-point function of the basic
fermionic fields to be given by

〈ψ(x)ψ̄(0)〉 = Cψψ
γµxµ
x3

. (4.3.45)

Simple examples

To set up notation and get intuition we first work out some simple examples.
As a first example, consider the two-point function of two scalar currents:

〈ψ̄(x)ψ(x)ψ̄(0)ψ(0)〉 . (4.3.46)

Using Wick’s theorem we rewrite this as:

Tr〈−ψ(0)ψ̄(x)〉〈ψ(x)ψ̄(0)〉 (4.3.47)

where the trace is over gamma matrix indices. We then compute it to be:

C2
ψψTr

γµxµ
x3

γνxν
x3

= C2
ψψ

xνxµ
x6

Trγµγν

= C2
ψψ

xνxµ
x6

2ηµν = C2
ψψ

2

x4
.

To evaluate more complicated two-point functions, we make use of the identity

Trγµγργνγσ = 2 (ηρνησµ + ηρµησν − ηρσηµν) . (4.3.48)

Note that (4.3.48) is symmetric under interchange of ρ and σ.
We next consider the two-point function of two spin-1 currents:

〈ψ̄(x)γνψ(x)ψ̄(y)γµψ(y)〉 . (4.3.49)

We have:

〈ψ̄(x)γµψ(x)ψ̄(y)γνψ(y)〉 = Tr〈−ψ(y)ψ̄(x)〉γµ〈ψ(x)ψ̄(y)〉γν

= C2
ψψ

xρ
x3

xσ
x3

Trγργνγσγµ

= C2
ψψ

xρ
x3

xσ
x3

2 (ηρνησµ + ηρµησν − ηρσηµν)

= 2C2
ψψ

(
2xµxν

x6
− ηµν

x4

)
.

As above, we will often set y = 0 in the last line.
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Results for all spins

Let ε be a null polarization vector. The two point function of the generating operator

O(x; ε) =
∑
J

(s)
µ1···µsε

µ1 · · · εµs is evaluated in the theory of N free complex fermions to be

〈O(x; ε)O(0; ε)〉 =
N

32π2x2


[

1−
(

4ε · x
x2

)2
]− 1

2

− 1

 . (4.3.50)

Expanding this in ε, we have

〈J (s)(x; ε)J (s)(0; ε)〉 =
N

32π
5
2

24sΓ(s+ 1
2)

s!

(ε · x)2s

(x2)2s+1
, (4.3.51)

where J (s)(x; ε) is the spin-s part of O(x; ε). The spin 0 case is special, where we have
〈J (0)(x)J (0)(0)〉 = N

8π2 |x|−4.

We have defined the set of currents j(s) with a different normalization convention, namely
normalizing the norm of the corresponding state in radial quantization. The relative nor-
malization between J (s) and j(s) can be determined as follows. If we define j(s)(x; ε) =

j
(s)
µ1···µs(x)εµ1 · · · εµs , then

〈j(s)(x; ε)j(s)(0; ε)〉 = 2s
(ε · x)2s

(x2)2s+1+δs
, (4.3.52)

for s > 0. In the spin 0 case, we have 〈j(0)(x)j(0)(0)〉 = |x|−4. From this we deduce

J (s)
µ (x) = asj

(s)
µ (x), as =

[
N

32π
5
2

23sΓ(s+ 1
2)

s!

] 1
2

, (4.3.53)

for s > 0. In the spin 0 case, a0 =
√

2N
4π . In the interacting Chern-Simons-fermion theory, as

receives quantum corrections.

Explicit computation of the divergence of J (3)

In carrying out all our manipulations below, we use the fermion equation of motion

Dµγ
µψ = Dµψ̄γ

µ = 0. (4.3.54)

Some useful identities are:

γµDµDνψ = γµ(DνDµ − iFµν)ψ = −iγµFµνψ,
DµDνψ̄γ

µ = (DνDµ + iFµν)ψ̄γµ = iψ̄γµFµν ,

γµDµγ
νDνψ = 0,

(ηµν + γµν)DµDνψ = 0,

DµD
µψ =

i

2
γµνFµνψ,

DµDνψ̄γ
νγµ = 0,

DµD
µψ̄ =

i

2
ψ̄γµνFµν ,

(4.3.55)
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Note our convention is such that [
−→
Dµ,
−→
Dν ]ψ = −iFµνψ. We now use the equation of motion

for Fµν = F aµνT
a, namely

εµνρFνρ =
4π

k
Jµ, or F aµν =

2π

k
εµνρJ

a ρ, (4.3.56)

where Jµ = JaµT
a, Jaµ = ψ̄γµT

aψ. It is also useful to have

JaρT
aψ = (ψ̄γρT

aψ)T aψ

= −1

4

(
γρψ(ψ̄ψ) + γµγρψ(ψ̄γµψ)

)
= −1

4

(
γρψJ

(0) + γµγρψJ
(1)
µ

)
, (4.3.57)

and

ψ̄JaρT
a = −1

4

(
J (0)ψ̄γρ + J (1)

µ ψ̄γργ
µ
)
. (4.3.58)

To derive these relations, we used (T a)ij(T
a)lm = 1

2δ
i
mδ

l
j and the 3d Fierz identity

χλ̄ = −1

2
λ̄χ− 1

2
λ̄γµχγ

µ.

We can now proceed to explicitly compute ∂µJ
(3)
µν1ν2 . First, consider the current Ĵ (3) which

is not traceless,

Ĵ (3)
µ1µ2µ3

=
1

6
ψ̄γµ1

(
3
←−−
Dµ2

←−−
Dµ3 − 10

←−−
Dµ2

−−→
Dµ3 + 3

−−→
Dµ2

−−→
Dµ3 + 2(

←−
Dσ
−→
Dσ)ηµ2µ3

)
ψ.

Using the identities above we find that (before subtracting the trace) the divergence is given
by:

6∂µĴ (3)
µν1ν2

= −i ψ̄γµ
(

16
←−
Dν1Fν2µ + 16Fµν1

−→
Dν2 + 2ην1ν2

(←−
DλFµλ + Fλµ

−→
Dλ

))
ψ

−i ψ̄γν1

(
16(
←−
DµFν2µ + Fµν2

−→
Dµ)

)
ψ

+ ψ̄γν1

(
6(
←−
D2←−Dν2 +

−→
Dν2

−→
D2)− 10(

←−
D2−→Dν2 +

←−
Dν2

−→
D2)

)
ψ . (4.3.59)

We now substitute for D2 and further simplify:

6∂µĴ (3)
µν1ν2

= −iψ̄γµ
(

32
←−
Dν1Fν2µ + 32Fµν1

−→
Dν2 + 2ην1ν2

(←−
DλFµλ + Fλµ

−→
Dλ

))
ψ

− iψ̄γν1

(
16(
←−
DµFν2µ + Fµν2

−→
Dµ)

)
ψ − iψ̄

(
2
←−
Dν1F̃ν2 + 2F̃ν1

−→
Dν2 − 6(Dν1F̃ν2)

)
ψ,

(4.3.60)
where F̃µ = εµνρF

νρ.
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Now substituting in F and using Fierz identity, we have

− 32iψ̄γµ
(←−
Dν1Fν2µ + Fµν1

−→
Dν2

)
ψ =

32π

k

[
∂ν1(ψ̄ψ)ψ̄γν2ψ − ∂ν1(ψ̄γν2ψ)ψ̄ψ

]
,

− 2iην1ν2ψ̄γ
µ
(←−
DλFµλ + Fλµ

−→
Dλ

)
ψ = −2π

k
ην1ν2∂µ(ψ̄ψ)ψ̄γµψ,

− iψ̄γν1

(
16(
←−
DµFν2µ + Fµν2

−→
Dµ)

)
ψ =

8π

k

[
− ην1ν2∂µ(ψ̄ψ)ψ̄γµψ + 2∂ν1(ψ̄ψ)ψ̄γν2ψ

− ∂ν1(ψ̄γν2ψ)ψ̄ψ + εν2λµ(ψ̄
←→
D µγν1ψ)(ψ̄γλψ)

]
,

− iψ̄
(

2
←−
Dν1F̃ν2 + 2F̃ν1

−→
Dν2

)
ψ = −2π

k

[
∂ν1(ψ̄γν2ψ)ψ̄ψ + (ψ̄γν2ψ)∂ν1(ψ̄ψ) + εν2λµ(ψ̄

←→
D ν1γ

µψ)(ψ̄γλψ)
]
,

− 6iψ̄
(
Dν1F̃ν2

)
ψ =

6π

k

[
(ψ̄γν2ψ)∂ν1(ψ̄ψ) + ∂ν1(ψ̄γν2ψ)ψ̄ψ − εν2λµ(ψ̄

←→
D ν1γ

µψ)(ψ̄γλψ)
]
.

(4.3.61)
We now use the identity

εν2λµψ̄(−
←→
D ν1γ

µ +
←→
D µγν1)ψ(ψ̄γλψ) = −ην1ν2∂

λ(ψ̄ψ)(ψ̄γλψ) + ∂ν1(ψ̄ψ)ψ̄γν2ψ (4.3.62)

to obtain the following total for the above sum:

6∂µĴ (3)
µν1ν2

=
2π

k

[
−9ην1ν2∂µ(ψ̄ψ)(ψ̄γµψ) + 30∂ν1(ψ̄ψ)ψ̄γν2ψ − 18∂ν1(ψ̄γν2ψ)ψ̄ψ

]
. (4.3.63)

Subtracting the trace we obtain:

∂µJ (3)
µν1ν2

= ∂µĴ (3)
µν1ν2

− π

5k

[
ην1ν2(ψ̄γµψ)∂µ(ψ̄ψ) + 2∂ν1(ψ̄γν2ψ)ψ̄ψ + 2(ψ̄γν2ψ)∂ν1(ψ̄ψ)

]
.

(4.3.64)
The indices on the RHS are understood to be symmetrized.

4.4 Discussion

This chapter has been devoted to the study of U(N) Chern-Simons theory coupled to a single
massless fundamental fermion. We set out to to solve this theory in the ’t Hooft large N
limit and have been partly successful in this task. In particular, we were able to compute
the partition function on R2 of the theory at finite temperature at all values of the ’t Hooft
coupling. In order to perform this computation we employed a lightcone gauge, and used a
dimensional reduction regularization scheme. It would be useful to perform further checks of
the consistency of our gauge and regularization scheme.

It has recently been realized that the partition functions of supersymmetric Chern-Simons
theories on S3 are often exactly computable via the techniques of supersymmetric localiza-
tion [133, 134, 135, 136]. This quantity appears to play the role of a c function under the
renormalization group flow and so is of clear physical interest. It would be interesting to
see if the techniques employed here could allow the exact computation of the S3 partition
function of our non-supersymmetric theory in the large N limit, as a function of λ.
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It should also be possible to generalize our discussion of the finite temperature behavior of
our theory to include a chemical potential for fermion number. The finite λ behavior of such
a system describes an interacting Fermi sea in three dimensions, and so may be of interest
for various condensed matter problems.

In the course of our analysis of this theory we have encountered the fact that the higher
spin currents obey anomalous conservation equations. In the classical theory we have com-
puted the explicit form of these conservation equation at low values of the spin (see e.g.
(4.3.13)). These nonlinear anomalous conservation equations contain a large amount of in-
formation; for example they encode the anomalous dimensions of the spin s currents in a 1

N
expansion (see subsection 4.3.4). It would be interesting to determine the explicit form of
these anomalous conservation equations, if possible, as a function of λ.

We have also argued that the spectrum of local gauge invariant operators in our theory,
at dimensions of order unity, is not renormalized as a function of the ’t Hooft coupling at
leading order in large N , by combining conformal representation theory with the sparseness
of the single trace spectrum in vector models.

An outstanding question about the theory studied in this chapter is “what is its bulk
dual description?” We have argued above that this dual description is a higher spin theory.
However we do not yet have a precise conjecture for the nature of this dual.

To end this discussion we note that the non-renormalization argument presented here does
not apply in theories with adjoint or bifundamental matter fields as the single trace spectrum
of these theories is not sparse.16 On the other hand, as we have explained in the introduction,
non supersymmetric effective large N Chern-Simons fixed lines are easily constructed with
matter fields in adjoint or bifundamental representations. The scaling dimension of single
trace operators in such theories is protected neither by conformal nor supersymmetric rep-
resentation theory. In these theories all single trace operators baring the stress tensor and
currents for global symmetries can, and presumably do get renormalized. It is at least con-
ceivable that some theory with adjoint or bifundamental fermions admits a strong coupling
limit in which all but a finite number of single trace operators are infinitely renormalized,
and the dual description of the theory is Einstein gravity in AdS4, coupled to a minimal
number of additional fields. It would clearly be very interesting to identify any theory with
this property.

As is clear from the discussion above, the computations presented in this chapter have
merely scratched the surface of a large and potentially very interesting area of investigation.
We hope to report on some of the topics discussed above in the future.

Note Added:
In this chapter we computed the free energy of fundamental fermions coupled to Chern

Simons theory in the special case that the holonomy of the gauge field around the thermal
circle is the identity matrix. The calculation of this chapter was later generalized to the
computation of the free energy in a different holonomy background in [138] and in an arbi-

16In supersymmetric theories with such matter content, supersymmetric indices and representation theory
give rise to a new source of non-renormalization theorems for single trace operators even in theories with
bifundamental and adjoint matter, see e.g. the paper [137].
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trary holonomy background in [139]. In particular it was pointed out in [138] that the free
energy thus computed agrees with the free energy of a bosonic theory (in agreement with a
conjectured duality between the fermionic and bosonic system) if the holonomy is given not
by the identity matrix but instead by a different universal function. Once the computation of
this chapter is modified to include this nontrivial holonomy, the free energy computed herein
agrees perfectly with the free energy of the conjectured bosonic dual, providing a spectacular
check of the conjectured ‘bosonization’ duality in 3 dimensions.
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Chapter 5

Conclusion

In this thesis, we studied the behavior of strongly-interacting quantum field theories in three
dimensions in the large-N limit using both the AdS4/CFT3 correspondence and traditional
field theory techniques.

In Chapters 2 and 3, we calculated thermodynamic properties as well as quantities related
to transport in a class of gravitational systems expected to be dual to strongly interacting
conformal field theories, at finite temperature, chemical potential and in the presence of a
magnetic field. We incorporated dilatonic and axionic couplings to generate models with very
realistic thermodynamic properties – in particular, a vanishing entropy at zero temperature –
not present in the traditional gravitational theories without a dilaton. While we do not have a
weakly-coupled description of the dual field theories, (and strictly speaking, therefore cannot
be sure that they exist) it is natural to expect that the results obtained, in combination with
previous work on the subject, provide at least a qualitative picture of the possible dynamics
of strongly interacting conformal field theories.

From the field theory side, in Chapter 4, we considered U(N) Chern-Simons theory cou-
pled to fundamental fermions in the large N limit. We were able to calculate the free energy
of the theory on R2 × S1 for all values of the ’t Hooft coupling λ. We also studied the
operator spectrum of the theory – the results suggest that the holographic dual is some sort
of higher-spin gauge theory, even in the strongly interacting limit.

In Chapter 4, we also noted that many Chern-Simons theories exist that, although non-
supersymmetric, are conformal and have a largeN limit (e.g., the U(N)×U(N) Chern-Simons
theory coupled to a massless fermion in the bifundamental representation mentioned earlier.)
The methods we used to solve the Chern-Simons vector model in Chapter 4 would clearly fail
for theories with adjoint or bifundamental matter, as would our argument for the protection
of the scaling dimensions of the higher-spin current operators. This illustrates the power as
well as the potential applicability of the gravitational techniques we used in the first part of
this thesis – theories with matrix matter are extremely difficult to solve from the field theory
point of view, yet it is precisely these theories that have a chance of posessing a holographic
dual that is a traditional Einstein-Maxwell theory of gravity (or some variant thereof).

We are eagerly looking forward to taking part in future developments in this field.
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