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Synopsis

Introduction

By now there is considerable evidence that string theory is a consistent theory of quantum

gravity. Although the theory is unique, it has diverse set of ground states. This complicated

set of low energy vacua is usually referred to as landscape. The symmetries of each of these

vacua may be different, and the low energy excitations about each of them forms a different

effective field theory. This gives rise to the rich structure of string theory with each vacua

describing a particular “phase” of the theory. The situation is reminiscent of condensed

matter physics where the microscopic theory is unique, but the physics at large length

scales show enormous number of emergent phases.

Exploring the string landscape has been a active area [1]. In the first part of this

thesis, we study the stability of some nonsupersymmetric AdS4 vacua in the landscape .

These vacua arise in massive IIA supergravity compactifications [2] and the supersymmetric

solutions were studied in considerable depth by [3]. In [4], we construct perturbatively stable

non supersymmetric vacua in this setup. We find that, for a class of them, large number of

nonperturbative decay channels are ruled out. This suggests that stable nonsupersymmetric

AdS vacua might exist.

With the advent of AdS/CFT correspondence [5], it is now possible to map gravitational

theories in some corners of landscape to quantum field theories. As AdS/CFT also happens

to be a weak-strong duality, these vacua may prove useful in the study of strong coupling

physics of quantum field theories which is otherwise hard to study using conventional tech-

niques. It is interesting to consider these vacua and ask what one can learn about the

dual strongly coupled CFTs from holography. In the second part of thesis we study a class

of dilatonic black branes [6][7]. In [8] we compute the two point functions of a fermionic

operator in the field theory dual to these gravity systems using holographic techniques. For

this system with reasonable thermodynamics, we find violations of fermi liquid behaviour.

It is also interesting to ask what class of quantum field theories admit a gravity dual

and if so, what are the properties of the gravity systems we expect? In the context of three-

dimensional cherns simons theories, there are few examples of known gravity duals with

simple matter content other than ABJM theory [9]. In the third and concluding part of

i
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the thesis based on [10], we consider some supersymmetric field theories with simple matter

content and study certain protected quantities which gives hints about possible gravity

duals. Although we have not identified gravity duals, some promising field theories are

identified which could possibly have a supergravity dual.

On the Stability of Non-supersymmetric vacua

String theory landscape includes a large class of non supersymmetric vacua. Supersymmet-

ric (susy) vacua have been studied extensively and are generally expected to be stable to

both perturbative and nonperturbative decays [11]. Non supersymmetric vacua have not

been as well understood as their susy counterparts. In this part of the thesis, we construct

a class of non supersymmetric AdS vacua which are perturbatively stable and investigate

their non perturbative stability.

A small decay rate of the AdS vacuum has dramatic consequences for the dual CFT

living on its boundary. We can see this by considering AdSd+1 in Poincare coordinates:

ds2 =
r2

R2

(

−dt2 +
d−1
∑

i=1

dx2i

)

+
R2

r2
dr2. (1)

with the decay rate per unit volume in the bulk being Γ. Taking the boundary metric to

be flat, the decay rate per unit volume in the boundary theory is given by integrating the

bulk decay rate in the radial direction as,

Γboundary =

∫ √
gdrΓ ∼ rdbΓ, (2)

where rb is the radial location of the boundary. The decay rate diverges as rb → ∞. We see

that if the non-susy AdS vacua are unstable non-perturbatively, then non-supersymmetric

CFT’s which admit a gravity dual are unlikely to exist. If true, this is an important

consequence since holography has emerged as a major tool with which to study strongly

coupled conformal field theories. The perturbatively stable vacua that we find provides us

with a setup in which we can explore this. Surprisingly, we find that large classes of decay

channels are in fact ruled out.

The model

We consider a compactification of massive Type IIA theory on a Calabi Yau manifold (a

blown up T6
Z3⊗Z3

) with fluxes and orientifold plane. This model was studied in [3]. First

consider the orbifold limit T6
Z3⊗Z3

which has 9 fixed points. Let each T 2 in the T 6 =

T 2 ⊗ T 2 ⊗ T 2 be parametrized by complex coordinate zi, i = 1 · · · 3. Further consider a

orientifold-6 plane filling the non-compact directions and wrapping a 3-cycle which is the

locus of fixed points of the σ : z → −z̄ reflection symmetry. The resulting compactification

now has N = 1 supersymmetry. The three T 2 moduli, the dilaton-axion, and the nine
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blow up modes, all survive the orientifolding and form the bosonic components of chiral

superfields. Turning on a blow up mode replaces the corresponding fixed point by a P 2 of

non vanishing size.

Fluxes and Moduli

Now we incorporate the effects of fluxes. We will seek a solution which is close to the

orbifold limit and incorporate the effects of blow up modes perturbatively. Let a basis of

complex (1,1) forms which are odd under the reflection σ be ωi, ωA. Here ωi , i = 1, 2, 3 are

the poincare duals of cycles in the orbifold limit and ωA , A = 1, · · · 9 are the poincare duals

to blow up cycles. We will use a, b.. to denote both i and A type of indices. The explicit

form of ωi is given by

ωi = (κ
√
3)

1
3 idzi ∧ dz̄i (3)

where κ is the triple intersection number defined as κ = ∫
T6/Z2

3
ω1 ∧ ω2 ∧ ω3.

Let ω̃i, ω̃A, be the (2,2) forms which are hodge dual (in the internal manifold) to ωi, ωA

respectively. Then the four form flux F4 can be expanded in this basis as,

F4 =
∑

i

eiω̃i +
∑

A

eAω̃A (4)

.

If β0 is the real part of the holomorphic three form Ω =
√
23

1
4 idz1 ∧ dz2 ∧ dz3, then the

three form flux H3 can be expanded as 1

H3 = −pβ0 (5)

Now we give a description of moduli. If J is the Kahler form, then the complexified Kahler

two-form Jc = B2 + iJ is expanded as,

Jc =
∑

i

tiωi +
∑

A

tAωA (6)

Here ta = ba + iva, where ba refers to axions coming from B2 and va are related to the

sizes of various (1, 1) cycles. Axion ξ which arises from C3 pairs up with the 4 dimensional

dilaton D to form a dilaton axion moduli.

The Kahler potential in the moduli space is 2.

K = − log(8κv1v2v3 +
4

3
β

9
∑

A=1

v3A) + 4D. (7)

1Tadpole condition for the C7 potential gives m0p = −2
√
2π

√
α′, where m0 is the Romans parameter.

2κ the triple intersection number and β takes definite values given in [3], but we will not need these
explicit values
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The resulting superpotential is

W = −pξ −
√
2ipe−D + eiti + eAtA −m0

(

κt1t2t3 +
β

6

∑

A

t3A

)

(8)

From the above data we can determine the effective potential V in the 4 dimensional Einstein

frame in terms of fluxes and moduli. The expectation value of the moduli in the resulting

compactification is then given by the minima of V . In addition, supersymmetry imposes

the condition

sign(m0ei) < 0, sign(m0eA) < 0, (9)

Since the potential turns out to be invariant under ei → −ei for any i, this gives an easy

way to construct a non supersymmetric vacuum from a given supersymmetric vacuum :

change the sign of some or all of ei so that the above condition is violated.

To keep the blow-up modes small and the Calabi-Yau moduli stabilized close to the

orbifold point, we take the blow up fluxes eA to satisfy the condition,

|eA|
|ei|

≪ 1, (10)

It turns out we can find a solution order by order in small parameter δ =

√

| e3A
e1e2e3

|. The

sizes of the blow up cycles vA will turn out to be parametrically smaller than the sizes of

cycles in the orbifold limit, i.e vA ≪ vi.

The leading order solution shows that in some range of fluxes, when for all i, ei ∼ e≫ 1

(in string units) the compactification is Non Freund type : typical size of internal space l

is small compared to RAdS . In fact l
RAdS

∼ e
−1
2 → 0. This simplifies the analysis when it

comes to checking for possible tachyons. Also the string coupling eφ ∼ e
−3
4 → 0 so that the

theory is weakly coupled in this regime.

We did a careful analysis of the perturbative stability and found two new solutions which

break supersymmetry and have no unacceptable tachyons (i.e mass below the BF bound).

We call them Type 2 and Type 3. We will also find it convenient to keep track of the susy

solution which we call Type 1. Following is the list of perturbatively stable non susy vacua:

• Type 2: sign(m0ei) = sign(m0eA) = +1. Susy is broken. All modes are non-tachyonic.

• Type 3:sign(m0ei) = +1, sign(m0eA) = −1 Susy is broken, All modes are non-

tachyonic.

Non Perturbative decays

To investigate the non-perturbative decay of an unstable vacuum, we follow the classic

discussion of [12]. The decay of the unstable vacuum, called the false vacuum, into another

state, the true vacuum is mediated by the nucleation of a bubble of true vacuum inside the

false vacuum. In the semi-classical approximation one seeks a solution (called the bounce)
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to the Euclidean action which can interpolate between the false and true vacua. We work in

the thin wall approximation which takes the thickness of the bubble wall (domain wall) to

be much smaller than all the other length scales in the problem. These include the radius

of the bubble and the radii of curvature of the inside and outside spacetimes.

In the thin wall approximation one can show that a necessary condition for bounce to

exist is
(

ǫ

3S1
− S1

4

)

>

√

|V+|
3

(11)

where V+, V− are the vacuum energies of false and true vacuum respectively and ǫ is their

difference. S1 is the tension of the domain wall. If this condition is violated then the decay

will not occur.

We present a description of D4 brane mediated decays here. It turns out that decays

mediated by more general branes do not change the conclusions. The D4 brane wraps a

two-cycle in the internal space and extends along two of the spatial directions of AdS4. This

causes the four-form flux F4, along the 4-cycle dual to the two-cycle wrapped by the D4, to

jump. This change in F4 causes a change in the cosmological constant, and hence changes

the vacuum energy.

Non-Susy to Susy decays

Consider a decay from a non susy vacuum to a susy vacuum. Since we will see that these

decays are disallowed in the orbifold limit, effects of blow up fluxes can be neglected. The

domain wall tension scales like

S1 ∼
|δe|
|e| (

1

|e| )
9/4, (12)

where δe is the change in the four form flux across the wall (ei ∼ e≫ 1). That the tension

S1 is proportional to δe is easy to understand because the number of D4 branes is ∝ δe.

The thin wall approximation can be shown to hold if

|δe|
|e| ≫ (δ|e|)2

|e|2 . (13)

We can ensure this to be the case by choosing e to be of opposite signs on either side of

the domain wall with almost the same magnitude, i.e δe ∼ 2|e| and δe ≪ |e|. Note that

this results in vacua which are close by in the moduli space but far apart in the flux space.

As was mentioned before, the vacuum energy is independent of sign of ei and the change in

vacuum energy ǫ scales like

ǫ ∼ δ|e|
|e| (

1

|e| )
9/2. (14)

Hence the condition eq(11) is parametrically violated and this decay cannot occur.
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Non-Susy to Non-Susy decays

Consider a decay from a non susy vacuum to another non susy vacuum. The tension of the

interpolating domain wall satisfies a lower bound in terms of the jump in the superpotential

caused by the domain wall as,

T ≥ TL ≡ 2eK/2|∆W |, (15)

where ∆W = δeava is the difference in superpotential across the domain wall. This bound

is saturated for certain special cycles. The strategy we use is to rule out decays mediated by

the domain walls for which lower bound TL itself violates condition eq(11). In the orbifold

limit, it turns out the lower bound TL saturates the inequality eq(11) and hence inclusion

of blow up fluxes is crucial for these results. Following is the summary of results.

• Type 2 to Type 2 decays are at most marginal. This means that upto the order we

have worked, the inequality eq(11) is saturated.

• Type 3 to Type 3 decays are allowed.

• Type 2 to Type 3 decays are disallowed.

Holographic Fermi and Non-Fermi Liquids with Transitions in

Dilaton Gravity

The Gauge/Gravity correspondence [5] provides us with a new tool to study strongly coupled

field theories. It is worth exploring whether insights of relevance to condensed matter physics

can be gained using this tool. One set of questions which have proved difficult to analyze

using conventional techniques is the behaviour of fermions in strongly coupled systems in

the presence of a chemical potential. This question is particularly interesting in view of

considerable evidence now for non-Fermi liquid behaviour in condensed matter systems (see

[13] for references). It is generally believed that strong coupling is required to explain these

phenomenon.

Holographically, Non Fermi Liquids were initially realized in Extremal Reisnner Nord-

strom black branes [14] [15]. While these branes are simple and explicit, they suffer from

an important unphysical feature, namely, their entropy is nonvanishing at vanishing tem-

perature and scales as a positive power of the chemical potential. Hence these systems may

not be a good model for condensed matter systems. Later, gravity systems with vanishing

entropy at extremality were explored in [7]. They found that these systems behaved like

canonical fermi liquids. This raises the questions whether holographic systems with vanish-

ing entropy at extremality always leads to fermi liquid behaviour. We address this question

in this part of the thesis.

We find that a range of interesting behaviours arise by coupling fermions to a strongly

coupled sector with a gravitational dual of Einstein Maxwell Dilaton system. This includes
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both Fermi liquid and non-Fermi liquid behaviour, transitions between them, and transi-

tions from a non-Fermi liquid state to one where there are no well-defined quasi-particles.

Moreover, this can happen when the strongly coupled sector has reasonable thermodynamic

behaviour, consistent in particular with the third law of thermodynamics, since the gravity

background has vanishing entropy at extremality.

The Einstein Maxwell Dilaton system

The system we consider consists of gravity , a U(1) gauge field and a scalar φ which we call

the dilaton, in four dimensions with the action

S =

∫

d4x
√−g

[

R− 2(∇φ)2 − f(φ)F 2 − V (φ)
]

(16)

We will be particularly interested in solutions where the dilaton has a run-away type of

behaviour near the horizon of an extremal black brane. Such run-away behaviour was

shown to result in vanishing entropy of the extremal brane [7]. This system was studied in

[6], and we will be interested in the near horizon region as this is sufficient to determine

the low-temperature or low frequency (compared to the chemical potential) response of the

system. In the near horizon region, we take f(φ) = e2αφ and V (φ) = V0e
2δφ. We can find

a solution near horizon of the form 3

ds2 =
dr2

C2
ar

2γ
− C2

ar
2γdt2 + r2β(dx2 + dy2) (17)

F =
Qe

f(φ)r2β
dt ∧ dr (18)

where β, γ are functions of α, β given as

β =
(α+ δ)2

4 + (α+ δ)2
γ = 1− 2δ(α + δ)

4 + (α+ δ)2

C2
a and Qe are determined in terms of α, δ.

We can also construct slightly non extremal black brane solutions (with T ≪ µ). From

scaling arguments or from the explicit solution, we can show that the entropy density

behaves as

S ∼ T
2β

2γ−1 (19)

Note that this has the desired behaviour for entropy, i.e entropy vanishes at zero tem-

perature. The parameters α, δ are chosen to be in a range where the solution and the

thermodynamics is sensible. Although the geometry eq(17) has pathologies at r → 0, a

small temperature (parametrically small in large N) can be shown to control this.

3We showed numerically that such a near horizon can arise as the near-horizon limit of an asymptotically
AdS4 geometry (perturbed by a non-normalizable mode). To show this, we took the potential to be V (φ) =
2V0 cosh(2δφ).
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We also computed the DC conductivity for this system holographically, as ω → 0, and

for small temperature T
µ ≪ 1 it is,

Re(σ) ∼ T
2(4+α2−δ2)

4+(α−3δ)(α+δ) (20)

Fermionic Two point function

Following [14], consider a free fermion ψ in the bulk with mass m and charge q. Define4

ψ = (−g grr)− 1
4 e−iωt+ik1x













y+(r)

0

0

−i z−(r)













(21)

where we have used translational in t, x1, x2 and rotational invariance in x1, x2 plane. The

second and third components of the spinor have been chosen to vanish because it can be

shown that it does not couple to other components. Then the equation of motion for the

fermion is

√

gii
grr

(∂r −m
√
grr) y+ = −[k1 −

√

gii
−gtt

(ω + qAt)]z− (22)

√

gii
grr

(∂r +m
√
grr)z− = −[k1 +

√

gii
−gtt

(ω + qAt)]y+ (23)

We are interested in finding the two point function of the fermionic operator dual to ψ holo-

graphically using the AdS/CFT prescription. We impose ingoing boundary condition at the

horizon and evolve the above equation to extract the normalizable and non normalizable

part of ψ in the boundary (to leading order in ω). Then by the standard AdS/CFT prescrip-

tion, the greens function is given by their ratio. This will show signatures of Fermi/Non

fermi Liquid behaviour. Before we proceed to discuss the result we obtain, we give the

Greens function (near the fermi momentum and for small frequencies) for a fermi liquid for

reference.

G(ω, k) =
Z

ω − vF (k − kF ) + iΓ
(24)

where Z, vF , kF are constants. The decay width for Fermi Liquid is Γ ∼ ω2.

It turns out that β + γ is the parameter which governs the behaviour of the greens

function. If β + γ < 1, it turns out there is no pole in the greens function and hence no

fermi surface. Below we give the results obtained for other regimes of the parameter β + γ.

4for a metric of the form ds2 = gttdt
2 + grrdr

2 + g11(dx
2
1 + dx2

2)
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β + γ > 1

In this case it turns out that the WKB approximation works well. Using this approximation,

the greens function at momenta close to fermi momentum and small ω can be found to be

of the form eq(24) with a decay width

Γ ∼ exp



−2c1

(

k2γ−1
F

ωβ+γ−1

)
1

γ−β



 (25)

for some constant c1. We see that the small frequency excitations have a linear dispersion

relation, with a width which is exponentially suppressed at small frequency and therefore

very narrow. Hence there is a very sharply defined quasi-particle and this behaviour is

fermi liquid like. Inclusion of some other interactions could broaden the decay width to the

canonical ω2 behaviour.

β + γ = 1

Here we can solve the equation of motion exactly in the near horizon region. Greens function

turns out to be of the form eq(24) but now with a decay width

Γ ∼ eiφω2η (26)

where η = |k1|
2γ−1 and φ is a phase which depends on γ, β, k1. Note that k1 is close to fermi

momentum kF . This result is very similar to that obtained in extremal Reisnner Nordstrom

case [16]. For η > 1 there is a well-defined quasi-particle with a linear dispersion and a

width going like ω2η which is quite narrow. Hence the behaviour is again fermi liquid like.

For 1/2 < η < 1, the width is broader than the Fermi liquid case and is hence a Non fermi

Liquid. For η < 1/2 the behaviour is more novel. The last term in the denominator going

like ω2η dominates both the real and imaginary parts of the ω dependence. As a result

there is no well-defined quasi-particle, since the residue vanishes at the pole. Finally for

η = 1/2, the Green’s function takes the form,

GR22 =
Z

vF (|k| − |kF |) + d1ω log ω + d2ω
(27)

where d1 is real and d2 complex. This is called a marginal fermi liquid.

Supersymmetric states in Large N chern-simons theories

Chern Simons theories with arbitrary matter content have a sequence of fixed points pa-

rameterized by cherns simons number k. This is because the coefficient of Chern-simons

term k is forced to be an integer by gauge invariance. Hence conformal field theories (CFT)

are fairly easy to construct in these set ups. For SU(N) or U(N) theories at large N , this
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sequence of fixed points becomes a line of fixed points parametrized by the thooft coupling

λ = N
k . They are interesting from the viewpoint of AdS/CFT correspondence, because line

of fixed points parameterized by a coupling constant can interpolate between a field theory

description at weak coupling and a dual gravity description at strong coupling. It is inter-

esting to ask which class of chern-simons theories admit duals with a gravity approximation

at strong coupling. Apart from ABJM theory, examples of gravity duals of theories with

simple matter content have not yet been found.

In this part of the thesis, we compute the supersymmetric spectrum of a large class

of large N Chern Simons matter theories. This is protected from renormalization under

continuous deformation of λ and thus can be used to learn about strong coupling behaviour

of the theories. We consider various Superconformal Chern-Simons-Matter theories with

N = 2 and N = 3 supersymmetry and compute (or present conjectures for) the BPS

spectrum.

Unitary representation of N = 2, 3 superconformal algebras

We describe here the notations required for presenting the results. In 2 + 1 D, the bosonic

part of N = 2 superconformal algebra is SO(3, 2)×SO(2)R ( SO(3, 2)×SO(3)R for N = 3).

Representations are labeled by the quantum numbers of the primary state (∆, j, h). where

∆ is the scaling dimension, j is spin and h is R-charge (or R symmetry highest weight). h

can be any positive or negative real number for N = 2, but is a positive half integer for

N = 3.

For j 6= 0, representations are unitary if

∆ ≥ |h|+ j + 1

For j = 0 unitary representations occur when

∆ ≥ |h|+ 1 or ∆ = |h|, |h| ≥ 1

2
(28)

Representations saturating these bounds are called short while other unitary representations

are called long.

One way to capture information about the state content of the conformal field theory is

through Witten Index which is defined to be

I+ = Tr(−1)FxH+Je−β(H−J−R) (29)

The Witten index vanishes on all long representations of the supersymmetry algebra but is

nonzero on short representations. The only way that the Witten index of a CFT can change

under continuous variations of parameters like λ, is for the R-charge to be renormalized as

a function of that parameter.
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Theories with vanishing superpotential

R-charge as a function of λ

The first class of theories studied were N = 2 U(N) Chern Simons theories at level k,

coupled to g adjoint chiral multiplets with vanishing superpotential. This class of theories

was studied, and demonstrated to be superconformal (for all N , k and g) in [17]. They

showed that the R-charge h of a chiral field is renormalized as a function of λ (to leading

order in λ) as

h(λ) =
1

2
− (g + 1)λ2 (30)

where λ = N
k . As the R-charge of a supersymmetric operator plays a key role in determining

its scaling dimension (via the BPS formula), the exact characterization of the spectrum of

supersymmetric states in this theory at large λ requires knowledge of function h(λ) at large

λ. This can be obtained by an application of the powerful recent results of Jafferis [18]

to this problem. In [18] Jafferis used localization methods to derive a formula (in terms

of an integral over r variables, where r is the rank of the gauge group) for the partition

function on S3 of the CFT in question, as a function of hi the R-charges of all the chiral

fields in the theory. He then demonstrated that the modulus of this partition function

is extremized by the values of hi at the conformal fixed point, assuming the absence of

accidental global symmetries. In the large N limit of interest to this paper, Jafferis’ matrix

integral is dominated by a saddle point. Using a combination of analytic and numerical

techniques, we extremized the action with respect to h, and thereby evaluate h(λ). It turns

out that h(λ) is a monotonically decreasing function for all g. At large g (but all values of

λ), we found analytical results which showed that h(λ) tends to a constant value at λ = ∞
as

1

2
− 4

π2g
+O

(

1

g2

)

. (31)

We numerically saw that this formula appears to work at the 10-15 percent level even down

to g = 2. More specifically, at g = 3, our numerics indicates h(∞) ≈ 0.35, and at g = 2,

h(∞) ≈ 0.27. these do not compare badly with 0.365 and 0.3 as predicted by eq(31).

Interestingly, however, at g = 1, h(∞) = 0 i.e the R-charge of the chiral multiplet

decreases without bound in this special case as was anticipated in [19].

Spectrum of single trace operators

Given the function h(λ), one can evaluate the superconformal index I+ [20] of these theories

as a function of h(λ). As was already noted in [20], this index demonstrates that the

spectrum of supersymmetric single trace operators grows exponentially with energy for

g ≥ 3. In the absence of a superpotential one can compute a more refined Witten index

(adding in a chemical potential that couples to the global symmetry generators) which

shows an exponentially growing density of states for the supersymmetric spectrum (in the

theory without a superpotential) even for g = 2. This immediately suggests that the
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simplest possible dual description for all theories with g ≥ 3 (and the theory without a

superpotential at g = 2) is a string theory, with an exponential growth in supersymmetric

string oscillator states.

However, the index indicates a sub exponential growth of supersymmetric states for all

theories with g = 1 and theories with a nontrivial superpotential when g = 2. This leaves

open the possibility of a simpler dual (one with a field theory’s worth of degrees of freedom)

in these cases. We now mention the results of g = 1 theories without a superpotential.

Making the assumption that the spectrum of supersymmetric states in this theory is iso-

morphic to the cohomology of the classical action of the susy operator, we have computed

the full spectrum of single trace supersymmetric operators in this theory. While the states

do grow in number with energy in a roughly Kaluza-Klein fashion, they have arbitrarily

high spins, ruling out a possible dual supergravity dual description.

The spectrum of supersymmetric state of g=1 theory includes the states in the chiral

ring, Trφn for all n ≥ 2. The scaling dimensions of these operators is nh(λ). Unitarity

requires that the scaling dimension ∆ of all the scalar operators in a 3D CFT must satisfy

∆ ≥ 1
2 and operators which saturates this bound are necessarily free. Since the R-charge

in this theory decreases monotonically to zero, the scaling dimensions of these operators

also decreases with λ and hit the unitarity bound one by one for larger and larger values

of λ. One of the attractive scenario in this case is as follows. Let λfn and be that λ where

operator Tr(φn) becomes free . i.e

h(λfn) =
1

2n
(32)

As λ is increased past λf2 , λ
f
3 and so on, Tr(φ2), T r(φ3).. becomes free and decouples from

the theory one by one.

Theories with a superpotential

The second class of theories studied were N = 2 U(N) Chern Simons theories at level k,

coupled to g adjoint chiral multiplets with appropriate superpotential. For theories that

reduce to free systems as λ → 0, the superconformal index is independent of the details

of the superpotential, other than the fact that the index cannot now be weighted with

respect to a chemical potential for any global symmetry under which the superpotential is

charged, and depends only on the R-charge of matter fields which may be renormalized. So

in particular, the index demonstrates the presence of an exponentially growing spectrum of

supersymmetric states for g ≥ 3, exactly as above. For this reason we focused our study on

g ≤ 2. We first start with g = 1 with various superpotentials.

TrΦ4 at g = 1

The superpotential deformation TrΦ4 is marginal at λ = 0, but is relevant at finite λ. It

has been argued in [17] that the beta function for this superpotential term vanishes when

its coefficient is of order λ (at small λ) leading to a weakly coupled CFT with a TrΦ4 su-
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Cohomology states Multiplicity N = 2 Primary N = 3 Primary Allowed h
(N = 2 quantum numbers)

(h, 0, h, h) 1 (h, 0, h, h) (h, 0, h, h) h ∈ 1
2Z

+

(h+ 1
2 ,

1
2 , h, h) 1 (h, 0, h − 1, h) h ∈ 1

2Z
+

(h+ 3
2 ,

1
2 , h+ 1, h) 1 (h+ 1, 0, h, h) (h+ 1, 0, h, h) h ∈ 1

2Z
+

(h+ 2, 1, h + 1, h) 1 (h+ 3
2 ,

1
2 , h, h) h ∈ 1

2Z
+

(h+ 1, 1, h, 0) 1 (h+ 1
2 ,

1
2 , h− 1, 0) (h+ 1

2 ,
1
2 , h− 1, 0) h ∈ Z

+

(h+ 3
2 ,

3
2 , h, 0) 1 (h+ 1, 1, h − 1, 0) h ∈ Z

+

Table 1: Supersymmetric spectrum for 2 chiral adjoints at N = 3 fixed point with SU(2)
flavor symmetry.The notation is (∆, j, h, y) where y is the SU(2) flavour charge.

perpotential turned on. The presence of the superpotential forces the R-charge of the field

φ to be fixed at h = 1
2 at all values of λ in this new fixed line. While the superconformal

index of this theory is blind to the presence of the superpotential, the spectrum of single

trace supersymmetric operators is not. Again assuming that supersymmetric spectrum is

accurately captured by the classical supercharge cohomology at all λ, we computed the

supersymmetric spectrum. As in the case of theories without a superpotential, our conjec-

tured supersymmetric spectrum grows with energy in a manner expected of Kaluza-Klein

compactification, but continues to include states of arbitrarily high spin.

N = 3 theory at g = 2

Let us now turn to g = 2 theories with a superpotential. First consider superpotentials of

the form Tr [Φ1,Φ2]
2. This superpotential is marginal at λ = 0, but is relevant at finite λ

(regarded as a deformation about the theory with no superpotential). It was argued in [17]

that the RG flow seeded by this operator ends with the coefficient of this superpotential

stabilized at that finite value (of order λ) that enhances the supersymmetry of the theory to

N = 3. This N = 3 theory enjoys invariance under an enhanced SU(2) R symmetry group,

and also enjoys invariance under an SU(2) flavour symmetry group. We have computed

the spectrum of supersymmetric states in this theory; our results are presented in Table 1.

Interestingly, it turns out that the spins of supersymmetric states in this theory grow roughly

in the manner one would expect of a Kaluza-Klein compactification of a supergravity theory

on AdS4 × S3. In particular the spins of supersymmetric states in this theory never exceed

two. We have not, however, managed to identify a specific supergravity compactification

that could give rise to this spectrum.

Superconformal N = 2 deformations of the N = 3 theory

There exists a manifold of exactly marginal N = 2 deformations of the N = 3 theory

described above and this can be characterized rather precisely in the neighbourhood of

the N = 3 fixed point using the recent results of [21]. We have computed the spectrum

of supersymmetric states in these deformed theories. Qualitatively, the results for these
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deformed theories are similar to those of the N = 3 theory above. Although the spins of

all supersymmetric states are less than or equal to two, we have not been able to identify a

supergravity dual.

Discussions

In this thesis we study various aspects of the landscape of vacua in string theory. We explore

different phases in the landscape both from the gravity side and from the field theory side

by using the AdS/CFT correspondence.

From gravity side, in [4] we explore the stability of nonsupersymmetric vacua in the

string landscape. Building on existing literature, we construct a large class of perturbatively

stable vacua and then look for tunneling instabilities into nearby vacua in landscape. A

large number of decay channels are ruled out by our analysis, suggesting that some non

susy vacua could be stable after all. It would be instructive to construct more examples of

such vacua with all moduli stabilized and investigate their non perturbative stability. This

program might ultimately provide hints to constructing stable desitter vacua which is of

relevance to string phenomenology.

Further continuing the exploration of the landscape, in [8] we construct gravity systems

with reasonable thermodynamics and illustrate how non fermi liquid can arise in such

systems using holography. We use two point functions of fermions to ascertain the nature of

the excitations. Recently, the authors of [22],[23] have shown that entanglement entropy can

be used as a probe of fermi surface. It would be interesting to explore the strong coupling

phenomenon in field theories by studying their gravity duals by using these probes.

On the field theory side, in [10] we study supersymmetric cherns simons theories with

simple matter content with the intent to check whether they admit gravity duals. We

deduce the protected matter content which can prove useful in identifying the dual gravity

system. Recently, localization techniques have been used to compute exact quantities like

partition function in certain supersymmetric theories. This might provide hints for possible

gravity dual and also provide evidence for duality among quantum field theories.

As string theory progresses, we expect to have a more complete understanding of string

landscape.



Bibliography

[1] M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79, 733 (2007)
[hep-th/0610102].

[2] T. W. Grimm and J. Louis, ‘The Effective action of type IIA Calabi-Yau orientifolds,”
Nucl. Phys. B 718, 153 (2005) [hep-th/0412277].

[3] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, “Type IIA moduli stabilization,”
JHEP 0507, 066 (2005) [arXiv:hep-th/0505160].

[4] P. Narayan and S. P. Trivedi, “On The Stability Of Non-Supersymmetric AdS Vacua,”
JHEP 1007, 089 (2010) [arXiv:1002.4498 [hep-th]].

[5] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,”
Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [hep-
th/9711200].

[6] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, “Effective Holo-
graphic Theories for low-temperature condensed matter systems,” JHEP 1011, 151
(2010) [arXiv:1005.4690 [hep-th]].

[7] K. Goldstein, S. Kachru, S. Prakash and S. P. Trivedi, “Holography of Charged Dilaton
Black Holes,” JHEP 1008, 078 (2010) [arXiv:0911.3586 [hep-th]].

[8] N.Iizuka, N. Kundu, P. Narayan, S. P. Trivedi, “Holographic Fermi and Non-Fermi
Liquids with Transitions in Dilaton Gravity” JHEP 1201, 094 (2012) [arxiv:1105.1162
[hep-th]]

[9] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-
Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008)
[arXiv:0806.1218 [hep-th]].

[10] S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, “Supersymmetric States
in Large N Chern-Simons-Matter Theories,” JHEP 1202, 022 (2012) [arXiv:1104.0680
[hep-th]].

[11] M. Cvetic and H. H. Soleng, “Supergravity domain walls,” Phys. Rept. 282, 159 (1997)
[hep-th/9604090].

[12] S. R. Coleman and F. De Luccia, “Gravitational Effects on and of Vacuum Decay,”
Phys. Rev. D 21, 3305 (1980).

[13] N. Iqbal, H. Liu and M. Mezei, “Lectures on holographic non-Fermi liquids and quan-
tum phase transitions,” arXiv:1110.3814 [hep-th].

xv



xvi BIBLIOGRAPHY

[14] H. Liu, J. McGreevy and D. Vegh, “Non-Fermi liquids from holography,” Phys. Rev.
D 83, 065029 (2011) [arXiv:0903.2477 [hep-th]].

[15] M. Cubrovic, J. Zaanen and K. Schalm, “String Theory, Quantum Phase Transitions
and the Emergent Fermi-Liquid,” Science 325, 439 (2009) [arXiv:0904.1993 [hep-th]].

[16] T. Faulkner, H. Liu, J. McGreevy, D. Vegh, “Emergent quantum criticality, Fermi
surfaces, and AdS(2),” Phys. Rev. D83, 125002 (2011). [arXiv:0907.2694 [hep-th]].

[17] D. Gaiotto and X. Yin, “Notes on superconformal Chern-Simons-Matter theories,”
JHEP 0708, 056 (2007) [arXiv:0704.3740 [hep-th]].

[18] D. L. Jafferis, “The Exact Superconformal R-Symmetry Extremizes Z,”
arXiv:1012.3210 [hep-th].

[19] V. Niarchos, “R-charges, Chiral Rings and RG Flows in Supersymmetric Chern-
Simons-Matter Theories,” JHEP 0905, 054 (2009) [arXiv:0903.0435 [hep-th]].

[20] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, “Indices for Superconfor-
mal Field Theories in 3,5 and 6 Dimensions,” JHEP 0802, 064 (2008) [arXiv:0801.1435
[hep-th]].

[21] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, “Exactly Marginal
Deformations and Global Symmetries,” JHEP 1006, 106 (2010) [arXiv:1005.3546 [hep-
th]].

[22] L. Huijse, S. Sachdev and B. Swingle, “Hidden Fermi surfaces in compressible states of
gauge-gravity duality,” Phys. Rev. B 85, 035121 (2012) [arXiv:1112.0573 [cond-mat.str-
el]].

[23] N. Ogawa, T. Takayanagi and T. Ugajin, “Holographic Fermi Surfaces and Entangle-
ment Entropy,” JHEP 1201, 125 (2012) [arXiv:1111.1023 [hep-th]].



Publications

Papers relevant to the thesis work:

• P. Narayan and S. P. Trivedi,“On The Stability Of Non-Supersymmetric AdS Vacua,”

JHEP 1007, 089 (2010) [arXiv:1002.4498 [hep-th]].

• S. Minwalla, P. Narayan, T. Sharma, V. Umesh, X. Yin,“Supersymmetric States in

Large N Chern-Simons-Matter Theories,”, JHEP 1202, 022 (2012) [arXiv:1104.0680

[hep-th]].

• N.Iizuka, N. Kundu, P. Narayan, S. P. Trivedi, “Holographic Fermi and Non-Fermi

Liquids with Transitions in Dilaton Gravity”, JHEP 1201, 094 (2012) [arxiv:1105.1162

[hep-th]].

Other Papers:

• N.Iizuka, S.Kachru, N.Kundu, P. Narayan, N. Sircar and S. P. Trivedi, “Bianchi

Attractors: A Classification of Extremal Black Brane Geometries”, arxiv:1201.4861

[hep-th].

xvii





Contents

Synopsis i

Publications xvii

1 Introduction 1

References 7

2 Stability Of Non-Supersymmetric AdS Vacua 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Fluxes, Superpotential and Potential . . . . . . . . . . . . . . . . . . 13

2.2.2 The Superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 The Blow-up Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 More General Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Vacuum Decay in the Thin wall Approximation . . . . . . . . . . . . . . . . 22

2.4 D4-Brane Mediated Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Non-Susy to Susy Decay . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Decays From Non-Susy to Other Non-Susy Vacua . . . . . . . . . . 26

2.4.3 Decays in the Orbifold limit . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 General Decays With Blow-up Fluxes . . . . . . . . . . . . . . . . . 30

2.4.5 Type 2) to Type 2) Decays . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.6 Type 3) to Type 3) Decays . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.7 Type 3) to Type 2) Decays . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.8 Supersymmetric Partners in the Landscape and Marginality . . . . . 34

2.4.9 More on Supersymmetric Domain Walls . . . . . . . . . . . . . . . . 36

2.5 More General Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References 42

xix



xx CONTENTS

3 Holographic Non-Fermi Liquids in Dilaton Gravity 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The Dilaton Gravity System . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 The Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 More on the Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Thermodynamics of the Slightly Non-Extremal Black Brane . . . . . 49

3.2.4 Taming the Singularity . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.5 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Extremal Branes: from near-horizon to boundary of AdS . . . . . . . . . . . 54

3.3.1 Identifying The Perturbation . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Fermionic Two Point Function . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 β + γ > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Some General Comments for the Cases β + γ ≤ 1 . . . . . . . . . . . 64

3.4.3 More on the β + γ = 1 case . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.4 Case β + γ <1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.5 The Transition from β + γ = 1 to β + γ < 1 . . . . . . . . . . . . . . 69

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Supersymmetric States in Large N Chern-Simons-Matter Theories 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 N = 2, 3 superconformal algebras and their unitary representations . . . . . 81

4.2.1 The superconformal algebras and their Witten indices . . . . . . . . 81

4.2.2 State content of all unitary representations of the N = 2 supercon-

formal algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Decomposition of all unitary representations of the N = 3 algebra

into N = 2 representations . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 The R-charge as a function of λ in the absence of a superpotential . . . . . 88

4.3.1 The large N saddle point equations . . . . . . . . . . . . . . . . . . 88

4.3.2 Perturbative solution at small λ . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Perturbative solution at large g . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Numerical study of R-charge for small g and large λ . . . . . . . . . 92

4.4 Supersymmetric states of a theory with a single adjoint in the absence of a

superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Superconformal index . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Conjecture for the supersymmetric spectrum at all couplings . . . . 99

4.5 Supersymmetric states of theories with a single adjoint field with nonzero

superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS xxi

4.5.1 Space of theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Superconformal index of the theory with a TrΦ4 superpotential . . . 102

4.5.3 Conjecture for the supersymmetric spectrum of the theory with a

TrΦ4 superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.4 Conjecture for the supersymmetric spectrum of the theory with a

TrΦ3 superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Supersymmetric states in the theory with two adjoint fields and vanishing

superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Supersymmetric states in the N = 3 theory with a adjoint hypermultiplet . 105

4.7.1 Superconformal index . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.2 Supersymmetric cohomology . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Marginal N = 2 deformations of the N = 3 theory . . . . . . . . . . . . . . 107

4.8.1 Superconformal index of these theories . . . . . . . . . . . . . . . . . 109

4.8.2 Conjecture for the supersymmetric cohomology . . . . . . . . . . . . 109

4.8.3 Theories with three or more chiral multiplets . . . . . . . . . . . . . 110

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 115

5 Conclusions 117





Chapter 1

Introduction

String theory is believed to be a consistent theory of quantum gravity. Although there are

different perturbative formulations of the theory [1], various dualities relate them to each

other at the nonperturbative level and the full theory is expected to be unique. String

theory contains various massless fields like the metric, scalar fields and other tensor fields

which can take several different consistent background values giving rise to a multitude

of solutions. Therefore, despite being a unique theory, string theory has many ground

states. This complicated set of low energy vacua is usually referred to as the landscape.

The symmetries of each of these vacua will in general be different, and the low energy

excitations about each of them forms a different effective field theory. This gives rise to the

rich structure of string theory with each vacua describing a particular “phase” of the theory.

In fact authors of [2] estimate that the number of (perturbatively stable supersymmetric)

vacua could exceed 10120. The situation is reminiscent of condensed matter physics where

the microscopic theory is unique, but the physics at large length scales shows an enormous

number of emergent phases.

Exploring the landscape has been a active area of research in string theory [3][4]. One

obvious motivation for this study comes from phenomenology. An important question in

string phenomenology and string cosmology is finding vacua which are semi realistic. Ex-

ploring the landscape, one would hope to find vacua which share some of the essential

features of the physical universe. Another possible motivation for a study of the landscape

is to understand field theories better by employing the AdS/CFT correspondence. In fact

one of the topics in this thesis deals with this subject as we will explain later. Also, un-

derstanding the web of dualities which connect different corners of the landscape is still

an active research area. As these dualities provides a definition of what string theory is

at nonperturbative level, a study of the landscape might prove useful in understanding the

structure of string theory better.

In this thesis we study various aspects of the string landscape. We focus on the part of

the landscape which have a effective four dimensional description. We also concentrate on

theories with a negative cosmological constant. We now give a brief description of the three

1



2 1. INTRODUCTION

projects and describe how it helps us in understanding different aspects of the landscape.

Stability of Non-supersymmetric vacua

Critical string theories have 10 spacetime dimensions and compactifying 6 of the space

dimensions results in a 4 dimensional effective theory. A typical vacua, at low energies has

many massless scalar fields which are called moduli. Stabilizing these moduli by turning

on masses for them (by say turning on background values for fluxes) is generally referred

to as moduli stabilization. A lot of work has been done in recent years in stabilizing the

moduli resulting in perturbatively stable supersymmetric vacua [3][4]. From phenomenology

point of view, it would be most interesting to find de Sitter vacua (which necessarily breaks

supersymmetry) with all moduli stabilized. But being time dependent they are harder to

construct. Recently perturbatively stable non supersymmetricAdS vacua have been studied

[5][6]. In the first part of this thesis we construct perturbatively stable nonsupersymmetric

AdS4 vacua in the landscape and also analyze their nonperturbative stability. This part of

the thesis is based on the work done in [7].

In [8], the authors construct supersymmetric AdS4 vacua with all moduli stabilized
1. By changing some of their flux configurations, in [7] we construct a large class of non

supersymmetric vacua with all the moduli can be stabilized.

We then go on to study the nonperturbative stability of these vacua. Note that the string

landscape poses a problem for phenomenology : Even if we find a realistic vacuum, there is

no principle which tells us why this particular vacuum among the host of other vacua in the

landscape is more preferred. Thus it is not clear how to obtain testable predictions from the

theory. Looking for vacua which are non perturbatively stable might alleviate the problem

by narrowing the string landscape. Another motivation to look into the nonperturbative

stability is the following. A small decay rate of the AdS vacua has dramatic consequences

for the dual CFT living on its boundary. This is so because decay rate of the boundary

theory is got by integrating the decay rate of the bulk theory over the bulk volume which

diverges. In fact the divergence arises from the near boundary region or equivalently in the

dual CFT language it arises by summing over instantons of very small size [9]. Hence even

a small decay rate of the AdS4 vacua might make a dual CFT unlikely to exist. Thus it is

important to study the nonperturbative stability, especially in the light of recent excitement

about applications of holography which we will mention later.

We examine non-perturbative decays of these non supersymmetric vacua to other su-

persymmetric and non-supersymmetric AdS4 vacua mediated by instantons in the thin wall

approximation. We find that for a class of these vacua a large number of decay channels are

ruled out since the tension of the interpolating domain wall is too big compared to the energy

difference in AdS units. We show that this can also be understood in terms of a “pairing

1The vacua also had weak string coupling and large AdS radius which is essential in controlling the
approximations made.
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symmetry” in the landscape which relate these vacua with supersymmetric ones. Then the

stability of the nonsupersymmetric vacua follow from the stability of supersymmetric ones.

Non Fermi Liquids from Dilaton gravity

The gauge gravity duality [10] is one of the most fascinating ideas to have emerged from the

study of string theory in recent years. This is a duality between some quantum field theories

and a theory of gravity in one higher dimension. With the advent of this duality, it is now

possible to map gravitational theories in some corners of the landscape to quantum field

theories. Hence the multitude of vacua in the landscape translates to different emergent

phases in the dual field theory. Therefore a study of the landscape might yield valuable

insights for the dual field theory. Note that since AdS/CFT is a weak/strong duality, the

strong coupling regime in field theory, which is otherwise hard to study using conventional

techniques maps to gravity description which is weakly coupled and hence controllable.

With its large number of phases, condensed matter physics is a natural place to use

these tools. Low energy effective theory of even a simple system like fermions in a fermi

sea coupled to gauge field has been shown to be outside perturbative regime [11]. This is

particularly relevant in view of considerable evidence now for non-Fermi liquid behaviour

in condensed matter systems (see [12] for references). It is generally believed that strong

coupling is required to explain these phenomenon. Studies on trying to use the tools of

AdS/CFT to explore strong coupling in condensed matter physics have been underway for

some time now [13][14]. The focus on the bulk side is on extremal branes, as these are

universal objects in the string vacua and studying them reveal the universal features of

the dual strongly coupled field theory. It is easy to turn on a chemical potential (or finite

density) for the field theory by incorporating a gauge field in the bulk.

Initial studies focused on Extremal Reissner Nordstrom (eRN) black branes [13][14].

While these systems were found to have Non Fermi Liquid behaviour, they suffer from an

important unphysical feature, namely, their entropy is nonvanishing at vanishing temper-

ature and scales as a positive power of the chemical potential. Hence these systems may

not be a good model for condensed matter systems. Later, gravity systems with vanishing

entropy at extremality were explored in [15]. But these systems were found to have canon-

ical fermi liquid behaviour [16]. This leads to an interesting question whether holographic

systems with vanishing entropy at extremality always leads to fermi liquid behaviour.

In second part of thesis we study the two-point function for fermionic operators in a class

of strongly coupled systems using the gauge-gravity correspondence. This part of the thesis

is based on the work done in [17]. The gravity description includes a gauge field and a dilaton

which determines the gauge coupling and the potential energy [18]. Extremal black brane

solutions in this system have vanishing entropy. By analyzing a charged fermion in these

extremal black brane backgrounds we calculate the two-point function of the corresponding

boundary fermionic operator. We find that in some region of parameter space it is of Fermi
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liquid type. Outside this region no well-defined quasi-particles exist, with the excitations

acquiring a non-vanishing width at zero frequency. At the transition, we find that the

two-point function can exhibit non-Fermi liquid behaviour.

Supersymmetric states in Large N chern-simons theories

As explained earlier, the string landscape, through AdS/CFT correspondence, leads to a

landscape of conformal field theories (CFTs). A study of the string landscape can be hence

be also carried out by scanning the set of CFTs and asking which among them admits a

gravity description at strong coupling.

For gauge theories with the Yang Mills kinetic term, a careful choice of matter content

and couplings can be made to make the theory a conformal theory. This makes it difficult

to construct a landscape of CFTs. The situation is very different in three dimensions where

gauge fields can have a chern simons kinetic term. The coefficient of chern simons term (k)

is forced by gauge invariance to be an integer and hence can not run under renormalization

group flow. For any choice of matter content there is a sequence of fixed points parametrized

by k. For SU(N) or U(N) theories at large N , this sequence of fixed points coalesce into a

line of fixed points parametrized by the continuous thooft coupling λ = N
k .

Thus, in three dimensions it is fairly easy to construct landscape of three dimensional

CFTs and moreover they have a tunable coupling λ. By AdS/CFT correspondence, line

of fixed points parameterized by a coupling constant can interpolate between a field theory

description at weak coupling and a dual gravity description at strong coupling. It would be

interesting to scan through the landscape of these CFTs and ask which class of them admit

duals with a gravity approximation at strong coupling.

In last and concluding part of this thesis we study the the supersymmetric spectrum

of a large class of large N chern simons theories with simple matter contents. This part

of the thesis is based on the work done in [19]. This is protected from renormalization

under continuous deformation of λ and thus can be used to learn about strong coupling

behaviour of the theories. In particular we study the N = 2 superconformal U(N) Chern-

Simons-matter theories with adjoint chiral matter fields, with and without superpotential.

We compute the superconformal indices and present conjectures on the full supersymmetric

spectrum of the theories in the large N limit with up to two adjoint matter fields. Our

results suggest that some of these theories may have supergravity duals at strong coupling,

while some others may be dual to higher spin theories of gravity at strong coupling. For the

N = 2 theory with no superpotential, we study the renormalization of R-charge at finite ’t

Hooft coupling using “Z-minimization”.

This thesis is organized as follows. Exploring the landscape from the gravity side,

in chapter 2 we study both perturbative and nonperturbative stability of a class of non

supersymmetric vacua. We find some vacua which are surprisingly robust against many

kinds of decays. Further continuing the exploration of the landscape from the gravity
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side, in chapter 3, we study Einstein dilaton gravity. By computing a fermionic two point

function, we find non fermi liquid behaviour for the dual field theory. In chapter 4 we

consider the landscape of Chern simons CFTs in a hope to find the dual gravity systems

and identify some promising theories.
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Chapter 2

Stability Of Non-Supersymmetric

AdS Vacua

2.1 Introduction

String Theory has a rich and complicated landscape of vacua. Non-supersymmetric anti-

deSitter (AdS) vacua are an interesting class amongst these. Lacking supersymmetry, they

are not as well understood as supersymmetric spacetimes. But being time independent,

they should be easier to understand than deSitter spacetimes.

In this chapter we construct a class of non-supersymmetric AdS vacua which are per-

turbatively stable and investigate their non-perturbative stability.

Our construction is based on massive IIA theory compactified on a particular Calabi-

Yau manifold. After suitably orientifolding and adding fluxes one obtains vacua where all

moduli are stabilized and supersymmetry is broken with a negative cosmological constant.

The Calabi-Yau manifold is obtained by blowing-up a T 6/(Z3 × Z3) orbifold. This model

was studied in considerable depth by [1]. Here we carefully include the effects of the blow-up

modes and related fluxes and analyze the stability of the resulting non-susy vacua in detail.

We find two classes of perturbatively stable non-susy vacua. These are called Type 2)

and Type 3) vacua in our terminology (Type 1 vacua are supersymmetric). Both classes

contain an infinite number of vacua.

Next we turn to a study of the non-perturbative stability of these vacua. At first sight

one might expect that a non-supersymmetric AdS vacua in the landscape would always

have some non-zero rate to decay to other vacua with lower vacuum energy. Such a decay

rate, if it is small enough, would not have very drastic consequences for an observer in AdS

space.

However, from the point of view of a dual CFT the small decay rate in the bulk leads to

a divergence and has dramatic repercussions. For, consider AdSd+1 in Poincare coordinates:

ds2 = (
r

R
)2(−dt2 +

∑

i=1,··· ,d−1

(dxi)2) + (
R

r
)2dr2. (2.1)

9
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Let the decay rate per unit volume in the bulk be Γ. The corresponding decay rate per

unit volume in the boundary is obtained by integrating the bulk decay rate in the radial

direction. Taking the boundary metric to be flat, the decay rate per unit volume in the

boundary theory is,

Γboundary =

∫ √
gdrΓ ∼ rd+1

boundaryΓ, (2.2)

where rboundary is the radial location of the boundary. As rboundary is taken to infinity we

see that this diverges.

Thus an arbitrarily small decay rate in the bulk leads to an infinitely fast decay in

the boundary. The putative CFT dual meets with an instantaneous end and cannot exist.

This consequence of a bulk decay was noted in [2] where the decay rate in a non-susy AdS

spacetime, obtained by taking an orbifold of AdS5 × S5, was discussed in some detail.

We see then that our expectation that the non-susy AdS vacua are unstable non-

perturbatively suggests that non-supersymmetric CFT’s which admit a gravity dual are

unlikely to exist. If true, this is an important consequence since holography has emerged as

a major tool with which to study strongly coupled conformal field theories.

The two large families of perturbatively stable non-susy vacua mentioned above provide

us with a laboratory in which we can investigate this issue of non-perturbative stability.

Our analysis reveals that in a large number of cases the decays to vacua with lower energy

are in fact ruled out.

The essential reason for this is the geometry of AdS space. The dynamics of a decay

is governed by competition between the volume gain in bulk energy and the surface cost

due to the tension of the interpolating domain wall. For a system in flat space, the volume

grows more rapidly than the surface area, so eventually the volume gain always wins out

and an instanton always exists which allows a transition to the more stable phase. However

in AdS space the volume and area grow at the same rate. This means in AdS space a decay

can only happen if the tension of the interpolating domain wall is small enough compared to

the difference in energies between the two vacua. Explicit calculations show that in several

cases the tension turns out to be much too large thereby forbidding the decay.

In fact it turns out that working within our approximations, Type 2) vacua are stable

and can at best decay marginally. Type 3) vacua, in contrast, do indeed decay to some

other Type 3) and Type 2) vacua. We find no decays of the non-susy vacua to susy ones are

allowed. In the marginal cases, one will have to go beyond our approximations to determine

the stability.

Among our approximations one of the more significant ones is the thin wall approxi-

mation, as described in the classic paper by Coleman and Deluccia [3]. The domain walls

involved cause a jump in flux and thus carry D-brane charges. At first sight one would ex-

pect them to be just D-branes and therefore well described in the thin wall approximation.

However the change in flux also causes the moduli to vary and these typically have a mass

of order the AdS scale. As a result the domain walls are no longer thin. To work within the
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thin wall approximation then we must restrict ourselves to cases where the moduli variation

contributes little, compared to the D-brane contribution, to the tension of the domain wall.

This allows the domain wall to be approximated as being just a D-brane, which is indeed

thin. Another limitation comes from not having explored the full set of non-susy vacua. In

particular we have only investigated choices of flux for which the Calabi-Yau manifold is a

slightly blown-up version of the T 6/(Z3 × Z3) orbifold. General non-susy vacua, where the

moduli could be stabilized far away from the orbifold point, have not been analyzed. There

could be other non-susy vacua which we have not constructed which are allowed end points

of decays.

Despite these limitations in our analysis, we find it significant that a large number of

possible decays are in fact ruled out. This indicates that perhaps stable non-susy AdS vacua

and associated CFT’s might exist after all.

The stability of Type 2) vacua can also be understood in terms of a “pairing symmetry”

in the landscape. By reversing the sign of the four-form flux in these vacua one obtains

susy vacua with the same vacuum energy. The stability of the Type 2) vacua then follows

from the stability of their partner susy vacua. While we have established the argument

which relates the stability of the Type 2) vacua to that of their susy partners only within

our approximations it could have a greater range of validity.

The basic strategy we employ in studying the non-perturbative stability is as follows.

The tension of the interpolating domain wall satisfies a lower bound in terms of the jump in

the superpotential caused by the domain wall. By comparing this lower bound against an

upper bound which must be met for the decay to be allowed in AdS space, several decays

can be ruled out.

Such a bound on the tension of domain walls is familiar in supersymmetric settings. It

might seem puzzling at first that it arises in our study of non-susy vacua. The essential

reason is that even in the non-supersymmetric case the compactification can be well ap-

proximated to be a Calabi-Yau space. The ratio of the size of the internal space to the AdS

radius goes to zero for large flux in these compactifications making them of non Freund-

Rubin type. This means that the main effect of the fluxes in these cases is to stabilize the

moduli while the shifts of the Kaluza Klein modes is small. The tension of the domain

wall, which is fixed to good approximation by the geometry of the Calabi-Yau space, is

then determined by supersymmetric data and can be bounded by the jump in the superpo-

tential. We expect that a similar strategy should be useful in other flux compactifications

as well, where the internal compactification can continue to be well approximated as a

supersymmetric one. It might also be useful in going beyond the thin wall approximation.

We end this introduction by discussing some related literature. ”Skew whiffing”, the

idea of reversing the sign of fluxes to obtain non-susy vacua from susy ones, which we

have used for Type 2) cases can be found in [4] and also in the context of black holes, [5],

[6]. For other recent constructions of non-susy AdS4 vacua see [7], [8]. Early papers on

IIA compactifications include [10] which developed the 4D framework, and [11], [12], which
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discuss Moduli stabilization. A recent discussion on non-perturbative decays, especially

decays of Minkowski nearly susy vacua to AdS space and related topics, is in [15].

This chapter is organized as follows. In section §2.2 we review the Model discussed in [1]

and construct the non-susy vacua. In §2.3 we briefly review the discussion of vacuum decay

in [3] with particular emphasis on AdS spacetimes. In §2.4 we turn to non-perturbative

decays and analyze decays mediated byD4-branes. More general decays are briefly discussed

in §2.5.

2.2 The Model

We will consider a simple compactification of massive Type IIA theory [13] on a slightly

blown up T 6/(Z3 × Z3) orbifold [20]. By turning on flux one can get non-susy AdS vacua

with all moduli being stabilized. This model was discussed extensively in [1]. We will follow

their notation and discuss the essential features of this compactification.

We will show in this section that for appropriate choices of flux the vacua do not have

any tachyons lying below the BF bound and thus are perturbatively stable. This will set

the stage to consider their possible non-perturbative decays later.

We begin by describing the T 6/(Z3 ×Z3) orbifold. This is an orbifold limit of a Calabi-

Yau three-fold. Let zi = xi + iyi, i = 1 · · · 3 be three complex coordinates on the T 6,

satisfying the periodicity conditions,

zi ≃ zi + 1, zi ≃ zi + α,α = e
πi
3 . (2.3)

The two Z3’s, by which we do the identification are,

(z1, z2, z3) → (α2z1, α
2z2, α

2z3). (2.4)

(z1, z2, z3) → (α2z1 +
1 + α

3
, α4z2 +

1 + α

3
, z3 +

1 + α

3
). (2.5)

This leaves 9 fixed points.

The resulting compactification has no complex structure moduli. The six -torus is a

product manifold, T 6 = T 2 × T 2 × T 2. The resulting orbifold has three Kahler moduli

corresponding to the sizes of the three T 2’s. Each T 2 also gives rise to a zero mode for B2

giving rise to three axions; together these give rise to three complex moduli. The dilaton

and an axion which arises from C3, give rise to one more complex modulus. Finally there

are nine complex moduli which arise from metric and B2 moduli associated with the 9 blow

up modes.

We will need to consider a further Z2 orientifold of this orbifold. This is obtained

by modding out by O = Ωp(−1)FLσ, where ΩP is world sheet orientation reversal, FL is

left-moving fermion number, and σ is reflection,

σ : zi → −z̄i, i = 1, 2, 3. (2.6)
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There is a single O6 plane which fills the non-compact directions and wraps a 3-cycle which

is the locus of fixed points of the σ reflection symmetry. The resulting compactification now

has N = 1 supersymmetry. The three T 2 moduli, the dilaton-axion, and the nine blow up

modes, all survive the orientifolding and form the bosonic components of chiral superfields.

We now turn to incorporating the effects of flux. To begin, we discuss the effects of flux

in the orbifold limit. Subsequently we will include the blow-up modes and related fluxes as

well.

2.2.1 Fluxes, Superpotential and Potential

A basis of two-forms on the three T 2’s is given by,

ωi = (κ
√
3)1/3idzi ∧ dz̄i, i = 1 · · · 3. (2.7)

κ will be defined later in terms of the triple intersection number in eq.(2.26). Let the hodge

duals of ωi be ω̃i. The holomorphic three-form is,

Ω = 31/4idz1 ∧ dz2 ∧ dz3. (2.8)

Its real and imaginary parts are α0, β0. Note that under the Z2 orientifold symmetry α0, β0

are respectively even and odd. The three- form H3 has odd intrinsic particy under O.

Therefore a three-form flux can be expanded as,

H3 = −pβ0, (2.9)

with p constant. Similarly the form form flux F4 can be expanded as

F4 = eiω̃i. (2.10)

After accounting for the presence of Cherns- Simons terms the tadpole condition for the

C7 potential is given by,

m0p = −2
√
2κ210µ6. (2.11)

Here m0 is the Romans parameter1. The metric takes the form,

ds2 =

3
∑

i=1

γidz
idz̄i. (2.12)

It is convenient to work with the moduli,

vi =
1

2

1

(κ
√
3)1/3

γi. (2.13)

1In our conventions, 2κ2
10 = (2π)7(α′)4, µ6 = (2π)−6(α′)−7/2
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below. For now we suppress the dependence on the B2, C3 axions which will be considered

later. The resulting potential in the 4 dimensional Einstein frame effective theory is then,

V =
p2

4

e2φ

(vol)2
+

1

2
(

3
∑

i=1

e2i v
2
i )

e4φ

(vol3)
+
m2

0

2

e4φ

vol
−

√
2|m0p|

e3φ

vol3/2
. (2.14)

where vol, which is related to the volume of the compactification2, is defined to be

vol =

∫

T 6/(Z3)2

√
g6 = κv1v2v3. (2.15)

The four terms on the rhs of the potential above arise from the |H3|2, |F4|4, m2
0 and the

tension of the O6 planes respectively.

The important point for the present analysis is that the potential is an even function of

the fluxes ei. Thus the minimum value of the potential and the location of the minimum

in moduli space will only depend on the absolute values of ei and not on their signs.

We emphasize this because the conditions for supersymmetry do care about signs. These

conditions take the form,

sign(m0ei) < 0, sign(m0p) < 0. (2.16)

The second condition is automatically met once the tadpole condition eq.(2.11) is satisfied.

It follows from eq.(2.16) that all the ei’s must have the same sign to preserve susy.

This gives an easy way to construct non-supersymmetric minima. Starting with the

supersymmetric case, we can change the sign of some or all of the ei’s (while keeping m0, p

fixed). The tadpole condition eq.(2.11) will continue to be met but the susy conditions will

not be. However since the potential is an even function of the ei fluxes, the susy minimum

in moduli space will continue to be a minimum even for these non-susy choice of fluxes.

Now that we have understood the basic idea behind the construction of the non-

supersymmetric vacua we turn to exploring them in more detail below.

2.2.2 The Superpotential

To begin, we discuss the general case of massive IIA on a CY3 orientifold, and then specialize

to the compactification at hand. Let ωa, a = 1, · · · h1,1 be a basis of (1, 1) forms in the CY3.

Let O = Ωp(−1)FLσ be the Z2 orientifold symmetry, with σ being an antiholomorphic

involution of the Calabi-Yau manifold. The space of (1, 1) forms splits into H1,1 = H1,1
− +

H1,1
+ forms which are odd and even under σ, with dimension h1,1− , h1,1+ respectively. Only

the moduli coming from H− survive the orientifold projection 3. Let Jc = B2 + iJ be the

2After the additional Z2 orientifolding, the volume of the internal space becomes vol
2
. For a more complete

discussion of our conventions see subsection §2.2.2.
3This is easy to see from their partner B2 moduli which are odd under O
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complexified Kahler two-form. Then we can expand Jc in terms of a basis of odd two-forms,

Jc =

h1,1
−
∑

a=1

taω
a, (2.17)

Here,

ta = ba + iva. (2.18)

are the complexified Kahler moduli. A single axion arises from C3 in the compactification

of interest to us,

C3 = ξα0, (2.19)

where α0 is defined as the real part of Ω. Susy pairs this with the 4− dimensional dilaton

defined by,

e2D =
e2φ

vol
. (2.20)

The resulting Kahler potential for these moduli is

K = 4D − log(
4

3
κabcvavbvc). (2.21)

where the κabc are the triple intersection numbers,

κabc =

∫

ωa ∧ ωb ∧ ωc. (2.22)

Let w̃a be a basis for H2,2
+ . These are are dual to the (1, 1) forms ωa which are a basis of

H1,1
− eq.(2.17). Then since F4 is even under O we can expand it in this basis,

F4 = eaw̃a. (2.23)

We also turn on e0 units of F4 flux along the non-compact directions and ma units of

F2 flux turned on along compact two -cycles. Then the full superpotential

W = e0 − pξ −
√
2ipe−D + eata +

1

2
κabcmatbtc −

m0

6
κabctatbtc. (2.24)

more We now restrict restrict ourself to the orbifold limit, working with only the untwisted

Kahler moduli and the the F4 fluxes eq.(2.10). There are three complexified Kahler moduli

from the untwisted sector,

ti = bi + ivi, i = 1, · · · 3. (2.25)

The triple intersection number on T 6/(Z3)
2 is given by

κ123 =

∫

T 6/(Z3)2
ω1 ∧ ω2 ∧ ω3 = κ. (2.26)
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Now with the superpotential, eq.(2.24) and the Kahler potential eq.(2.21), one can get the

potential. Minimizing this gives

vi =
1

|ei|

√

5

3
|e1e2e3
κm0

|, (2.27)

eD = |p|
√

27

160
| κm0

e1e2e3
|, (2.28)

and,

eφ =
3

4
|p|
(

5

12

κ

|m0e1e2e3|

)1
4

. (2.29)

where vi =
v
|ei| . The potential at the minimum takes the value

V0 = −
√

4

15

(

27

160

)2 p4κ
3
2 |m0|

5
2

|e1e2e3|
3
2

. (2.30)

Keeping the terms in action which are quadratic in the axions gives a Mass matrix which

can be diagonalized. Two distinct cases arise for the eigenvalues of the mass matrix:

• When sign(m0e1e2e3) = −1 it turns out that all eigenvalues are positive. This includes

the susy case where sign(m0ei) = −1 for each value of i. But it also includes non-susy cases

where the condition eq.(2.16), is not met and the condition sign(m0e1e2e3) = −1 still holds.

•When sign(m0e1e2e3) = +1 and susy is necessarily broken, there is one negative eigenvalue

and thus one tachyon. Its mass is given by, M2 = − 4
15 |m0|e4Dv. The BF bound is M2

BF =

−3
4Vmin. Then,

M2

M2
BF

=
−( 4

15)|m0|e4Dv
−( 3

10)|m0|e4Dv
=

8

9
. (2.31)

Thus we see that the mass lies above the BF bound and hence the resulting vacua are stable

with respect to these axionic directions.

Some General Comments

Some important features of the vacua which arise from eq.(2.27)- eq.(2.30) are worth em-

phasizing at this stage. For the purpose of scalings, in this section we work in string frame

with string scale set equal to one. We will be interested in vacua where the four-form flux

|ei| ∼ e ≫ 1. Note that the tadpole condition eq.(2.11) imposes no constraint on the four

form flux ei, which is allowed to get arbitrarily large. From eq.(2.29) we see that the dilaton

eφ ∼ e−3/4 → 0, so that for large flux one has a weakly coupled theory.

For e ≫ 1 we find parametrically that γi ∼ e1/2, so that the size of the internal space

scales like l ∼ e1/4. In contrast the potential scales like e3/2 and M
(4)
pl ∼ e3/2 so that

the radius of AdS space goes like RAdS ∼ e3/4. Thus we find that both l, RAdS become

parametrically large as e≫ 1. As a result higher derivative corrections in the α′ expansion

will be suppressed. This still leaves corrections which involve higher powers of the field
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strengths without additional derivatives. Terms involving higher powers of F4 were shown

in [1] to be suppressed by an additional power of g2s ∼ e−3/2 making them subdominant.

Note that the ratio l/RAdS ∼ 1√
e
→ 0, so that the compactification is not of Freund-

Rubin type. The non Freund-Rubin nature of the compactification actually simplifies the

analysis when it come to checking for possible tachyons. The KK modes have positive

(mass)2 in the absence of flux, including the effects of flux cannot make them tachyonic

because of the parametric separation of scales. Thus it is sufficient to look for possible

tachyons among the moduli, which are massless in the absence of flux.

Using the scalings, one can show that the F 2
4 terms scale like O(1) in string units.

In susy breaking vacua the flux sets the scale of susy breaking and one might therefore

worry that our starting point, which is a Calabi-Yau orientifold with supersymmetry, is

itself inconsistent. However this is not true. The gravitational backreaction of the flux

is parametrically suppressed for large e, as we argued in the previous paragraph since

l/RAdS → 0. From a ten dimensional point of view this follows from the fact that the

gravitational back reaction is suppressed by g2s which is small. Corrections to the Calabi-

Yau metric can be systematically calculated in an expansion in 1/e. Such corrections arise

in the supersymmetric case as well and including them in the susy case alters the internal

metric so that it is no longer Calabi-Yau but instead is a half-flat metric with SU(3)

structure. For some discussion of this see, [21], [22].

2.2.3 The Blow-up Modes

So far we have ignored the blow-up modes. We now include them and check if there are any

unacceptable tachyons which arise from the blow-up moduli of their axionic partners. In

ths work, we seek vacua where the Calabi-Yau manifold is close to its orbifold limit. There

are 9 blow-up modes, turning on a blow-up mode replaces the corresponding singularities

with a P 2 of non-vanishing size. We will introduce additional F4 flux threading each of

these P 2’s.

The complexified Kahler two-form is now given by4.

Jc =
∑

a

taωa =
3
∑

i=1

tiωi +
9
∑

A=1

tAωA, (2.32)

with tA = bA + ivA. ωA are elements of H1,1
− dual to the blow-up two cycles, and vA, bA are

the blow-up moduli and corresponding axions. The Kahler potential is modified to 5.

K = 4D − log(8κv1v2v3 +
4

3
β

9
∑

A=1

v3A). (2.33)

Let us note that to stay within the Kahler cone, vA < 0, [1]. This agrees with the intuition

4In our notation the index A which denotes the basis elements of H1,1
− takes values i = 1, 2, 3, a = 1, · · · 9.

5κ, β take values, κ = 81, β = 9, according to [1], but we will not need these explicit values below.
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that as vA increases the total volume, which is the argument of the logarithm in the Kahler

potential, decreases.

The four- form flux is,

F4 = eiω̃i + eAω̃A. (2.34)

The superpotential with four form fluxes is

W = −pξ − i
√
2pe−D + eiti + eAtA −m0(κt1t2t3 +

β

6

∑

A

t3A). (2.35)

To keep the blow-up modes small and the Calabi-Yau close to the orbifold point, we

take the extra flux eA to satisfy the condition,

|eA|
|e| ≪ 1, (2.36)

where e ∼ ei denotes a generic flux along the T 2×T 2 four-cycles. We will see below that the

resulting expectation value has vA
vi

≪ 1 so that the blow up moduli have a comparatively

small value and the Calabi-Yau moduli will then be stabilized close to the orbifold point.

For discussion below it is convenient to introduce the variable,

δ =

√

| e3A
e1e2e3

|. (2.37)

To calculate the value of the blow-up modes it is enough to expand the potential and keep

only the first two terms in an expansion in δ. Also we will see that keeping terms upto

order (vAvi )
3 will suffice.

We saw above that the leading order potential gives an acceptable extremum as far as

the untwisted moduli are concerned. The first corrections will have a small effect on the

untwisted moduli masses and they will continue to be safely above the BF bound. Also, the

shifts in the values at the extremum for the Kahler moduli and the dilaton due to the first

order correction can be ignored at this order. In contrast, for the blow-up modes and their

axions the first corrections provide the dominant potential. In the analysis below we set

the untwisted Kahler moduli and dilaton to their minimum values, eq.(2.27), eq.(2.29), and

examine the effects of the first order corrections on the blow-up modes and their axionic

partners.

First let us set the axions to be all zero. This gives,

V = V0 +

√

15κ

4β
|V0|

∑

A

√

|eA|3
|e1e2e3|

{

1

2xA
− 3

10
sign(eA)

∑

i

sign(ei)xA

+
3x3A
200

(1 + 2
∑

<ij>

sign(eiej)







, (2.38)
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where

xA = −
√

β|m0|
|eA|

vA. (2.39)

We note that an explicit minus sign has been introduced in the definition of xA since

the allowed values of vA < 0. Also in the last summation on the rhs of eq.(2.38) the indices

i, j = 1, · · · 3 must take different values, and each distinct pair < ij > appears once.

Let us now introduce the axion dependence in the potential which has so far been

suppressed. From the superpotential, eq.(2.35) it follows that if the sign of all the axions

is reversed, keeping the Kahler moduli and the dilaton the same, then W → −W̄ and

therefore the potential is invariant. This means that the first term in a power series in

the axions must be quadratic and therefore the extremum we find by setting them to zero

is also an extremum once their dependence is included. We will examine whether this

extremum is free of tachyonic modes lying below the BF bound in the following discussion.

As was mentioned above, the leading term in the potential already provides an acceptable

extremum as far as the untwisted axions are concerned.

The quadratic terms for the blow-up axions in the potential are,

VbA =
1

40

√

15κ

4β
|V0|

∑

A

√

|eA|3
|e1e2e3|

b2A
(|eA|/β|m0|)

{

−20sign(m0eA)

xA

+ xA(29 + 9
∑

i

sign(m0ei))

}

. (2.40)

For a solution to preserve supersymmetry eq.(2.16) must hold. In addition, since the

fluxes eA are also now turned on we have the conditions,

sign(m0eA) < 0. (2.41)

We are now ready to discuss the different cases which arise when the signs of various

fluxes are varied. The relative sign between m0, p is fixed by the tadpole condition eq.(2.11).

The different cases arise as we change the relative signs between m0 and the fluxes eA. We

list here only the cases which have no unacceptable tachyons.

• Case 1): sign(eim0) = sign(eAm0) = −1. This case preserves susy. The potential has a

minimum when the blow up modes take the value,

xA =

√

10

3
. (2.42)

All axions are non-tachyonic including the bA axions.

• Case 2): sign(m0ei) = sign(m0eA) = +1. Susy is broken. The extremum of the potential

is at the same value, eq.(2.42). In this case there are no tachyons from the blow-up modes

including the xA directions and the blow-up axions.
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• Case 3):sign(m0ei) = +1, sign(m0eA) = −1 Susy is broken, now the extremum of the

potential lies at,

xA =

√

10

21
. (2.43)

Again there are no tachyons from the blow-up modes and blow up axions.

Before proceeding let us note that there are 9 blow up modes. From eq.(2.38), eq.(2.40)

we see that the potential for the blow-up modes and their axionic partners decouple to

leading order in (eAei )
3/2 from each other. Thus with sign(m0ei) = 1 there are actually 29

cases with sign(eAm0) for A = 1, · · · 9 being ±1. Depending on the sign the discussion of

Case 2) or Case 3) applies for each blow-up mode and its axionic partner independently of

the others.

We close this section by noting that the ground state energy for case 2), where (m0ei) >

0, (m0eA) > 0, is given by,

V = V0 + V0

√

2κ

β

∑

A

|eA|3/2
√

|e1e2e3|
, (2.44)

and for case 3), where (m0eA) < 0, (m0ei) > 0 by,

V = V0 − V0

√

50κ

7β

∑

A

(|eA|)3/2
√

|e1e2e3|
. (2.45)

These results for the ground state energy are correct 6 to order δ. We have neglected the

shift in the untwisted Kahler moduli due to the blow-up fluxes, this contributes at order δ2,

since the first corrections in the energy about the minimum are second order in the values

of the moduli shifts.

2.2.4 More General Fluxes

In this subsection we consider what happens when F2 and F6 flux are also activated. The

fluxes are specified, in terms of the basis of two-forms ωa by,

e0 =

∫

F6, F2 = −maωa. (2.46)

After they are turned on, the full superpotential is therefore,

W = e0 + eata +
1

2
κabcmatbtc −

m0

6
κabctatbtc − pξ −

√
2ipe−D. (2.47)

6By case 2) and 3) we mean here cases where all eA > 0 or eA < 0 respectively. In the mixed case
where some eA are positive and negative the terms within the sum in eq.(2.44), eq.(2.45) have to be changed
appropriately.
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The third term on rhs, which is quadratic in ta contains the effects of the ma flux. By

shifting ta by

ta → ta −
ma

m0
, (2.48)

and ξ by

ξ → ξ − e0
p

− eama

p
− 1

3
κabc

mambmc

m2
0p

, (2.49)

one can can reexpress the superpotential in terms of the shifted variables as,

W = êata −
m0

6
κabctatbtc − pξ −

√
2ipe−D (2.50)

with

êa = ea +
κabc
2

mbmc

m0
. (2.51)

Notice that ma and e0 have both disappeared in this superpotential. The shift, eq.(2.48),

eq.(2.49), changes the real part of the chiral superfields and thus does not change the

Kahler potential which is expressed in terms of the imaginary part of the chiral superfields,

eq.(2.21), eq.(2.33). Thus we see that the theory can be mapped into the one we had studied

earlier, without any ma and e0 flux. Hence the results of the previous sections hold with

ea → êa.

One final comment is worth making regarding this case. The compactification has gauge

symmetries under which the flux and moduli transform, these can be thought of as the

analogue of the τ → τ +1 subgroup of SL(2, Z) which arises on a torus [1]. Configurations

related by these symmetries are not distinct but should be identified. One set of such

symmetries involve the shift in the ba axions by integer units,

ta → ta − ua, (2.52)

ma → ma −m0ua, (2.53)

ea → ea + κabcmbuc −
m0

2
κabcubuc, (2.54)

e0 → e0 +
1

2
κabcmaubuc −

m0

6
κabcuaubuc + eaua, (2.55)

for integer ua. The other involves the shift in ξ axion,

ξ → ξ − u, (2.56)

e0 → e0 − pu. (2.57)

Using these any ma which is an integer multiple of m0 and e0 which is integer multiple of

p can be set to zero. Since the ma and e0 fluxes satisfy quantization conditions, this only

leaves a few physically distinct cases where these fluxes are non-vanishing.
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2.3 Vacuum Decay in the Thin wall Approximation

We review the classic discussion of the non-perturbative decay of an unstable vacuum in [3].

Consider an unstable vacuum, called the false vacuum, which can decay to another state,

the true vacuum. The decay is mediated by the nucleation of a bubble of true vacuum

inside the false vacuum. This nucleation is a quantum tunneling process, and gives rise to

a probability for decay per unit volume per unit time of the form

Γ/V = Ae−B/~. (2.58)

In the semi-classical approximation one seeks a solution to the Euclidean action which can

interpolate between the false and true vacua. Given such a solution, which is called the

bounce, the coefficient in the exponent above is given by,

B = SE − SFalse, (2.59)

where SE is the euclidean action of the bounce and SFalse is the action of the false vacuum.

We will work in the thin wall approximation in this paper. In this approximation

the bounce solution or the bubble has three parts. The inside where the solution is well

approximated by the true vacuum, the outside which is the false vacuum, and the bubble

wall which interpolates between the two. In the thin wall approximation, the thickness of

this wall is much smaller than all the other length scales in the problem. These include the

radius of the bubble and the radii of curvature of the inside and outside spacetimes. Once

these conditions are met, the tension of the bubble wall can be calculated by taking it to be

a flat wall in flat space-time, neglecting both the curvature of spacetime and the curvature

of the bubble wall. This simplifies the analysis considerably.

The Euclidean metric of the bounce solution can be taken to be S3 symmetric and of

form,

ds2 = dξ2 + ρ(ξ)2(dΩ)2, (2.60)

where (dΩ)2 is the volume element on a unit S3. We will be interested in decays where

the inside and outside spacetime are both AdS. We denote the vacuum energy of the false

vacuum, which is outside the bubble, and the true vacuum, which is inside, as V+ and V−
respectively. Both are negative. The bubble wall lies at ρ = ρ̄.

The bounce action gets contributions from the three parts of the solution, the inside,

the wall and the outside,

B = Binside +BWall +Boutside. (2.61)

Since the outside region is essentially identical to the false vacuum, Boutside = 0. For a wall

with tension S1

Bwall = 2π2ρ̄3S1. (2.62)
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Finally the inside region contributes,

Binside = 12π2





(

1− 1
3 ρ̄

2V−
)

3
2 − 1

V−
−
(

1− 1
3 ρ̄

2V+
)

3
2 − 1

V+



 . (2.63)

The value of ρ̄ can be calculated by extremizing B, i.e. requiring,

dB

dρ̄
= 0. (2.64)

Notice from eq.(2.63) that with V± < 0, for large ρ̄

Binside = − 4√
3
π2ρ̄3(

√

|V−| −
√

|V+|), (2.65)

so that the bulk gain in energy grows like ρ̄3. This is a consequence of the fact that the

volume and the area both grow in the same fashion in AdS space. The wall contribution

which goes like the area also grows like ρ̄3 with a positive coefficient, eq.(2.62). A sufficient

condition for an extremum value of B to exists is that the net coefficient of the ρ̄3 dependence

at large ρ̄ is negative. For |V−| > |V+| this yields the condition,

S1 <

√

4

3
[
√

|V−| −
√

|V+|]. (2.66)

A little more analysis shows that this is also a necessary condition. The above condition

can also be expressed as
(

ǫ

3S1
− S1

4

)

>

√

|V+|
3
, (2.67)

2.4 D4-Brane Mediated Decays

In this section we consider non-perturbative decays mediated by a domain wall that carries

only D4 brane charge. More general brane configurations carrying other charges as well

will be discussed later. We then consider a D4 brane which wraps a two-cycle that is a

combination of the three T 2’s. The D4 brane wraps a two-cycle in the internal space and

extends along two of the 3 spatially non-compact directions of AdS4 thereby giving rise to a

domain wall which separates the true vacuum from the false one. This causes the four-form

flux F4, along the 4-cycle dual to the two-cycle wrapped by the D4, to jump. And this

change in F4 cause a change in the cosmological constant.

We will work within the thin wall approximation below. For this approximation to hold

the domain wall must have a thickness which is much smaller than all the other relevant

length scales, namely, the radius of the S3, and the AdS radii of the true and false vacua.

At first sight it would seem that this condition is obviously met since a D4-brane is much

thinner than all these distance scales, when supergravity is valid. However there is an
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important caveat, which was also mentioned in the introduction. In the situations at hand

a change in flux also causes the vacuum expectation value of the moduli to change. As a

result the moduli also begin to vary across the domain wall. Now the moduli can be shown

to result in a wall with thickness of order RAdS , which is not thin.

To stay within the thin wall approximation we will only consider decays where the change

in the moduli from one vacuum to the other is sufficiently small. The moduli contribution

to the tension will then be much smaller than the D4 brane contribution and can therefore

be neglected. The domain wall can then be well approximated by a D4-brane which is

indeed thin. The precise conditions ensuring that the moduli contribution is small will be

worked out for various cases as we proceed.

2.4.1 Non-Susy to Susy Decay

We begin by considering the decay of a non-susy vacuum to a susy one. We will see

below that for all these decays the tension of the domain wall is larger than the energy

difference between the two vacua, resulting in the decays being forbidden in the thin wall

approximation. This mismatch is parametric in the flux, therefore in this subsection we do

not need to keep track of precise numerical factors.

To begin, we work in the orbifold limit, neglecting the blow-up modes and the related

fluxes, eA. This leaves three two-cycles, namely the three T 2’s, and three fluxes, ei, i =

1, 2, 3. The essential argument will become clear if we take all the three fluxes ei to be of

the same order, ei ∼ e. For the supergravity description to be valid |e| ≫ 1.

Now consider a single D4 brane which wraps the first T 2. Its tension arises from the

Nambu-Gotto action,

Action = µ4e
−φ

∫ √−gd3ξidx1dy1 ∼ γ1µ4e
−φ

∫ √−gd3ξi. (2.68)

where ξi, i = 1, · · · 3 are the 3 directions in AdS space along which it extends, and we have

used eq.(2.12) and done the integral over the T 2.

We will work in 4 dim Einstein frame below. This is related to the string frame by

gµν =
e2φ

vol
gEµν . (2.69)

Accounting for this, gives the Einstein frame tension for a single D4 wrapping the first T 2

to be

S1 ∼ γ1µ4e
−φ(

e2φ

vol
)3/2, (2.70)

where γ1 is the size of the T 2.

The domain wall of interest to us is obtained by wrapping all three T 2’s in general, since
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all three fluxes must reverse sign. Its tension is of order

S1 ∼ γµ4e
−φ(

e2φ

vol
)3/2|δe| ∼ |δe|

|e| (
1

|e| )
9/4, (2.71)

where γ ∼ γi is the size of the 3 T 2’s and δe ∼ δei is the change in flux. Now let us take

into account the conditions imposed by the thin wall approximation. The moduli make a

contribution to the tension that can be shown to be

Tmod ∼M(∆Φ)2. (2.72)

Here M ∼ 1/RAdS ∼ 1/|e|9/4, is the mass of canonically normalized moduli field, and

∆Φ ∼ δvi
vi

∼ |δei|
ei

. (2.73)

is the total change in the vacuum expectation value of the canonically normalized field

across the domain wall. Substituting in eq. (2.72) yields

Tmod ∼ (δ|e|)2
|e|2 (

1

|e| )
9/4. (2.74)

For the thin wall approximation to hold, S1 must dominate over Tmod. This gives

|δe|
|e| ≫ (δ|e|)2

|e|2 . (2.75)

This condition can be met if the susy vacuum has fluxes which are opposite in sign but

approximately the same in magnitude as the non-susy vacuum we start with. That is,

esusyi ∼ esusy ∼ −e. (2.76)

Then the non-susy vacuum we start with and the susy vacuum it could decay to, lie in

approximately the same region of moduli space, but are very far apart in flux space. As a

result

|δe| ∼ 2|e|, (2.77)

and eq.(2.75) becomes,

1 ≫ (δ|e|)2
|e|2 . (2.78)

From eq.(2.76), |esusy| ∼ |e| and therefore δ|e| = |e| − |esusy| is small and this condition is

indeed met.

Having ensured that the decay process lies within the thin wall approximation let us

now see why it is not allowed. The important point is that since the absolute value of the

flux in the non-susy and susy vacua are close, their energy difference is also small. From
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eq.(2.30),

ǫ ∼ δ|e|
|e| (

1

|e| )
9/2. (2.79)

For the decay to proceed, a necessary condition which follows from eq.(2.67) is that ǫ
3S1

> S1
4 .

From, eq.(2.71) and eq.(2.79), this condition becomes,

δ|e|
|e| ≥ (

|δe|
|e| )

2 ∼ O(1), (2.80)

where the last relation follows from eq.(2.77). We see now that the condition in eq.(2.80)

is incompatible with eq.(2.78).

Thus we see that the decay of a non-susy vacuum to a susy vacuum is not allowed in

the thin wall approximation.

So far we have neglected the blow-up modes and also neglected the related blow-up

fluxes. After including these one can have perturbatively stable non-susy vacua of Type

2) or Type 3) as discussed earlier. The obstruction we found above disallowing a non-susy

to susy decay was parametric in the ei fluxes for large |ei|. Including the blow-up fluxes

cannot overcome this parametric obstruction as long as the blow-up fluxes are small and

meet the condition, eq.(2.36). Therefore we conclude that non-susy vacua of Type 2) and

3), which arise when the flux meets the condition eq.(2.36), cannot decay to susy vacua in

the thin wall approximation.

2.4.2 Decays From Non-Susy to Other Non-Susy Vacua

We now turn to examining whether a non-susy vacuum can decay to other non-susy vacua.

We will need to calculate the tension of a D4 brane wrapping a two-cycle in the internal

space. The D4-brane causes a jump in the flux to occur and therefore a jump in the

superpotential. It is well known that the tension of the resulting domain wall satisfies a

lower bound

T ≥ TL, (2.81)

where TL is given by

TL = 2eK/2|∆W |, (2.82)

with

∆W = δeava, (2.83)

being the change in the superpotential caused by the jump in the flux.

Our basic strategy will be to compare TL with an upper bound in terms of the energy

difference between the two vacua. This will allow us to rule out various decays.

Let us note here that the formula, eq.(2.82) is true more generally as well, when the D

brane carries other charges too. It arises because the tension of the domain wall is only

determined by the geometry of the Calabi-Yau space, in our approximations. In fact, in the
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absence of fluxes, the Calabi-Yau manifold preserves supersymmetry and the lower bound

for the tension, in terms of the jump in the superpotential, is really a BPS bound. Branes

which saturate the bound preserve supersymmetry, in the absence of flux.

In the D4-brane case the lower bound follows from the fact that the Kahler form on the

Calabi-Yau is a calibration 7. For the sake of clarity let us pause to quickly review how this

comes about.

Consider a two- cycle in the Calabi-Yau manifold. Let σ, σ̄ be holomorphic and anti-

holomorphic coordinates on the world volume. And let the Pull back of the Kahler form of

the Calabi-Yau onto the world volume be,

P [J ] = Kσσ̄dσdσ̄. (2.84)

Also let P [g] be the induced metric on the world volume (we are supressing indices here).

The area element is then given by,

√

det(P [g])dσ ∧ dσ̄. (2.85)

Now since the Kahler form of the Calabi-Yau is a calibration we know that for any two-cycle,

|Kσσ̄ | ≤
√

det(P [g]). (2.86)

The equality is met only when the cycle is either holomorphic, or antiholomorphic. In the

holomorphic case zi(σ) where zi are coordinates of the Calabi-Yau manifold; in the antiholo-

morphic case, zi(σ̄). In these cases the D4 brane wrapping the two-cycle is supersymmetric

The tension of the resulting domain wall is given by

T = µ4e
−φ

∫

d2σ
√

det(P [g]). (2.87)

Using eq.(2.86) we get a lower bound on the tension,

T ≥ TL ≡ µ4e
−φ|
∫

P [J ]|. (2.88)

Now if γa is a basis of two-cycles and ωa a basis of dual-two forms, and if the two-cycle

wrapped by the D4 brane is γ = δnaγa then we have

∫

P [J ] = δnava, (2.89)

where the Kahler moduli va are defined in eq.(2.17). This leads to the lower bound

TL = µ4e
−φ|δnava|. (2.90)

7For an early reference see [24]. For a pedagogical discussion see, [25].
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We now go to 4 dim Einstein frame using eq.(2.69). In addition we can relate the winding

numbers δna to the jump in the four form flux δea by

δea = 32/3
√
2κ1/3µ4δna, (2.91)

Using these, we get eq.(2.82), with eq.(2.83).

Let us now turn to evaluating the upper bound on the tension. We saw in §2.3 that for

the decay to be allowed it must meet the condition, eq.(2.66). Working to leading order in

ǫ (the diffference between the vacuum energies) we get,

T ≤ TU ≡ ǫ
√

3|V0|
. (2.92)

The justification for working to leading order in ǫ comes from the thin wall approximation,

as we will see below.

In the discussion below we will ask if the lower bound TL is bigger than the upper bound

TU . If this is true the decay will not be allowed. In cases where TL < TU there will be

interpolating D4 branes.e.g. wrapping susy cycles which saturate the lower bound, which

will lead to allowed decays.

Before proceeding let us make one more comment. When we calculated TL above we

assumed that the moduli are fixed and calculated the tension of the D4 brane in this fixed

moduli background. Actually the change in flux caused by the D4 brane also causes the

moduli to change. But as long as the fractional change in expectation value of the moduli

is small, i.e.,

|δva
va

| ≪ 1, (2.93)

the resulting effect on theD4 brane tension can be neglected. In the thin wall approximation

the variation of the moduli must make a smaller contribution to the domain wall tension

than the D4-brane makes, this requirement gives rise to the condition, eq.(2.93), as we will

see below.

2.4.3 Decays in the Orbifold limit

To begin let us set the flux eA along the blow-up 4-cycles to be zero. Only the ei fluxes are

then activated and we only consider D4 branes which wrap the T 2 two-cycles and cause

these fluxes to jump.

We first consider the limitations imposed by the thin wall approximation. To save clutter

we set m0 > 0 below. Then ei > 0 in these vacua. To begin let us consider a case where all

the fluxes are comparable, e1 ∼ e2 ∼ e3 ∼ e, and where the change in flux caused by the

domain wall is also comparable, δei ∼ δe. A D4 brane which changes the flux by amount

δe contributes a tension,

Tbrane ∼ |δe
e
| 1

|e|9/4 . (2.94)
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The moduli contribute a tension which is now,

Tmoduli ∼ |δe
e
|2 1

|e|9/4 . (2.95)

For Tbrane ≫ Tmoduli we get,

|δe
e
| ≪ 1. (2.96)

From eq.(2.27) we see that the moduli change in response to the flux by

δvi
vi

∼ δe

e
. (2.97)

Thus eq.(2.93) follows from the condition, eq.(2.96). From eq.(2.30) the potential at the

minimum changes by

| ǫ
V0

| ∼ |δe
e
| ≪ 1. (2.98)

This justifies working to leading order in ǫ in eq.(2.92).

If the three ei fluxes and/or their changes are not comparable, a similar argument goes

through with the factor | δee | being replaced by that for the flux with the largest fractional

change, i.e. the largest values of | δeiei
|. Once again, both eq.(2.93), and eq.(2.92) follow.

We now calculate both TU and TL for such decays. The energy difference ǫ can be

calculated in terms of the change in fluxes δei from eq.(2.30). This gives,

TU =
3

2
(
∑

i

δei
ei

)

√

|V0|
3
. (2.99)

From eq(2.15), eq(2.27) and eq(2.30), we get

√

|V0|
ei

= vi

√

2

3

e2D√
vol

. (2.100)

Eq.(2.99) then becomes,

TU =
e2D√
2vol

∑

i

δeivi. (2.101)

Next we calculate TL. Since ∆W = δeivi, and Kahler potential K is as given in eq(2.21),

using eq(2.27), we get

TL = 2e
K
2 |∆W | = e2D√

2vol

∑

i

δeivi. (2.102)

Comparing eq(2.101) and eq(2.102), we see that TU = TL.

This means the decay can at best be marginally allowed. The marginal cases arises when

the D4 brane wraps a supersymmetric cycle. Since supersymmetry is broken one expects

that corrections to the approximation we are working in will result in the marginal case
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becoming either allowed or disallowed 8. We will incorporate some of these corrections in

the following discussion and also comment on which cases remain marginal after including

some of these corrections further below.

In the discussion above we have set the eA fluxes to vanish. If they are turned on but

are small so that δ defined in eq.(2.37) is small, then for D4 branes which only wrap the

T 2 two-cycles the calculations above still give the leading answers in δ for TU , TL. In the

discussion below we will now turn to including D4 branes which can cause a change in the

eA fluxes.

Explicit Example of a Disallowed Decay

The advantage of working in the orbifold limit is that one can explicitly calculate the size of

the T 2 two-cycles and associated tension of branes. This allows us to give a simple example

of a situation where the brane tension is too big, because the cycle is not holomorphic

resulting in the decay being disallowed.

Consider a D4 which wraps the first two T 2’s. Let σ, σ̄ be the holomorphic, and anti-

holomorphic coordinates on the world volume, and let the mapping from the world volume

to the first T 2 be linear and holomorphic, z1(σ) = σ, and to second T 2 be linear and anti-

holomorphic, z2(σ̄) = σ̄. The resulting cycle is clearly not holomorphic, and the resulting

wrapping numbers for the two T 2’s are +1 and −1 respectively. The tension of the resulting

D4 brane is

T =
e2D√
2vol

δ|e1|(v1 + v2). (2.103)

From the discussion above we have,

|TU | = TL =
e2D√
2vol

δ|e1||(v1 − v2)|. (2.104)

Thus we see that T > TU and the decay is not allowed.

2.4.4 General Decays With Blow-up Fluxes

Let us first examine the conditions imposed by the thin wall approximation on the allowed

change in the blow-up fluxes. From the Kahler potential eq.(2.33) it is easy to see that a

change in canonically normalized blow-up modes is,

∆φbu ∼
√
δ
δvA
vA

, (2.105)

where δvA is the change in the blow-up moduli. It then follows that the blow up modes

also have a mass,

Mbu ∼
√

|V0| ∼ R−1
Ads, (2.106)

8The marginal case corresponds to a no-force condition on the D4 brane and a flat direction in the AdS4

theory. Such a flat direction should get lifted without susy.
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and their contribution to the tension is

Tbu ∼Mbu∆(φbu)
2 ∼

√

|V0|δ(
δeA
eA

)2, (2.107)

where we have used the fact that the vacuum expectation value of vA ∼
√

|eA|. The D4

brane wrapping the dual two-cycle which causes this jump in flux has a tension,

Tbrane ∝ |δeAvA|. (2.108)

Inserting the correct proportionality factors and converting to Einstein frame as in the

previous subsection now gives,

Tbrane ∼
√

|V0|δ|
δeA
eA

|. (2.109)

Thus comparing eq.(2.107), eq.(2.109), gives the condition,

|δeA
eA

| ≪ 1, (2.110)

which must be met for the thin wall approximation to hold.

We now turn to various different cases. In the following discussion we set m0 > 0 for

simplicity.

2.4.5 Type 2) to Type 2) Decays

The vacuum energy is given in eq.(2.44). In this case, eA, ei > 0. The change in blow up

fluxes δeA contributes to the difference in energy density ǫ and thus to Tu,

δTU = −
√

3

2β

√

|V0|
√

e3A
e1e2e3

∑

A

δeA
eA

. (2.111)

Using eq(2.30),eq(2.15), eq(2.27) and the fact that for Type 2 vacuum vA = −
√

10eA
3β|m0| , we

get

TU =
1√
2

e2D√
vol

(
∑

i

δeivi +
∑

A

δeAvA). (2.112)

In obtaining this formula we had also added the contribution due to the change in the ei

flux which was obtained in eq.(2.101) above.

Since ∆W = δeivi + δeAvA, and the Kahler potential eq(2.33), to leading order in δ, we

get

TL = 2e
K
2 |∆W | = e2D√

2vol
|
∑

i

δeivi +
∑

A

δeAvA|. (2.113)

For the decay to occur the rhs of eq.(2.112) must be positive, thus we see that again TU = TL.

Therefore the decays can again be at most marginal.
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In the calculation above the effects due to the jump in the non-blow up fluxes were

calculated as in the previous subsection and thus are correct only to leading order in δ.

Thus we are assuming that

|δeivi|δ ≪ |δeAvA|. (2.114)

Using the relation that |vA
vi
| ∼ | eieA |δ this gives,

|δei
ei

| ≪ |δeA
eA

|. (2.115)

In fact the Type 2) vacua are stable with at best marginal decays upto a high order of

approximation. This is due to their being related (after a change in the sign of all fluxes)

with supersymmetric vacua, as will be explained in section §2.4.8.

2.4.6 Type 3) to Type 3) Decays

Here we consider the analogous decays for Type 3) vacua. In this case eA < 0, ei > 0. The

ground state energy is given in eq. (2.45). Including a contribution due to the change in

the ei flux gives,

TU =
1√
2

e2D√
vol

(
∑

i

δeivi + 5
∑

A

δeAvA). (2.116)

Note that the contribution proportional to δeA on the rhs comes with a coefficient 5. TL

continues to be given by eq(2.113). Therefore now there can be situations where TU > TL.

As an example consider the case where δei vanishes, and one of the δeA 6= 0. For the

energy difference to be positive, ǫ > 0, which means δeA < 0, since vA < 0. As we will

argue below, in this case there is a susy cycle which saturates the lower bound T = TL.

Thus T < TU and the decay will proceed. eq.(2.115) is met.

The argument establishing that there is a susy cycle with δeA 6= 0, δei = 0 is as follows.

Blowing up the orbifold slightly gives rise to a P 2 at every fixed point. There is a P 1 ⊂ P 2

. It is easy to see that this P 1 is a holomorphic cycle and is non-trivial in homology 9.

Its size, a, is proportional to vA the blow-up modulus. Now being holomorphic a must be

proportional to the resulting jump in the superpotential. This can only happen if the δei

coefficients vanish for this cycle, since vi ≫ |vA| 10.

We now estimate the decay rate which results in this case from changing δeA. The

bounce action can be shown to be of order

B ∼ ǫM4
P l

V 2
0

(2.117)

9In the coordinates used in [26], eq.(3.1), this cycle is given by setting z2 = w = 0, so it is clearly
holomorphic. To include the point at infinity, z1 → ∞ a second patch is needed. The Kahler form integrates
to a non-zero value on this cycle so it is clearly non-trivial in homology.

10Ideally we should have calculated the intersection numbers of this cycle with the P 2 divisor and the
other four-cycles from first principles and shown that these are of the required form. We will not attempt
this here.



2.4. D4-BRANE MEDIATED DECAYS 33

where we have reinstated the dependence on the four dimensional Planck scale MP l on

dimensional grounds. The rate of decay goes like Γ ∼ e−B , so the fastest decays are those

with the smallest jumps in flux. Working out the resulting discharge of a particular vacuum

due to all the competing decays is a fascinating question that we leave for the future 11.

2.4.7 Type 3) to Type 2) Decays

Here we discuss the decays of Type 3) to Type 2) vacua. The former have eA < 0 while

the latter have eA > 0. The expectation value of the vA moduli depend actually on the

absolute value of eA. So to meet the thin wall approximation we can now adjust |eA| so
that the variation in vA is small and therefore its contribution to the domain wall tension

can be neglected. To illustrate this we infact adjust |eA| so that this variation vanishes.

Using vA = −
√

10
3

√

|eA|
β|m0| for Type 2) and vA = −

√

10
21

√

|eA|
β|m0| for Type 3, we learn that

for vA to be the same,

eA type 3 = −7eA type 2. (2.118)

Using this, we can calculate the difference in energy

ǫ = Vtype 3 − Vtype 2 =
3

2

∑ δei
ei

|V0|+ c|V0|
√

κ

βe1e2e3

∑

A

|eA type 2|
3
2 . (2.119)

where c =
√
2 + 7

√
50. Note that for the decay to be possible ǫ > 0. Using eq(2.100) TU

can be calculated to be

TU =

(

δeivi + 24
∑

A

eA type 2 |vA|
)

e2D√
2vol

. (2.120)

Note that for ǫ > 0 the term in the brackets in the above equation is greater than zero.

TL can be calculated to be,

TL = |δeivi +
∑

A

δeAvA|
e2D√
2vol

. (2.121)

Now vA < 0 and from eq(2.118) we know that δeA = −8eA type 2, therefore

TL = |δeivi + 8
∑

A

eA type 2|vA|)|
e2D√
2vol

. (2.122)

It is now clear that as long as δeivi > 0, TU > TL. A decay will be allowed if T < TU .

Like in the Type 3) -Type 3) case, concrete examples can be given where this is true. For

example in the case where δei = 0 the D4 brane tension saturates the lower bound with

T = TL, since it is a holomorphic cycle, leading to an allowed decay.

11For this we also need to take into account the fact that inside the bubble is a negatively curved FRW
universe which ends in a big crunch.
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We can also ask about the possibility of Type 2) vacua decaying to Type 3). Running

the above argument again the coefficient 24 in the second term on the rhs of eq.(2.120)

and 8 in the second term of eq.(2.122) both reverse sign making both these terms negative.

Since ǫ > 0 for the decay to happen, we find that TU < TL. This shows that such decays

are disallowed.

We have adjusted the fluxes so that the vA moduli have the same value in the two

vacua, thereby ensuring that the moduli contribution to the domain wall tension is small.

Our conclusions will remain unchanged if the fluxes took different values, allowing for a

variation in vA, as long as one stays in the thin wall approximation.

2.4.8 Supersymmetric Partners in the Landscape and Marginality

We have seen above that Type 2) vacua are stable and can at most decay marginally,

within our approximations. We will now see that this stability is quite general and can be

understood by relating these vacua to supersymmetric ones.

We had seen in eq.(2.14), that when only ei fluxes are excited the potential energy is

invariant under a change in sign of the four-form fluxes, ei → −ei, as long as the axions, ba

all vanish. In fact this is more generally true and follows directly from the IIA supergravity

action where the F4 dependence arises in the term,

SIIA = −1

2

∫

d10x
√−g|F̃4|2 + · · · (2.123)

with,

F̃4 = F4 − F2 ∧B2 −
m0

2
B2 ∧B2, (2.124)

As long as B2 vanishes12, taking

F4 → −F4, (2.125)

gives the same action.

In contrast the conditions for supersymmetry do care about the sign of the fluxes, as we

have discussed extensively above. Now in the Type 2) vacua all the four- form flux has a

sign opposite to that required by supersymmetry. This means that starting with a vacuum

of Type 2) we can construct a susy vacuum with the same energy by reversing all the F4

fluxes. This susy vacuum will also have the same expectation values for the Kahler moduli

and the dilaton.

Now consider a possible decay of a Type 2) vacuum to a susy vacuum of this type.

By reversing the sign of all the fluxes we can relate this to the decay of a susy vacuum

to a non-susy Type 2) vacuum. The vacuum energies of the initial and final vacua in the

first decay and its partner decay are the same. The domain wall in the second case carries

charges opposite to the first one. If the first decay is mediated by a D4 brane wrapping

some cycle, the partner is mediated by the anti D4 brane wrapping the same cycle. Thus

12More correctly we mean the axions which arise from B2 should vanish.
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the two domain walls must also have the same tension. It then follows that the first decay of

the non-susy vacuum can be allowed iff the partner susy vacuum can decay. But on general

grounds one expects the susy vacua to be stable. We therefore conclude that the Type 2)

non-susy vacuum we started with also cannot decay.

It is clear that a similar argument would also work if instead of considering the decay

of the Type 2) vacuum to a susy vacuum we considered its decay to another Type 2) or a

Type 3) vacuum. In both of these cases the axions are not turned on. By reversing all the

four- form fluxes we can relate this to the decay of the susy vacuum to a susy vacuum in the

first case, or the decay of a susy vacuum to the partner of a Type 3) vacuum in the second

case. Both should not occur, given the stability of susy vacua. The partner for the Type

3) case is a vacuum with ei < 0, eA > 0. These belong to cases where there are tachyons

below the BF bound, but this does not invalidate the argument above.

How general is this argument which ensures the stability of the Type 2) vacua by relating

it to partner susy vacua? Our discussion above is based on the thin wall approximation in

supergravity. And holds if the true and false vacuum have vanishing values for the axions.

In the thin wall approximation only the D4 brane contribution to the domain wall tension

is important, and this is clearly the same in the non-susy vacuum decay and its partner.

Going beyond, one can argue that the domain wall tension continues to be equal in the

two cases if the moduli contribution is included in the tension, as long as the axions are

not activated in the domain wall. This follows from the fact that the potential energy and

Kinetic energy terms all respect the flux reversal symmetry in the absence of axions. Since

the axions vanish in both the true and false vacuum there is no reason as such for them

to get activated, but for thick enough walls where the moduli under go big excursions this

could happen anyways as a way of reducing the tension. If so, eventually for a thick enough

wall the argument would break down.

Even for decays which are well described by the thin wall approximation subleading

correction are important in the marginal case. We had found above that decays of Type

2) to Type 2) vacua are marginal if the D4 brane wraps a susy cycle. This result is

easy to understand in light of the above discussion, since the partner susy decay would be

now mediated by a BPS domain wall. However in the non-susy Type 2) decay case, one

expects that the marginal nature is only approximate and eventually corrections lead to the

decay being either allowed or disallowed. The corrections responsible for this might arise

as corrections to the thin wall approximation itself, as we have mentioned above, or they

might require going beyond the sugra approximation and including α′ and gs corrections.

We leave an exploration of such questions for the future.

Finally the argument above applies only for decays of the Type 2) vacua to others where

the axions are not turned on. All the stable vacua we have explored in this paper are of

this type, but there could be other vacua where the bA axions have non-zero expectation

values. The argument above says nothing about the possible decays of Type 2) vacua in

such cases and this would have to be examined on a case by case basis.
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2.4.9 More on Supersymmetric Domain Walls

Let us end this section with some more comments on susy domain walls. We had mentioned

in the discussion around eq.(2.86) that D4 branes which wrap holomorphic or antiholomor-

phic cycles preserve susy. More accurately if we take Type IIA on the Calabi-Yau manifold

without flux the D4 brane wrapping such a cycle will preserve half the supersymmetries,

i.e., N = 1. If we now turn on flux to preserve N = 1 susy then only one of the two cases,

either the holomorphic or antiholomorphic cycle, preserves the surviving N = 1 susy [27].

That only one of the two cases could preserve susy at best is easy to understand from the

requirement of force balance. The antiholomorphic case can be thought of as the anti D4

wrapping the same cycle. If the attractive gravitational force cancells the RR repulsion for

the brane it will not cancell for the anti-brane and vice-versa.

It is easy to see that a susy brane leads to a marginal decay. In this case the tension

is given by TL and the energy difference, ǫ = −3eK∆|W |2. It is then easy to see that the

condition for marginality,

ǫ

3T
− T

4
=

√

|U |
3
, (2.126)

is met, where U is the cosmological constant. The tension is given by TL in the probe

approximation. Going beyond would require including changes in the moduli which arise

because the brane causes the flux to jump. One expects the susy branes to continue to

be marginal even then. Susy domain walls where moduli fields vary have been discussed

in [28], [29], [30], [31], where it was shown that the walls are indeed marginal 13. In this

analysis the fluxes (which are parameters in the superpotential) were held fixed. One could

try to include the changes of flux in the analysis of these authors as well, but we leave this

for the future.

Finally, in practice given the charges carried by the domain wall it is not always easy to

decide whether a corresponding supersymmetric cycle exists. As a special case we can con-

sider the orbifold theory and linear branes, for which the zi coordinates are linear functions

of σ, σ̄. Even in this simple case, the existence of a supersymmetric cycle translates into

a fairly intricate number theoretic constraint on the wrapping numbers of the D4 brane,

as discussed in [27]. Things simplify if the integers δni are large, |δni| ≫ 1. Now, upto

fractional corrections, which are of order 1/
√

|n|, we can approximate, δni ≃ ±m2
i , to be a

perfect square. The only obstruction to having a susy brane then arises due to the signs of

the δni. If the δni’s all have the same sign then a susy cycle exists, else it does not exist.

2.5 More General Decays

In this section we consider domain walls which carry more general charges.

13This is true only when the superpotential does not vanish in between the two vacua, otherwise the
wall tension is too big. In our case, starting with the probe approximation and including corrections, the
superpotential will not vanish. However for larger changes the resulting analysis might be more involved.
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The general vacuum with all fluxes turned on was discussed in §2.4. The ground state

energy for different vacua can be calculated by replacing ea in formulae obtained in the case

with ma = 0 , with eq.(2.51).

Our discussion of domain walls will follow that in §2.4 above. Given a domain wall

with some charges, the change in the superpotential provides a lower bound on its tension.

Below we will then calculate this lower bound, TL and compare with an upper bound TU

defined in eq.(2.92).

We calculate TL by keeping the moduli which appear in the superpotential to be fixed.

We will come back to justifying this probe approximation below when we also discuss the

validity of the thin wall approximation. For the superpotential, eq.(2.47), the change due

to a domain wall carrying charges, (δe0, δea, δma) is,

∆W = δe0 + δeata + κabcδmatbtc. (2.127)

It is useful to express this in terms of the real and imaginary parts of ta = ba + iva, and in

terms of êa,

δêa = δea +m0κabcδmbbc. (2.128)

This gives,

∆W = δe0 + δeaba +
κabc
2
δma(bbbc − vbvc) + iδêava. (2.129)

From here using eq.(2.82) we get,

TL = 2eK/2|∆W | = e2D√
2vol

√

(δêava)2 + ([δe0 + δeaba +
κabc
2
δmabbbc]−

κabc
2
δmavbvc)2.

(2.130)

The axion fields ba which appear above have a vacuum expectation value,

ba =
ma

m0
. (2.131)

It is worth pausing to discuss the physics behind this expression. The 6-brane component

of the domain wall gives rise to an induced 4 brane component because the axions ba are

now-non-zero. This is responsible for the shift in δea, eq.(2.128). The second term within the

square root arises from a D2 brane and a D6 brane component. The D2 brane component

included a contribution due to induced D2 brane charge which arises from the D4 brane

and D6 brane components in the presence of the axions. These together with e0 account

for the term within the square brackets.

Let us now compare this with TU . For a Type 2) - Type 2) decay this is given by

replacing (δei, δea) in eq.(2.112) by their hatted counterparts giving,

TU =
e2D√
2vol

|δêava|. (2.132)

Thus we see that for this case now TL ≥ TU and the decay is at best marginal. The marginal
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case arises when the second term within the square root in eq.(2.130) vanishes. For this

to happen the sum total of the D2 brane charge and D6 brane must vanish. In addition

the tension must equal the lower bound, this would require the brane configuration to be

supersymmetric.

For Type 3) -Type 3) we obtain TU by replacing the δea by δêa in eq.(2.116). This gives,

TU =
e2D√
2vol

|δêivi + 5δêAvA|. (2.133)

Now we see that TU can be greater than TL. For example this can happen if the sum of

the D2 and D6 brane charges vanish and the δei and δeA fluxes have opposite sign. In such

cases if the tension is equal to TL or close to it the decay will occur.

Similarly one finds that decays of Type 3) to Type 2) can indeed occur. And also one

finds that decays of Type 2) to Type 3) cannot occur because TL > TU . We skip some of

the details here.

Let us end with three comments. First, in this section we have not discussed the

constraints imposed by the thin wall approximation. This requires that the contribution

the moduli make to the domain wall tension is smaller than the D brane contribution. It

is straightforward to evaluate the moduli contribution and impose this constraint but the

results are unaffected.

Second, one of the conclusions that follows from our analysis above is that Type 2) vacua

continue to be stable even after decays involving the most general kind of brane are consid-

ered. We had argued in §2.4.8 that there was a pairing symmetry which related the Type

2) vacua to susy vacua and this explained their stability. However this symmetry required

that the bA axions are not turned on. Now, with the most general kind of interpolating

brane, ma will in general undergo a change so that the ba fields will become non-zero even

if they vanish to begin with.

It turns out that while there is no exact symmetry which relates Type 2) vacua to susy

ones in general, one can show that there is an approximate symmetry of this type to leading

order in the change in fluxes. Finally, one can also consider D8 and NS5 brane mediated

decays. These can be shown to lie outside the thin wall approximation.

2.6 Discussion

• We have constructed two explicit classes of non-susy AdS vacua, denoted as Type 2) and

Type 3). Both are perturbatively stable. We have found that several possible decays of

these vacua to other susy and non-susy vacua with lower energy are disallowed since the

tension of the interpolating domain wall is much too big. The underlying reason for this is

the geometric nature of AdS space where volume and surface area grow at the same rate

for a large bubble.

The Type 3) vacua do have allowed decays to some other Type 3) and Type 2) vacua.
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The Type 2) vacua were found to be stable in our approximations, although some decays

are only marginally disallowed. It is important to go beyond our approximations to decide

what happens in these marginal cases. By changing the sign of all the four-form fluxes the

Type 2) vacua are turned into susy vacua with the same energy. We argued, within our

approximations, that the stability of the susy vacua then ensures the stability of their Type

2) partners. This protection mechanism might well be more robust and perhaps extends

even beyond leading order, but one expects it to eventually fail, tipping the marginal decays

one way or another. We leave an analysis of this for the future.

• Our analysis was carried out by considering a specific model of IIA theory on the blown-up

T 6/(Z3 ×Z3), after including the effects of flux and a further orientifolding. However some

of our conclusions are more general and apply to IIA on any Calabi-Yau manifold with

fluxes. E.g., Type 2) vacua, obtained by flipping the sign of all the four-form fluxes exist

as extremum of the potential in general, since in the absence of axions coming from the B2

field, IIA sugra will continue to have the symmetry, eq.(2.125). However their perturbative

stability is not guaranteed in general, since some of the axions could lie below the BF bound

in these vacua. If the vacua are perturbatively stable they will also be stable with respect

to non-perturbative decays, within the approximations used here.

• A small bulk rate of decay leads to a diverging decay rate in the boundary as we had

discussed in the introduction. What is the dual description of this in the boundary CFT?

In the bulk the divergence arises after integrating over all radial locations of the instanton,

due to the diverging bulk volume. It is tempting to speculate that in the boundary there

is a corresponding one-parameter family of instantons, parametrised by their size. And

summing over the different sizes then gives rise to this divergence, which arises in the CFT

due to instantons of very small size.

It might seem that the the divergence mentioned above can be controlled by introducing

a cut-off at a large and finite radial location in the bulk. Conformal invariance would not be

exact now but would be an approximate symmetry in the deep IR. However a more detailed

analysis is needed, depending on the kind of instability one is dealing with, before one can

be sure. It could be that the detailed nature of the boundary conditions at the cut-off play

a significant role even in the IR 14. We leave a detailed understanding of this divergence in

the boundary theory and related issues about controlling it also for the future.

14This is more of a worry, in our minds, for the kind of decays discussed in this paper nucleated by a D
brane rather than decays in non-susy orbifolds [2] nucleated by an instanton analogous to the one responsible
for the decay of the KK vacuum [32]. In the D-brane case the RR repulsion dominates over gravitational
attraction and results in a runaway −φ6 potential arising in its world volume action. This could potentially
cause an instability in the quantum theory whose cure depends delicately on the correct boundary conditions.
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Chapter 3

Holographic Non-Fermi Liquids in

Dilaton Gravity

3.1 Introduction

The Gauge/Gravity correspondence [1], [2], [3] provides us with a new tool to study strongly

coupled field theories. It is worth exploring whether insights of relevance to condensed

matter physics can be gained using this tool. One set of questions which have proved

difficult to analyze using conventional techniques is the behaviour of fermions in strongly

coupled systems in the presence of a chemical potential. There has been considerable

activity exploring this issue on the the gravitational side recently and some interesting

lessons have been learnt from such studies. This question is particularly interesting in view

of considerable evidence now for non-Fermi liquid behaviour in condensed matter systems,

e.g., in High Tc materials and in heavy fermion systems close to quantum phase transitions.

Extremal black branes, which are at non-zero chemical potential and typically at zero

temperature, are of particular interest in the gravity description in exploring this question.

Some of the early studies have focussed on analyzing the behavior of fermionic fields in

extremal Reissner Nordstrom (eRN) Black brane backgrounds [4], [5], [6], [7], [8], [9]. While

these black branes have the virtue of being simple and explicit they suffer from an important

unphysical feature, namely, their entropy does not vanish despite their vanishing temper-

ature. Instead, the entropy of these extremal solutions scales with the appropriate power

of the chemical potential and increases as the chemical potential increases. It is widely be-

lieved that this big violation of the third law of thermodynamics is an artifact of the large

N limit, and in the absence of supersymmetry or say the infinite number of symmetries in

1+1 dim. CFT’s, this degeneracy should be lifted once finite N corrections are included 1.

In this context it is also relevant to note that quite often in string constructions extremal

RN black branes have been found to be unstable, for example due to the presence of light

charged scalars, [11].

1For some discussion of related issues in extremal black holes see [10].
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In this chapter we will consider 3 + 1 gravity systems with a holographic field theory

dual which is 2 + 1 dimensional. The reservations discussed above for extreme RN black

branes make it worth looking for other gravity systems where the extremal black branes

are different so that their entropy in particular vanishes at extremality. Such a class of

systems was explored in [12], [13], [14]. The key new ingredient was to include a dilaton

which allows the gauge coupling of the Maxwell field to vary. It was found that as a result

the black branes have zero entropy at extremality 2. The dilatonic systems were further

generalized by [15], see also, [16], with both the gauge coupling and the potential energy now

depending on the dilaton. Extremal black branes were often found to posses zero entropy

in such systems as well.

These dilatonic systems, in particular their extremal black brane solution, are therefore

a promising starting point for exploring questions related to the behaviour of fermionic

fields. The behaviour of a bulk fermion in an extremal black brane solution of the type

studied in [13], [14], was analyzed in [17], [18]. It was found that the two-point function

of the corresponding fermionic operator in the boundary theory was qualitatively quite

different from the non-Fermi liquid behaviour found in the eRN case and much more akin

to a Fermi-liquid. The two-point function showed that there is a sharp Fermi surface in the

system with well-defined quasi-particles excitations which have a linear, i.e., relativistic,

dispersion relation at small frequency, and a width which has an essential singularity at

vanishing frequency and which is therefore very narrow at small frequency 3.

Here we analyze the behaviour of a charged bulk fermion for the more general class of

extremal dilaton systems studied in [15] and use it to calculate the two-point function of

the corresponding fermionic operator in the boundary. We find that there is a wide range

of behaviours that the fermion two-point function exhibits. One parameter in particular

determines this behaviour, it is denoted by β+γ below (for a definition of β, γ in terms of the

parameters appearing in the Lagrangian eq.(3.4), see eq.(3.14), (3.15)). For β + γ > 1 one

gets Fermi-liquid behaviour. At β + γ = 1 there is a transition. For β + γ < 1 there are no

well-defined quasi-particle excitations since they acquire a big width which is non- vanishing

as ω → 0. The behaviour at the transition, when β + γ = 1, is also quite interesting. The

geometries which correspond to this case include both extreme RN type solutions and other

backgrounds where the entropy vanishes. These additional backgrounds, we find, also give

rise to non-Fermi liquid behaviour of a type very similar to that seen in the extreme RN

case first.

From the field theory point of view, the systems we analyze can be thought of as essen-

2More precisely to ensure that higher derivative corrections are small one should introduce a small
temperature. One then finds that the entropy density vanishes as a positive power of the temperature.

3For a Fermi liquid the width is O(ω2), which is much broader. It could easily be that additional
interactions, e.g., of 4-Fermi type, which are suppressed in the large N limit, when incorporated can broaden
out this width to the ω2 behaviour of Fermi liquid theory. Keeping this in mind we will refer to such
behaviour as being of Fermi-liquid type below. It is also worth mentioning that there are many additional
gapless excitations in the system which contribute to the specific heat and the conductivity. For this reason
such a phase is described as a fractionalised Fermi-Liquid (FL*) phase rather than a Fermi Liquid phase in
[19], [20], [21].
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tially free fermions coupled to a fermionic operator of a strongly interacting sector [17]. The

near-horizon gravity solution provides a dual description of the strongly coupled sector. By

varying the parameters β, γ we explore different kinds of strongly coupled sectors and the

resulting change in the behaviour of the fermionic two-point function. Our central result is

that the class of strongly coupled sectors which are described by our gravity backgrounds

can give rise to the different types of behaviour mentioned above and to transitions among

these kinds of behaviours. For example, at the risk of belaboring this point, our results

show that Non-Fermi liquid behaviour of the type found first in [4] - [9] is more common

and can occur without the large entropy of the eRN case. It also shows that transitions can

occur across which well-defined quasi-particle excitations acquire a big width and cease to

exist.

On general grounds we expect to be able to model only strongly coupled systems in

the large N limit using a classical gravity description. This is a central limitation of our

analysis. As a result the fermions we are studying are only a small subsector of a much

bigger system with many degrees of freedom. It turns out that while the fermionic two-point

function undergoes dramatic changes as the parameter β + γ is varied, as was mentioned

above, the geometry and other background fields change smoothly, signalling that most of

the degrees of freedom of the large N “heat bath” in fact do not change their behaviour in

a significant way. As a result, one finds that the thermodynamics and transport properties

like electrical conductivity also do not change significantly; in particular the qualitatively

big changes in the fermionic two-point function do not correspond to phase transitions.

Once one goes beyond the large N limit one expects that the significant changes in the

behaviour of the fermions, should they continue to occur, would also be accompanied by

significant changes in thermodynamics and transport. A preliminary indication of this is

provided by 1/N corrections to the electrical conductivity which is sensitive to the change

in the Fermion two-point function and therefore to a change in its properties, [8], [9]. The

results of this paper showing that behaviours other than of Fermi liquid type can arise in a

fairly robust way may be taken as preliminary evidence that such behaviour is fairly generic

in strongly coupled field theories and could occur beyond the large N limit as well.

Before proceeding it is worth commenting on some of the related literature. For a general

discussion about phase transitions where the Fermi surface disappears and non-Fermi liquid

behaviour can arise see [22]. A system with fermions living on probe branes with examples

of Non-Fermi liquid phases and transitions due to the excitations getting gapped was found

in [23]. Some discussion of the Holographic description of a Fermi liquid can be found in

[24]. Progress towards constructing an holographic description of the strange metal phase

can be found in [25]. Recent progress in understanding the Holographic non-Fermi liquid

phases often found in gravity systems in terms of fractionalised Fermi liquids and related

ideas is contained in [19], [20], [21].

This chapter is organized as follows. We begin by reviewing the dilaton system of

interest and discuss the near-horizon geometry of extremal and near-extremal black branes
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in this system, along with some aspects of their thermodynamics and transport in §3.2. A

scenario in which such near horizon geometry can arise in a asymptotically AdS4 solution

is presented in §3.3. The fermionic two-point function, for various ranges of parameters, is

discussed in §3.4. §3.5 contains a summary of main results and conclusions.

3.2 The Dilaton Gravity System

The system we consider consists of gravity, a U(1) gauge field, and a scalar, φ, which we

call the dilaton, with action,

S =

∫

d4x
√−g

{

R− 2(∇φ)2 − f(φ)FµνF
µν − V (φ)

}

. (3.1)

Note that for simplicity we have taken the kinetic energy term of the dilaton to be canonical.

This restriction can be easily relaxed although we will not do so here. The gauge coupling

g2 ≡ (f(φ))−1 and the potential V (φ) are both a function of the dilaton.

We will be particularly interested in solutions where the dilaton has a run-away type of

behaviour near the horizon of an extremal black brane. Such run-away behaviour can result

in the entropy of the extremal brane vanishing [13]. Also, we will be mainly concerned

with the low-temperature or low frequency (compared to the chemical potential) response

of the system. On general grounds one expects that this response will be determined by the

near-horizon geometry. Thus for our purposes we will mainly be interested in the behaviour

of f(φ) and V (φ) when the dilaton has evolved sufficiently far along the run-away direction.

We will take this behaviour to be of exponential type,

f(φ) = e2αφ, (3.2)

V (φ) = V0e
2δφ. (3.3)

The parameters α, δ thus characterize the run-away behaviour which occurs for φ = ±∞.

These parameters will repeatedly enter the discussion below. Substituting in eq.(3.1) then

gives the action,

S =

∫

d4x
√−g

{

R− 2(∇φ)2 − e2αφFµνF
µν − V0e

2δφ
}

(3.4)

It is worth noting before we proceed that the full dependence of f(φ), V (φ) away from

the run-away region can be very different from these exponential forms. In fact, to obtain

a solution which is asymptotically AdS4 space, the potential V (φ) will need to have an

extremum at a negative value of the cosmological constant and the dilaton will have to

asymptote to this extremum far away from the horizon as we will later see. However, these

features of f(φ), V (φ), and the corresponding features of the geometry, will not be very

significant for determining the low-energy behaviour which will arise essentially from the
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near-horizon region. In field theory terminology these features correspond to UV data which

is irrelevant for IR physics. The action eq.(3.4) therefore determines only the IR physics of

the field theory. In the analysis below we will also take V0 appearing in eq.(3.3) to satisfy

the condition 4 ,

V0 < 0. (3.5)

In this chapter we will be interested in electrically charged black branes. Using the

expected symmetries of the solution (translations and rotation in the x, y directions and

time independence), the metric can be chosen to be of the form,

ds2 = −a(r)2dt2 + dr2

a(r)2
+ b(r)2(dx2 + dy2) (3.6)

The horizon of the extremal black brane will be taken to lie at r = 0. The gauge field

equation of motion gives,

F =
Qe

f(φ)b2
dt ∧ dr. (3.7)

The remaining equations of motion can be conveniently expressed in terms of an effective

potential as [26]

Veff =
1

b2

(

e−2αφQ2
e

)

+
b2V0
2
e2δφ, (3.8)

and are given by,

(a2b2)′′ =− 2V0e
2δφb2 (3.9)

b′′

b
=− φ′2 (3.10)

(a2b2φ′)′ =
1

2
∂φVeff (3.11)

a2b′2 +
1

2
a2

′
b2

′
=a2b2φ′2 − Veff. (3.12)

3.2.1 The Solutions

In this subsection we will construct the near-horizon geometry for a class of extremal black

brane solutions to these equations. Consider an ansatz 5

a = Car
γ b = rβ φ = k log r (3.13)

Note that a multiplicative constant in b can be set to unity by rescaling x, y, and an additive

constant in φ, while subdominant at small r can be absorbed into V0 and Q. With this

4Since a negative cosmological constant is easier to obtain in string/M theory this choice for the sign of
V0 might be also easier to obtain in a string/M construction.

5Actually the only assumption in this ansatz is that b has a power law dependence on r. Given this fact,
eq. (3.10) implies that φ ∝ log r, and eq.(3.9) implies (except for some special cases) that a(r) is also a
power law.
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ansatz, the equations eq(3.9) to eq(3.12) can be solved to give,

β =
(α+ δ)2

4 + (α+ δ)2
γ = 1− 2δ(α + δ)

4 + (α+ δ)2
k = − 2(α + δ)

4 + (α+ δ)2
(3.14)

C2
a = −V0

(

4 + (α+ δ)2
)2

2 (2 + α(α + δ)) (4 + (3α − δ)(α + δ))
Q2

e = −V0
2− δ(α + δ)

2 (2 + α(α+ δ))
(3.15)

The following three conditions must be satisfied for this solution to be valid :

Q2
e > 0 ⇒ 2− δ(α + δ)

2 + α(α + δ)
> 0 (3.16)

C2
a > 0 ⇒ (2 + α(α + δ)) (4 + (3α − δ)(α + δ)) > 0 (3.17)

γ > 0 ⇒ 1− 2δ(α + δ)

4 + (α+ δ)2
> 0 (3.18)

The last condition arises from the requirement that gtt vanish at the horizon, which we have

taken to lie at r = 0. The above conditions can be reexpressed as,,

2− δ(α + δ) > 0 (3.19)

2 + α(α+ δ) > 0 (3.20)

4 + (3α− δ)(α + δ) > 0. (3.21)

Note that from eq.(3.14), (3.15) and eq. (3.19),

γ − β =
4− 2δ(α + δ)

4 + (α+ δ)2
> 0. (3.22)

The parameter β + γ will play an important role in the subsequent discussion. From

eq.(3.14), (3.15) it takes the value,

β + γ = 1 +
(α+ δ)(α − δ)

4 + (α+ δ)2
. (3.23)

Note that β + γ = 1 when α = ±δ. The case α + δ = 0 has γ = 1, β = 0 and therefore

corresponds to an AdS2 × R2 geometry which is also the near horizon geometry in the

extreme RN case. The case α = δ has β > 0 and therefore corresponds to an extremal

brane with vanishing horizon area.

3.2.2 More on the Solutions

Here we comment on some properties of the solutions in more detail.

The solution in eq.(3.14), (3.15) has only one parameter V0, in particular the charge too

gets fixed in it in terms of this parameter. In the full solution, including the asymptotic

region near the boundary, the charge or the chemical potential would of course be an

additional parameter, however this parameter does not appear in the near-horizon solution.
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The solution above eq.(3.14), (3.15) is actually an exact solution to the equations of motion,

but in a situation where the asymptotic boundary conditions are different, say AdS4, it will

only be approximately valid at small values of r. And the chemical potential will enter in

the determination for when the near-horizon geometry stops being a good approximation 6

If V0 and µ are the only two scales in the geometry one expects that the near horizon

geometry is a good approximation for

r ≪ µ
√

|V0|
. (3.24)

Note that r is dimensionless, µ and
√

|V0| have units of Mass 7, thus this formula is consistent

with dimensional analysis 8.

Let us make a few more comments. When α+ δ does not vanish, β > 0, and therefore

the area of the horizon and thus the entropy vanishes. Second, the solution has a smooth

limit when δ → 0, and reduces to the black brane found in [13], [27] in this limit. Third,

the solution is somewhat analogous to Lifhsitz type solutions [28], however, in general the

metric in the solution does not have any scaling symmetry. Exceptions arise when γ = 1,

which requires either α+ δ = 0, the eRN case mentioned above, or δ = 0, the case studied

in [13]. Finally, after a suitable coordinate transformation it is easy to see that the solution

we have obtained above, eq.(3.14), (3.15) agrees with the solution discussed in [15] in §8,
eq.(8.1a) - (8.1d), with the non-extremality parameter m set to zero 9.

We will examine the thermodynamics of the near extremal solution next and also com-

ment on electrical conductivity.

3.2.3 Thermodynamics of the Slightly Non-Extremal Black Brane

Next we turn to constructing slightly non-extremal black brane solutions (these would have

temperature T ≪ |µ|, where µ is the chemical potential). We can construct a one parameter

deformation of the extremal solutions, where

a2 = C2
ar

2γ

(

1−
(rh
r

)2β+2γ−1
)

(3.25)

6More generally, there could be additional scales, e.g., if a relevant operator is turned on in the boundary
CFT, besides the chemical potential, to obtain the full geometry. In such a situation our comments apply if
these additional scales are also of order the chemical potential. In §3.3 we will in fact construct examples of
such solutions where the relevant operator is dual to the dilaton. For typical values of parameters considered
there the additional scale which corresponds to the coupling constant of this operator in the Lagrangian is
of order µ.

7There is a hidden overall Newton constant GN in the action (3.1).
8Another way to obtain (3.24) in the full solution viewpoint is to note that we need r − rh ≪ rh ∼ µ

where rh is horizon. By restoring the length scale of the system ∼ 1/
√

|V0| and by coordinate transformation
so that we set horizon to be r = 0, we obtain (3.24).

9For comparison purposes the parameters (α, δ) defined here should be related to (γ, δ) in [15] as follows:
(α, δ) → (γ,−δ).
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Figure 3.1: Region Allowed by the Constraints

and b2, φ take the form in eq.(3.13), with Ca, γ, β, k as given in eq.(3.14), eq.(3.15). The

parameter rh characterizes the deformation and corresponds to the location of the horizon.

It is easy to see that the deformed solutions have a first order zero at the horizon and thus

are non-extremal. For rh ≪ 1 these solutions are close to extremal.

It is simple to see that the temperature of the non-extremal black brane goes like,

T ∼ r2γ−1
h (3.26)

and the entropy density scales like,

s ∼ r2βh ∼ T
2β

2γ−1 (3.27)

A physically acceptable extremal black brane, which corresponds to the ground state of

a conventional field theory on the boundary, should have a positive specific heat when it is

heated up. This leads to the additional condition for an acceptable solution,

2γ − 1 > 0 (3.28)

When expressed in terms of α, δ this becomes,

4 + (α− 3δ)(α + δ) > 0 (3.29)

This condition must be added to the three discused earlier, eq.(3.19) - (3.21). In Figure 3.1

we show the region in the (α, δ) plane which meets all these four conditions.
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3.2.4 Taming the Singularity

In the discussion above we used classical Einstein gravity and worked in the two-derivative

approximation. These approximations can break down at sufficiently small values of the

radial coordinate r. For example, a curvature singularity could arise or the dilaton can

diverge signalling such a breakdown. In this subsection, we argue that turning on a tem-

perature which is very small in the large N limit can often help control this breakdown.

Our arguments are only suggestive at the moment, a definitive discussion would require an

embedding of these dilaton systems in string theory which has not been done as yet.

The parameter

L =
1

√

|V0|
(3.30)

is an important length that characterizes the system. We will assume that L and the chem-

ical potential µ are the only two scales in the system in the two derivative approximation.

For example, if the geometry is asymptotically AdS4 the radius of AdS4 would be of order

L. From eq.(3.14), (3.15) we see that L is also the only scale in the near-horizon solution.

A measure of the number of degrees of freedom in the system is given by

N2 =
L2

l2P l

. (3.31)

In the near-horizon geometry of the extremal solution the Ricci scalar, R ∼ r2(γ−1)/L2.

The higher invariants RµνR
µν and RµνρσR

µνρσ are also of the same order, i.e. RµνR
µν ∼

(r2(γ−1)/L2)2 etc. We see that these invariants diverge at r = 0 for γ < 1 10. At finite

temperature the divergence is cutoff at the horizon located at r = rh. We get

Rl2pl ∼
r
2(γ−1)
h

N2
(3.32)

Expressing this in terms of the temperature

T ∼ r2γ−1
h

L
(3.33)

leads to

Rl2pl ∼
(TL)

2γ−2
2γ−1

N2
(3.34)

We see that for N2 ≫ 1 the curvature can be made much smaller than the Planck scale by

taking
(

1

N2

)
2γ−1
2(1−γ)

≪ TL≪ 1 (3.35)

Thus the curvature can be made much smaller than the Planck scale, while keeping the

temperature much smaller than 1/L . In the large N limit, where N → ∞, keeping L fixed,

10For γ ≥ 1 tidal forces could still blow up, as happens in the Lifshitz solutions obtained when γ = 1, β 6= 0.
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this condition is in fact met for any non-zero temperature.

However this analysis might be incomplete, since the 4 dimensional Planck scale is a

derived quantity in string theory and the criterion for breakdown of classical two-derivative

gravity involves the curvature in units of the string scale, which is related to lP l via the values

of moduli, and also involves the string coupling. It could be that requiring the curvature to

be much smaller than the string scale imposes a stronger condition than eq.(3.35), or that

a stronger condition arises by requiring that quantum effects remain small 11 .

For example, it could be that the dilaton enters in the relation between the string and

Planck scale 12, since the dilaton also varies with r this could change the condition for

the validity of the two-derivative approximation. Similarly, the dilaton might also enter in

the string coupling and the requirement that quantum corrections are small could impose

significant restrictions. In fact this is likely to be the case. The gauge coupling in the action

eq.(3.4) goes like g2 = e−2αφ. One would expect the theory to be weakly coupled only when

g2 ≪ 1. The dilaton in the near horizon region is given by,

φ = k log(r/rc) (3.36)

where we have introduced a radial cut-off rc on the RHS. This leads to the condition,

e−2αφ =

(

rh
rc

)−2αk

≪ 1 (3.37)

When αk > 0 this does not allow the temperature to become very small. The parameter rc

depends on the chemical potential, which determines how far out in r the geometry begins

to depart from the near-horizon solution, and also can depend on the asymptotic value of

φ. It could be that this condition can be met only if T is large compared to µ, this would

require a temperature which is much too big, the resulting finite temperature black brane

would not be described by the near-horizon metric we have found. Or it could be that if

one starts with the asymptotic value of the dilaton being small enough this condition can

be met while remaining within the scope of the solution we have found.

Clearly, this question about the validity of our solution, in the presence of a small

temperature, will need to be revisited in a more complete string construction.

3.2.5 Conductivity

For completeness let us also comment on the electrical conductivity of this system. Our

discussion follows [13] §3 and [14] §3 closely, we omit some details. Before proceeding let us

note that the compution of the electrical conductivity in AdS/CFT is discussed in several

other papers as well, e.g., [29], [30], [31], [32]. The essential idea of our calculation, [30], is

11Another reason for thinking that there is more to this analysis is the condition eq.(3.35) involves L which
does not directly have an interpretation in the boundary theory.

12The scalar we are calling the dilaton may not literally be the dilaton field of string theory whose
expectation value determines the string coupling.
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to cast the equation governing a perturbation of say the Ax component of the gauge field

in the black brane background in the form of a Schroedinger problem,

−d
2ψ

dz2
+ V (z)ψ = ω2ψ (3.38)

where ω is the frequency. Starting at the boundary with an ingoing pulse one can calculate

the reflection amplitude R from the potential V (z). The conductivity is then given by

σ =
1−R

1 +R
. (3.39)

The dependence of the conductivity on ω, T , for small values of these parameters can be

obtained, upto overall coefficients, by analyzing the behaviour of V (z) in the near-horizon

region. Thus our lack of knowledge of the full solution in the problem at hand will not be a

limitation in extracting this information, although conceptually it is useful to assume that

there is a screen eventually located in an asymptotically AdS region.

We computed the schrodinger potential V (z), which turns out to be

V (z) =
c

z2
(3.40)

where the coefficient c, which is important for this calculation, takes the value,

c = 2
(4 + α2 − δ2)(4 + (α− 2δ)(α + δ))

(4 + (α− 3δ)(α + δ))2
(3.41)

Defining

ν =

√

c+
1

4
, (3.42)

it then follows from the analysis of §3 in [13] for example that the optical conductivity, for

ω ≪ µ at zero temperature, is given by,

Re(σ) ∼ ω2ν−1 ∼ ω
2(4+α2−δ2)

4+(α−3δ)(α+δ) (3.43)

Similarly, the DC conductivity, for ω → 0, for small temperature, T/µ ≪ 1, goes like,

Re(σ) ∼ T 2ν−1 ∼ T
2(4+α2−δ2)

4+(α−3δ)(α+δ) (3.44)

as follows from the analysis in [14] §3 for example. There is in addition a delta function at

zero frequency in Re(σ) which we have omitted above.

Note that using eq.(3.14), eq.(3.15), we can express the exponent

2ν − 1 =
2γ

(2γ − 1)
(3.45)

Since 2γ − 1 > 0 from eq. (3.28), the RHS is always positive thus the exponent in both the
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optical conductivity and DC conductivity are positive. This means the optical conductiv-

ity increases with increasing frequency and the DC conductivity increases with increasing

temperature, with the system behaving in effect as one with a “soft gap” 13. As (α, δ) are

varied 2γ−1 can become arbitrarily small (while remaining positive) and thus the exponent

eq.(3.45) can become very large so that the increase with frequency or temperature is very

gradual.

The result for the optical conductivity agrees with §8 of [15]. The DC conductivity

does not agree. The answer above corresponds to the DC conductivity as defined by the

two-point current -current correlation function using the Kubo formula. The definition in

[15], §5, for the DC conductivity is different and related to the drag force on a massive

charge.

3.3 Extremal Branes: from near-horizon to boundary of AdS

In §3.2.1 we investigated a system of dilaton gravity described by the action eq.(3.1). Since

we were interested in the behaviour when the dilaton had evolved sufficiently far along a

run-away direction we took f(φ) and V (φ) to be of the form, eq.(3.2), eq.(3.3). The resulting

solution was then of the form eq. (3.13). In this section we will show that such a solution can

indeed arise as the near-horizon limit starting from an asymptotic AdS4 geometry perturbed

by a varying dilaton. We do this for a particular form of the potential14,

V (φ) = 2V0 cosh(2δφ) (3.46)

with V0 < 0.

This potential has the property that along the run-away direction where, φ → ∞,

V (φ) → V0e
2δφ and therefore agrees with eq.(3.3). As a result the solution eq.(3.13) contin-

ues to be a good approximate solution for this potential as well. In addition, the potential

has a maximum at φ = 0, with V (φ = 0) = 2V0 < 0 which can support a AdS4 solution.

Working in a coordinate system of the form eq.(3.6), we will construct a numerical solu-

tion which asymptotes between this AdS4 solution and a near-horizon geometry given by

eq.(3.13).

Note that near φ = 0 the potential eq.(3.46) is tachyonic with m2 < 0. For the masss

to be above the BF bound, δ must meet the condition

δ2 <
3

8
. (3.47)

Also since m2 < 0, both normalizable and nonnormalizable modes of dilaton are falling

near the boundary r → ∞. This corresponds to the fact that with m2 < 0 the dilaton

13In a system with a conventional gap the conductivity would be exponentially sensitive to the temperature,

going like, Re(σ) ∼ e
−∆
T , instead of having the power-law behaviour we find.

14We expect similar results for other potentials with the same qualitative behaviour.
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corresponds to a relevant operator in the CFT dual to the asymptotic AdS4 space-time. In

the solution we obtain numerically, in general, the dilaton will go like a linear combination

of normalizable and nonnormalizable modes. Accordingly, in the dual field theory the

Lagrangian will be deformed by turning on the relevant operator dual to the dilaton.

In the subsequent discussion it will be convenient to choose units such that |V0| = 1.

3.3.1 Identifying The Perturbation

It is actually convenient to start in the near-horizon region and then integrate outwards,

towards the boundary, to construct the full solution.

To start, we first identify a perturbation in the near-horizon region which grows as

one goes towards the UV (larger values of r). For this purpose, we will approximate the

potential as V = −e2δφ and ignore the correction going like e−2δφ to it, this will lead to a

condition on the parameters (α, δ) which we will specify shortly.

Including a perturbation in the metric gives,

a(r) = Car
γ(1 + d1 r

ν) ; b(r) = rβ(1 + d2 r
ν); φ(r) = k log r + d3 r

ν (3.48)

Solving the equations of motion eq.3.9 to eq.3.12 to leading order in r, determine ν as

ν1 = −3

2
+
4 + 2δ(α + δ)

4 + (α+ δ)2
+

√

(4 + (3α− δ)(α + δ)) [36 − (α+ δ)(17δ − 19α+ 8α2δ + 8αδ2)]

2(4 + (α+ δ)2)2

(3.49)

We can also determine d2, d3 in terms of d1 which is left undetermined and hence is a free

parameter that characterises the resulting solution.

In our analysis above to determine the perturbation, we approximated the potential

V = −2 cosh(2δφ) ≃ −e2δφ, while keeping the leading corrections due to the perturbation

in eq.(3.48)). This is justified, for small r if,

ν < −4δk. (3.50)

which has a overlap with the acceptable regions of α, δ mentioned in previous subsection.

In the numerical analysis we will choose values for (α, δ) which lie in this region, and which

also meet the condition eq.(3.47).

3.3.2 Numerical integration

Staring with the perturbed solution in the near-horizon region the equations can be now

be numerically integrated to obtain the solution for larger values of r. For this purpose the

full potential eq.(3.46) is used.

Figure(3.2) and Figure(3.3) show the resulting solution for α = 1, δ = 0.6, these values

satisfy the conditions, eq.(3.47), eq.(3.50). The strength of the perturbation was chosen to

be d1 = 0.01.
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Figure 3.2: Numerical solution interpolating between the near horizon solution and AdS4
for α = 1, δ = 0.6 and d1 = 0.01. The second plot shows that a′(r) and b′(r) approach 1.
Red lines denote a, Blue lines denote b.
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Figure 3.3: Numerical solution for φ, for α = 1, δ = 0.6.
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Figure(3.2) and Figure(3.3) clearly show that a(r) ∝ r and b(r) ∝ r for large r, so the

solution is asymptotically AdS4. The dilaton approaches 0, the extrema of the potential

cosh(2δφ). Thus the solution interpolates between AdS4 and solution discussed in §3.2.1
in the near-horizon region. Qualitatively similar results are obtained if the parameters α, δ

and d1 are varied within a range 15.

One final comment about parameters. For a given α and δ there should be a two-

parameter family of solutions corresponding to the chemical potential µ and the coupling

constant of the relevant operator dual to the dilaton in the boundary theory. Our solution

above has one parameter d1 which is the strength of the perturbation in the IR. Another

parameter, which can be thought of as changing the overall energy scale in the boundary

theory, corresponds to a coordinate rescaling in the bulk, (r, xµ) → (λr, xµ/λ). Under this

coordinate transformation the charge Q, eq.(3.7), transforms as Qe → λ2Qe.

3.4 Fermionic Two Point Function

We will consider a free fermion in the bulk with mass m and charge q. Its action is

Sfermion =

∫

d3+1x
√−gi[ψ̄ΓMDMψ −mψ̄ψ] (3.51)

We will mostly follow the spinor and related Dirac matrix notation of [5] and specifically

comment on any differences below. In our notation then,

ψ̄ = ψ†Γt̄,DM = ∂M +
1

4
ωabMΓab − iqAM (3.52)

where ωabM is the spin connection and AM is the vector potential. The gamma matrices,

Γr =

(

1 0

0 −1

)

,Γµ =

(

0 γµ

γµ 0

)

(3.53)

with

γ0 = iσ2, γ
1 = σ1, γ

2 = σ3. (3.54)

where σi, i = 1, · · · 3 denote the Pauli matrices.

The spinor ψ has four components and we define ψ± to be the upper and lower two

components respectively,

ψ =

(

ψ+

ψ−

)

(3.55)

Using the translational symmetries we can take,

ψ± = (−ggrr)− 1
4 e−iωt+ikix

i
φ± (3.56)

15We work in the region where eq.(3.50) and eq.(3.47) are met.
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Asymptotically, near the AdS4 boundary, the spinor components take the form,

φ+ = Arm +Br−m−1, φ− = Crm−1 +Dr−m (3.57)

where A,B,C,D are 2 dim. column vectors. If we define D = SA then the two-point

function on the boundary for the dual operator is

GR = −iSγ0 (3.58)

We can simplify the calculations by using the rotational symmetry in x, y plane to choose

k = k1. Then writing

φ± =

(

y±
−iz′±

)

(3.59)

The equation of motion for ψ then breaks up into block 2 × 2 form coupling only (y+, z
′
−)

and (y−, z′+) together respectively. The two-point function GR has two non-vanishing com-

ponents, GR11 and GR22, these are related by, GR11(ω, k1) = GR22(ω,−k1) and are not

independent. In what follows we will set (y−, z′+) to vanish, this is sufficient to extract

GR22 and then also GR11. The equations for (y+, z
′
−) take the form,

√

gii
grr

(∂r −m
√
grr) y+ = −(k1 − u)z′− (3.60)

√

gii
grr

(∂r +m
√
grr)z

′
− = −(k1 + u)y+ (3.61)

with

u =

√

gii
−gtt

(ω + qAt) (3.62)

Asymptotically, towards the boundary , it is easy to see that the solution take the form,

(

y+

z′−

)

= C1

(

1

− (ω+µq+k1)
(2m−1)r

)

rm + C2

( −(ω+µq−k1)
(2m+1)r

1

)

r−m (3.63)

where µ is the asymptotic value of the gauge potential At. Comparing with eq.(3.57) and

eq.(3.58) we find that

GR22 = −C2

C1
. (3.64)

In the near horizon region, eq.(3.14), (3.15) the fermion equations of motion, eq.(3.60),

(3.61) take the form,

rβ+γ
(

∂r −
m

rγ

)

y+ = −
(

k1 − rβ−γ(ω + qAt)
)

z′− (3.65)

rβ+γ
(

∂r +
m

rγ

)

z′− = −
(

k1 + rβ−γ(ω + qAt)
)

y+ (3.66)

where Ca dependence has been removed by some rescalings.
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We will be interested in the retarded Green’s function in the bulk, this is obtained by

imposing in-going boundary conditions at the horizon. Very close to the horizon where ω

term dominates, eq.(3.65), (3.66) become,

rβ+γ ∂r

(

y+

z
′
−

)

= ωrβ−γ iσ2

(

y+

z
′
−

)

(3.67)

The ingoing solution is obtained by taking

(

y+

z′−

)

=

(

1

−i

)

e−iωz (3.68)

where

z =
1

(1− 2γ)r2γ−1
(3.69)

Note that the time dependence has been taken to be of form e−iωt, eq.(3.56), and since

z → −∞, at the horizon, where r → 0, e−iω(t+z) is well behaved at the future horizon where

t → ∞.

We are interested in the small frequency behaviour of the boundary two-point function.

At a Fermi surface, where k1 = kF , the boundary two-point function has a singularity, for

ω → 0. We will be interested in asking whether such a surface can arise in this system and

what is the nature of small frequency excitations near this surface. It will be convenient to

divide our analysis into three parts, depending on the value the parameter β + γ takes.

When β + γ > 1 we will see that the boundary fermionic two-point function is of

Fermi liquid type. More correctly, as was discussed in the introduction the small frequency

excitations have a linear dispersion relation, with a width which is narrower than ω2. When

β + γ < 1 we will find that the low-frequency excitations acquire a width which is non-

vanishing even in the ω → 0 limit, and thus is very broad. The transition region, β+ γ = 1

consists of two lines. One of them corresponds to extremal RN type geometries, which

are well known to give Non-Fermi liquid behaviour [4], [5], [6]. The other corresponds to

geometries which have vanishing entropy, here we find that the behaviour can be of both

Fermi or non-Fermi liquid type with width Γ ∼ ωp. The power p > 0 and can be bigger,

equal to, or less than two, so that one can get both Fermi-liquid and non-Fermi liquid

behaviour.

We now turn to discussing these three cases in turn. In Figure 3.4 we plot the regions

where β, γ take different values, in the (α, δ) plane.

Before proceeding let us comment on the significance of the parameter β+γ. We denote
16

ψ =

(

y+

z′−

)

. (3.70)

16To save clutter, henceforth will refer to this two component spinor itself as ψ.
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Figure 3.4: Region with β + γ > 1 in Blue; β + γ < 1 in Green.

There is a convenient way to recast eq.(3.65) and (3.66) as a second order equation of

Schrodinger form, with a spin dependent potential:

rγ+β∂r(r
γ+β∂rψ) = [m2r2β + k21 − (ω + qAt)

2r2(β−γ)]ψ + βmr2β+γ−1σ3ψ (3.71)

+i[(β − γ)r2β−1(ω + qAt) + qr2β∂rAt]σ2ψ .

The Schrodinger variable is

ζ =

∫

dr

rγ+β
=

r1−β−γ

(1− β − γ)
. (3.72)

The distance as measured in this variable to the horizon (r = 0) has a power-law divergence

for β+ γ > 1, a logarithmic divergence for β+ γ = 1 and no divergence for β+ γ < 1. This

difference ultimately results in the three qualitatively different types of behaviour we will

see below.

Eq.(3.71) is convenient for our analysis for the following reason. We are interested in

the dominant ω dependence at small frequency. As we will see, this dependence arises from

a region close to the horizon where the m,At dependent terms on the RHS of eq.(3.71) can

be neglected. This only leaves the k1 and ω dependent terms in eq.(3.71). Of these the

k1 dependent term is particularly important, since it is repulsive and hinders the particle

from falling into the horizon. Physically this is because the shrinking size of the x, y direc-



3.4. FERMIONIC TWO POINT FUNCTION 61

tions gives rise to a cost in the k1 dependent energy that increases closer to the horizon.

In eq.(3.71) this is seen clearly since the k1 dependent term does not give rise to a spin

dependent potential (which would be proportional to the σ matrices) and only multiplies

the identity matrix in spin space, with a sign which corresponds to its providing positive

potential energy.

3.4.1 β + γ > 1

In this case we will see that the WKB approximation can be used to calculate the boundary

Green’s function. The width of the boundary correlator is related to tunneling through

a classically disallowed region in the bulk and will be exponentially suppressed at small

frequency.

In the WKB approximation radial derivatives on (y+, z
′
−) are more important than

those on the metric or gauge potential, From eq.(3.65) and eq.(3.66) it then follows that for

example y+ satisfies the equation 17,

rβ+γ∂r(r
β+γ∂ry+)−m2r2βy+ −

(

k21 − r2(β−γ)(ω + qAt)
2
)

y+ = 0. (3.73)

We will be mainly interested in the small frequency behaviour, which is essentially

determined by the near horizon region, where

r ≪ 1. (3.74)

In this region we see that the mass dependent terms are subdominant compared to the ω

and k1 dependent terms. Also, from eq.(3.7) we see that in this region the gauge potential

is given by,

At ∼ r1−2αk−2β. (3.75)

From eq.(3.14), (3.15) we see that for β + γ > 1, (α + δ)(α − δ) > 0. It will turn out that

the small frequency behavior can in fact be extracted from the region where

r1−(2β+2αk) ≪ ω (3.76)

so At can also be neglected compared to the ω dependence 18 in eq.(3.73). Note that

1− (2αk + 2β) > 0 under eq. (3.29), therefore eq. (3.74) and (3.76) are compatible.

The equation eq.(3.73) can be cast in the form of a Schroedinger equation for a zero

energy eigenstate,

−d
2y+
dζ2

+ V y+ = 0 (3.77)

17This equation has additional terms which are small in the WKB approximation.
18We take q ∼ O(1).
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where ζ is defined in eq.(3.72), and V , the potential, is

V = k21 −
ω2

r2(γ−β)
(3.78)

There are three regions of interest in the calculation. The region very close to the

horizon, which we will call R1 is where r → 0. This region is classically allowed, as follows

from eq(3.22) which imply that γ − β > 0, therefore V < 0.

The second region which we call R2 is where

1 ≫ rγ−β ≫ ω

k1
(3.79)

so that the k1 term dominates over the ω dependent term in V . Note we still have to meet

eq.(3.76); at the end of this section we will return to this point and show that eq.(3.76) and

eq.(3.79) are indeed compatible. Note that the R2 region is classically disallowed and in

this region the frequency dependence is unimportant. Finally the third region R3 is close

to the boundary where r → ∞.

In region R1, as mentioned earlier, the wavefunction behaviour is as in eq(3.68) The

regions R1 and R2 are separated by a turning point at

rtp =

(

ω

k1

)
1

γ−β

(3.80)

In region R2 there are two independent solutions to eq.(3.77) which in the WKB approxi-

mation go like

f± = e
∓
(

k1

(γ+β−1)r(γ+β−1)

)

. (3.81)

Matching to solution in region R1 using standard turning point formulae, see, e.g, [33],

gives,

y+ =
A
√

k̂
[f+ +

i

2
e−2If−] (3.82)

where k̂ = k1r
β−γ and,

I = c1

(

k2γ−1
1

ωβ+γ−1

) 1
γ−β

, (3.83)

c1 =

∫ ∞

1

dx

x2γ

√

x2(γ−β) − 1 , (3.84)

and A is an overall coefficient. Notice that e−2I is exponentially suppressed when ω → 0.

Thus the f− term has a very small coefficient and is subdominant at small ω.

From eq.(3.65), (3.66) it is easy to find the solution for z′− in this region. The result can
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be stated as follows. There are two linearly independent solutions in region R2,

ψ± =

(

1

∓1

)

f±. (3.85)

The solution which agrees with eq.(3.82) is

ψ =
A
√

k̂
[ψ+ +

i

2
e−2Iψ−] (3.86)

Note that in this solution the frequency dependence is summarized in the coefficient e−2I ,

the solutions, ψ± are independent of frequency.

Now ψ± can further be extended from region R2 to region R3 which lies close to the

boundary. Let the coefficients C1, C2, eq.(3.63), which arise from ψ± be denoted by C1±, C2±
respectively. Then the boundary two-point function is given by

GR22 = −C2+ + i
2e

−2IC2−
C1+ + i

2e
−2IC1−

(3.87)

A Fermi surface arises when the coefficient C1+ vanishes for ω → 0. In general this imposes

one real condition on the momentum k1 and for a suitably chosen k1 = kF and if necessary

by adjusting the geometry 19 for the spacetime which interpolates between the near horizon

region and the AdS boundary etc it should be possible to meet this condition. By rotational

invariance this will then be true for all |~k| = kF . Expanding C1 near k = kF then gives,

GR22 =
c3

ω − vF (|~k| − kF ) + ic2e−2I
(3.88)

vF and c2 arise from the Taylor series expansion of C1+ and the leading behaviour of C1−,

we have neglected the term proportional to C2− in the numerator, and the leading C2+

dependence feeds into the numerator c3.

We see that the small frequency excitations have a linear dispersion relation, with a

width given by,

Γ ∼ e−2I = exp



−2c1

(

k2γ−1
F

ω(β+γ−1)

) 1
γ−β



 . (3.89)

This width is exponentially suppressed at small frequency and therefore very narrow.

Let us end by checking the validity of our approximations. Our use of the WKB ap-

proximation in regions R1, R2 imposes restrictions. This approximation requires that radial

derivatives acting on ψ =

(

y+

z′−

)

are more important than derivatives of the metric. In

19One can also vary the dilaton dependence of the gauge coupling and potential once the dilaton is not in
the run-away region.
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region R2 this gives the condition

rγ+β−1 ≪ 1 (3.90)

(we have set k1 ∼ O(1)). Note that eq.(3.90) can be met in the near horizon geometry

where r ≪ 1 only if β + γ > 1. The fact that the WKB approximation breaks when

β + γ ≤ 1 is also suggested by the decay width eq.(3.89) which is no longer suppressed at

small ω. In addition, we have assumed that eq.(3.76) is correct so that the gauge potential

dependent terms can be dropped. In region R2 this has to be compatible with the condition

eq.(3.79). One can show from eq.(3.14), eq.(3.15) that in the region where β + γ > 1,

γ − β < 1 − (2β + 2αk), it therefore follows that for small ω these two conditions are

compatible.

In Region R1 far from the turning point validity of WKB approximation requires,

r ≪ ω
1

2γ−1 (3.91)

In addition eq. (3.76) needs to be met. These are clearly compatible, in fact eq.(3.91) is

more restrictive.

3.4.2 Some General Comments for the Cases β + γ ≤ 1

We will now turn to analyzing what happens when β + γ ≤ 1.

A few general comments are worth making before we go into details. From eq.(3.14),

eq.(3.15) we see that β + γ = 1 corresponds to the lines, α = −δ and α = +δ. The first

case, α = −δ corresponds to an AdS2 × R2 metric which is the near-horizon geometry of

the extreme Reissner Nordstrom Black Brane. This has been analyzed extensively in [4] -

[9], and we will not elaborate on this case further. The second case, α = δ, necessarily has

β 6= 0 (for α 6= 0 ), it is not AdS2 ×R2 and has vanishing area.

In the extremal RN case while studying the fermion equation of motion eq.(3.65),

eq.(3.66) at small frequency the dependence on m,k1 and charge through At dependent

terms are all important. In contrast for the α = δ case and for all cases where β + γ < 1

both the At andm dependent terms in eq.(3.65), (3.66) can be neglected, in the near-horizon

region relevant for determining the small frequency behaviour. This results in considerable

simplification of the analysis.

It turns out that extracting the ω dependence requires us to solve the equations from

the horizon upto a radial location where

1 ≫ r ≫ ω
1

2γ−1 . (3.92)

Beyond that the ω dependence turns out to be subdominant and can be neglected 20 .

Now from eq.(3.65 3.66) we see that the At dependence is unimportant if |At| ≪ ω. From

20One expects on general grounds that the gravitational redshift is monotonic as one goes from the black
brane horizon to the boundary making the ω dependence increasingly negligible.
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eq.(3.76) this leads to the condition,

r ≪ ω
1

1−2αk−2β (3.93)

which is compatible with eq.(3.92) if

ω
1

2γ−1 ≪ ω
1

1−2αk−2β . (3.94)

This last condition is true for ω ≪ 1 because eq.(3.14), eq.(3.15) imply that 2γ − 1 <

1− 2αk − 2β for δ 6= −α.
The m dependent terms can be neglected if they are small compared to the effect of ∂r.

Now ψ will be vary at least as rapidly as a power of r, from eq.(3.65), (3.66) the condition

for neglecting the m dependent term then becomes

m

rγ
≪ 1

r
. (3.95)

For m ∼ O(1), r ≪ 1 this gives, γ < 1, which is true since β + γ ≤ 1 and β > 0 when

α 6= −δ.
Henceforth we will study the cases β+γ < 1 and the branch α = δ for the case β+γ = 1

and therefore we can set the At,m dependent terms to be zero in 21 eq.(3.65), eq.(3.66).

Eq.(3.65), (3.66) then become

rβ+γ∂rψ = (−k1σ1 + irβ−γωσ2)ψ (3.96)

The behaviour of the solution can be understood qualitatively as follows. Very close to

the horizon, the ω dependent term on the RHS will dominate over the k1 dependent one

since β − γ < 0 as eq. (3.22). Thus ψ will be of the form given in eq.(3.68). The effects of

the frequency will become subdominant to k1 dependent ones when the ω dependent term

on the RHS of eq.(3.96) becomes less important compared to the k1 dependent term giving

the condition,

r ≫
(

ω

k1

) 1
γ−β

. (3.97)

Now another way to estimate when the effects of frequency become small is when the

the phase in eq.(3.68) becomes small. Using eq.(3.69) this gives

|ωz| ∼ | ω

r2γ−1
| ≪ 1 (3.98)

which implies,

r ≫ ω
1

2γ−1 (3.99)

Now it is easy to see that for β + γ < 1, ω
1

2γ−1 < ω
1

γ−β for ω ≪ 1. Thus as r is

21To ensure clarity let us reiterate that below when we refer to β + γ = 1 we only mean the case where
α = δ, for which the metric is not AdS2 ×R2.
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increased from the horizon eq.(3.99) will be met before eq.(3.97) is met 22. For the case

when β + γ < 1 then in the region where

ω
1

2γ−1 ≪ r ≪
(

ω

k1

) 1
γ−β

(3.100)

the solution can be obtained by simply expanding the exponential in eq.(3.68) and gives,

ψ =

(

1

−i

)

+O(ωz). (3.101)

Going to large values of r the k1,m and At dependence will become important, but in this

region the ω dependence can be neglected. We will return to studying the consequences of

our analysis above for the β + γ < 1 case in §3.4.4.
In contrast, for the β + γ = 1 case the two exponents in eq.(3.97) and (3.99) are the

same, since β = 1− γ. Thus, a careful analysis is requires which we will turn to now.

3.4.3 More on the β + γ = 1 case

Here we will be interested in solving the fermion equation in the background, eq.(3.14),

eq.(3.15), with α = δ. Our starting point is eq.(3.96). It is convenient to define,

χ± = y+ ± z′−. (3.102)

And work with the variable,

z̃ =
ω

(2γ − 1)r2γ−1
, (3.103)

which goes to infinity at the horizon. For now we specialize to the case when k1 > 0 and

define

η =
k1

2γ − 1
. (3.104)

Then eq.(3.96) can be solved with ingoing boundary conditions to give

χ− =
√
z̃H

(1)
1
2
+η

(z̃), (3.105)

χ+ = −z̃−η∂z̃(z̃
ηχ−). (3.106)

In the region where z̃ ≪ 1, i.e., ω ≪ r2γ−1, the solution for ψ =

(

y+

z′−

)

, in terms of

the radial variable r and upto an overall ω dependent normalization, turns out to be

ψ =

(

1

−1

)

rk1 + deiφω2η

(

1

1

)

r−k1 . (3.107)

22We are assuming k1 is O(1) here.
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Here d and the phase eiφ depend on γ, β, k1, but are independent of ω. In the case of η < 1
2 ,

φ is generically non zero and for η > 1
2 , it turns out that e

iφ = i.

There are subleading corrections on the RHS to the real part of ψ which are suppressed

by a power of ω, these are not kept in eq.(3.107) since their effect on the Green’s function

is comparable to ω dependent contributions generated when evolving the solution further

out towards the boundary.

It is also worth noting that the result eq.(3.107) agrees with what one would get by

continuing the WKB results of §3.4.1 to the case β + γ = 1. More precisely, from eq.(3.72)

we see that for β + γ = 1, ζ = log r. As a result for r ≫ rtp the exponential factor in

the two solutions go like r±k1 which agrees with eq.(3.107). The WKB suppression factor

which was exponentially suppressed in ω has now turned into a power-law suppression in

eq.(3.107). This is because the fermion wave function can now penetrate the barrier more

easily and thus can have a bigger mixing with the modes in the vicinity of the horizon. This

crossover from the exponential suppression to a power-law has also been discussed in [17].

It is now easy to follow the discussion in §3.4.1 to calculate the two-point function on

the boundary in this case. A Fermi surface will arise for k1 = kF if the growing solution

is purely normalisable in AdS4. The Green’s function one gets by expanding around this

value of momentum is 23

GR22 =
Z

ω − vF (|k| − |kF |) + iDeiφω2η
(3.108)

where Z,D are constants. For η > 1/2, the phase eiφ = 1, whereas for η < 1/2 the phase is

in general complex.

This result is very similar to what was obtained in the eRN case in [4],[5],[6],[7]. The

result also agrees with the general considerations in 24 [22].

For η > 1/2 there is a well-defined quasi-particle with a linear dispersion and a width

which goes like ω2η . For 1/2 < η < 1, the width is broader than the Fermi liquid case.

For η < 1/2 the behaviour is more novel. The last term in the denominator going like ω2η

dominates both the real and imaginary parts of the ω dependence. As a result there is no

well-defined quasi-particle, since the residue vanishes at the pole. Finally for η = 1/2, the

Green’s function actually needs to be modified and can be shown to take the form,

GR22 =
Z

vF (|k| − |kF |) + d1ω log ω + d2ω
(3.109)

where d1 is real and d2 complex.

Unlike the eRN case, when α = δ and γ 6= 1, the geometry has no scaling symmetry.

Despite this fact eq.(3.96) has a scaling symmetry for all values of γ, when β+γ = 1, under

23For k < 0 the same result goes through with now η = |k1|
2γ−1

24In fact eq.(3.108), for η < 1/2, is of the scaling form proposed in [22] and satisfies the inequalities in
eq.(9) and (18) of [22].
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which r → λr, ω → λ2γ−1ω with k1 being invariant 25. This scaling symmetry results in the

the complex part characterized by the exponent η being of power law type in the frequency.

One difference is that in our case the mass and charge of the bulk fermion do not enter in

η explicitly but only through kF , which does depend on these parameters.

Before closing this subsection it is worth commenting that while on general grounds we

expect a value of kF to exist for which the bulk solution is purely normalisable, leading

to a singularity in GR22, we have not investigated this feature in detail. We leave such an

analysis, along with the related calculation of Z, vF ,D which appear in eq.(3.108), for the

future.

3.4.4 Case β + γ <1

In this case the essential features of the solution can be deduced by setting the k1 dependent

terms in eq.(3.96) to zero. This can be seen to be self-consistently true. In fact the essential

point was already made in §3.4.2. Setting the k1 dependent term to vanish in eq.(3.96)

gives the solution eq.(3.68). When eq.(3.98) is met the solution reduces to (3.101). This

happens before the k1 term becomes important because

ω
1

2γ−1 ≪ ω
1

γ−β (3.110)

when β+γ < 1 as discussed in §3.4.2 around eq.(3.100). A more careful analysis shows that

the region eq.(3.100) where the solutions reduces to the form, eq.(3.101) should be thought

of as being obtained by keeping r/ω1/(2γ−1) fixed and large while taking ω → 0.

Let us now examine the consequences of eq.(3.101). Note in particular that at leading

order y+ and z′− have a relative phase which is imaginary.

In the following discussion it will be useful to define two basis vectors,

ψ+ =

(

1

0

)

, ψ− =

(

0

1

)

(3.111)

and express the leading order answer as

(

y+

z′−

)

= ψ+ − iψ− (3.112)

Starting from the region eq.(3.100) and going further towards the boundary the k1,m,At

dependent terms we have been neglecting will come into play and the form of the solution

will deviate from eq.(3.112). Asymptotically, towards the boundary, the solution obtained

from both ψ± will take the form given in eq.(3.63). Let C1±, C2± be the values for the

coefficients C1,2 which appear in eq.(3.63) when we start with ψ± and evolve the solution

towards the boundary respectively. Then, the net value of C1 we get starting from eq.(3.112)

25In fact a suitable change of variables can map the eq.(3.96) for all values of γ, and γ + β = 1, to the
case γ = 1, β = 0.



3.4. FERMIONIC TWO POINT FUNCTION 69

is

C1 = C1+ − iC1− (3.113)

Now notice that the equations eq.(3.65), eq.(3.66) are both real, therefore C1± will be both

real as well.

As in the discussion for the β + γ > 1 case a Fermi surface arises at k1 = kF when C1

vanishes at this momentum as ω → 0. However, since C1+ and C1− are real this actually

imposes two conditions

C1+ = 0 , C1− = 0 (3.114)

which must both be met by adjusting only one real variable - the momentum k1. Generically,

this will be impossible to do.

Our conclusions will be discussed more throughly in the following subsection. We will

see that starting from β + γ = 1 as we go into the region where β + γ < 1, there is no

locus in momentum space about which there are quasi-particle excitations with a width

that vanishes as ω vanishes. However, for β + γ < 1, but close to unity, there is a surface

about which the excitations have a frequency independent width (at small ω) which is much

smaller than the chemical potential and which vanishes as β + γ → 1.

3.4.5 The Transition from β + γ = 1 to β + γ < 1

It is useful to discuss the transition from β + γ = 1 to β + γ < 1 in more detail.

Let us start with the case β + γ = 1 and first consider the case when the exponent η in

eq.(3.108) satisfies the condition 2η > 1. In this case, at small ω,

GR22 =
Z

ω − vF (|k| − kF ) + id1ω2η
, (3.115)

and as was mentioned above there are well-defined quasi-particle excitations about the

Fermi surface.

Suppose we now lower the value of β+ γ so that β+ γ = 1− ǫ, ǫ≪ 1. The bulk fermion

solution with momentum kF will not be purely normalisable any more and our arguments

in the previous subsection show that the Green’s function takes the form,

GR22 =
Z

ω − vF (|k| − kF ) + ∆1 + i∆2 + id2ω2η
(3.116)

where ∆1,∆2, are ω independent and vanish when ǫ→ 0. We see that ∆1 can be absorbed

by a shift in 26 kF , kF → kF − ∆1
vF

. About this new Fermi momentum we get,

GR22 =
Z

ω − vF (|k| − kF ) + i∆2 + id2ω2η
(3.117)

so that the excitations have a width ∆2, which does not vanish as |k| → kF , ω → 0, and is

26Alternatively, e.g., in the canonical ensemble, we can absorb it into a shift in the chemical potential µ.
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therefore very broad. In summary, the well-defined quasi-particle which existed at β+γ = 1

has therefore disappeared at β + γ < 1 27.

Next, let us turn to the case when the exponent η in eq.(3.108) satisfies the condition

2η < 1. In this case there is no sharply defined quasi-particle even when β + γ = 1. We

define,

kT ≡ (|k| − kF ). (3.118)

Taking |kT | fixed and small compared to kF , and regarding GR22 as a function of ω there

is a pole [9] at ω = ω∗ + iΓ with

ω∗ ∼ Γ ∼ |kT |
1
2η . (3.119)

The pole has vanishing residue,

Zres → 0, (3.120)

and is also broad,
Γ

w∗
→ 1. (3.121)

as kT → 0.

Let us now lower β+γ in this case to the value β+γ = 1− ǫ. This results28 in a Green’s

function,

GR22 =
Z

−vF (|k| − kF ) + ∆1 + i∆2 +Deiφω2η
, (3.122)

where ∆1,2 vanish as ǫ→ 0. Shifting kF this can be written as

GR22 =
Z

−vF (|k| − kF ) + |∆|Deiφe−iπη +Deiφω2η
(3.123)

where |∆| is determined by ∆1,∆2 and the shift in kF . For |k| → kF the pole in ω lies at

ω∗ = −i|∆| (3.124)

This gives rise to a width which does not vanish when (k − kF ) → 0.

In summary we see that when β+ γ < 1 the excitations become very broad and acquire

a width which is non-vanishing at zero frequency. There is still a locus in momentum space,

at |k| = kF , which we can call the Fermi surface, with the energy of the excitations, defined

as the real part of ω, extending down to zero energy as the momentum approaches kF .

However, a more precise definition of the Fermi surface can be taken to be the locus where

Green’s function with ω = 0 has a pole in momentum, and across which it changes sign.

With this definition, there is no Fermi surface for β + γ < 1, since the excitations have a

non-zero width even at zero energy, as mentioned above.

27The width ∆2, while it does not vanish when |k| → kF , is small compared to the chemical potential for
ǫ≪ 1.

28The term linear in ω in the denominator is dropped compared to ω2η at small ω.
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3.5 Conclusions

The gravity system studied in this chapter has a scalar, the dilaton, and two couplings α and

δ which appear in the action given in eq.(3.2), (3.3) and which determine how the dilaton

enters in the gauge coupling and the potential respectively. Instead of α, δ it is sometimes

more convenient to use the parameters, β, γ, which appear in the metric eq.(3.13) and are

given in terms of α, δ, in eq.(3.14), (3.15).

Extremal black branes in this system were studied in [15]. Here we have studied a

charged fermion in the extremal black brane background and calculated the two-point func-

tion for the corresponding fermionic operator in the dual strongly coupled field theory.

The black brane background has rotational symmetry in the two spatial directions and the

two-point function inherits this symmetry, At small frequency, which is the focus of our

investigation, the essential features of this two -point function can be deduced from the

near-horizon geometry of the extremal black hole.

3.5.1 Results

Our results depend on the parameters β, γ, in particular on the combination 29 β + γ.

• When β + γ > 1 we find that close to the Fermi-surface there are well-defined quasi-

particles, with a linear (i.e. relativistic) dispersion relation and a width which is exponen-

tially suppressed in ω. The precise form of the Green’s function is given in eq.(3.88).

• This behaviour undergoes a transition when β + γ < 1. In this case there are no well-

defined quasi-particle excitations. Instead the low-energy excitations become very broad

with a width which does not vanish at small frequency. See the concluding paragraph of

§3.4.5 for more discussion on the Fermi surface.

• The transition region β + γ = 1 is also very interesting. In terms of the parameters α, δ

which appear in the Lagrangian for the system, this corresponds to two lines, α = ±δ. The
α = −δ line corresponds to an extremal RN geometry. The fermionic two-point function in

this case is well studied and known to exhibit interesting non-Fermi liquid behaviour. Here

we focus on the other case, the α = δ line, for which the extremal geometry has vanishing

entropy and the near-horizon geometry has no scaling symmetry. Despite this difference we

find that bulk fermion equation acquires a scaling symmetry analogous to that in the eRN

case and the two-point function again exhibits non-Fermi liquid behaviour. The precise

form of the Green’s function is given in eq.(3.108) and depends on the parameter η. When

2η < 1, there are no well-defined quasi-particles excitations close to the Fermi surface.

When 2η > 1, there are well-defined quasi-particle, with a width which vanishes as ω → 0,

although this width can be much broader than in Fermi-liquid theory. When 2η = 1, one

29The distance to the horizon for the variable ζ, eq.(3.72), in terms of which the fermion equation of
motion becomes of Schrodinger form is governed by β+γ. It is infinite for β+γ > 1, logarithmically infinite
for β + γ = 1, and finite for β + γ < 1.
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gets a marginal Fermi liquid 30. The quasiparticles, when they exist for the β + γ = 1 case,

get very broad when β + γ becomes less than unity.

• The transition between these behaviours occurs in a smooth way. More precisely, the

Green’s function evolves in a smooth manner as the parameter β + γ is varied. The under-

lying reason for this is that the background geometry itself evolves smoothly.

3.5.2 Discussion

It is worth trying to phrase our results in terms of the semi-holographic description which

was proposed in [17]. The near-horizon region of the geometry corresponds to a strongly

coupled field theory sector in this description, which is coupled to bulk fermionic excitations

localized away from the near-horizon region. The bulk fermionic excitations by themselves

are weakly coupled and form a sea which is essentially responsible for the Fermi surface in

the boundary theory. The coupling between the two sectors allows the bulk fermions to

decay and gives rise to their width. When β+γ > 1 this decay width is small, since it arises

due to tunneling through a WKB barrier. This results in a width which is highly suppressed

with an essential singularity as ω → 0. As β + γ → 1 the barrier is lowered and the bulk

fermions can decay more easily into degrees of freedom in the strongly coupled sector,

resulting in a decay width which is only power law suppressed. Finally, when β+ γ < 1 the

decay process is sufficiently enhanced and leads to a width which is non-vanishing even as

ω → 0, leaving no sharply defined quasi-particles in the excitation spectrum.

In fact in our analysis we did not use the information about the full geometry but only

the geometry in the near-horizon region. The full geometry depends on many more details of

the model including the dependence, even away from the run-away region where φ→ ±∞,

of the gauge coupling function and the potential on the dilaton. It is therefore less universal

than the near-horizon geometry which is in fact often an attractor. This is very much in

the spirit of the semi-holographic description, in effect we only relied on the gravity dual for

the strongly coupled sector, and did not use much information about the gravity solution

away from the horizon since in the end that would have given rise to a weakly coupled bulk

fermion whose dynamics can be understood in field theoretic terms anyways 31.

The basic lesson then from this work is that a range of interesting behaviours can

arise by coupling fermions to a strongly coupled sector with a gravitational dual of the kind

considered here. This includes both Fermi liquid and non-Fermi liquid behaviour, transitions

between them, and transitions from a non-Fermi liquid state to one where there are no

well-defined quasi-particles since the excitations have become very broad and essentially

disappeared. Moreover, this can happen when the strongly coupled sector has reasonable

30One difference with the eRN case is that the mass and charge of the bulk fermion enters in η only
through their dependence on the Fermi-momentum, kF .

31Some examples of gravity solutions which interpolate between AdS4 and the solution eq.(3.13) in the
near-horizon region are discussed in §3.3. These are obtained with reasonable potentials and gauge coupling
functions. It is worth studying these examples further to calculate the value of kF (for β + γ ≥ 1) and the
the value of the residue and vF in eq.(3.108), (3.117), (3.123), in them.
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thermodynamics behaviour consistent in particular with the third law of thermodynamics,

since the gravity background has vanishing entropy at extremality.

An important feature about our system is that the dramatic changes in the behaviour

of the fermionic Green’s function which we have found are not accompanied by any phase

transition or significant changes in the thermodynamics or transport properties. The en-

tropy densty or specific heat, for example, scale as given by eq.(3.27) and smoothly changes

as β + γ is lowered from a value greater than unity to less than unity. Similarly, the DC or

optical conductivity also changes smoothly, eq.(3.44), eq.(3.43), eq.(3.45). In fact the back-

ground geometry itself changes smoothly, as was mentioned above, this is the root cause

for the smooth behaviour in transport and conductivity. On general grounds the gravity

system should correspond to a strongly coupled field theory in the large N limit. In this

limit there are many extra degrees of freedom besides the fermionic ones we have focussed

on. And these extra degrees of freedom do not undergo any significant change in their

properties even though the fermionic ones we have focussed on do, resulting in the smooth

changes in thermodynamics and transport.

The large N limit is the price we pay for the having a tractable gravity description. At

finiteN one would expect that the transitions seen in the behaviour of the fermion correlator

will also manifest itself in phase transitions or big qualitative changes in thermodynamics

and transport. Preliminary evidence for this is the fact that the conductivity in our set

up already has 1/N corrections which see the changes in the nature of the fermion two-

point function. This was investigated in [8], [9], where it was found that for a Green’s

function of the type in eq.(3.108) there would be corrections to conductivity of the form

σ ∼ 1
N T

−2η. Since we have found non-Fermi liquid behaviour to arise from in a wide variety

of gravitational backgrounds it is reasonable to hope that it will persist for some finite N

strongly coupled theories as well.

There are several directions for future work. It will be interesting to generalize these

investigations to higher dimensions 32.

Going beyond effective field theory, it is important to try and embed the class of gravity

systems studied here in string/M theory. This would put constraints on allowed values of

α, β and also the charges and masses for the Fermion fields which determine kF and the

exponent η in eq. (3.108). Allowed ranges of these parameters would then determine which

kinds of non-Fermi liquid theories are theoretically speaking allowed and when transitions

of various kinds are allowed. Embedding in string/M theory is also important for deciding

whether our approximation of classical two -derivative gravity is a controlled one, as was

discussed in §3.2.4. For some progress towards providing such embeddings see [35], [36] 33.

It will also be useful to ask whether this analysis can be extended beyond the case where

32See for example [34].
33For example, our IR effective action (3.1) with parameter α =

√
3, δ = −1/

√
3, V0 = −12

√
3 can be

obtained from M-theory on Sasaki-Einstein space from eq.(4.3) of [35], by setting χ = 0 and h ≡ ±1∓e4φ/
√

3,

in the regime where |e4φ/
√

3| ≪ 1. However, the near horizon behaviour of the numerically obtained solution
in [35] is different from our solution (3.14), (3.15). It is worth studying this point further.
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the gravity theory is analyzed in the two-derivative approximation for example in Vasiliev

theory [37].

Another direction would be to couple charged matter and study superconducting insta-

bilities [38] along the lines of [11]. Or to allow for a bulk Fermi sea in the near-horizon

region and incorporate the changes this leads to [25], [39], [40].

Investigating transitions of the kind we have found in the presence of a magnetic field

would also be an interesting extension. In this context it would be natural to also include

an axion in the bulk theory, [14].

Finally, only a very small class of possible attractor geometries have been studied here
34. There is clearly a vast zoo waiting to be explored and the behaviour of fermions in these

additional backgrounds might hold even more surprises.

34Some references pertaining to the attractor mechanism are, [26], [41], [42], [43], [44], and more recently
[45].
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Chapter 4

Supersymmetric States in Large N

Chern-Simons-Matter Theories

4.1 Introduction

The coupling constant of a four dimensional gauge theory coupled to matter generically

runs under the renormalization group. While it is sometimes possible to choose the matter

content and couplings of the theory so that the gauge β function vanishes, such choices are

very special. In three dimensions, on the other hand, gauge fields are naturally self coupled

by a Chern-Simons type action. As the coefficient of the Chern-Simons term in the action

is forced by gauge invariance to be integrally quantized, the low energy gauge coupling

(inverse of coefficient of the Chern-Simons term) cannot be continuously renormalized and

so does not run under the renormalization group. All these statements are for every choice

of matter content and couplings of the theory. As a consequence CFTs are much easier to

construct starting with Chern-Simons coupled gauge fields in d = 3 than with Yang Mills

coupled gauge fields in d = 4 [1, 2, 3, 4, 5].

Precisely because the coefficient, k, of the Chern Simons term is an integer, the Chern-

Simons coupling cannot be varied continuously. The set of Chern-Simons CFTs obtained,

by varying a given Lagrangian over the allowed values of k, yields a sequence rather than

a fixed line of CFTs. Consider, however an SU(N) Chern Simons theory at level k. Such

a theory admits a natural ’t Hooft limit in which we take N → ∞, k → ∞ with λ = N
k

held fixed. As explained by ’t Hooft, λ is the true loop counting parameter or coupling

constant in this limit. Several physical quantities - like the spectrum of operators with

finite scaling dimension- are smooth functions of λ. Now a unit change in k changes λ

by −λ2

N , a quantity that is infinitesimal in the large N limit. As a consequence, even

though k and N are both integers, λ is an effectively continuous parameter in the large

N limit. Effectively, the discretum of Chern-Simon-matter CFTs at finite N merges into

an effective fixed line of Chern-Simon-matter theories at large N , parameterized by the

effectively continuous variable λ.

79
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Lines of fixed points of large N CFTs map to families of theories of quantum gravity,

under the AdS/CFT correspondence [6]. CFTs at weak or finite ’t Hooft coupling λ are

generically expected to map to relatively complicated higher spin theories of gravity [7, 8, 9]

or string theories on AdS spaces of string scale radii. In many examples of explicit realization

of AdS/CFT, the bulk description simplifies in some manner at strong λ. It is then natural

to ask whether the large class of fixed lines of Chern-Simons-matter theories admit simple

dual descriptions at large λ [5]. The first explicit realization of the gravity dual of a large

N Chern-Simons-matter theory, as a critical string theory, was achieved by ABJM [10]. At

infinitely strong coupling the ABJM Chern-Simons-matter theory develops a supergravity

dual description, which is a considerable simplification over the highly curved stringy dual

description at finite coupling. A direct field theoretic hint for the nature of the dual of

ABJM theory [10] at strong coupling comes from the observation that the set of single trace

supersymmetric states in ABJM theory have spins ≤ 2 (and in fact match the spectrum of

supergravitons of IIA theory on AdS4 × CP 3).

While many examples of gravity duals of supersymmetric Chern-Simons-matter theories

have been proposed following the work of ABJM (see for instance [11, 12, 13, 14, 15,

16]), essentially all such proposals involve quiver type matter content in the field theory.

The gravity duals of seemingly simpler Chern-Simons-matter fixed points, both with and

without supersymmetry, remain unknown (and may well be most interesting in the non

supersymmetric context). On the other hand, it is of significant interest to find the CFT

duals of gravity theories in AdS4 with as few four-dimensional bulk fields (apart from gravity

itself) as possible, and one may hope that the Chern-Simons theories with simple matter

content are good candidates.

In order to maintain a degree of technical control, however, here we study only super-

symmetric theories with at least four supercharges. We will consider large N N = 2 and

N = 3 Chern Simons theories with a single U(N) gauge group and g adjoint chiral mul-

tiplets (for all integer g). Such theories have been studied perturbatively in [5, 17] (see

also [18]). We will study theories both with and without superpotentials. We address and

largely answer the following question: what is the spectrum of supersymmetric operators

as a function of the ’t Hooft coupling λ? In the rest of this introduction we elaborate on

our motivation for asking this question.

The results we find for the supersymmetric spectrum of several fixed lines is quite simple,

and has several intriguing features. As we describe in more detail below, an important

difference between some theories with N = 2 supersymmetry and theories with N = 3 and

higher supersymmetry is that the R-charge of the chiral multiplets of the N = 2 theories

(and hence the charges and dimensions of supersymmetric operators) may sometimes be

continuously renormalized as a function of λ [5] (and sometimes not [17]). Luckily, Jafferis

[19] has presented a proposal that effectively allows the computation of the R-charge as a

function of λ in many of these theories. We assume the correctness of Jafferis’ proposal and

proceed to use a combination of analytic and numerical techniques to present a complete
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qualitative picture of this R-charge as a function of λ and the number of chiral multiplets

g.

While we hope that our results will eventually inspire conjectures for relatively simple

large λ descriptions of some of the theories we study, in no case that we have studied

have our results proven familiar enough to already suggest a concrete conjecture for the

dual description of large λ dynamics. Of the supersymmetric spectra we encounter here,

the one that appears most familiar is the spectrum of the N = 3 theory with two chiral

multiplets. As we will describe later, this spectrum includes only states of spins ≤ 2, and

so might plausibly agree with the spectrum of some supergravity compactification: however

a detailed study of the spectrum as a function of global charges reveals some unexpected

features that has prevented us (as yet) from finding a supergravity compactification with

precisely this spectrum. The spectrum of supersymmetric states in N = 2 deformations of

the N = 3 theory also has similar features. We hope to return to an investigation into the

possible meanings of these spectra in the future.

Upon completion of this work, we received [20] which overlaps with section 4 of this

chapter.

4.2 N = 2, 3 superconformal algebras and their unitary rep-

resentations

In order to lay out the background (and notation) for our analysis of supersymmetric states,

in this section we present a brief review of the structure of the N = 2, 3 superconformal alge-

bras, their unitary representations and their Witten indices1. We also explicitly decompose

every representation of the relevant superconformal algebras into irreducible representations

of the conformal algebra. The paper [21] is useful background material for this section.

4.2.1 The superconformal algebras and their Witten indices

In this section we briefly review the representation theory of the N = 2 and N = 3

superconformal algebras. The bosonic subalgebras of these Lie super algebras is given by

SO(3, 2) × SO(2) (for N = 2) and SO(3, 2) × SO(3) (for N = 3). Primary states of these

algebras are labeled by (∆, j, h) where ∆ is the scaling dimension of the primaries, j is

its spin and h is its R-charge (or R symmetry highest weight). h can be any positive or

negative real number for N = 2, but is a positive half integer for N = 3.

The labels of unitary representations of the superconformal algebra obey the inequalities

forced by unitarity. When j 6= 0 the condition

∆ ≥ |h|+ j + 1

1This section was worked out in collaboration with Jyotirmoy Bhattacharya.
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is necessary and sufficient for unitarity. When j = 0 unitary representations occur when

∆ = |h|, (|h| ≥ 1

2
)

or when

∆ ≥ |h|+ 1

The representations saturating the above bounds are all short.

The Witten index Tr(−1)Fx∆+j vanishes on all long representations of the supersym-

metry algebra but is nonzero on short representations. This index captures information

about the state content of a conformal field theory. The only way that the Witten index of

a CFT can change under continuous variations of parameters (like the parameter λ in our

theory), is for the R-charge to be renormalized as a function of that parameter. Note that

the R-charge is fixed to be a half integer at N = 3, but can in principle be continuously

renormalized at N = 2.

In the case of N = 2 theories, we have glossed over a detail. At the purely algebraic

level, in this case, there are really two independent Witten indices; I+ and I−. These are

defined as

I+ = Tr(−1)FxH+Je−β(H−J−R)

and

I− = Tr(−1)FxH+Je−β(H−J+R)

respectively. We used the notation H for the dilatation operator, J the third component of

the spin, and R the R symmetry generator. The indices above are distinct, even though they

both evaluate to quantities independent of β. The first index receives contributions only

from states with ∆ = j+ h ; all such states are annihilated by and lie in the cohomology of

the supercharge with charges (12 ,−1
2 , 1). The second index receives contributions only from

states with ∆ = j − h; all such states are annihilated by and lie in the cohomology of the

supercharge with charges (12 ,
1
2 , 1). The existence of two algebraically independent Witten

Indices is less useful than it might, at first seem, in the study of quantum field theories, as

the two indices are closely linked by the requirement of CPT invariance.

4.2.2 State content of all unitary representations of the N = 2 supercon-

formal algebra

In the rest of this section we will list the conformal representation content of all unitary

representations of the superconformal algebra, and use our listing to compute the index of

all short representations of this algebra.

To start with, we present a group theoretic listing of the state content of an antisym-

metrized product of supersymmetries. This is given in Table (4.1).

The conformal primary content of a long representation of the superconformal algebra is

given by the Clebsh Gordon product of the state content of the product of susy generators
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Operator States

I (0, 0, 0)

Q (12 ,
1
2 , 1), (

1
2 ,

1
2 ,−1)

Q2 (1, 0, 2), (1, 0,−2), (1, 0, 0), (1, 1, 0)

Q3 (32 ,
1
2 , 1), (

3
2 ,

1
2 ,−1)

Q4 (2, 0, 0)

Table 4.1: A decomposition of the antisymmetrized products of supersymmetries into ir-
reducible representations of the maximal compact bosonic subgroup of the relevant super-
algebras. Representations are labeled by (∆, j, h) where ∆ is the scaling dimension, j the
angular momentum (a positive half integer) and h the R-charge of the representation. The
same labeling convention is used in all tables in this section.

Primary Conformal content Index

(∆, j, h) (∆, j, h), 0
(∆ + 1

2 , j +
1
2 , h+ 1), (∆ + 1

2 , j − 1
2 , h+ 1),

(∆ + 1
2 , j +

1
2 , h− 1), (∆ + 1

2 , j − 1
2 , h− 1),

(∆ + 1, j, h + 2), (∆ + 1, j, h − 2), (∆ + 1, j + 1, h),
2(∆ + 1, j, h), (∆ + 1, j − 1, h),

(∆ + 3
2 , j +

1
2 , h+ 1), (∆ + 3

2 , j − 1
2 , h+ 1),

(∆ + 3
2 , j +

1
2 , h− 1), (∆ + 3

2 , j − 1
2 , h− 1),

(∆ + 2, j, h)

(∆, 0, h) (∆, 0, h), 0
(∆ + 1

2 ,
1
2 , h+ 1), (∆ + 1

2 ,
1
2 , h− 1),

(∆ + 1, 0, h + 2), (∆ + 1, 0, h − 2), (∆ + 1, 1, h),
2(∆ + 1, 0, h), (∆ + 3

2 ,
1
2 , h+ 1),

(∆ + 3
2 ,

1
2 , h− 1), (∆ + 2, 0, h)

Table 4.2: Conformal primary content of long representations. Representations are labeled
by (∆, j, h) where ∆ is the scaling dimension, j the angular momentum (a positive half
integer) and h the R-charge of the representation.

above with that of the primary. We list the conformal primary content of an arbitrary long

representation in Table (4.2).

Note that a long representation of the susy algebra decomposes into 16 long representa-

tions of the conformal algebra when j 6= 0; when j = 0 we must delete the representations

with negative values for the SO(3) highest weight (j − 1
2 and j − 1) from the generic j

result leaving us with a total of 11 conformal representations. The Witten index of all long

representations automatically vanishes.

Let us now turn to the short representations. To start with consider representations

with h 6= 0, j 6= 0 and ∆ = |h|+ j+1. These representations are short because they include

a family of null states. These null states themselves transform in a short representation of

the superconformal algebra, with quantum numbers (|h| + j + 3
2 , j − 1

2 , h + 1) (when h is

positive) and (|h|+ j + 3
2 , j − 1

2 , h− 1) (when h is negative). It is not too difficult to verify

that the conformal primary content of such a short representation (represented by χS(j, h))

and the Witten index of these representations is as given in Table (4.3) (we list the result
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Primary Conformal content Indices (h > 0; h < 0)

(j + h+ 1, j, h) (j + h+ 1, j, h), I− = 0,

(j 6= 0, h 6= 0) (j + h+ 3
2 , j +

1
2 , h+ 1), (j + h+ 3

2 , j +
1
2 , h− 1), I+ = (−1)2j+1 x2j+h+2

1−x2 ;

(j + h+ 3
2 , j +

1
2 , h− 1), (j + h+ 2, j, h − 2), I+ = 0,

(j + h+ 2, j + 1, h), (j + h+ 2, j, h), I− = (−1)2j+1 x2j−h+2

1−x2

(j + h+ 5
2 , j +

1
2 , h− 1)

Table 4.3: Conformal primary content and index of generic short representation. Represen-
tations are labeled by (∆, j, h) where ∆ is the scaling dimension, j the angular momentum
(a positive half integer) and h the R-charge of the representation.

Primary Conformal content Index

(j + 1, j, 0) (j + 1, j, 0), I+= I−= (−1)2j+1 x2j+2

1−x2

(j + 3
2 , j +

1
2 , 1), (j +

3
2 , j +

1
2 ,−1),

(j + 2, j + 1, 0)

Table 4.4: Conformal primary content and index for (j + 1, j, 0) representation. Represen-
tations are labeled by (∆, j, h) where ∆ is the scaling dimension, j the angular momentum
(a positive half integer) and h the R-charge of the representation.

for positive h; the result for negative h follows from symmetry).2 Note that all 8 conformal

primaries that occur in this decomposition are long (recall we have assumed h 6= 0).

It is not difficult to verify that χL(h + j + 1, j, h) = χS(j, h) + χS(j − 1
2 , h + 1). This

expresses the fact that the state content of a long representation just above unitarity is

equal to the sum of the state content of the short representation it descends to plus the

state content of the short representation of null states.

Let us now turn to the special case of short representation (j + 1, j, 0). The null states

of this representation consist of a sum of two irreducible representations with quantum

numbers (j + 3
2 , j − 1

2 , 1) and (j − 3
2 , j − 1

2 ,−1). It is not too difficult to convince oneself

that the primary content of such a short representation is as given in Table (4.4). Note that

all 4 conformal representations that appear in this split are short.3 It may be verified4 that

χL(j + 1, j, 0) = χS(j + 1, j, 0) + χS(j +
3
2 , j − 1

2 , 1) + χS(j +
3
2 , j − 1

2 ,−1).

Let us next turn to the special case of a short representation with j = 0 and with

2The Witten index of these representations may be evaluated as follows. When h > 0 there are no states
with ∆ = j−h and so I− = 0. States with ∆ = j+h occur only in the representation (j+h+ 3

2
, j+ 1

2
, h+1)

and we find I+ = (−1)2j+1 x2j+h+2

1−x2 where we have used the spin statistics theorem to assert that the fermion

number of a primary of angular momentum j is (−1)2j . Similarly when h < 0 we have I+ = 0 and

I− = (−1)2j+1 x2j−h+2

1−x2 .
3The Witten index of these representations may be evaluated as follows. States with ∆ = j + h occur

only in the representation (j + 3
2
, j + 1

2
, 1) while states with ∆ = j − h occur only in the representation

(j + 3
2
, j + 1

2
,−1). The Witten indices of this representation are given by I+ = I− = (−1)2j+1 x2j+2

1−x2 .
4In order to perform this verification, it is important to recall that χL(j + 1, j, 0) is the sum of 16 long

characters of the conformal group, 4 of which are at the unitarity threshold. Equivalently we may write this
as the sum of 12 + 4 = 16 long conformal characters and 4 short conformal characters (where we have used
the fact that a long conformal character, at its unitarity bound, decomposes into the sum of a short and a
long character). The 4 short characters in this decomposition simply yield χS(j + 1, j, 0) above, while the
16 long characters constitute χS(j +

3
2
, j − 1

2
, 1) + χS(j +

3
2
, j − 1

2
, 1).
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Primary Conformal content Index(h > 0; h < 0)

(h+ 1, 0, h) (h+ 1, 0, h), I− = 0, I+ = − xh+2

1−x2 ;

(h+ 3
2 ,

1
2 , h+ 1), (h+ 3

2 ,
1
2 , h− 1),

(h+ 2, 0, h − 2), (h+ 2, 1, h), (h+ 2, 0, h), I+ = 0, I− = −x−h+2

1−x2

(h+ 5
2 ,

1
2 , h− 1)

Table 4.5: Conformal content and index of representation (h+1, 0, h). Representations are
labeled by (∆, j, h) where ∆ is the scaling dimension, j the angular momentum (a positive
half integer) and h the R-charge of the representation.

Primary Conformal content Index

(1, 0, 0) (1, 0, 0) I+ = I− = − x2

1−x2

(32 ,
1
2 , 1), (

3
2 ,

1
2 ,−1)

(2, 0, 0), (2, 1, 0)

Table 4.6: Conformal content and index for representation (1, 0, 0). Representations are
labeled by (∆, j, h) where ∆ is the scaling dimension, j the angular momentum (a positive
half integer) and h the R-charge of the representation.

quantum numbers (h + 1, 0, h). Such representations are often referred to as semi short,

to distinguish them from the ‘short’ j = 0 representations we will deal with next. We will

deal with the case h > 0 (the results for h < 0 can then be deduced from symmetry). The

primary for the null states of this representation has quantum numbers (h + 2, 0, h + 2).

Note that the null states transform in an isolated short representation. The state content

and Witten index of a semishort j = 0 representation are listed in Table (4.5). Note that

χL(h + 1, 0, h) = χS(h + 1, 0, h) + χS(h + 2, 0, h + 2); this formula captures the split of a

long representation into the short representation and null states.

The short representation with primary labels (1, 0, 0) is a bit special; its null states have

primaries with quantum numbers (2, 0, 2) and (2, 0,−2) (these are isolated short represen-

tations, see below). The state content and Witten index of this representation are given in

Table (4.6). Of the 5 conformal primaries that appear in this split, only the representation

with quantum numbers (2, 1, 0) is short.5 Using the results we present below, it is possible

to verify the character decomposition rule:6

χL(1, 0, 0) = χS(1, 0, 0) + χS(2, 0, 2) + χS(2, 0,−2).

Now let us turn to the isolated short representations (h, 0, h) for |h| ≥ 1. The primaries

for the null states of these representations have quantum numbers (h+ 1
2 ,

1
2 , h+1). The null

states transform in a (short) non-unitary representation, reflecting the fact that the isolated

5The conformal representation (1, 0, 0) and ( 3
2
, 1
2
,±1) are not short as spin 0 and spin 1

2
are exceptions

to the general rule.
6The character on the LHS is a sum of 10 long conformal representations or 11 = 5 + 3 + 3 short

conformal representations (the extra representation is the conformal shortening vector of (2, 1, 0) and is
given by (3, 0, 0)). States with ∆ = j + h occur only in the representation ( 3

2
, 1
2
, 1) while states with

∆ = j − h occur only in the representation ( 3
2
, 1
2
,−1).
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Primary Conformal content Index(h > 0; h < 0)

(h, 0, h) (h, 0, h), I− = 0, I+ = xh

1−x2 ;

(h+ 1
2 ,

1
2 , h− 1), I+ = 0, I− = x−h

1−x2

(h+ 1, 0, h − 2)

Table 4.7: Conformal content and index for representation (h, 0, h).

Primary Conformal content Index

(12 , 0,
1
2) (12 , 0,

1
2), I− = 0, I+ = x

1
2

1−x2

(1, 12 ,−1
2)

(12 , 0,−1
2 ) (12 , 0,−1

2 ) I+ = 0, I− = x
1
2

1−x2

(1, 12 ,
1
2)

Table 4.8: Conformal content and index for representations (12 , 0,
1
2) and (12 , 0,−1

2 )

representations cannot be regarded as a limit of unitary long representations but can be

regarded as the limit of non-unitary long reps. The conformal primary content and Witten

indices for these representations are given in Table (4.7). Here we have written conformal

content for h positive; the result for negative h is given by symmetry. Recall that h ≥ 1
2 for

the representations we have just discussed. The lower bound of this inequality, h = 1
2 , is a

special case. The conformal decomposition and index for the h = 1
2 and −1

2 cases are given

in Table (4.8).

4.2.3 Decomposition of all unitary representations of the N = 3 algebra

into N = 2 representations

In this subsection we record the decomposition of all N = 3 representations into N = 2

representations. Representations of the N = 3 algebra are labeled as (∆, j, h), where h is

the highest weight under the Cartan of the SO(3) R symmetry (normalized to be a half

integer). A generic N = 3 long representation with j 6= 0 breaks as follows

(∆, j, h)3 =
h
⊕

m=−h

[

(∆, j,m)2⊕(∆+
1

2
, j+

1

2
,m)2⊕(∆+

1

2
, j− 1

2
,m)2⊕(∆+1, j,m)2

]

. (4.1)

where ⊕ denotes a direct sum and
⊕h

m=−h denotes the direct sum of representations.

Here the subscript denotes N of the algebra; i.e. ()3 denotes a representation of the

N = 3 algebra, while ()2 denotes a representation of the N = 2 algebra.

The summation outside the brackets on the RHS of (4.1) reflects the fact that a primary

that transforms in a given irreducible SO(3) (R symmetry in N = 3 algebra) representation

consists of several different SO(2) primaries (with distinct R-charges). The four terms in

the bracket on the RHS of (4.1) represent the states obtained by acting on the N = 3

primary with supercharges that belong to the N = 3 algebra, but are absent in the N = 2

algebra.
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Spin j N = 3 primary N = 2 primaries

j 6= 0 (j + h+ 1, j, h)
⊕h

m=−h

[

(j + h+ 1, j,m)⊕

(j + h+ 3
2 , j +

1
2 ,m)

]

Generic short (h+ 1, 0, h)
⊕h

m=−h

[

(h+ 1, 0,m) ⊕ (h+ 3
2 ,

1
2 ,m)

]

j = 0 ⊕⊕h+2
m=−(h+2)(h+ 2, 0,m)

Isolated short (h, 0, h)
⊕h

m=−h(h, 0,m)
j = 0

Table 4.9: Decomposition of short N = 3 representations into N = 2 representations.

The decomposition (4.1) may be rewritten as follows:

(j + h+ 1 + ǫ, j, h)3 =

h
⊕

m=−h

[

(j + h+ 1 + ǫ, j,m)2 ⊕ (j + h+
3

2
+ ǫ, j +

1

2
,m)2

]

⊕
h+1
⊕

m=−(h+1)

[

(j + h+
3

2
+ ǫ, j − 1

2
,m)2 ⊕ (j + h+ 2 + ǫ, j,m)2

]

. (4.2)

In this equation we have grouped together terms on the RHS for the following reason. Recall

that the decomposition of a long representation - with j 6= 0 - at the unitarity bound, into

short unitary representations of the superconformal algebra, is given both at N = 3 and at

N = 2 by

(j + h+ 1 + ǫ, j, h) −→ǫ→0 (j + h+ 1, j, h) ⊕ (j + h+
3

2
, j − 1

2
, h+ 1) (4.3)

This formula should apply to (4.2). Comparing (4.3) and (4.2), it is plausible (and cor-

rect) that the generic short N = 3 representation decomposes into N = 2 representations

according to the formula

(j + h+ 1, j, h)3 =
h
⊕

m=−h

[

(j + h+ 1, j,m)2 ⊕ (j + h+
3

2
, j +

1

2
,m)2

]

(4.4)

where all representations that saturate the unitarity bound, on the RHS of (4.4), are short.

We may deduce the split of other short N = 3 representations into representations of

the N = 2 algebra using identical reasoning. The result is given in Table (4.9).
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4.3 The R-charge as a function of λ in the absence of a su-

perpotential

The first class of theories we consider consists of N = 2 U(N) Chern Simons theories at

level k, coupled to g adjoint chiral multiplets with vanishing superpotential. This class of

theories was studied, and demonstrated to be superconformal (for all N , k and g) in [5]. In

particular, it is superconformal at every value of λ, in the large N limit.

In the free limit the R-charge of the chiral fields in this theory equals 1
2 . However, it

was demonstrated in [5] that this R-charge is renormalized as a function of λ; indeed at

first nontrivial order in perturbation theory [5] demonstrated that the R-charge of a chiral

field is given by

h(λ) =
1

2
− (g + 1)λ2 (4.5)

where λ = N
k . As the R-charge of a supersymmetric operator plays a key role in determining

its scaling dimension (via the BPS formula), the exact characterization of the spectrum of

supersymmetric states in this theory at large λ clearly requires control over the function

h(λ) at large λ. Such control cannot be achieved by perturbative techniques, but is relatively

easily obtained by an application of the extremely powerful recent results of Jafferis [19]

to this problem. In this section we will adopt a proposal by Jafferis [19] to perform this

determination.

4.3.1 The large N saddle point equations

According to the prescription of [19], the superconformal R-charge of the theories we study

is determined by extremizing the magnitude of their partition function on S3 with respect to

the trial R-charge,7 h, assigned to a chiral multiplet. The partition function itself is deter-

mined by the method of supersymmetric localization to be given by the finite dimensional

integral

Z(h) =

∫ N
∏

i=1

dui exp







N2





iπ

λ

1

N

∑

i

u2i +
1

N2

∑

i 6=j

log sinh (πuij) +
g

N2

∑

i,j

ℓ(1− h+ iuij)











(4.6)

where λ = N/k is the ’t Hooft coupling, ui (i = 1 . . . N) are real numbers (and the inte-

gration range is from −∞ to ∞), uij ≡ ui − uj, and the function ℓ(z) satisfies ∂zℓ(z) =

−πz cot(πz).
According to [19], once the partition function Z is obtained by performing the integral

in (4.6), the R-charge of the chiral fields is determined (up to caveats we will revisit below)

by solving the equation ∂h|Z(h)|2 = 0. This gives the exact superconformal R-charge.

7More precisely, as shown in [19], a supersymmetric theory on S3 can be defined with an arbitrary choice
of R-charge h, and the partition function of this theory on S3 is Z(h). The superconformal R-charge is such
that |Z(h)|2 is minimized.
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In the large N limit the integral in (4.6) may be determined by saddle point techniques.

The saddle point equations, together with the equation ∂h|Z(h)|2 = 0 (which determines h,

given the saddle point) are given by

0 =
iuk
λ

+
1

N

N
∑

j(6=k)

{

coth (πukj)−
i

2
g

[

(1− h+ iukj) cot π(1− h+ iukj) (4.7)

−(1− h− iukj) cot π(1− h− iukj)

]}

,

0 = Re





N
∑

i,j=1

(1− h+ iuij) cot π(1− h+ iuij)



 . (4.8)

4.3.2 Perturbative solution at small λ

While we have been unable to solve the equations (4.7) in general even at large N , it is not

difficult to solve these equations either at small λ (at all g) or at large g (for all λ). In this

subsection we describe the perturbative solution to these equations at small λ (for all g).

In the next subsection we will outline the perturbative procedure that determines h(λ) at

all λ but large g.

It is apparent from a cursory inspection of (4.7) that the eigenvalues ui must become

small in magnitude (in fact must scale like
√
λ) at small λ. It follows that complicated

functions of u simplify to their Taylor series expansion in a power expansion in λ. This is

the basis of the perturbative technique described in this subsection.

More quantitatively, at small λ we expand ui and h as

uk =
√
λ
(

u
(0)
k + λu

(1)
k + · · ·

)

, (4.9)

h = h(0) + λh(1) + λ2h(2) + · · · , (4.10)

and attempt to solve our equations order by order in λ. At leading nontrivial order, O(λ0),

equation (4.8) reduces to h(0) = 1
2 . On the other hand, equation (4.7) at its leading

nontrivial order, namely O( 1√
λ
), reduces to

iu
(0)
i = − 1

π

1

N

∑

j(6=i)

1

u
(0)
i − u

(0)
j

. (4.11)

Apart from an unusual factor of i, this is precisely the large N saddle point equations of

the Wigner model. The extra factor of i may be dealt with by working with the rescaled

variable

yj = e−
πi
4 uj

in terms of which

y
(0)
i =

1

π

1

N

∑

j(6=i)

1

y
(0)
i − y

(0)
j

. (4.12)
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The solution to this equation is well known in the large N limit. The eigenvalues y
(0)
i cluster

themselves into a “cut” along the interval (−a, a) with

a =

√

2

π
.

The density of eigenvalues, ρ(y) =
∑N

i=1 δ(y − yii), in this interval is given by

ρ(y) =
2

πa2

√

a2 − y2. (4.13)

Using the fact that u ≈ e
πi
4

√
λy, we see that, at leading order in λ, the saddle point is given

by the eigenvalues ui clustering along a straight line of length of order
√
λ, oriented at 45

degrees in the complex plane.

Note that the distribution of eigenvalues has u → −u symmetry and in particular the

average value of eigenvalues is zero. The u → −u symmetry is an exact symmetry of

the saddle point equations, and we assume that it is preserved in the solution (i.e. not

spontaneously broken).

Let us now proceed beyond the leading order. (4.8) is automatically satisfied at O(
√
λ)

(this is because Im
[

∑

i 6=j(u
(0)
i − u

(0)
j )
]

= 0). At order λ the same equation reduces to

h(1) = −2Re





1

N2

∑

i 6=j

(u
(0)
i − u

(0)
j )2



 (4.14)

Now recall that the phase of ui is e
πi
4 . As a consequence the real part vanishes and hence,

from (4.14), h(1) = 0.

In order to compute the correction to h(λ) at O(λ2) we need to find the first correction

u1i to the eigenvalue distribution. At order O(λ0), by using (4.11) and
∑

j uj = 0, (4.7)

reduces to
1

πN

∑

j(6=k)

1

(u
(0)
k − u

(0)
j )2

u
(1)
j =

π

6
(3g − 2)u

(0)
k . (4.15)

In order to solve this equation we once again move to the “real” variable y. That is we

define u
(0)
j = e

πi
4 yj as above. Let us also define u

(1)
j = e

πi
4 vj(yj). In the large N limit u

(0)
i

is effectively a continuous variable on the 45 degree cut on the complex plane, and

u(1) = e
πi
4 v(y)

for a continuous function v(y) that we now determine. The equation for v(y) is given by

1

π
P
∫

v(y)ρ(y)

(y1 − y)2
dy =

iπ

6
(3g − 2)y1. (4.16)
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Integrating both sides of this equation with respect to y1 we find

P
∫

v(y)ρ(y)

(y1 − y)
dy = − iπ

2

12
(3g − 2)y21 + k1, (4.17)

where k1 is the constant of integration.

We can solve this integral equation by a similar trick as before. Either by this method

or by directly solving for the coefficients for a polynomial ansatz for v(y), we get 8

v(y) = − iπ
12

(3g − 2)y. (4.18)

With the first nontrivial correction to the eigenvalue distribution in hand, it is now a

simple matter to compute the shift in the scaling dimension h(λ) at leading order nontrivial

order in λ. (4.8) is automatically obeyed at O(λ
3
2 ). However at O(λ2), the same equation

yields

Re





∑

k 6=j

−2π3(u
(0)
i − u

(0)
j )4 + 3π

(

4(u
(0)
i − u

(0)
j )(u

(1)
i − u

(1)
j ) + h(2)

)



 = 0 (4.19)

In other words

3h(2) =Re

[∫

dy1dy2ρ(y1)ρ(y2)
{

−2π2(y1 − y2)
4 − 12i(y1 − y2)(v(y1)− v(y2))

}

]

=Re
[

−2π2
(

2〈y4〉+ 6〈y2〉2
)

− 24i〈y v(y)〉
]

(4.20)

where we have defined

〈O(y)〉 ≡
∫

O(y)ρ(y)dy.

Evaluating the integrals we find

h(2) = −(1 + g) (4.21)

This exactly matches the explicit perturbative result of Gaiotto and Yin [5]. Similar agree-

ment was also found with [26].

The method presented here is easily iterated to higher orders in λ. We have explicitly

implemented this perturbative procedure to a few orders in perturbation theory. At g = 1

we find

h =
1

2
− 2λ2 +

13π2

3
λ4 −

(

207π4

10
− 32π2

)

λ6 +

(

339019π6

2520
− 3355π4

9
+

160π2

3

)

λ8 + · · ·
(4.22)

8This correction to the eigenvalue distribution tilts the eigenvalue cut - originally at 45 degrees in the
complex plane - a little nearer to the real axis.
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while for general g we have

h =
1

2
− (1 + g)λ2 +

1

12
(1 + g)

[

−24(−1 + g) + π2(3g2 + 15g + 8)
]

λ4

+

[

− 8− 25
π2

3
− 61π4

60
+ g(−4π2

3
− 637π4

120
) + g2(8 +

64π2

3
− 395π4

48
)

+g3(
52π2

3
− 239π4

48
) + g4(3π2 − 53π4

48
)− g5

π4

16

]

λ6 + · · ·

4.3.3 Perturbative solution at large g

As we have described in the previous subsection, in the limit of small ’t Hooft coupling the

solution to the saddle point equation, (4.7), is obtained by balancing the first term (large

because of the inverse power of λ) against the second (large because of the singularity at

small u), and treating the third term as a perturbation.

Let us now consider another limit; one in which the number of flavours g becomes large,

without making any assumptions on λ. In this case the small u singularity of the second

term in (4.7) balances against either the largeness of g (in the third term) or the smallness

of λ (in the first term). The important point is that u is necessarily small for this balance

to work, so perturbative techniques apply. The most interesting regime is one in which

λ = O(1/g). The perturbative procedure proceeds exactly as in the previous subsection.

We get, at leading order

h(λ) =
1

2
− gπ2
(

gπ2

2

)2
+
(

π
λ

)2
+ higher order. (4.23)

4.3.4 Numerical study of R-charge for small g and large λ

In the previous subsections we used perturbative techniques to establish the following. The

function h(λ) starts out at the value 1
2 at λ = 0. It always decreases at small λ; at leading

order h(λ) = 1
2 − (g+1)λ2. What happens at larger values of λ ? This question turned out

to be easy to answer at large g. In this limit the decrease of h(λ) as a function of λ stops

at λ ∼ 1
g , after which h(λ) settles down at its asymptotic value

h(λ) =
1

2
− 4

π2g
+O(

1

g2
). (4.24)

Neither of the analyses we have performed, however, reliably predict the behaviour of

h(λ) at large λ when g is of order unity. An unjustified extrapolation of (4.24) suggests

that h(λ) always monotonically decreases, asymptoting to a constant value at λ = ∞. In

order to check whether all this is really the case we have numerically solved a discretized

version of the saddle point equations with Ne eigenvalues using Mathematica. 9

9In the rest of this chapter Ne denotes the number of eigenvalues used for the purposes of discretized
numerics. Ne is a composite symbol - (it is not equal to product of N with e).
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Figure 4.1: h vs. λ for g = 3, Ne = 20 and Ne = 30. In the figure on the left, λ varies from
0 to 2. In the figure on the right λ varies from 2 to 7. Note that h(λ) scale is different in the
two figures. R-charge saturates to around 0.354. While we have not performed a serious
error estimate, it seems unlikely to us that the error in this asymptote value exceeds ±0.01.
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Figure 4.2: h vs. λ for g = 2, Ne = 20 and Ne = 30. In the figure on the left, λ varies from
0 to 2. In the figure on the right λ varies from 2 to 7. Note that h(λ) scale is different in
the two figures. R-charge saturates to around 0.274.While we have not performed a serious
error estimate, it seems unlikely to us that the error in this asymptote value exceeds ±0.01.

At g = 3 the function is as given by the graph in Fig. 4.1. Note that h(λ) asymptotes

to almost a constant value by λ = 2, and varies only slightly in the λ range 2 to 7 (this

constant is approximately 0.354).

At g = 2 we find the function h(λ) given by Fig. 4.2. Note that h(λ) asymptotes

to almost a constant value by λ = 2, and varies only slightly in the λ range 2 to 7 (the

asymptote value is approximately 0.274).10

As is apparent, in both these cases the function h(λ) displays the qualitative behaviour

predicted by the large g formula (4.23); h(λ) monotonically decreases from h = 1
2 at λ = 0 to

a finite value of h (greater than 1
4) at λ = ∞. Notice that at g = 3, 1

2 − h(∞) = 1
2 − .354 ≈

0.146. This shift from 1
2 agrees to 10 percent with the first order prediction of large g

perturbation theory (4.24), 4
3π2 = 0.135. At g = 2, 1 − h(∞) = 1

2 − .274 = 0.226 which

10For both g = 2 and g = 3, we have also computed h(∞) directly both at Ne = 20 and at Ne = 30 simply
by setting λ = ∞ in equations (4.7) and (4.8). In order to do this in practice we used our λ = 7 results for
the eigenvalues as a trial guess in Mathematica’s equation solver routine. From this direct analysis we once
again found h(∞) = 0.354 for g = 3 and h(∞) = 0.273 for g = 2.
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Figure 4.3: h vs. λ for g = 3 and Ne = 30. The blue line is large g perturbation theory
prediction. R-charge saturates to around 0.354. While we have not performed a serious
error estimate, it seems unlikely to us that the error in this asymptote value exceeds ±0.01.
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Figure 4.4: h vs. λ for g = 1. Blue line is best fit of the data points to the form α
β+λ . The

red curve is 1
2(1+λ) .

agrees to 12 percent with the first order prediction of large g perturbation theory (4.24),
4

2π2 = 0.203. It thus appears that, even quantitatively, the results of large g perturbation

theory are not too far off the mark from the correct answer all the way down to g = 2. In

order to see this more clearly, in Fig 4.3 we replot our results for h(λ) versus λ at g = 3 and

compare with the predictions of large g perturbation theory at first order in the perturbative

expansion. Note the semi quantitative agreement between the curves.

On the other hand our numerical result for the function h(λ) at g = 1 is presented

in Fig. 4.4 for λ ∈ (0, 10) 11 At every λ we have solved the saddle point equations at

Ne = 20, 30, . . . 100 and bestfitted our results to the form

h(λ) +
b(λ)

c2(λ) + (Ne)2
. (4.25)

In the plot in Fig. 4.4 the data points represent the values of h(λ) (obtained out of this

11It would of course be possible to obtain data at larger values of λ as well. However this process becomes
computationally increasingly expensive, as 1

Ne
errors appear to increase upon increasing λ. In order to

generate reliable data at larger and larger λ requires solving the equations at larger and larger Ne.
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Figure 4.5: Eigenvalue distribution for Ne=90 at λ = 11.

best fit procedure) versus λ. We have also done a very crude estimate of the likely magnitude

of the error in h(λ); we estimate that this error is not larger than a few (conservatively, say,

5) percent.

In Fig. 4.4 we have also presented two curves. The blue (upper) curve represents the

bestfit of h(λ) versus λ to the form h(λ) = α
β+λ . The bestfit values turn out to be α = 0.495

and β = 0.841. The red (lower) curve in Fig. 4.4 is simply a graph of the function

f(λ) = 1
2(λ+1) . Notice that our data (the blue curve) always lies above the red curve, but

appears to asymptote rather accurately to the later at large λ. As will be explained later,

the red curve is a theoretical lower bound for h(λ). Based on our data we conjectrure

that h(λ) asymptotes to from above to the curve 1
2(λ+1) at large λ. It would be interesting

(and may be possible) to establish this fact by a direct analytic study of the saddle point

equations at large λ; however we leave this exercise for future work.

As we have explained above, in order to obtain h(λ) above we have to solve a saddle

point eigenvalue equation. In Fig 4.5 we present a scatter plot of the saddle point value

of the eigenvalues at λ = 11 and Ne = 90. Note that the eigenvalues appear to orient

themselves along a curve that does not deviate too far from a straight line (in the complex

plane). The magnitude of this ‘cut’ is approximately 0.7469 and its angle with the real axis

in the complex plane is approximately 39.69 degrees.

To study the variation of eigenvalue distribution with λ we plot the length and angle

of the eigenvalue distribution for Ne = 50 from λ=1 to 10 in Fig. 4.6. These plot show

that the length of the eigenvalue distribution first increases with increasing λ (we know

from small λ perturbation theory that this length scales like
√
λ at extremely small λ) but

then reaches a maximum at λ somewhere between 5 and 6, and then decreases again. On

the other hand the angle made by the cut continues to decrease upon increasing λ (see the

second graph in 4.6. It would be interesting to continue this analysis to larger λ, but we

leave that for future work.

We now proceed to explain the siginificance of our results for h(λ) at g = 1. The

supersymmetric states in the g = 1 theory must of course include the states in the chiral

ring Trφn for all n where φ is the scalar component of the chiral field. The scaling dimension
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Figure 4.6: Variation of size and angle(with real axis) of eigenvalue distribution for Ne=50
from λ=1 to 10.

of these chiral ring operators is given by nh(λ). Unitarity, however, requires that every scalar

operator in any 3 d CFT has scaling dimension ≥ 1
2 , and that an operator with dimension

1
2 is necessarily free (i.e. decoupled from the rest of the theory). As we have seen, h(λ)

decreases monotonically to zero as λ is increased. Let λfn denote the unique solution to the

equation

h(λfn) =
1

2n
.

For λ > λfn, the scaling dimension of Trφn descends below its unitarity bound 1
2 . (For later

use we will also find it useful to define

h(λmn ) =
2

n
.

λmn is the value of the coupling at which a superpotential deformation by TrΦn becomes

marginal. Note that λmn < λfn.) It follows from unitarity that our theory must either cease

to exist 12 or must undergo a phase transition at a critical value, λ = λc ≤ λf2 . While

many possibilities are logically open, one attractive scenario (which is close to the scenario

suggested in [18]) is the following. As λ is increased past λf2 then Trφ2 becomes free and

decouples from the theory. As λ is further increased past λf3 then Trφ3 also becomes free

and decouples. This process continues ad infinitum, leading to an infinite number of phase

transitions.

The picture oulined above for the g = 1 theory, namely that each of the Trφn+1 decouple

at successively larger values of n can be subjected to a consistency check. It was demon-

strated in [18], using brane constructions, that the deformation of the zero superpotential

system by the operator Trφn+1 breaks supersymmetry precisely at λ = n (and in particular

susy is not broken at smaller values of λ). However the deformation of a superpotential

by a free field always breaks supersymmetry. Consistency with the scenario outlined above

12However Niarchos’s study of this theory in [18] makes this possibility unlikely
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therefore requires that λfn > n− 1. In other words

h(λ) ≥ 1

2(λ+ 1)
.

Our data seems consistent with this bound, and as mentioned before, suggests (and we

conjecture that) h(λ) asymptotes to 1
2(λ+1) from above. It would be very interesting to

establish this conjecture by analytic methods, but we leave that for future work.

If this picture outlined in the last two paragraphs is correct, then, in the limit λ→ ∞ we

have an effective continuum of chiral primaries, with scaling dimension ≥ 1
2 (all primaries

with lower dimension have decoupled). This suggests that the large λ behavior of this

theory is intriguing, and possibly singular.13

4.4 Supersymmetric states of a theory with a single adjoint

in the absence of a superpotential

In the last section, we presented the qualitative picture of the R charge h(λ) for all λ, g.

Given the function h(λ), it is not difficult to evaluate the superconformal index [21] of these

theories as a function of h(λ). As was already noted in [21], this index demonstrates that

the spectrum of supersymmetric single trace operators grows exponentially with energy for

g ≥ 3. In the absence of a superpotential, by computing a slightly more refined Witten

index , the exponential growth of the operators can be shown to persist even for g = 2

theories as will be shown in §4.6. This immediately suggests that the simplest possible dual

description for all theories with g ≥ 3 (and the theory without a superpotential at g = 2)

is a string theory, with an exponential growth in supersymmetric string oscillator states.

We now turn to a detailed investigation of the theory with g = 1 and no superpotential.

4.4.1 Superconformal index

The free theory

We begin by analyzing the index of the free theory of a single N = 2 U(N) adjoint chiral

multiplet Φ (the U(N) is gauged), in the large N limit. Let the generator of the global

flavour symmetry of this theory - corresponding to the rephasing of Φ - be denoted by G.

G is normalized so that the field φ has charge 1
2 under G. In this case the refined Witten

index

I+ = Tr
[

(−1)FxH+Je−β(H−J−R)yG
]

(4.26)

is easily computed in the free theory. The letter index relevant to this computation is

IL =
x

1
2 y

1
2 − x

3
2 y−

1
2

1− x2
.

13Note, on the other hand, that when g ≥ 2, h(λ) > 1
4
for all λ. The large λ behaviour for these theories

shows no hint of any singular behaviour.
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Note that the two supersymmetric letters in the basic multiplet are φ and ψ̄+(from now on

denoted as ψ̄) and that the flavour charge of ψ̄ is opposite to that of φ. It follows that the

refined index is given by

I+ =
∞
∏

n=1

1− x2n

(1− x
n
2 y

n
2 )(1 + x

3n
2 y−

n
2 )
. (4.27)

It is possible to rewrite this index in terms of an index over single trace primaries as

I+ = exp

[ ∞
∑

n=1

Ist(xn, yn)
n(1− x2n)

]

, (4.28)

where Ist is found to be 14

Ist = (xy)
1
2 + xy + (xy)

3
2 − x

3
2 y−

1
2 +

1

1− (xy)3

[

(xy)2 − x2 + (xy)
5
2 − x

5
2 y

1
2 + (xy)3 − x3y

+ (xy)
7
2 − x

7
2 y

3
2 + (xy)4 − x4y2 + (xy)

9
2 − x

9
2 y

5
2

]

+
1

1− x3y−1

(

x
7
2 y−

1
2 − x

9
2 y−

3
2

)

.

(4.29)

Note that (4.29) receives contributions from (effectively) either two or three states at each

energy level15. At every energy level we see the contribution of the chiral ring (in the form

of (xy)E for every E). At every level we also, however, see the contribution of either one or

two additional “particles”.

The large N theory at finite ’t Hooft coupling

Now consider the N = 2 U(N) CS theory at level k with one adjoint matter field and

no superpotential, in the ’t Hooft limit. As we have seen previously, the R-charge of this

theory is renormalized as a function of λ. The renormalization of the R-charge is, really,

more accurately a mixing of the R-charge and the flavour charge; the extent of this mixing

varies with λ.

The effect of this mixing on the superconformal index may be dealt with very simply.

If we perform the replacement

y → yx2h(λ)−1

on all the formulas for the (gauged) free theory in the previous subsubsection, then they

apply to the interacting theory at arbitrary λ (and infinite N).

14Similar techniques were used to compute the Index of N = 4 Yang Mills theory in [27], ABJM theory
in [21], and the partition function of free gauge theories in, for instance, [28]

15Note that (4.29) reduces to (4.30) below upon setting y = 1.
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4.4.2 Conjecture for the supersymmetric spectrum at all couplings

In this section we (conjecturally) enumerate all single trace primary operators that are

annihilated by the supercharge Q that was preserved in the superconformal index. This

will allow us to enumerate the full single trace supersymmetric operator spectrum of our

theory. We perform our enumeration of operators in the classical (though nonlinear) theory;

and assume without proof that the same result continues to hold in the full quantum theory.

We initially ignore the effect of the renormalization of R-charge in this theory as a function

of coupling; as in the previous section, it will prove extremely easy to insert this effect into

our final answer right at the end.16

We now describe the procedure we will use for the enumeration in this subsection in

more detail. Every supersymmetric operator of the sort we seek must be built out of φ, ψ̄+

and D++ where φ and ψ̄+ both have R-charge 1
2 and the + subscript denotes SO(3) charge

(these are the only letters with ∆ = h+ j). As we have explained above, the letters φ and

ψ̄+ have flavour charge ±1
2 respectively.

In the free theory any operator constructed out of these elements is annihilated by our

special supercharge Q (with R-charge unity and SO(3) charge −1
2). In the interacting

theory, on the other hand, while it continues to be true that [Q,φ] = {Q, ψ̄} = 0 we now

have

[Q,D++O] ∼ [[φ, ψ̄+], O]

As illustrated by this equation, the derivative D carries the same x and y charges as the

combination of letters φψ̄+. Consequently a given term in the index counts an infinite

number of distinct possible operator structures. For instance, at order x5y the cohomology

potentially has operators of the form Tr (φ4ψ̄2), Tr (φ3Dψ̄) and Tr (φD2φ). In any given

charge sector we refer to the number of derivatives in the operator as its level. As we see

from the equation above, the operator Q preserves charge but maps states of level l to states

of level l − 1. At any given fixed value of the charge let the number of states in the free

theory at level l be n(l). Let the number of states in the kernel of the action of Q (those

that are annihilated by Q) at level l be denoted by c(l). It follows that the number of states

in Q cohomology at level l is given by c(l)− (n(l+1)− c(l+1)) (because n(l+1)− c(l+1)

gives the number of exact states at level l).

The precise value of this cohomology, as defined above, contains some redundant in-

formation. This is because a total D++ derivative (outside the trace) of any member of

cohomology obviously itself belongs to the cohomology. Such descendant elements of coho-

16The reason that the index is insufficient to completely characterize the supersymmetric spectrum is
that it is blind to Bose-Fermi pairs of supersymmetric states, whose contribution to the index cancel. The
reader may feel that such conspiratorial cancellations are unlikely, but that is far from the truth. In fact it
is immediately clear on general grounds that our result for the index in the previous section must include
some important cancellations. In order to see this recall that the R current and stress tensor appear in
the supersymmetry multiplet with quantum numbers (∆ = 2, J = 1, R = 0, G = 0). It follows that the
contribution of this multiplet to the index is −x4y0 : however such a term is absent in (4.29). It must be
that the full susy spectrum of the theory includes a bosonic state whose contribution to the index cancels
that of the stress tensor multiplet. Below we will see in some detail how this works.
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mology are trivial (they do not map to new particles under the AdS/CFT map) and should

be removed from the analysis. This is easy to do in a self consistent manner.

We have written a Mathematica routine that computes the numbers c(l) and n(l) and

hence the cohomology at low orders. Our routine then proceeds to eliminate descendant.

All the results we have obtained so far are consistent with the following conjectures for the

structure of primary states in cohomology:

• The cohomology (obviously) contains only states with x and y quantum numbers of

Tr (φmψ̄n) for positive m and n.

• We conjecture that, at level zero, all such charges admit a unique (conformal primary)

state in cohomology unless m = 0 and n is even. This state in cohomology may be

thought of as the trace of the completely symmetric combination of ψ̄ and φ. The

exception (m = 0 and n even) is a consequence of the fact that Tr ψ̄2k vanishes because

of the fermionic nature of ψ̄.

• We conjecture that, at level one, there also always exists a unique (conformal primary)

state in the cohomology subject to the following exceptions. There are no states at

level one when n = 0 or when n = 1.17 There are also no level one states when m = 0

or when m = 1 and n is even.18

• We conjecture that the cohomology has no (conformal primary) states at levels higher

than one.

• That our conjecture is consistent with the index listed above as may be seen as follows.

A pair of a level zero and level one state gives a vanishing contribution to the index. It

follows that we have a contribution to the index only in those cases in which level zero

and level one states are unpaired. According to our conjecture, unparied states occur

at charges at which there exists a level one state but no level zero state. This occurs

for states of the charges Trφm, Tr (φmψ̄), Tr ψ̄2m+1 and Tr (ψ̄2mφ). This precisely

accounts for the index computed above.

We summarize the conjecture described above in Table (4.10). This is found to agree

with the index calculated for this theory as calculated in section 4.4.1. In that table we

have also used the fact that every short representation of the N = 2 superconformal algebra

has a unique (conformal primary) state in Q cohomology to read off the full spectrum of

the short (or supersymmetric) single trace primary operators of the theory implied by our

conjecture for Q cohomology.

17This statement is obvious when n = 0 because then there do not exist any level one states with the right
quantum numbers. Moreover when n = 1 the unique level one state with the right quantum numbers is a
descendant of Trφm−1.

18When m = 0 there are no level one states with the right quantum numbers. When m = 1 and n is even,
the unique such state is a descendant of Tr ψ̄n−1. Of course no such statement can be (or is) true when n
is odd because Tr ψ̄n−1 vanishes.
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Cohomology state # N = 2 Primary Allowed h and j

(h, 0, h, h) 1 (h, 0, h, h) h ∈ 1
2Z

+

(j + h, j, h, h − 2j) 1 (j + h− 1
2 , j − 1

2 , h− 1, h− 2j) j, h ∈ 1
2Z

+, h ≥ j
h = j ∈ Z not allowed.

(j + h, j, h, h − 2j + 2) 1 (j + h− 1
2 , j − 1

2 , h− 1, h− 2j + 2) h, j ∈ 1
2Z

+, j ≥ 3
2 , h ≥ j − 1

2

(2h + 1, h+ 1, h,−2h) 1 (2h+ 1
2 , h+ 1

2 , h− 1,−2h) h ∈ 1
2Z

+

Table 4.10: N = 2 primary content of single adjoint matter theory with zero superpotential.
The second column stands for the multiplicity of the cohomology states. The notation is
(∆, j, h, g) which respectively are scaling dimension, spin, R-charge and U(1) flavor charge.
The flavor charges are normalized to be 1

2 and −1
2 respectively. The results above apply

when h(λ) = 1
2 . The results for the general case are obtained from the results of the table

above by the replacement ∆ → ∆ − (1− 2h(λ))g, h → h− (1 − 2h(λ))g for every primary
in the table.

While the states listed in Table (4.10) do grow in number with energy in a roughly

Kaluza-Klein fashion, notice that the primaries listed include states of arbitrarily high

spins, ruling out a possible dual supergravity dual description.

4.5 Supersymmetric states of theories with a single adjoint

field with nonzero superpotential

4.5.1 Space of theories

Let us now turn to the study of superconformal theories with superpotential. First we start

with theories with a single adjoint chiral multiplet. One may construct several supercon-

formal theories by perturbing the theory with no superpotential. The simplest theory of

this sort may be constructed by perturbing the superpotential of the theory of the previous

subsection with a TrΦ4 term. While this perturbation is marginal at zero λ, it is relevant

at every finite λ (this follows as h(λ) < 1
2 for all finite λ). As arugued in [5], the RG flow

seeded by this operator terminates at a new fixed point at which the coefficient c of TrΦ4 in

the superpotential is of order unity, in units in which a uniform factor of k = N
λ sits outside

the whole action.19 This line of CFTs also reduces to the free theory as λ→ 0. The TrΦ4

superpotential in this theory breaks the flavour symmetry of the zero superpotential theory

down to Z4. The requirement of the invariance of the superpotential under R symmetry

transformations forces the R-charge of this system to equal 1
2 at every value of the coupling

constant λ.

There exist no other lines of CFTs with this matter content that reduce to the free CFT

in the limit λ→ 0. However there plausibly exist many other lines of superconformal fixed

19The argument that the RG flow ends at a finite value of c is simple. When c≫ 1, the gauge interaction
in the theory is negligibly weak compared to the TrΦ4 interaction and may be ignored. The model is then
effectively the Wess Zumino theory whose β function towards the IR is known to be negative. Consequently
the sign of the β function flips from positive for small c to negative at large c, and so must have a zero at c
of order unity.
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points that cannot be deformed to the free theory. To start with the superpotential term

TrΦ3 is relevant at all values of λ. At small λ the RG flow seeded by this term presumably

terminates at a large N and supersymmetric analogue of the Wilson Fisher fixed point. It

thus seems plausible that the new fixed point exists at every value of λ. The R-charge of φ

is fixed at 2
3 at this fixed point.

More exotically, as we have explained towards end of §4.3, the fact that h(λ) decreases

without bound (as λ is increased) plausibly suggests the existence of fixed points seeded

by TrΦn induced RG flows, for all values of n, at sufficiently large λ. The R-charge of the

operator φ is fixed at 2
n along these fixed lines of theories.

4.5.2 Superconformal index of the theory with a TrΦ4 superpotential

Let us compute the Witten index

Tr(−1)FxH+J

for the theory with the TrΦ4 superpotential. The letter index of this theory is the Witten

index of the sum of the (12 , 0,
1
2 ) and (12 , 0,−1

2 ) representations. We find the single letter

contribution

IL =
x

1
2

1 + x
.

It follows that the Witten index of the theory - in the large N limit - is given by

I+ =

∞
∏

n=1

1

1− IL(xn)
=

∞
∏

n=1

1 + xn

1− x
n
2 + xn

.

The formula above gives the Witten index of the full theory (including all multi trace

operators) in the large N limit. It is interesting to inquire about the single trace index

for the same theory. Now the full index is obtained from the single trace index by Bose

exponentiation. The single trace index actually receives contributions both from single trace

conformal primaries and single trace conformal descendants. It is of most interest to isolate

the index over all single trace primaries (as this gives the index over the particle spectrum

of the dual theory). Let us define the index over single trace primaries as Ist. It then follows

that

I+ =

∞
∏

n=1

1 + xn

1− x
n
2 + xn

= exp

[ ∞
∑

n=1

Ist(xn)
n(1− x2n)

]

This equation completely determines Ist. It is possible to show that

Ist = x
1
2 + x+ x

7
2 − x

9
2 + x

13
2 − x

15
2 + x

21
2 − x

23
2 + . . .

= x
1
2 + x+

x
7
2

1 + x+ x2
.

(4.30)

Note that the spectrum of single traces is periodic at large enough energies, with one new

boson and one new fermion being added at energy intervals of three.
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Cohomology states Multiplicity Protected primaries

(12 , 0,
1
2) 1 (12 , 0,

1
2)

(1, 0, 1) 1 (1, 0, 1)

(2k + 5
2 , k + 1, k + 3

2) 1 (2k + 2, k + 1
2 , k +

1
2)

(2k + 3, k + 1, k + 2) 1 (2k + 5
2 , k +

1
2 , k + 1)

(2k + 5
2 , k +

3
2 , k + 1) 1 (2k + 2, k + 1, k)

(2k + 3, k + 3
2 , k +

3
2) 1 (2k + 5

2 , k + 1, k + 1
2)

Table 4.11: Supersymmetric spectrum for N = 2 single adjoint with superpotential TrΦ4,
k ∈ 0,Z+. The notation again is (∆, j, h).

4.5.3 Conjecture for the supersymmetric spectrum of the theory with a

TrΦ4 superpotential

In this subsection we present a conjecture for the partition function over single trace super-

symmetric operators in the theory with a TrΦ4 term in the superpotential. Our method is

the same as that employed in the previous section: we list the classical cohomology of the

special supercharge Q (the supercharge that annihilates the superconformal index).

The only difference between the cohomology of Q in this section, and the cohomology of

Q in the absence of a superpotential (computed in the previous section) is that Q no longer

annihilates ψ̄, but we instead have

Qψ̄ ∼ φ3

.

As in the previous section the cohomology of interest can be calculated separately for

operators with distinct values of ∆ + j. As in the previous section, we have written a

Mathematica code to compute the cohomology for all states upto ∆ + j ≤ 23
2 .

Our conjecture has been summarized in Table (4.11) in terms of charges (∆, j, h) of the

cohomology states. This is found to agree with the index calculated for this theory in section

4.5.2. As states of the form (j + h, j, h) (for j > 0) are descendants of the superconformal

primary (j+h− 1
2 , j− 1

2 , h− 1), the corresponding superconformal primaries are also listed

out in the table.

As in the case of theories without a superpotential, our conjectured supersymmetric

spectrum grows with energy in a manner expected of Kaluza-Klein compactification, but

continues to include states of arbitrarily high spin.

4.5.4 Conjecture for the supersymmetric spectrum of the theory with a

TrΦ3 superpotential

In this subsection we present a conjecture for the classical cohomology of the particular

supercharge Q for the theory with a TrΦ3 superpotential. A theory with such a superpo-

tential is always strongly coupled, and so we cannot use a free calculation to compute its

superconformal index. However, the computation of Q cohomology in such a theory is easily
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Cohomology states Multiplicity Protected primaries

(23 , 0,
2
3) 1 (23 , 0,

2
3)

(5k+2
3 , k, 23(k + 1)) 1 (5k3 + 1

6 , k − 1
2 ,

2k−1
3 )

(56(2k + 1), k + 1
2 ,

2k+1
3 ) 1 (5k+1

3 , k, 23(k − 1))

Table 4.12: Supersymmetric spectrum for N = 2 single adjoint with superpotential Φ3,
k ∈ Z

+. The notation is (∆, j, h)

performed (under the same assumption of the previous subsection, i.e. that it is sufficient

to use the classical supersymmetry transformation rules), using the same method as in the

previous subsection.

The difference between the computation of this subsection and that of the previous one

is as follows. In this case the action of Q on ψ̄ is given by Qψ̄ ∼ φ2. Further the fact

that we have a superconformal theory with a Φ3 superpotential forces the following charge

assignments: the R-charges of φ, ψ̄ are 2
3 ,

1
3 respectively, while the scaling dimensions of

φ, ψ̄ as determined by the BPS relation ∆ = j + h, are 2
3 ,

5
6 respectively.

As in the previous subsection, the cohomology must be computed separately at every

value of ∆ + j. The calculation has been done up to ∆ + j = 12 on Mathematica. Our

conjecture has been summarized in Table (4.12) in terms of charges (∆, j, h) of the coho-

mology states. This can be shown to agree with a index calculation done using localization

techniques. As states of the form (j + h, j, h) (for j > 0) are descendants of the supercon-

formal primary (j + h − 1
2 , j − 1

2 , h − 1), the corresponding superconformal primaries are

also listed out in the table. Note that the spectrum includes states of arbitrarily high spin.

4.6 Supersymmetric states in the theory with two adjoint

fields and vanishing superpotential

The superconformal theory with two adjoints and no superpotential has a U(2) flavour

symmetry, realized as the rotation of the chiral multiplets Φ1 and Φ2 as a doublet. We

denote the two U(1) Cartan charges of this U(2) by G1 and G2. Our conventions are that

the field φ1 has charges (G1, G2) = (1, 0) while the charges of φ2 are (0, 1). We compute

the refined Witten index defined by

I = Tr
[

(−1)FxH+JyG1
1 yG2

2

]

. (4.31)

The letter index is given by

IL =
x

1
2 (y1 + y2)− x

3
2 (y−1

1 + y−1
2 )

1− x2
.
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As usual the full multitrace index of the free theory is given by

I+ =
∞
∏

n=1

1

1− IL(xn, yn)
.

This index captures an exponential growth of density of supersymmetric states. In order

to see that this must be the case, note that the number of chiral primaries at level L is

of order 2L. As there are no fermionic states with the quantum numbers of the chiral

primaries, it is impossible for this contribution to be cancelled in the full index. It follows

that the index, in this state, receives contributions from an exponentially growing number

of states.

4.7 Supersymmetric states in the N = 3 theory with a adjoint

hypermultiplet

Of all the possible superpotential deformations of the zero superpotential N = 2 theory

with two adjoint chiral multiplets, the deformation W = αTr [Φ1,Φ2]
2 has a special role.

This deformation is relevant at nonzero λ. As was shown in [5] the RG flow seeded by

this deformation has a fixed point at α = 2π
k ; at this value of the coefficient, the theory

is conformally invariant; further its supersymmetry is enhanced to N = 3 and the theory

enjoys invariance under the full N = 3 superconformal algebra.

N = 3 superconformal symmetry forces the theory to have an SU(2) R symmetry; φ1

and φ∗2 transform as a doublet under this symmetry. φ1 and φ2 each have R-charge 1
2 under

the canonical U(1) subgroup of this R symmetry group. Note of course that the value of

this R-charge is protected by SU(2) representation theory, and cannot be renormalized as a

function of λ. In addition, the fact that the superpotential is proportional to Tr (ǫijΦiΦj)
2

reveals that the superpotential deformation preserves an SU(2) flavour subgroup of the

U(2) flavour isometry group of the theory without a superpotential.

In this section we will compute the supersymmetric spectrum of this theory at large N .

4.7.1 Superconformal index

As the N = 3 theory reduces to a free theory at λ = 0, its superconformal index is easily

computed. The superconformal index is defined by

I = Tr
[

(−1)FxH+JyG
]

(4.32)

where G is the U(1) component of the SU(2) flavor group (under which φ1 has charge 1
2

and φ2 has charge −1
2). The relevant letter index is given by

IL =
x

1
2 y

1
2 − x

3
2 y−

1
2 + x

1
2 y−

1
2 − x

3
2 y

1
2

1− x2
=
x

1
2 (y

1
2 + y−

1
2 )

1 + x
,
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so that the index over the theory is

I+ =
∞
∏

n=1

1 + xn

(1− x
n
2 y

n
2 )(1 − x

n
2 y−

n
2 )
.

As in previous sections, it is possible to rewrite this index in terms of an index over single

trace primaries as

I+ =
∞
∏

n=1

1 + xn

(1− x
n
2 y

n
2 )(1− x

n
2 y−

n
2 )

= exp

[ ∞
∑

n=1

Ist(xn, yn)
n(1− x2n)

]

. (4.33)

We find

Ist = x
1
2 (y +

1

y
) + x(1 + y2 +

1

y2
) + x

3
2 (y3 +

1

y3
) + x2(y4 +

1

y4
)

+
∞
∑

n=5

x
n
2

(

yn +
1

yn
− yn−4 − 1

yn−4

)

.
(4.34)

This simple result describes a spectrum with 4 states - two bosons and two fermions - at

every energy higher than a minimum value. Note that (4.34) reduces to (4.42) upon setting

y to unity.

4.7.2 Supersymmetric cohomology

We now proceed to compute the single trace supersymmetric cohomology of the N = 3

theory.20 We are instructed to count traces built out of Dn
+φi and D

n
+ψ̄i (i = 1, 2). We are

only interested in Q cohomology, where the action of Q on the basic fields is given by

Qφi = 0,

Qψ̄i = [φi, [φ1, φ2]],

Q[D++, · ] =
[

[φ1, ψ̄1] + [φ2, ψ̄2], ·
]

.

(4.35)

As in previous subsections, we have explicitly enumerated this cohomology (with the help of

Mathematica) at low quantum numbers, and used the results of this numerical experiment to

suggest a relatively simple conjecture for the conformal primary content of this cohomology.

As in previous subsections, each conformal primary member of cohomology implies the

existence of a single short N = 2 superconformal representation. Unlike the situation in

previous sections, however, this spectrum has to satisfy an additional consistency check, as

N = 2 representations must group together into N = 3 representations. Our conjecture

for Q cohomology passes this consistency check, and leads us to conjecture that the short

supersymmetric operator content of the theory is given as in Table (4.13). This is found to

20As in the previous subsubsection, we know that there must exist states that contribute to the partition
function but are invisible in the index simply from the observation that the contribution of the stress tensor
multiplet -x4y0 - is not visible in (4.34).



4.8. MARGINAL N = 2 DEFORMATIONS OF THE N = 3 THEORY 107

Cohomology states Multiplicity N = 2 Primary N = 3 Primary Allowed h
(N = 2 quantum numbers)

(h, 0, h, h) 1 (h, 0, h, h) (h, 0, h, h) h ∈ 1
2Z

+

(h+ 1
2 ,

1
2 , h, h) 1 (h, 0, h − 1, h) h ∈ 1

2Z
+

(h+ 3
2 ,

1
2 , h+ 1, h) 1 (h+ 1, 0, h, h) (h+ 1, 0, h, h) h ∈ 1

2Z
+

(h+ 2, 1, h + 1, h) 1 (h+ 3
2 ,

1
2 , h, h) h ∈ 1

2Z
+

(h+ 1, 1, h, 0) 1 (h+ 1
2 ,

1
2 , h− 1, 0) (h+ 1

2 ,
1
2 , h− 1, 0) h ∈ Z

+

(h+ 3
2 ,

3
2 , h, 0) 1 (h+ 1, 1, h − 1, 0) h ∈ Z

+

Table 4.13: Supersymmetric spectrum for 2 chiral adjoints at N = ∋ fixed point with SU(2)
flavor symmetry. The flavor charges for φ and ψ̄ are normalized to be 1

2 and −1
2 respectively

agree with the index calculated for this theory in section 4.7.1. (Our notation for quantum

numbers of states as well as primaries is (∆, j, h, g) where g is the SU(2) flavour charge.)

A striking feature of this conjectured supersymmetric spectrum is that it includes no

states with spin ≥ 2. This suggests that the N = 3 theory might admit a supergravity-like

dual description at large λ.

As the full global symmetry group of our theory is SU(2) × SU(2) it is tempting to

conjecture that the supergravity description in question is obtained by a compactification

of a 7-dimensional supergravity on S3. Indeed the states in the first 2 rows (of the second last

column) of Table (4.13) have SU(2)×SU(2) quantum numbers that are strongly reminiscent

of scalar and vector spherical harmonics on S3. However the states in the last line of this

table do not appear to fit well into this pattern; as the difference between the two SU(2)

quantum numbers of these states grows without bound; this never happens for S3 spherical

harmonics for states with a fixed (or bounded) value of spin. For this reason we are unsure

whether our results for the supersymmetric spectrum of this theory are consistent with a

possible dual description in terms of a higher dimensional supergravity theory. We leave

further discussion of this question to future work.

4.8 Marginal N = 2 deformations of the N = 3 theory

It was demonstrated in [25] that the infinitesimal manifold of exactly marginal deformations

of a given SCFT has a very simple characterization.21 This space is simply given by modding

out the space of marginal (but not necessarily exactly marginal) classical deformations by

the complexified action of the global (non R) symmetry group GC of the theory.

The space of marginal scalar deformations of the N = 2 theory , at the level of the su-

perpotential it is given by operators Tr(Φa1Φa2Φa3Φa4) with the indices a1 . . . a4 completely

symmetrized. These operators transform in the 5 dimensional (spin 2) representation of

the global symmetry group SU(2) ∼ SO(3). In colloquial terms they constitute a complex

traceless symmetric 3 × 3 matrix M on which complexified SO(3) transformations O act

21In the perturbative regime, a global characterization of the “conformal manifold” was given in [17].
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Points on conformal manifold Flavour symmetry Charges

λ1 = 0 = λ2 SU(2) Φ1,Φ2 form a doublet

λ1 = λ2 6= 0 U(1) Φ1: 1, Φ2: −1

λ1 = 0, λ2 6= 0 U(1) Φ1 + iΦ2: 1, Φ1 − iΦ2: −1

λ1 6= 0, λ2 = 0 U(1) Φ1 +Φ2: 1, Φ1 − Φ2: −1

Table 4.14: Symmetries on the conformal manifold

according to the law

M → OMOT

The classification of all 3 × 3 matrices M that are inequivalent under this transformation

law is well studied. Generic complex symmetric matrices M can be diagonalized by the

action of O; consequently generic exactly marginal deformations of the N = 3 theory are in

one to one correspondence with complex diagonal traceless 3×3 matrices and are labeled by

two complex eigenvalues. In addition to the generic case, however, there exist two special

classes of matrices M that cannot be diagonalized. Instead, one of them can be put in the

form [29]






λ1 +
i
2

1
2 0

1
2 λ1 − i

2 0

0 0 −2λ1






(4.36)

This gives a new one parameter set of exactly marginal deformations of the N = 3 theory.

The second possible form is






0 1+i
2 0

1+i
2 0 1−i

2

0 1−i
2 0






(4.37)

Let us first focus on the generic marginal deformations of the N = 3 theory. The generic

deformation can be put in the form

W = λ1Tr (Φ
2
1 +Φ2

2)
2 − λ2Tr (Φ

2
1 − Φ2

2)
2 − (λ1 + λ2)Tr (Φ1Φ2 +Φ2Φ1)

2 (4.38)

which is better written as

W = λ1Tr
[

(Φ1 +Φ2)
2(Φ1 − Φ2)

2
]

− λ2Tr
[

(Φ1 + iΦ2)
2(Φ1 − iΦ2)

2
]

(4.39)

At a generic point on the conformal manifold the flavor symmetry is completely broken. For

special values of λ1,2, listed in Table (4.14), a U(1) flavor symmetry is restored. The space

of generic exactly marginal deformations of the N = 3 theory is a two complex dimensional

manifold.

Next, for the nongeneric deformation as parametrized by (4.36), the superpotential

deformation is

W = λ2
(

Tr (Φ4
2)− λ1Tr (Φ1Φ2Φ1Φ2)

)

(4.40)
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There is no flavour symmetry in this case.

As for the nongeneric deformation as parametrized by (4.37), the superpotential defor-

mation is

W = λ2
(

(1 + i)Tr (Φ4
1 − Φ4

2) + 2(1− i)Tr (Φ3
1Φ2 − Φ1Φ

3
2)
)

(4.41)

There is no flavour symmetry in this case also.

The U(1) R-charge of chiral multiplets in these theories is fixed to 1
2 (merely by the

observation that each of these theories has a space of exactly marginal deformations, labeled

by different quartic superpotential deformations).

4.8.1 Superconformal index of these theories

The Witten index of the deformed theories that preserve U(1) flavor symmetry is simply

identical to the index of the N = 3 theory determined in the previous section.

The Witten index of deformed theories that break the U(1) symmetry is also equal to

to that of the N = 3 theory, but with y = 1 (as there is no flavor charge with respect to

which states can be weighted in this case). We find the remarkably simple result

Ist = 2x
1
2 + 3x+ 2x

3
2 + 2x2. (4.42)

Thus the single trace index sees a total of only 9 conformal primaries!

4.8.2 Conjecture for the supersymmetric cohomology

For cohomology calculations we consider the general marginal superpotential as given in

(4.38) along with the original N = 3 superpotential with a coefficient normalized to one.

With this superpotential the action of the special supercharge on the basic letters is as

follows

Q(ψ̄1) = −φ1φ22 − φ22φ1 + 2φ2φ1φ2 + (λ1 − λ2)φ
3
1 − 4(λ1 + λ2)(φ2φ1φ2) (4.43)

Q(ψ̄2) = −φ2φ21 − φ21φ2 + 2φ1φ2φ1 + (λ1 − λ2)φ
3
2 − 4(λ1 + λ2)(φ1φ2φ1) (4.44)

Q[D++, · ] =
[

[φ1, ψ̄1] + [φ2, ψ̄2], ·
]

(4.45)

Although it is not obvious, it (experimentally) appears that the cohomology is largely

independent of the complex ratio λ1
λ2

but instead depends only on whether the flavour

symmetry of the theory is broken or restored. Using the methods described in earlier

sections we have generated data that suggests that the cohomology of these theories takes

the following form.

For the generic N = 2 deformations (4.39), the conformal primary states in the coho-

mology, and the corresponding N = 2 superconformal representations, are given, in the case

that a U(1) flavor symmetry is preserved ((λ1 = 0, λ2 6= 0), (λ1 6= 0, λ2 = 0), (λ1 = λ2 6= 0))

in Table (4.15).
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Cohomology states Multiplicity N = 2 Primary Allowed h
(N = 2 quantum numbers)

(h, 0, h, h) 1 (h, 0, h, h)
(h, 0, h,−h) 1 (h, 0, h,−h) h ∈ 1

2Z
+

(h, 0, h, 0) 1 (h, 0, h, 0)

(32 ,
1
2 , 1, 0) 1 (1, 0, 0, 0)

(h+ 3
2 ,

1
2 , h+ 1, h) 1 (h+ 1, 0, h, h)

(h+ 3
2 ,

1
2 , h+ 1,−h) 1 (h+ 1, 0, h,−h) h ∈ 1

2Z
+

(h+ 3
2 ,

1
2 , h+ 1, 0) 1 (h+ 1, 0, h, 0)

(h+ 1, 1, h, 0) 1 (h+ 1
2 ,

1
2 , h− 1, 0) h ∈ 1

2Z
+

(h+ 1
2 ,

3
2 , h− 1, 0) 1 (h, 1, h − 2, 0) h ∈ 2Z+

Table 4.15: Supersymmetric spectrum for 2 chiral adjoints at N = 2 fixed point with U(1)
flavor symmetry. Notation is (∆, j, h, g) with g normalized to be 1

2 for φ.

Cohomology state Primary Multiplicity Allowed values

(k2 , 0,
k
2 ) (k2 , 0,

k
2 ) 3 if k

2 is odd, k ∈ Z
+

2 if else

(k+1
2 , 12 ,

k
2 ) (k2 , 0,

k
2 − 1) 3 if k

2 is even, k ∈ Z
+

1 if k
2 is odd,

2 if k
2 is half an odd integer

(2k + 1
2 ,

3
2 , 2k − 1) (2k, 1, 2k − 2) 1 k ∈ Z

+

Table 4.16: Cohomology and primary content of theories with no flavor symmetry. The
notation is (∆, j, h), since there is no flavor symmetry.

On the other hand the conformal primary cohomology and the superconformal primary

content of N = 2 cases when there is no flavour symmetry i.e. when λ1 6= λ2 and λ1, λ2 6= 0

is given in Table (4.16). Also for the first non generic N = 2 deformation (4.40) with λ1 6= 0

and for the second nongenericN = 2 deformation (4.41) the superconformal primary content

is the same as in Table (4.16).

For the first non generic N = 2 deformation (4.40), if λ1 = 0, the superconformal

primary content is given in Table (4.17)

Note that in each case the supersymmetric spectrum has no states with spins greater

than two, suggesting again the possibility of a dual supergravity description for these the-

ories at strong coupling.

4.8.3 Theories with three or more chiral multiplets

In this case the letter partition function equals unity at a value of x < 1. It follows that the

Witten index undergoes a Hagedorn transition at finite ‘temperature’. In other words the

number of supersymmetric operators protected by susy grows exponentially with energy in

these theories. Restated, our system has a stringy growth in its degrees of freedom; the

effective string scale is the AdS scale (unity in our units). It is clearly impossible for such

theories to have a gravitational description (in any dimension).
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Cohomology states Multiplicity N = 2 Primary Allowed k

(12 , 0,
1
2) 2 (12 , 0,

1
2)

(1, 12 ,
1
2) 1 (12 , 0,−1

2 )
(32 ,

1
2 , 1) 1 (1, 0, 0)

(2, 12 ,
3
2) 3 (32 , 0,

1
2)

(k, 0, k) 3 (k, 0, k) k ∈ Z+

2 ,k ≥ 1

(k + 1
2 ,

1
2 , k) 3 , if k = even (k, 0, k − 1) k ∈ Z+

2 , k ≥ 2
4 , if k 6= even

(2k + 1, 1, 2k) 2 (2k + 1
2 ,

1
2 , 2k − 1) k ∈ Z+

(k + 3
2 , 1, k +

1
2) 1 (k + 1, 12 , k − 1

2) k ∈ Z+

(2k + 1
2 ,

3
2 , 2k − 1) 1 (2k, 1, 2k − 2) k ∈ Z+

Table 4.17: Supersymmetric spectrum for N = 2 nongeneric deformation with λ1 = 0

Note that in these theories the index undergoes a phase transition at a finite value of the

chemical potential. In the ‘high temperature’ (more accurately small x) phase the logarithm

of the index is of the order N2. It seems possible that this index captures the entropy of

supersymmetric black holes in the as yet mysterious bulk dual of these theories.

4.9 Discussion

The “nicest” theories we studied are the N = 3 theory with one adjoint hypermultiplet and

the N = 2 superpotential deformed theories with two adjoint chiral multiplets and with

U(1) or no flavor symmetry. We found that their supersymmetric spectrum consists of only

operators of spin ≤ 2, suggesting a possible supergravity dual in the strong coupling limit.

In the N = 3 case, while part of the supersymmetric spectrum looks like the Kaluza-Klein

spectrum of 7-dimensional supergravity compactified on S3, there is an additional tower

of states in spectrum that do not seem to come from standard KK modes. In the N = 2

deformed theories, the spectrum contains states of arbitrarily high U(1) charges, suggesting

that they could come from KK modes of S1-compactification of supergravity theories, but

to identify their duals appears difficult due to some unusual features of the spectrum.

The N = 2 theories with one adjoint chiral multiplet are even more intriguing. With

either TrΦ4 or TrΦ3 superpotential, there is a line of fixed points. At these fixed point

theories, in the large N limit, the supersymmetric spectrum involves a single tower of

operators/states of arbitrarily high spin as well as R-charge. This rules out the possibility

of a supergravity dual, but leaves open the possibility that the duals of the strongly coupled

SCFTs are higher spin theories of gravity in AdS4.

The most mysterious case is the N = 2 theory with one adjoint chiral multiplet and no

superpotential. The R-charge of this theory is renormalized and decreases monotonically

with the ’t Hooft coupling λ. At some point, when λ = λf2 ≈ 1.23, the operator TrΦ2

becomes a free field and decouples from the theory. At this point, a new U(1) global sym-

metry emerges and in principle the Z-minimization prescription no longer determines the
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superconformal R-charge. If we assume that the naive Z-minimization is still valid at large

N for λ > λf2 , then we find that the renormalized R-charge approaches zero asymptotically

at strong coupling. If this is true, apart from the decoupled free fields, the BPS spectrum

involves a discretum of states starting at dimension ∆ = 1/2. While at general λ the BPS

spectrum consists of towers of states of arbitrarily high spin and R-charge, the R-charge

form a discretum at strong coupling, suggesting that a new noncompact dimension emerges

in the higher spin gravity dual.

Finally, in the cases with more than two adjoint flavours, the number of supersymmetric

states grow exponentially with the dimension. It suggests that their dual theories are string

theories in AdS4 with an exponentially growing tower of supersymmetric string oscillator

excitations. The superconformal index of these theories as a functional of the chemical

potential undergoes a phase transition. After this phase transition, these theories are likely

to be dual to supersymmetric black holes in the yet to be determined dual string theories

in AdS4.
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Chapter 5

Conclusions

In this thesis we studied various aspects of the landscape of vacua in string theory. We

concentrated on theories with four dimensional effective gravity theory description and a

negative cosmological constant. We explored different phases in the landscape from the

gravity side and also from the field theory side by using the AdS/CFT correspondence.

From gravity side, we explored the stability of nonsupersymmetric vacua in the string

landscape. Building on existing literature, we constructed a large class of perturbatively

stable vacua and then looked for tunneling instabilities into nearby vacua in landscape. A

large number of decay channels were ruled out by our analysis, suggesting that some non

supersymmetric vacua could be stable after all. It would be instructive to construct more

examples of such vacua with all moduli stabilized and investigate their non perturbative

stability. This program might ultimately provide hints to constructing stable desitter vacua

which is of relevance to string phenomenology.

Further continuing the exploration of the landscape, we constructed gravity systems with

reasonable thermodynamics and illustrated how non fermi liquid can arise in such systems

using holography. We used two point functions of fermions to ascertain the nature of the

excitations. Recently, entanglement entropy has emerged as another probe for the existence

of fermi surfaces. It would be interesting to explore the strong coupling phenomenon in

field theory by studying their gravity duals with all the probes that holography provides us

and to build a consistent picture.

On the field theory side, we studied supersymmetric chern simons theories with simple

matter content with the intent to check whether they admit gravity duals. We deduced

the protected matter content which can prove useful in identifying the dual gravity system.

Recently, localization techniques have been used to compute exact quantities like partition

function in certain supersymmetric theories. This might provide hints for possible gravity

dual and also provide evidence for duality among quantum field theories.

As string theory progresses, we expect to have a more complete understanding of the

string landscape. We hope this leads to a better understanding of the nonperturbative

nature of string theory and the structure of quantum field theories.
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