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Chapter 1

Introduction

1.1 A unified theory

The primary goal of string theory is to provide a unified description of the fun-

damental forces of nature. Three of the four fundamental forces, namely Elec-

tromagnetism, Weak and Strong nuclear forces have been accounted for by the

Standard Model. The Standard Model is a relativistic quantum field theory of

the constituents of matter, which has had phenomenal success in predicting the

outcome of experiments. However, it suffers from two important shortcomings.

The first is the notable omission of the fourth fundamental force, gravity. Also the

Standard Model depends on a large number of parameters such as particle masses

and coupling constants which cannot be derived from fundamental principles and

can only be determined experimentally.

String theory attempts to resolve both these problems. The basic idea of

strings is simple: it is a one-dimensional extended quantum object which propa-

gates through a target spacetime. Just like a musical string, it has different vi-

brational modes. These modes manifest themselves as different particles. 1. The

starting point is a quantum relativistic theory of the string worldsheet, which has

conformal symmetry, i.e. is invariant under scale transformations. Remarkably,

string theory naturally includes gravity as a result of this symmetry. So, from

1For standard references on string theory see [1, 2, 3, 4].
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1.2 The non-critical string

the beginning, it is a quantum theory of gravity. String theory can be bosonic

or supersymmetric. In order to be a consistent quantum theory the spacetime

in which the bosonic string propagates must have the “critical” dimension of 26.

Here each spacetime direction corresponds to a scalar with central charge 1, so

the total central charge is 26. For the supersymmetric string the spacetime is 10

dimensional. In this case each spacetime dimension contributes 3
2

to the central

charge, so the total central charge is 15, which is the requirement for consistent

quantization of a superstring. The superstring theory can still describe a 4 di-

mensional real world spacetime if we assume that the 6 extra dimensions are

compact, and too small to be detected by present experiments.

The critical string theory has supersymmetry, and is a quantum theory of su-

pergravity coupled to supersymmetric matter. Moreover, the interaction between

the particle-like string excitations closely mimic those in the Standard Model. So

it has many of the features which a unified theory of nature should have. How-

ever, in general it has proved difficult to perform exact calculations in a general

string background. As a result, most of the results of string theory are derived

to low orders in perturbation theory in the string coupling.

1.2 The non-critical string

The difficulty of finding exact solutions in string theory makes it very important

to find backgrounds which admit an all-orders perturbative or non-perturbative

solution, while retaining enough essential physics to be useful in deriving universal

properties of string theory. It turns out that non-critical string theory provides

us with such a background 1. The name “non-critical” comes from the fact that

the dimension of the target spacetime in this case is lower than the “critical”

dimension (26 for bosonic, and 10 for the fermionic theory). In this thesis we will

be concerned with a particular non-critical background which is 1+1 dimensional.

The worldsheet theory consists of a scalar field X which is the time coordinate of

the target spacetime and a Liouville field φ, which behaves like a space coordinate.

1See [5] and the references therein for an exhaustive review.
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1.2 The non-critical string

The presence of the Liouville coordinate ensures that the quantum theory of the

string worldsheet is free of anomalies, even if the spacetime dimension is not

critical.

There can be two kinds of non-critical theories with a 1+1 dimensional target

spacetime. In the bosonic theory the scalar X has central charge c = 1, while the

Liouville coordinate φ has central charge 25, so that the total central charge is

26, as required for consistent quantization. This is the c = 1 non-critical bosonic

string. The spectrum of the c = 1 string has massless “tachyons”1 which are

closed string excitations. Note that since the target spacetime is two dimen-

sional, gravity is non-dynamical. As we will see, the vacuum of the c = 1 string

is non-perturbatively unstable. So the c = 1 string cannot be defined beyond

perturbation theory.

It is possible to have supersymmetry on the string worldsheet, which leads

to the Type 0 theories. In this case the central charge is 3
2

for the scalar X

and 27
2

for the Liouville field φ so the total is 15. In the Type 0 theories it

necessary to impose a GSO projection on the states in order to preserve unitarity

and modular invariance of the theory. The GSO projection is non-chiral, so

the spacetime theory does not have fermions. There can be two kinds of GSO

projections, leading to the 0A and 0B theories:

Type 0A : (NS−, NS−)⊕ (NS+, NS+)⊕ (R+, R−)⊕ (R−, R+)

Type 0B : (NS−, NS−)⊕ (NS+, NS+)⊕ (R−, R−)⊕ (R+, R+)

where NS and R refer to sectors with different boundary conditions. The ± sign

gives the value of e2πiF where F is the worldsheet fermion number. The spectrum

of the theory is as follows. In the 0A theory, there is a massless closed string

“tachyon” T and two gauge fields F , F̃ . These lead to two quantized fluxes q, q̃.

In the 0B theory, there is also a “tachyon”, but now there is an additional scalar

from the RR sector, which consists of a self-dual and anti self-dual component.

We will see that unlike the bosonic c = 1 string, the Type 0 theory is well defined

1The name tachyon is used because their mass squared becomes negative for d > 2. In this

case these are just massless scalars.
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1.3 The matrix model description

non-perturbatively. In fact, the Type 0 string theories in two dimensions provides

a perfect example of an exactly solved non-perturbative string background.

1.3 The matrix model description

The non-critical string has a remarkable alternative description in terms of a

random matrix model (see [6, 7] for reviews). The matrix model provides a

triangulation of the string worldsheet. This approximation becomes exact in

the double scaling limit, when the matrix partition function describes the string

theory exactly. The dynamics of the string theory is encoded in the double scaled

matrix model as the excitations of free fermions moving in an inverse harmonic

oscillator potential, which is unbounded below. The c = 1 bosonic string theory

is obtained by filling up the energy levels on one side of this inverse harmonic

oscillator potential, while the other side is empty, as shown in Figure 1.1. The

εF

E

λ

E

λ

εF

Filled fermi sea

Figure 1.1: The free fermion picture of the c = 1 model

non-perturbative instability of the theory comes from the fact that the fermions

can tunnel through the barrier and are lost on the other side. For the Type 0 string

background, the energy levels on both sides of the barrier are filled up. In this

case a fermion on one side cannot tunnel to the other side and decay because the

lower energy levels on the other side are already occupied. So the Type 0 theory

is stable non-perturbatively (see Figure 1.2). String theory correlation functions

can be evaluated from the matrix model by computing scattering amplitudes of

these fermions off the potential barrier.
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1.3 The matrix model description

εF

E

λ

E

λ

εF

Filled fermi sea Filled fermi sea

Figure 1.2: The free fermion picture for the Type 0 theory

The matrix model is a valuable tool because it can be solved exactly in per-

turbation theory or, in some cases, non-perturbatively. This property makes the

1+1 dimensional non-critical theory special. This has led to much interest in the

subject. It was possible to calculate the partition function and correlators exactly

for different non-critical string backgrounds. For instance the all-orders perturba-

tive free energy for the c = 1 string was calculated by Gross and Klebanov [8]. In

their solution the time direction is a circle of radius R and is Euclidean. This is a

complete solution for the bosonic string as this background is not defined beyond

the perturbative expansion. For the Type 0 case the full non-perturbative free

energy was presented by Maldacena and Seiberg [9]. This work follows earlier

studies of the Type 0 theory [10, 11, 12, 13].

In spite of the successes of non-critical string theories in computing correla-

tors, it was not clear initially if the insights gained in this context can be applied

directly to the critical string theories. However, as we will describe below, there

were a number of remarkable developments in both critical and non-critical theo-

ries which showed that many of the important physical properties of critical string

theory are realized in the non-critical context. Not only that, in the non-critical

case the solutions are known exactly, either as an all-order perturbative expan-

sion or non-perturbatively. This makes the study of non-critical string theory

extremely relevant and interesting. In this thesis we will try to develop a better

understanding of some of these phenomena from the non-critical string theory

context.
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1.4 D-branes

1.4 D-branes

It was noticed that if one calculates the non-perturbative corrections to the non-

critical string partition function at weak coupling using the matrix model picture,

then these corrections go like e−1/gs where gs is the string coupling constant.

Based on this observation it was suggested by Shenker [14] that this e−1/gs de-

pendence is a generic property of string theories and not unique to the non-critical

string. It is known that instantons in field theories contribute non-perturbatively

to the partition function, but such contributions are of the form e−1/g2
s . The

contribution of string theory instantons is thus significantly larger. The real-

ization of this phenomenon in critical string theories are the D-branes found by

Polchinski, Dai, Leigh, Horava [15, 16]. D-branes are hypersurfaces in the tar-

get spacetime on which open strings can end, and they form boundaries on the

string worldsheet. They are dynamical solitonic objects in string theory. The

e−1/gs dependence was subsequently shown by Polchinski [17]. The D-branes he

considered for this calculation were localized at a point in spacetime and hence

were instantons. This verifies the proposal made by Shenker.

This series of developments came full-circle after the remarkable discovery of

ZZ and FZZT branes in the non-critical string theories by Fateev, the Zamold-

chikovs and Teschner [18, 19, 20]. The ZZ branes are unstable D0 branes and

are localized at the strong coupling end of the Liouville direction (φ→∞). The

open string theory on the D0 brane has a tachyon[21], and the worldline theory of

the D0 brane is described by the double scaled matrix model mentioned earlier.

The FZZT branes on the other hand are stable D1 branes which extend along

the Liouville direction. The corresponding D0 and D1 instantons contribute

non-perturbatively to the partition function by terms like e−1/gs .

1.5 Open-closed duality for the c = 1 string

Open-closed duality is a generic phenomenon in string theory. The simplest

example of open-closed duality can be found by considering a one-loop amplitude

of an open string. This looks like a cylinder, with the boundaries of the cylinder

6



1.5 Open-closed duality for the c = 1 string

being the endpoints of the string. It can be shown that the same amplitude

can be derived by considering the tree level diagram of a closed string, which is

expected since the cross-section of the cylinder resembles a closed string. This

indicates that any open string theory also contains the closed string.

The fact that the closed string forms a sub-sector of the open string theory

can be used to rewrite the boundary conditions on the open string endpoints as

some closed string states (in our cylinder example, the closed string boundary

states at the endpoints of the cylinder provides an equivalent description of the

open string boundary conditions). Then in some proper limit we can replace

the boundaries with an insertion of a closed string boundary state, also known

as an Ishibashi state. Our cylinder then looks like a sphere with two punctures

corresponding to the endpoints. If the above procedure is valid, then starting

from an open string theory on a worldsheet with boundaries we end up with an

equivalent (dual) closed string theory on a different background.

This idea of open-closed duality was realized for critical string theories by

Maldacena [22]. The basic observation in this work is that the large N limit of

some conformal field theories can describe closed string theory on a product of

Anti de-Sitter space and a compact manifold. This is the AdS-CFT conjecture.

The CFT is constructed as the low energy worldvolume gauge theory of N D3

branes in Type IIB string theory on a flat background, which is SU(N) N = 4

super Yang-Mills theory. It describes the dynamics of open strings on these D-

branes. The dual closed string theory is the Type IIB string on AdS5× S5 space,

which is the near-horizon geometry of these D3-branes.

In the non-critical theories, a similar open-closed duality can be realized in two

different ways. The first way is through the the Gopakumar-Vafa correspondence

[23, 24]. In this case the open string theory is an SU(N) Chern-Simmons theory

which lives on N topological A model 3-branes wrapped on an S3 cycle of a

deformed conifold space (see Chapter 5 for more details). The closed string theory

is the topological A model on the resolved conifold space, where the conifold

singularity is removed by blowing up an S2 cycle. This change of the background

from the deformed to the resolved conifold when one goes from the open to the

7



1.6 T-duality for the non-critical String

closed description is known as the “geometric transition”1.

The second setting in which open-closed duality is realized in the non-critical

context is in the matrix model description of Liouville theory. This is the case

which we consider in Chapter 2. We work with the c = 1 string with a compact

Euclidean time direction of radius R. The target spactime thus looks like a

cylinder of radius R. There are three different, but related matrix models which

describe this background. The first of these models, known as Matrix Quantum

Mechanics was already mentioned in Section 1.3. This describes the c = 1 string

at radius R as a collection of free fermions. Starting from the Matrix Mechanics

description, a new model describing the the c = 1 string at radius R was derived in

Ref.[25]. This is the Normal Matrix Model. The Normal Matrix Model lagrangian

does not explicitly depend on time, unlike the Matrix Mechanics. Similar to

the Matrix Mechanics, the Normal Matrix Model depends only on closed string

parameters, which are the couplings to momentum modes which perturb the

vacuum. The third model which we consider is the Imbimbo-Mukhi model derived

in Ref.[26]. It describes the c = 1 string at R = 1. This model depends on some

closed string parameters and some open string parameters which are believed to

be associated with FZZT branes. In the work described in Chapter 2 we are able

to find an explicit map between the Normal Matrix Model and the Imbimbo-

Mukhi model, both at R = 1. We argue that this correspondence between the

two models encodes open-closed duality for the c = 1 string.

1.6 T-duality for the non-critical String

String theory compactified on a circle, such as in the case considered in Section

1.5 has a remarkable duality known as T-duality. The statement of T-duality

is that a theory on a circle of radius R is dual to a theory on a circle of radius

R̃ = α′

R
, where 1

2πα′
is the fundamental string tension. Also, the duality maps the

momentum modes of the string along the compact direction in the first theory to

1Note that this is not a dynamical process but a duality between the two different string

backgrounds.
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1.7 The two dimensional black hole

the winding modes along the circle in the second and vice versa. It relates the

behaviour of the string at very small distances (R→ 0) to the behaviour at large

distances R̃ → ∞. The T-dual string theories both have the same value of the

string coupling constant, so T-duality is perturbative in nature.

T-duality a manifest symmetry of the worldsheet formulation of string theory.

However, this is not so in the matrix model formulation, Matrix Quantum Me-

chanics. This is because winding and momentum operators which are related by

T-duality are represented symmetrically in the worldsheet formulation, but the

matrix model treats them differently. In the matrix model, momentum correla-

tors are computed from the scattering amplitudes of free fermions in the singlet

representation of the matrix, while winding perturbations have to be computed

as expectation values of Wilson loops in a non-singlet representation.

In Chapter 3 we describe a new method which makes use of the Normal Matrix

Model to compute arbitrary momentum correlation functions for the c = 1 string

to all orders in perturbation theory. This allows us to obtain an exact expression

for the 2n-point function of unit momentum modes for the first time. This result

can in principle be used to verify T-duality for the matrix model, once exact

computations for the winding correlators are performed. This latter computation

is an open problem at the moment, although there have been some attempts

[27, 28].

1.7 The two dimensional black hole

Black holes are singular solutions of Einstein’s equations which are formed from

gravitational collapse of matter (for a review of black hole physics see [29, 30] and

the references therein). Black holes can be produced at the end point of the life

cycle of stars whose mass exceeds 1.4 solar masses (known as the Chandrasekhar

limit). The gravitational force becomes so strong that it overcomes all other

forces and the star collapses into a singularity to form a black hole.

String theory, being a quantum theory of gravity, should provide a micro-

scopic quantum description of a black hole, which is only classically described

9



1.7 The two dimensional black hole

by Einstein’s equations. Some early work on the subject proposed a connection

between the quantum states of the black hole and string excitations [31]. The low

energy effective action of string theory describes classical general relativity and

has black holes as the solutions of the equations of motion. In subsequent work it

was found that it is possible to have a Schwarzchild-like black hole solution with

heavy string states at strong coupling [32]. It was also seen that the degeneracy of

perturbative string states can be used to compute the entropy of a certain class of

black holes, thus indicating a relation between black holes and elementary string

excitations [33]. The discovery of D-branes in string theory finally led to a micro-

scopic description of black hole states. In Ref. [34] Strominger and Vafa provided

a construction of a black hole state from string theory using D-branes wrapped

over a compact manifold. They were able to show that the statistical entropy of

this black hole computed from string theory reproduces the Bekenstein-Hawking

entropy formula for a black hole of horizon area A: SBH = A
4
.

It turns out that the non-critical string also admits a two dimensional Eu-

clidean black hole like solution. This background can be described by a confor-

mal field theory (CFT) known as the gauged SL(2, R)/U(1) Wess-Zumino-Witten

model [35]. In Ref.[36] Fateev, Zamolodchikov and Zamolodchikov conjectured

that this two dimensional black hole is generated by a condensate of unit winding

modes or vortices in the non-critical string background. The unit winding mode

is generated by a closed string which wraps once around the compact direction.

This is known as FZZ duality. The presence of the vortex condensate pinches

off the cylinder shaped spacetime at the location of the vortex, and the geome-

try then begins to resemble a cigar shape, which describes the black hole. Our

computation of the 2n-point function in Chapter 3 provides an exact expression

for the partition function of this black hole after T-dualizing. In the work de-

scribed in Chapter 4 we provide a new interpretation for the FZZ duality. We

propose a new deformation of the c = 1 string background which makes clear

how the black hole state originates from the non-critical string theory. We also

propose a generalization of the FZZ duality in presence of a condensate of higher

winding modes. The black hole background in this case should be a higher spin

10



1.8 The topological string

generalization of the two dimensional black hole solution. The existence of these

solutions was proved in [37]. However, unlike in the unit winding case, the CFT

corresponding to these multiple winding black hole states is not known yet.

1.8 The topological string

In Section 1.3 we introduced the matrix model description for non-critical strings,

which proved to be very useful as a computational tool. It turns out that the

two dimensional non-critical string theory has yet another alternative description

in terms of topological string theory [38, 39, 40, 41, 42]. This correspondence

presents an entirely new perspective on the properties of non-critical strings.

As already mentioned earlier, in order to get a four dimensional supersym-

metric theory we need to compactify the ten dimensional superstring on a six

dimensional manifold. In this setup supersymmetry is preserved only if the six

dimensional compact manifold is a Calabi-Yau space. Topological string theory

describes string propagation on this Calabi-Yau space. It provides a quantum

theory of deformations of the Calabi-Yau. In the correspondence between non-

critical string theory and topological strings, the relevant Calabi-Yau space is the

conifold. It can be simply defined by its embedding in C4:

zw − px = 0, (1.1)

where z, w, p, x are complex coordinates. There is a singularity at the origin. The

singularity can be removed by deforming the conifold equation to:

zw − px = µ (1.2)

which blows up an S3 of radius
√
|µ| at the origin. This space is the deformed

conifold (DC), and µ is the complex deformation parameter.

The first demonstration of the correspondence was presented by Ghoshal and

Vafa[43] who showed that non-critical c = 1 string theory at the self-dual radius

is perturbatively equivalent to topological string theory on a deformed conifold.

It can be generalized to integer radius [44, 45]. In this case the corresponding

11



1.8 The topological string

Calabi-Yau space is a Zp orbifold of the conifold1. It has p singularities, which

can be removed by blowing p S3 cycles as before, leading to:

zw −
p∏

k=1

(px− µk) = 0 (1.3)

where µi, i = 1, 2, ..., p are the sizes of the S3’s. This is the deformed orbifolded

conifold (DOC).

Our work presented in Chapter 5 concerns the topological description of the

Type 0 string. There have been some proposals for the topological correspondence

at the self-dual2 and integer radius R = p [46, 47]. The topological string in this

case lives on a Z2p deformed orbifolded conifold. However these proposals only

manage to reproduce the free energy of the Type 0 theory in a perturbative

expansion in the string coupling constant, and not the exact answer derived

for the Type 0 case in Ref. [9] mentioned in Section 1.3. In the first part of

Chapter 5 we re-derive the existing perturbative correspondence using a more

elegant and rigorous method. In the second part of this chapter we present a

new construction with non-compact topological branes on the Calabi-Yau, which

exactly reproduces the full non-perturbative free energy of the Type 0 string.

1In this chapter, as well as in Chapter 5, we use the symbol p to denote a complex coordinate

of the conifold. This is to be distinguished from the integer p which denotes the order of the

orbifold.
2Here self-dual means unit radius R = 1, which remains invariant under T-duality.
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Chapter 2

c = 1 Matrix Models:

Equivalences and Open-Closed

String Duality

In this chapter we present an explicit demonstration of the equivalence between

the Normal Matrix Model (NMM) of c = 1 string theory at selfdual radius and

the Kontsevich-Penner (KP) model for the same string theory. We relate macro-

scopic loop expectation values in the NMM to condensates of the closed string

tachyon, and discuss the implications for open-closed duality. As in c < 1, the

Kontsevich-Miwa transform between the parameters of the two theories appears

to encode open-closed string duality, though our results also exhibit some inter-

esting differences with the c < 1 case. We also briefly comment on two different

ways in which the Kontsevich model originates [48].

2.1 Introduction

In the last few years, enormous progress has been made in understanding noncrit-

ical string theory. One line of development started with the work of Refs.[49, 50,

51], in the context of D-branes of Liouville theory. These and subsequent works

were inspired by the beautiful CFT computations that gave convincing evidence
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2.1 Introduction

for the consistency of these branes[18, 19, 20], as well as Sen’s picture of the decay

of unstable D-branes via tachyon condensation[52]. Another independent line of

development that has proved important was the attempt to formulate new matrix

models to describe noncritical string theories and their deformations, including

black hole deformations[25, 27, 53, 54].

Some of the important new results are related to nonperturbatively stable type

0 fermionic strings[10, 11], but even in the bosonic context, many old and new

puzzles concerning matrix models as well as Liouville theory have been resolved.

For c < 1 matter coupled to Liouville theory, a beautiful picture emerged of a

Riemann surface governing the semiclassical dynamics of the model. Both ZZ

and FZZT branes were identified as properties of this surface: the former are

located at singularities while the latter arise as line integrals. This picture was

obtained in Ref.[55] within the continuum Liouville approach and subsequently re-

derived in the matrix model formalism in Ref.[56] using earlier results of Ref.[57].

However, later it was realised[58] that the exact, as opposed to semiclassical,

picture is considerably simpler: the Riemann surface disappears as a result of

Stokes’ phenomenon and is replaced by a single sheet. In the exact (quantum)

case, correlation functions of macroscopic loop operators go from multiple-valued

functions to the Baker-Akhiezer functions of the KP hierarchy, which are analytic

functions of the boundary cosmological constant. Thus, for these models (and

also their type 0 extensions) a rather complete picture now exists.

Another remarkable development in this context is an explicit proposal to un-

derstand open-closed string duality starting from open string field theory. This

was presented in Ref.[59] and implemented there for the (2, q) series of minimal

models coupled to gravity (which can be thought of as perturbations of the “topo-

logical point” or (2, 1) minimal model). The basic idea of Ref.[59] was to evaluate

open string field theory on a collection of N FZZT branes in the (2, 1) closed string

background. This leads to the Kontsevich matrix model[60], which depends on a

constant matrix A whose eigenvalues are the N independent boundary cosmolog-

ical constants for this collection of branes. Now the Kontsevich model computes

the correlators of closed-string observables in the same (2, 1) background. So
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2.1 Introduction

this relationship was interpreted as open-closed duality, following earlier ideas of

Sen[61].

A different way of understanding what appears to be the same open-closed

duality emerged in Ref.[58] for the (2, 1) case. Extending some older observations

in Ref.[62], the authors showed that if one inserts macroscopic loop operators

det(xi−Φ), representing FZZT branes (each with its own boundary cosmological

constant xi) in the Gaussian matrix model, and takes a double-scaling limit, one

obtains the Kontsevich matrix model. The constant matrix A in this model again

arises as the boundary cosmological constants of the FZZT branes1.

The situation is more complicated and less well-understood for c = 1 matter

coupled to Liouville theory, namely the c = 1 string. The results of FZZT were

derived for generic Liouville central charge cL, but become singular as cL → 25,

the limit that should give the c = 1 string. Attempts to understand FZZT branes

at c = 1 (Refs.[66, 67]) rely on this limit from the c < 1 case which brings in

divergences and can therefore be problematic. In particular, there is as yet no

definite computation exhibiting open-closed duality at c = 1 starting from open

string field theory in the c = 1 Liouville background. One should expect such a

computation to give rise to the c = 1 analogue of the Kontsevich matrix model,

namely the Kontsevich-Penner model2 of Ref.[26].

In the present work we take a different approach to understand D-branes and

open-closed duality in the c = 1 string, more closely tied to the approach of

Refs.[58, 63]. The obvious point of departure at c = 1 would be to consider

macroscopic loops in the Matrix Quantum Mechanics (MQM) and take a double-

scaling limit. Indeed, FZZT branes at c = 1 have been investigated from this

point of view, for example in Refs.[28, 68]. However, we will take an alternative

route that makes use of the existence of the Normal Matrix Model (NMM)[25]

for c = 1 string theory (in principle, at arbitrary radius R). This model is dual in

a certain precise sense to the more familiar MQM, namely, the grand canonical

1This has been generalised[63] by starting with macroscopic loops in the double-scaled 2-

matrix models that describe (p, 1) minimal model strings. After double-scaling, one obtains the

generalised Kontsevich models of Refs.[64, 65].
2This model is valid only at the selfdual radius R = 1.
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partition function of MQM is the partition function of NMM in the large-N

limit. Geometrically, the two theories correspond to different real sections of a

single complex curve. More details about the interrelationship between MQM

and NMM can be found in Ref.[25].

One good reason to start from the NMM is that it is a simpler model than

MQM and does not require a double-scaling limit. Also, it has been a long-

standing question whether the KP model and NMM are equivalent, given their

structural similarities, and if so, what is the precise map between them. It is

tempting to believe that open-closed duality underlies their mutual relationship.

Indeed, the NMM does not have a parameter suggestive of a set of boundary cos-

mological constants, while the KP model has a Kontsevich-type constant matrix

A. So another natural question is whether the eigenvalues of A are boundary

cosmological constants for a set of FZZT branes/macroscopic loop operators of

NMM.

In what follows we examine these questions and obtain the following results.

First of all we find a precise map from the NMM (with arbitrary tachyon per-

turbations) to the KP model, thereby demonstrating their equivalence. While

the former model depends on a non-Hermitian matrix Z constrained to obey

[Z,Z†] = 1, the latter is defined in terms of a positive definite Hermitian matrix

M . We find that the eigenvalues zi and mi are related by mi = ziz̄i. The role of

the large-N limit in the two models is slightly different: in the KP model not only

the random matrix but also the number of parameters (closed string couplings)

is reduced at finite N . On the contrary, in the NMM the number of parameters

is always infinite for any N , but one is required to take N → ∞ to obtain the

right theory (this was called “Model I” in Ref.[25]). The two models are therefore

equivalent only on a subspace of the parameter space at finite N , with the limit

N →∞ being required to obtain full equivalence. This is an important point to

which we will return.

Next in § 2.5 we consider macroscopic loop operators of the form det(ξ−Z) in

the NMM, and show that these operators when inserted into the NMM, decrease

the value of the closed-string tachyon couplings in a precise way dictated by the
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Kontsevich-Miwa transform. On the contrary, operators of the form 1/ det(ξ−Z)

play the role of increasing, or turning on, the closed-string tachyon couplings.

In particular, insertion of these inverse determinant operators in the (partially

unperturbed) NMM leads to the Kontsevich-Penner model. (By partially unper-

turbed, we mean the couplings of the positive-momentum tachyons are switched

off, while those of the negative-momentum tachyons are turned on at arbitrary

values.) Calculationally, this result is a corollary of our derivation of the KP

model from the perturbed NMM in § 2.4.

These results bear a rather strong analogy to the emergence of the Kontsevich

model from the insertion of determinant operators at c < 1[58]. In both cases, the

parameters of macroscopic loop operators turn into eigenvalues of a Kontsevich

matrix. Recall that in Ref.[58], one inserts n determinant operators into the

N × N Gaussian matrix model and then integrates out the Gaussian matrix.

Taking N → ∞ (as a double-scaling limit) we are then left with the Kontsevich

model of rank n. In the c = 1 case, we insert n inverse determinant operators in

the NMM. As we will see, N −n of the normal matrix eigenvalues then decouple,

and we are left with a Kontsevich-Penner model of rank n (here one does not

have to take N →∞). We see that the two cases are rather closely analogous.

The main difference between our case at c = 1 and the c < 1 case of Ref.[58] is

that we work with inverse determinant rather than determinant operators. How-

ever at infinite n we can remove even this difference: it is possible to replace the

inverse determinant by the determinant of a different matrix, defining a natural

pair of mutually “dual” Kontsevich matrices1. In terms of the dual matrix, one

then recovers a relation between correlators of determinants (rather than inverse

determinants) and the KP model.

In the concluding section we examine a peculiar property of the NMM, namely

that it describes the c = 1 string even at finite N , if we set N = ν, where ν is

the analytically continued cosmological constant ν = −iµ. This was noted in

Ref.[25], where this variant of the NMM was called “Model II”. Now it was

1This dual pair is apparently unrelated to the dual pair of boundary cosmological constants

at c < 1.
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already observed in Ref.[26] that setting N = ν in the KP model (and giving a

nonzero value to one of the deformation parameters) reduces the KP model to the

original Kontsevich model that describes (2, q) minimal strings. Thus we have

a (two-step) process leading from the NMM to the Kontsevich model. However,

we also know from Ref.[58] that the Kontsevich model arises from insertion of

macroscopic loops in the double-scaled Gaussian matrix model. We will attempt

to examine to what extent these two facts are related.

2.2 Normal Matrix Model

We start by describing the Normal Matrix Model (NMM) of c = 1 string theory[25]

and making a number of observations about it. The model originates from some

well-known considerations in the Matrix Quantum Mechanics (MQM) description

of the Euclidean c = 1 string at radius R. Here, R = 1 is the selfdual radius,

to which we will specialise later. The MQM theory has discrete “tachyons” Tk,

of momentum k
R

, where k ∈ Z. Let us divide this set into “positive tachyons”

Tk, k > 0 and “negative tachyons” Tk, k < 0. (The zero-momentum tachyon is

the cosmological operator and is treated separately). We now perturb the MQM

by these tachyons, using coupling constants tk, k > 0 for the positive tachyons

and tk, k > 0 for the negative ones.

The grand canonical partition function of MQM is denoted Z(µ, tk, tk). At

tk = tk = 0, it can easily be shown to be:

Z(µ, tk = 0, tk = 0) =
∞∏

n≥0

Γ

(
−n+ 1

2

R
− iµ+

1

2

)
(2.1)

But this is also the partition function of the matrix integral:

ZNMM =

∫
[dZdZ†] e−trW (Z,Z†)

=

∫
[dZdZ†] etr(−ν(ZZ†)R+[ 1

2
(R−1)+(Rν−N)] logZZ†) (2.2)

where ν = −iµ and N →∞. Here Z, Z† are N ×N matrices satisfying:

[Z,Z†] = 0 (2.3)

18



2.2 Normal Matrix Model

Since the matrix Z commutes with its adjoint, the model defined by Eq. (2.2) is

called the Normal Matrix Model (NMM)1.

The equality above says that the unperturbed MQM and NMM theories are

equivalent. The final step is to note that the tachyon perturbations correspond

to infinitely many Toda “times” in the MQM partition function, which becomes

a τ -function of the Toda integrable hierarchy. The same perturbations on the

NMM side are obtained by adding to the matrix action the terms:

W (Z,Z†)→ W (Z,Z†) + ν

∞∑

k=1

(
tkZ

k + tkZ
†k
)

(2.4)

It follows that the Normal Matrix Model, even after perturbations, is equivalent

to MQM.

The equivalence of the full perturbed MQM and NMM gives an interesting

interpretation of the perturbations in NMM in terms of the Fermi surface of the

MQM. The unperturbed MQM Hamiltonian is given by:

H0 =
1

2
tr(−~2 ∂2

∂X2
−X2) (2.5)

where X is an N×N Hermitian matrix (here the compactification radius is R). In

the SU(N)-singlet sector this system is described by N non-relativistic fermions

moving in an inverted harmonic oscillator potential. The eigenvalues of X de-

scribe the positions of these fermions. In terms of eigenvalues the Hamiltonian

can be written as:

H0 =
1

2

N∑

i=1

(p̂2
i − x̂2

i ), (2.6)

1For the most part we follow the conventions of Ref.[25]. However we use the transcription

(1/i~)them → νus and µthem → 1us. The partition function depends on the ratio (µ/i~)them →
νus = −iµus. Our conventions for the NMM will be seen to match with the conventions of

Ref.[26] for the KP model. Note that the integral is well-defined for all complex ν with a

sufficiently large real part. It can then be extended by analytic continuation to all complex

values of the parameter ν, other than those for which the argument of the Γ function is a

negative integer. This is sufficient, since everything is ultimately evaluated at purely imaginary

values of ν.
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pi being the momenta conjugate to xi. We now want to consider perturbations

of Eq. (2.6) by tachyon operators. For this it is convenient to change variables

from p̂, x̂ to the “light cone” variables x̂±:

x̂± =
x̂± p̂√

2
(2.7)

Since [p̂, x̂] = −i~ it follows that [x̂+, x̂−] = −i~ also. The MQM Hamiltonian in

terms of the new variables is:

H0 = −
N∑

i=1

x̂+ix̂−i −
i~N

2
(2.8)

In the phase space (x+, x−) the equation of the Fermi surface for the unperturbed

MQM is given by:

x+x− = µ (2.9)

The tachyon perturbations to the MQM Hamiltonian H0 are given in terms of

the new variables by:

H = H0 −
∑

k≥1

N∑

i=1

(
k t±k x

k
R
±i + v±k x

− k
R
±i

)
(2.10)

In the above equation the v’s are determined in terms of the t’s from the orthonor-

mality of the Fermion wavefunctions. The conventions chosen above simplifies the

connection with NMM perturbations. The Fermi surface of the perturbed MQM

is given by:

x+x− = µ+
∑

k≥1

(
k t±k x

k
R
± + v±k x

− k
R
±

)
(2.11)

The equivalence between NMM and MQM relates the tachyon perturbations

in Eq. (2.4) and Eq. (2.10) with the following identification between the tachyon

operators of the two models:

trX
n
R
+ = trZn

trX
n
R
− = trZ†n

The coefficients t± are the same as t, t in the NMM. This means that any tachyon

perturbation in the NMM is mapped directly to a deformation of the Fermi surface

of MQM by Eq. (2.11).
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At the selfdual radius R=1, the NMM simplifies and the full perturbed par-

tition function can be written as:

ZNMM(t, t) =

∫
[dZdZ†] e

tr

(
−νZZ†+(ν−N) logZZ†−ν

∑∞
k=1

(
tkZ

k+tkZ
†k
))

(2.12)

We note several properties of this model.

(i) The unperturbed part depends only on the combination ZZ† and not on

Z,Z† separately.

(ii) The model can be reduced to eigenvalues, leading to the partition function:

ZNMM(t, t) =

∫ N∏

i=1

dzidz̄i ∆(z)∆(z̄) e
∑N
i=1

(
−νziz̄i+(ν−N) log ziz̄i−ν

∑∞
k=1

(
tkz

k
i +tk z̄

k
i

))

(2.13)

(iii) The model is symmetric under the interchange tk ↔ tk, as can be seen

by interchanging Z and Z†. In spacetime language this symmetry amounts to

the transformation X → −X where X is the Euclidean time coordinate, which

interchanges positive and negative momentum tachyons.

(iv) The correlator:

〈trZk1trZk2 · · · trZkmtrZ†
`1

trZ†
`2 · · · trZ†`n〉tk=tk=0 (2.14)

vanishes unless ∑

m

km =
∑

n

`n (2.15)

This correlator is computed in the unperturbed theory. The above result follows

by performing the transformation:

Z → eiθZ (2.16)

for some arbitrary angle θ. The unperturbed theory is invariant under this trans-

formation, therefore correlators that are not invariant must vanish. In spacetime

language this amounts to the fact that tachyon momentum in the X direction is

conserved.
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2.3 The Kontsevich-Penner or W∞ model

(v) As a corollary, we see that if we set all tk = 0, the partition function

becomes independent of tk:

ZNMM(0, tk) = ZNMM(0, 0) (2.17)

(vi) For computing correlators of a finite number of tachyons, it is enough to

turn on a finite number of tk, tk, i.e. we can always assume for such purposes that

tk, tk = 0, k > kmax for some finite integer kmax. In that case, apart from the log

term we have a polynomial matrix model.

(vii) We can tune away the log term by choosing ν = N . This choice has

been called Model II in Ref.[25]. In this case the model reduces to a Gaussian

model (but of a normal, rather than Hermitian, matrix) with perturbations that

are holomorphic + antiholomorphic in the matrix Z (i.e., in the eigenvalues zi).

If we assume that the couplings tk, tk vanish for k > kmax, as in the previous

comment, then the perturbations are also polynomial. We will return to this case

in a subsequent section.

2.3 The Kontsevich-Penner or W∞ model

The Kontsevich-Penner or W∞ model[26] (for a more detailed review, see Ref.[7])

is a model of a single positive-definite hermitian matrix, whose partition function

is given by:

ZKP (A, t) = (detA)ν
∫

[dM ] etr(−νMA+(ν−N) logM−ν
∑∞
k=1 tkM

k) (2.18)

where tk are the couplings to negative-momentum tachyons, N is the dimension-

ality of the matrix M and A is a constant matrix. The eigenvalues of this matrix

determine the couplings tk to positive-momentum tachyons via the Kontsevich-

Miwa (KM) transform:

tk = − 1

νk
tr(A−k) (2.19)

This model is derived by integrating the W∞ equations found in Ref.[69].

The parameter ν appearing in the action above is related to the cosmological

constant µ of the string theory by ν = −iµ. The model can also be obtained
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2.3 The Kontsevich-Penner or W∞ model

from the Penner matrix model[70, 71] after making a suitable change of variables

(as explained in detail in Ref.[7]) and adding perturbations.

We now note some properties that are analogous to those of the NMM, as

well as others that are quite different.

(i) By redefining MA→M we can rewrite the partition function without any

factor in front, as:

ZKP (A, t) =

∫
[dM ] etr(−νM+(ν−N) logM−ν

∑∞
k=1 tk(MA−1)k) (2.20)

(ii) This model has no radius deformation, and describes the c = 1 string

theory directly at selfdual radius R = 1.

(iii) In view of the logarithmic term, the model is well-defined only if the

integral over the eigenvalues mi of the matrix M is restricted to the region mi > 0.

(iv) The model can be reduced to eigenvalues, leading to the partition func-

tion:

ZKP (A, t) =

(
N∏

i=1

ai

)ν ∫ N∏

i=1

dmi
∆(m)

∆(a)
e
∑N
i=1(−νmiai+(ν−N) logmi−ν

∑∞
k=1 tkm

k
i )

(2.21)

(vi) In the representation Eq. (2.18), the operators trMk describe the negative-

momentum tachyons. But there are no simple operators that directly correspond

to positive-momentum tachyons. Nevertheless this model generates tachyon cor-

relators of the c = 1 string as follows:

〈Tk1Tk2 · · ·TkmT−`1T−`2 · · ·T−`n〉 =
∂

∂tk1

∂

∂tk2

· · · ∂

∂tkm

∂

∂t`1

∂

∂t`2
· · · ∂

∂t`n
log ZKP

(2.22)

where derivatives in tk are computed using Eq. (2.19) and the chain rule.

(v) The symmetry of the partition function under the interchange of tk, tk is

not manifest, since one set of parameters is encoded through the matrix A while

the other appears explicitly.

(vi) The transformation

A→ αA, tk → αk tk (2.23)
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for arbitrary α, is a symmetry of the model (most obvious in the representa-

tion Eq. (2.20)). As a consequence, the tachyon correlators satisfy momentum

conservation.

(vi) The partition function satisfies the “puncture equation”:

ZKP (A− ε, tk + δk,1 ε) = eεν
2t1ZKP (A, tk) (2.24)

as can immediately be seen from Eq. (2.18).

2.4 Equivalence of the matrix models

2.4.1 N = 1 case

We start by choosing the selfdual radius R = 1, and will later comment on what

happens at other values of R. As we have seen, in the perturbed NMM there are

two (infinite) sets of parameters tk, tk, all of which can be chosen independently.

This is the case even at finite N , though the model describes c = 1 string theory

only at infinite N (or at the special value N = ν, as noted in Ref.[25], a point

to which we will return later). In contrast, the Kontsevich-Penner model has

one infinite set of parameters tk, as well as N additional parameters from the

eigenvalues of the matrix A. The latter encode the tk, as seen from Eq. (2.19)

above. From this it is clear that at finite N , there can only be N independent

parameters tk (k = 1, 2, . . . N) while the remaining ones (tk, k > N) are dependent

on these.

This makes the possible equivalence of the two models somewhat subtle. To

understand the situation better, let us compare both models in the limit that is

farthest away from N → ∞, namely N = 1. While this is a “toy” example, we

will see that it provides some useful lessons.

In this case the NMM partition function is:

ZNMM,N=1(tk, tk) =

∫
dz dz̄ e−νzz̄+(ν−1) log zz̄−ν

∑∞
k=1(tkz

k+tk z̄
k) (2.25)

while the Kontsevich-Penner partition function is:

ZKP,N=1(a, tk) = aν
∫
dm e−νma+(ν−1) logm−ν

∑∞
k=1 tkm

k

(2.26)
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We will now show that the two integrals above are equivalent if we assume that

tk in the NMM is given by:

tk = − 1

νk
a−k (2.27)

which is the KM transform Eq. (2.19) in the special case where A is a 1 × 1

matrix, denoted by the single real number a. Note that this determines all the

infinitely many tk in terms of a.

To obtain the equivalence, insert the above relation and also perform the

change of integration variable:

z =
√
meiθ (2.28)

in the NMM integral. Then we find that (up to a numerical constant):

ZNMM,N=1(a, tk) =

∫
dmdθ e−νm+(ν−1) logm+

∑∞
k=1

1
k

(
√
m
a

)keikθ−ν
∑∞
k=1 tk(

√
m)ke−ikθ

=

∫
dmdθ

1

1−
√
meiθ

a

e−νm+(ν−1) logm−ν
∑∞
k=1 tk(

√
m)ke−ikθ(2.29)

Strictly speaking the last step is only valid for
√
m/a < 1, since otherwise the

infinite sum fails to converge. Hence we fix m and a to satisfy this requirement

and continue by evaluating the θ-integral. This can be evaluated by defining

e−iθ = w and treating it as a contour integral in w. We have

dθ
1

1−
√
meiθ

a

→ dw
1

w −
√
m
a

(2.30)

Since the rest of the integrand is well-defined and analytic near w = 0, we capture

the simple pole at w =
√
m/a. That brings the integrand to the desired form.

Now we can lift the restriction
√
m/a < 1, and treat the result as valid for all m

by analytic continuation. Therefore we find:

ZNMM,N=1(a, tk) =

∫
dm e−νm+(ν−1) logm−ν

∑∞
k=1 tk(ma−1)k

= aν
∫
dm e−νma+(ν−1) logm−ν

∑∞
k=1 tkm

k

= ZKP,N=1(a, tk) (2.31)
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2.4 Equivalence of the matrix models

Thus we have shown that the perturbed 1× 1 Normal Matrix Model at R = 1 is

equivalent to the 1× 1 Kontsevich-Penner model. However, this equivalence only

holds when we perform the 1×1 KM transform, which fixes all the perturbations

tk in terms of a single independent parameter a (while the tk are left arbitrary).

An important point to note here is the sign chosen in Eq. (2.27). Changing

the sign (independently of k) amounts to the transformation tk → −tk. This is

apparently harmless, leading to some sign changes in the correlation functions,

but there is no way at N = 1 (or more generally at any finite N) to change a (or

the corresponding matrix A) to compensate for this transformation. The sign we

have chosen, given the signs in the original NMM action, is therefore the only

one that gives the KP model. This point will become important later on.

Returning to the NMM-KP equivalence at N = 1, it is interesting to generalise

it by starting with the NMM at an arbitrary radius R instead of R = 1 as was

the case above. As seen from Eq. (2.2), the coupling of the log term is modified

in this case as:

(ν − 1)→ 1

2
(R− 1) + (Rν − 1) (2.32)

and also the bilinear term zz̄ is modified to (zz̄)R. The above derivation goes

through with only minor changes, and we end up with:

ZNMM,N=1(a, tk) = a
1
2

(R−1)+ν

∫
dm e−ν(ma)R+[ 1

2
(R−1)+(Rν−1)] logm−ν

∑∞
k=1 tkm

k

(2.33)

This appears to suggest that there is a variant of the Kontsevich-Penner model

valid at arbitrary radius (or at least arbitrary integer radius, since otherwise it

may become hard to define the integral). This would be somewhat surprising as

such a model has not been found in the past. As we will see in the following

subsection, the above result holds only for the N = 1 case. Once we go to N ×N
matrices, we will see that NMM leads to a KP matrix model only at R = 1,

consistent with expectations.

Another generalisation of the above equivalence seems more interesting. In

principle, even for the 1×1 matrix model, we can carry out a KM transform using

an n × n matrix A where n is an arbitrary integer. Indeed, there is no logical

reason why the dimension of the constant matrix A must be the same as that of
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2.4 Equivalence of the matrix models

the random matrices occurring in the integral. The most general example of this

is to take N ×N random matrices Z,Z† in the NMM and then carry out a KM

transform with A being an n × n matrix. The “usual” transform then emerges

as the special case n = N . Of course all this makes sense only within the NMM

and not in the KP model. If n 6= N then the KP model, which has a trMA term

in its action, cannot even be defined. So we should not expect to find the KP

model starting with the NMM unless n = N , but it is still interesting to see what

we will find.

Here we will see what happens if we take N = 1 and n > 1. The full story

will appear in a later subsection. Clearly the KM transform Eq. (2.19) permits

more independent parameters tk as n gets larger. Let us take the eigenvalues of

A to be a1, a2, . . . , an. Then it is easy to see that:

ZNMM,N=1(ai, tk) =

∫
dmdθ e

−νm+(ν−1) logm+
∑n
i=1

∑∞
k=1

1
k

(
√
m
ai

)keikθ−ν
∑∞
k=1 tk(

√
m)ke−ikθ

=

∫
dmdθ

1
∏n

i=1(1−
√
meiθ

ai
)
e−νm+(ν−1) logm−ν

∑∞
k=1 tk(

√
m)ke−ikθ(2.34)

Converting to the w variable as before, we now encounter n poles. Picking up

the residues, we get:

ZNMM,N=1(ai, tk) =

∫
dm e−νm+(ν−1) logm

n∑

l=1

(
1∏

i 6=l
(
1− al

ai

)e−ν
∑∞
k=1 tk(m

al
)k

)

(2.35)

This in turn can be expressed as a sum over n 1× 1 Kontsevich-Penner models:

ZNMM,N=1(ai, tk) =
n∑

l=1

1∏
i 6=l
(
1− al

ai

)ZKP,N=1(al, tk) (2.36)

Note that if in this expression we take an → ∞, one of the terms in the above

equation (corresponding to l = n) decouples, and an also drops out from the

remaining terms. Therefore we recover the same equation with n → n − 1. In

this way we can successively decouple all but one of the ai’s.

To summarise, at the level of the 1×1 NMM, we have learned some interesting

things: this model is equivalent to the 1 × 1 KP model if we specialise the pa-

rameters tk to a 1-parameter family via the KM transform, while it is equivalent
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2.4 Equivalence of the matrix models

to a sum over n different 1 × 1 KP models if we specialise the parameters tk to

an n-parameter family. We also saw a 1 × 1 KP model arise when we are at a

finite radius R 6= 1. In the next section we will see to what extent these lessons

hold once we work with N ×N random matrices.

2.4.2 General case

In this section we return to the N × N Normal Matrix Model. With the sub-

stitution Eq. (2.19) (where A is also an N × N matrix), its partition function

becomes:

ZNMM =

∫
[dZ dZ†] e

tr
(
−νZZ†+(ν−N) logZZ†+

∑∞
k=1

1
k

tr(A−k)Zk−ν
∑∞
k=1 tkZ

†k
)

(2.37)

or, in terms of eigenvalues:

ZNMM =

∫ N∏

i=1

d2zi ∆(z)∆(z̄) e−ν
∑N
i=1 zizi+(ν−N)

∑N
i=1 log zizi

× e
∑N
i,j=1

∑∞
k=1

1
k

(
zi
aj

)k

e−ν
∑N
i=1

∑∞
k=1 tkz

k
i (2.38)

where ∆(z) is the Vandermonde determinant. Because of the normality constraint

[Z,Z†] = 0 there is only one Vandermonde for zi and one for z̄i.

The sum over k in the second line of Eq. (2.38) converges if zi
aj
< 1 for all i, j,

in which case it can be evaluated immediately giving:

ZNMM =

∫ N∏

i=1

d2zi |∆(z)|2
N∏

i,j=1

1

1− zi
aj

e
∑N
i=1[−νziz̄i+(ν−N)log ziz̄i−ν

∑∞
k=1 tk z̄

k
i ]

(2.39)

To make contact with the Penner model, first change variables zi →
√
mi e

iθi

and then replace e−iθi by wi as before. Then we get d2zi → dmi
dwi
wi

and:

ZNMM =

∫ N∏

i=1

dmi

∮ N∏

i=1

dwi
wi

N∏

i<j

(√
mi

wi
−
√
mj

wj

)(√
miwi −

√
mjwj

)

×
N∏

i,j=1

1

1−
√
mi

wiaj

e
∑N
i=1[−νmi+(ν−N) logmi−ν

∑∞
k=1 tk(

√
miwi)

k] (2.40)
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The contour integrals can be evaluated once this is rewritten in the more conve-

nient form:

ZNMM =

∫ N∏

i=1

dmi

∮ N∏

i=1

dwi

N∏

i<j

(√
miwj −

√
mjwi

) (√
miwi −

√
mjwj

)

×
N∏

i,j=1

1

wi −
√
mi
aj

e
∑N
i=1[−νmi+(ν−N) logmi−ν

∑∞
k=1 tk(

√
miwi)

k] (2.41)

Next we pick up the residues at the poles. During the intermediate steps, we

will assume that the eigenvalues ai of the matrix A are non-degenerate. From the

above expression, each integration variable wi has a pole at each of the values:

wi =

√
mi

aj
(2.42)

for all j. Thus the contributions can be classified by the set of poles:

(w1, w2, . . . , wN) =

(√
m1

aj1
,

√
m2

aj2
, . . . ,

√
mN

ajN

)
(2.43)

We now notice that the set (j1, j2, . . . , jN) must consist of distinct elements, in

other words it forms a permutation of (1, 2, . . . , N). This is because if two values

of ji coincide, one of the Vandermonde factors of the type (
√
miwj − √mjwi)

vanishes and there is no contribution.

We start by considering the simplest permutation, the identity, namely:

(ji, j2, . . . , jN) = (1, 2, . . . , N) (2.44)

In this case the residues from the denominator and Vandermonde factors become:

N∏

i<j

(√
mimj

aj
−
√
mimj

ai

)(
mi

ai
− mj

aj

) N∏

j 6=i

1
√
mi
ai
−
√
mi
aj

=

∏N
i<j(miaj −mjai)

∆(a)

(2.45)

while the exponential measure factor becomes:

e
∑N
i=1

[
−νmi+(ν−N) logmi−ν

∑∞
k=1 tk

(
mi
ai

)k]

(2.46)
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2.4 Equivalence of the matrix models

It is easy to check that for all the other possible permutations of (j1, j2, . . . , jN)

besides the identity permutation, a corresponding permutation of the integration

variables mi brings the above answer (exponential measure as well as prefactors)

back to the same form as for the identity permutation. This means that (dropping

a factor of 1
N !

) we have proved:

ZNMM =

∫ N∏

i=1

dmi

∏N
i<j(miaj −mjai)

∆(a)
e
∑N
i=1

[
−νmi+(ν−N) logmi−ν

∑∞
k=1 tk

(
mi
ai

)k]

=
( N∏

i=1

ai

)ν ∫ N∏

i=1

dmi
∆(m)

∆(a)
e
∑N
i=1[−νmiai+(ν−N) logmi−ν

∑∞
k=1 tkm

k
i ](2.47)

where in the last step we have replaced mi → miai.

This is precisely the eigenvalue representation Eq. (2.21) of the KP matrix

model Eq. (2.18). Thus we have provided a direct proof of equivalence of the

perturbed Normal Matrix Model and the Kontsevich-Penner model. Notice that

in performing the KM transform we reduced the independent tk of the NMM to

a finite number, namely N , so that eventually the N → ∞ limit is required in

order to encode all the independent parameters.

In the previous subsection we considered taking different ranks for the con-

stant matrix A arising in the KM transform and the random matrix Z. The most

general case is to take Z to be N × N and A to be n × n. The computation is

a simple extension of the one done above. We find the following results. When

n > N we again get a sum over Kontsevich-Penner models. The number of terms

in the sum is the binomial coefficient nCN . This is a generalisation of the result

given in Eq. (2.36) for N = 1, where we found n terms. In the general case let us

denote by a{i,l} the ith element of the set formed by one possible choice of N ai’s

from a total of n, the index l labeling the particular choice. The complementary

set, formed by the rest of the ai’s is denoted by a{̃i,l}, the index ĩ taking n − N
values. We then have:

ZNMM(ai, tk) =

nCN∑

l=1

N∏

i=1

N−n∏

ĩ=1

1(
1− a{i,l}

a{ĩ,l}

)ZKP (a{l}, tk) (2.48)

so that the NMM is again expressed as a sum over KP models.
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The other case, n < N , can be obtained by starting with n = N and succes-

sively decoupling N − n eigenvalues ai by taking them to infinity. This is similar

to what we observed in the N = 1 case following Eq. (2.36). In the present case

one can easily show that N − n matrix eigenvalues mi also decouple in this limit

(apart from a normalisation). In fact, it is straightforward to derive the formula:

lim
aN→∞

Z
(N,ν)
KP (A(N), tk) =

Γ(ν −N + 1)

νν−N+1
Z

(N−1,ν)
KP (A(N−1), tk) (2.49)

which can then be iterated. Thus after N−n eigenvalues ai are decoupled, we find

up to normalisation the KP model of rank n. As we remarked in the introduction,

this exhibits a strong analogy to the insertion of n determinant operators in the

Gaussian model, as described in Ref.[58], where the result is the n×n Kontsevich

model.

2.4.3 Radius dependence

Finally, we can ask what happens to the radius-dependent NMM under the above

procedure. Again the steps are quite straightforward and one arrives at the

following generalisation of Eq. (2.47):

ZNMM,R =
( N∏

i=1

ai

) 1
2

(R−1)+ν
∫ N∏

i=1

dmi
∆(m)

∆(a)

× e
∑N
i=1[−ν(miai)

R+[ 1
2

(R−1)+(νR−N)] logmi−ν
∑∞
k=1 tkm

k
i ] (2.50)

The problem is that the above eigenvalue model cannot (as far as we can see) be

converted back to a matrix model. The key to doing so in the R = 1 case was the

linear term
∑

imiai in the action, which (after absorbing the Vandermondes and

using the inverse of the famous Harish Chandra formula) can be summed back

into trMA. The quantity
∑

i(miai)
R cannot be converted back into a matrix

trace unless R = 1.

This clarifies a longstanding puzzle: while a KP model could only be found

at R = 1, the NMM exists and describes the c = 1 string for any R. We see

now that the correct extension of the KP model to R 6= 1 is the eigenvalue model
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2.5 Loop operators in the NMM

given by Eq. (2.50) above, but unfortunately this does not correspond to a matrix

model.

2.5 Loop operators in the NMM

In this section we will examine loop operators in the NMM. Our goal here is to

understand whether correlation functions of these operators can be related to the

Kontsevich-Penner model of Ref.[26], thereby providing the c = 1 analogue of the

corresponding observations in Refs.[58, 63]. Though there are some similarities,

we will also find some striking differences between this and the c < 1 case.

Macroscopic loops in a model of random matrices Φ are described by insertions

of the operator:

W (x) = tr log(x− Φ) (2.51)

which creates a boundary in the world sheet. Here x is the boundary cosmological

constant. The corresponding generating function for multiple boundaries is[58,

72, 73, 74, 75]:

eW (x) = det(x− Φ) (2.52)

Such operators have been studied extensively in c < 1 matrix models, describing

(p, q) minimal models coupled to 2d gravity.

We will consider expectation values of operators of the form det(a−Z) in the

NMM, where a is a real parameter. These operators create a hole in the dual

graph in the Feynman diagram expansion of the matrix model. Since the NMM

has vertices that are holomorphic/antiholomorphic in Z, the dual graph will have

faces that are dual to Z or Z†. The loop operator det(a− Z) creates a hole in a

Z-face, while its complex conjugate creates a hole in a Z†-face.

As we would expect, this means that the correlators are complex, but we have

the identity1:
〈∏

i

det(ai − Z)

〉

tk,tk

=

〈∏

i

det(ai − Z†)
〉

tk,tk

(2.53)

1Here and in the rest of this section, all correlators are understood to be normalised corre-

lators in the NMM.
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where on the RHS the role of the deformations tk, tk has been interchanged.

Therefore as long as we consider correlators only of det(ai − Z) or det(ai − Z†)
the result is effectively the same. As we will see in a moment, a stronger statement

is true: on the subspace of parameter space dictated by the KM transform, the

unmixed correlators are individually real. Later we will also consider mixed

correlators.

As a start, notice that in the 1× 1 case,

ZNMM,N=1(tk = 0, tk) =

∫
d2z e−νzz̄+(ν−1) log zz̄−ν

∑∞
k=1 tk z̄

k

=

∫
d2z (a− z)

1

(a− z)
e−νzz̄+(ν−1) log zz̄−ν

∑∞
k=1 tk z̄

k

=
1

a

∫
d2z (a− z) e−νzz̄+(ν−1) log zz̄−ν

∑∞
k=1(t0kz

k+tk z̄
k)

=
1

a

〈
(a− z)

〉

t0k,tk

ZNMM,N=1(t0k, tk) (2.54)

where the expectation value in the last line is evaluated in the NMM with

t0k = − 1

νk
a−k (2.55)

We see that the t0k dependence drops out in the RHS because insertion of the loop

operator cancels the dependence in the partition function. In fact, more is true:

even the tk dependence cancels out between the different factors on the RHS.

This is a consequence of the property exhibited in Eq. (2.17).

A more general statement in the 1× 1 case is:

ZNMM,N=1(tk − t0k, tk) =
1

a

〈
(a− z)

〉

tk,tk

ZNMM,N=1(tk, tk)

In other words, insertion of the macroscopic loop operator has the effect of de-

creasing the value of tk, leaving tk unchanged.

In the more general case of N ×N random matrices, the corresponding result

is as follows. The expectation value of a single exponentiated loop operator

det(a− Z) is:
〈

det(a− Z)

〉

tk,tk

=
ZNMM(tk − t0k, tk)

ZNMM(tk, tk)
aN (2.56)
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with t0k again given by Eq. (2.55). Now we would like to consider multiple loop

operators. Therefore consider the expectation value:

〈 n∏

i=1

det(ai − Z)

〉

tk,tk

(2.57)

As noted in Ref.[58], this can be thought of as a single determinant in a larger

space. Define the n × n matrix A = diag(a1, a2, . . . , an) and extend it to an

nN × nN matrix A ⊗ 11N×N . Similarly, extend the N × N matrix Z to an

nN × nN matrix 11n×n ⊗ Z. Now we can write

n∏

i=1

det(ai − Z) = det(A⊗ 11− 11⊗ Z) =
n∏

i=1

N∏

j=1

(ai − zj) (2.58)

Rewriting this as:

n∏

i=1

det(ai − Z) = (detA)N det(11⊗ 11− A−1 ⊗ Z) (2.59)

and expanding the second factor, we find:

〈 n∏

i=1

det(ai − Z)

〉

tk,tk

=
ZNMM(tk − t0k, tk)

ZNMM(tk, tk)
(detA)N (2.60)

where now:

t0k = − 1

νk
trA−k (2.61)

Thus we see that macroscopic loop correlators in this model are obtained by

simply shifting the parameters tk in the partition function, the shift being given

by the KM transform.

The above considerations can be extended to mixed correlators as follows.

Consider correlation functions of the form:
〈 n∏

i=1

det(ai − Z)
m∏

j=1

det(bj − Z†)
〉

(2.62)

Then, defining the m ×m matrix B = diag(b1, b2, . . . , bm), the parameters t0k as

in Eq. (2.61), and the parameters t
0
k by:

t
0
k = − 1

νk
trB−k (2.63)
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we find
〈 n∏

i=1

det(ai − Z)
m∏

j=1

det(bj − Z†)
〉

tk,tk

=
ZNMM(tk − t0k, tk − t

0
k)

ZNMM(tk, tk)
(detA detB)N

(2.64)

In the above we have seen how to re-express correlations of loop operators in

terms of shifted closed-string parameters. This in itself is quite reminiscent of

an open-closed duality. However we did not yet encounter the KP model. To

do so, we note that besides the exponentiated loop operator det(a − Z), we can

consider its inverse: 1/ det(a− Z). Just as insertion of det(a− Z) has the effect

of decreasing each tk by t0k given by Eq. (2.55), insertion of the inverse operator

increases tk by the same amount.

Thus we may consider correlators like:
〈 n∏

i=1

1

det(ai − Z)

〉
=

1

(detA)N

〈
1

det(11⊗ 11− A−1 ⊗ Z)

〉
(2.65)

As before, the two factors of the direct product in the above equation refer to

n× n and N ×N matrices. It is easy to see that the correlation function on the

RHS has the effect of increasing the tk by t0k as given in Eq. (2.61).

Although in principle n and N are independent, here we will consider the case

n = N . Now the inverse operator
〈

1

det(11⊗ 11− A−1 ⊗ Z)

〉
(2.66)

has already made an appearance in § 2.4, where one finds it in the eigenvalue

basis (see for example Eq. (2.39)):

N∏

i,j=1

1

1− zi
aj

(2.67)

The interesting property of the inverse determinant operators is that they can

be used to create the KP model starting from the partially unperturbed NMM

(where tk = 0 but tk are arbitrary). Computationally this is similar to the

derivation in § 2.4 of the KP model from the perturbed NMM. Thus we have:
〈

1

det(11⊗ 11− A−1 ⊗ Z)

〉

0,tk

ZNMM(0, tk) = ZKP (A, tk) (2.68)
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Here ZNMM(0, tk) can be replaced by ZNMM(0, 0) as we have noted previously.

This equation then is the precise statement of one of our main observations, that

inverse determinant expectation values in the (partially unperturbed) NMM give

rise to the KP partition function.

It is clearly desirable to have a target space interpretation for these loop opera-

tors. Since the NMM is derived from correlators computed from matrix quantum

mechanics, in principle one should be able to understand the loop operators of

NMM starting from loop operators (or some other operators) in MQM. While

that is beyond the scope of the present work, we will instead exhibit some sug-

gestive properties of our loop operators and leave their precise interpretation for

future work.

In matrix models for the c < 1 string, which are described by constant ran-

dom matrices, exponentiated loop operators are determinants just like the ones

discussed here for the NMM. In those models it has been argued that the loop

operators represent FZZT branes. One striking observation is that in the Kont-

sevich/generalised Kontsevich description of c < 1 strings, the eigenvalues of the

constant matrix A come from the boundary cosmological constants appearing in

the loop operators. Moreover, Eq. (2.52) has been interpreted as evidence that

the FZZT-ZZ open strings there are fermionic[58, 75].

In the present case, we see that the parameters ai in the loop operators turn

precisely into the eigenvalues of the constant matrix A of the Kontsevich-Penner

model. We take this as evidence that our loop operators are likewise related in

some way to FZZT branes. Indeed, one is tempted to call them FZZT branes of

the NMM. Pursuing this analogy further, the role played by inverse determinants

in the present discussion appears to suggest that the corresponding strings in the

NMM are bosonic rather than fermionic. But the relationship of these operators to

the “true” FZZT branes of matrix quantum mechanics remains to be understood,

as we have noted above1.

1In light of the discussions about the MQM Fermi surface in § 2.2 we can give an interpreta-

tion to both determinant and inverse determinant operators in the NMM. Since their insertions

lead to opposite shifts in the tk’s, by virtue of the equivalence between MQM and NMM dis-

cussed above we can map each one directly to a corresponding deformation to the Fermi surface,
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In the limit of infinite N , the inverse loop operators depending on a matrix A

can be thought of as loop operators for a different matrix Ã. Thus, only in this

limit, the inverse determinant operators can be replaced by more conventional

determinants. This proceeds as follows. We have already seen that the KM

transformation Eq. (2.19) encodes infinitely many parameters tk via a constant

N ×N matrix A, in the limit N →∞. Now for fixed tk, suppose we considered

the (very similar) transform:

tk =
1

νk
trÃ−k (2.69)

that differs only by a change of sign. The point is that this apparently harmless

reversal of the tk brings about a significant change in the matrix A. Moreover

this is possible only in the infinite N limit, since we are trying to satisfy:

trA−k = −trÃ−k (2.70)

for all k. Now it is easy to see that the matrices A and Ã satisfy the following

identity:

det(11⊗ 11− A−1 ⊗ Z) =
1

det(11⊗ 11− Ã−1 ⊗ Z)
(2.71)

Therefore a correlator of inverse loop operators can be rewritten in terms of usual

loop operators using:

〈
1

det(A⊗ 11− 11⊗ Z)

〉
=

1

(detAÃ)N

〈
det(Ã⊗ 11− 11⊗ Z)

〉
(2.72)

In the light of our previous observation that inverse determinant operators might

indicate the bosonic nature of FZZT-ZZ strings at c = 1, it is tempting to think

of Eq. (2.72) as a statement of fermi-bose equivalence!

In terms of the operator det(Ã ⊗ 11 − 11 ⊗ Z), we can make the statement

that its insertion into the partially unperturbed NMM gives rise to the KP model

depending on the “dual” Kontsevich matrix A.

which can be read off from Eq. (2.11). This fact should facilitate direct comparison with the

MQM.
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2.6 Normal matrix model at finite N

The correspondence between NMM and KP model demonstrated in § 2.4 is valid

for any N , as long as the parameters of the former are restricted to a subspace.

The NMM itself is supposed to work at N → ∞, in which case this restriction

goes away. However, as noted in Ref.[25], there is another way to implement the

NMM: by setting N = νR (which amounts to N = ν for R = 1), which they

labelled as “Model II”. In other words, these authors argue that:

lim
N→∞

ZNMM(N, t, ν) = ZNMM(N = νR, t, ν) (2.73)

Thus the NMM describes the c = 1 theory at this finite value of N , after analyt-

ically continuing the cosmological constant µ = iν to an imaginary value1.

The key property of this choice is that the logarithmic term in the matrix

potential of the NMM gets tuned away. Let us take R = 1 from now on. Suppose

we evaluate the expectation value of the inverse determinant operator at this N

(for the moment we assume that this special value is integral). For N insertions

of the inverse determinant, it gives the KP model with N = ν. Thus, as one

would expect, the log term of the KP model is also tuned away. Now if we

choose tk = c δk3, with c some constant, then the KP model reduces to the

Kontsevich model, as observed in Ref.[26]. This shows that the Kontsevich model

is a particular deformation of the c = 1 string theory after analytic continuation

to imaginary cosmological constant and condensation of a particular tachyon (T3).

Note that at the end of this procedure, the rank of the Kontsevich matrix is the

same as that of the NMM matrix.

As mentioned earlier, there is a different route to the Kontsevich model start-

ing from the Gaussian Matrix Model (GMM)[58]. Here one starts with a Gaussian

matrix model of rank N̂ , with N insertions of the determinant operator, and takes

N̂ →∞ as a double-scaling limit by focussing on the edge of the eigenvalue dis-

tribution. The result is the Kontsevich matrix model. This time the rank N̂

1Whereas the authors of Ref.[25] presented this as the analytic continuation of N to the

imaginary value −iµ, we prefer to think of it as continuing the cosmological constant µ to the

imaginary value iN .
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KP

GMM

NMM

?

Kontsevich

ν = N

tk = δk,3

N̂ →∞

〈 N∏

i=1
det(ai −M)〉

〈 N∏

i=1

1
det(ai−Z)

〉0,tk

N ×N

N ×N

N ×N

N̂ × N̂

Figure 2.1: Two routes from NMM to Kontsevich

of the original matrix has disappeared from the picture (it was sent to infinity)

while the Kontsevich matrix inherits its rank from the number of determinant

insertions N .

A diagram of the situation is given in Fig.2.1. From the figure one sees that the

diagram can be closed if we find a suitable relation of the NMM to the Gaussian

matrix model. This is not hard to find at a qualitative level. In fact with ν = N

and tk, tk = 0 the NMM is a Gaussian matrix model. We choose the rank to

be N̂ . The NMM eigenvalue distribution ρ(z, z̄) is constant inside a disc in the

z-plane (for R = 1)[25]. If we look at a contour along the real axis in the z-plane,

then the effective eigenvalue distribution

ρ(x) =

∫
dy ρ(x, y) (2.74)

is a semi-circle law, and we find the Gaussian matrix model. However, this picture

of eigenvalue distributions is valid only at large N̂ . Inserting N determinant op-

erators and taking N̂ →∞ as a double-scaling limit, one recovers the Kontsevich

model. In this way of proceeding, the cubic coupling of the Kontsevich model

is switched on automatically during the double-scaling limit. In the alternative

route through the KP model, one has to switch on the coupling t3 by hand. A

more detailed understanding of these two routes and their relationship should
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illuminate the question of how minimal model strings are embedded in c = 1. We

leave this for future work.

2.7 Conclusions

We have established the equivalence between two matrix models of the c =

1 string (at selfdual radius): the Normal Matrix Model of Ref.[25] and the

Kontsevich-Penner model of Ref.[26]. Both matrix models were initially found

as solutions of a Toda hierarchy, so this equivalence is not very surprising. How-

ever, it is still helpful to have an explicit derivation, which also uncovered a few

subtleties. Also we ended up showing why the KP matrix model does not exist

at radius R 6= 1.

The more interesting aspect of this equivalence is that correlation functions of

inverse determinant operators in the partially unperturbed NMM give rise to the

KP model. This is analogous to corresponding results in Refs.[58, 63], with two

important differences. In those cases, one considered determinants rather than

inverse determinants, and their correlators were computed in a double-scaled ma-

trix model. In the NMM there is no double-scaling as it already describes the

grand canonical partition function of the double-scaled Matrix Quantum Me-

chanics. Another difference is that the N of the final (KP) model is equal to

that of the NMM, and part of the matrix variables in NMM survive as the ma-

trices of the KP model. All this suggests that, if one makes an analogy with the

topological minimal models, the NMM occupies a position half-way between the

original matrix model arising from dynamical triangulation of random surfaces

(which requires a double-scaling limit to describe continuum surfaces) and the

final “topological” model. If this is true, we may have only described half the

story of open-closed duality at c = 1 while the correspondence between MQM and

NMM constitutes the previous half. Further work may lead to a more coherent

picture of the steps involved and thereby a deeper understanding of open-closed

string duality at c = 1.

As we commented earlier, the inverse determinant operators seem to suggest
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bosonic statistics for FZZT-ZZ branes (at least in the NMM context) in contrast

to fermionic statistics for c < 1. Another way to think of this is that both

determinant and inverse determinant operators expand out to give the same set

of macroscopic loops, the only difference being a minus sign for an odd number

of loops in the latter case. Alternatively one can think of the basic loop operator

as being changed by a sign to −tr log(a − Z). Either way, the role of inverse

determinant operators clearly calls for further investigation.

We commented earlier that trying to take the c = 1 limit of c < 1 FZZT

correlators is problematic and therefore a derivation of the KP model from open-

string field theory analogous to Ref.[59] has not been forthcoming. While this may

yet be achieved, the situation recalls a historical parallel. In the 1990’s, attempts

to derive c = 1 closed string theory as a limit of the c < 1 theories were not very

successful. Eventually it was found that at least at selfdual radius, the c = 1

string is a nonstandard case – rather than a limit – of the c < 1 models. This was

understood by going over to the topological[39, 76, 77] rather than conventional,

formulation of these string theories. It emerged that while the (p, q) minimal

models for varying q were described by topological models labelled by an integer

k = p − 2 ≥ 0 (for example, SU(2)k/U(1) twisted Kazama-Suzuki models or

twisted N = 2 Landau-Ginzburg theories with superpotential Xk+2), the c = 1

string at selfdual radius was instead described by “continuations” of these models

to k = −3[38, 39, 40, 41], rather than the more naive guess one might have made,

namely k → ∞. Therefore progress on FZZT branes at c = 1 in the continuum

formulation might most naturally emerge in the context of topological D-branes

in the twisted SU(2)−3/U(1) Kazama-Suzuki model or X−1 Landau-Ginzburg

theory. Indeed, Ref.[78] represents important progress in this direction, and the

Kontsevich model has been obtained there in the topological setup, predating the

more recent derivations of Refs.[58, 59]. In fact, the KP model of Ref.[26] was

also obtained in Ref.[78].

Extension of the NMM/KP models to include winding modes of the c = 1

string, as well as a better understanding of 2d black holes from matrix models[25,

27, 53, 54], remain open problems and perhaps the open-closed duality studied
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here will be helpful in this regard.

We have not pursued here an observation made in Ref.[7] that the KP model

simplifies when we exponentiate the matrix variable via M = eΦ. The resulting

model, which was named the “Liouville matrix model” there, is suggestive of N

D-instantons moving in a Liouville plus linear potential. A similar exponentiation

can be carried out in the NMM. In either case this is an almost trivial change

of variables, therefore it does not seem important for the present considerations.

However, in the light of the present work, these changes of variables might lead

to new and more satisfying interpretations of the matrix models themselves.

As a final comment, we note that open-closed duality has in recent times

been given a more fundamental basis in the Gopakumar programme[79, 80, 81]

where closed string theory is proposed to be derived from quite general large-N

field theories. Now this programme is expected to apply not just to noncritical

strings but to all string theories. We know that the Kontsevich and Penner

models compute topological invariants of the moduli space of Riemann surfaces,

but the above works seem to suggest that these models play a role in more

complicated string theories too. If so, equivalences and open-closed dualities

such as we have discussed here may have more far-reaching implications than

just providing examples in simplified string backgrounds.

2.8 Further Developments

In a subsequent paper [82] the authors provide a derivation of the Kontsevich-

Penner integral Eq. (2.18) by inserting macroscopic loop operators of the form

det(Φ(t)−µB)±1 in the Matrix Quantum Mechanics path integral. We first define

two quantities X+, X− by:

X± =
Φ± P√

2
, (2.75)

where P is the matrix valued momentum conjugate to Φ. The quantities X±

have a simple time evolution:

X±(t) = e±it/RX±(t = 0). (2.76)
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The time dependent determinant operator is then given by:

e±W (t) = det
(

(eit/RX+(t = 0) + e−it/RX−(t = 0))/
√

2− µB
)±1

. (2.77)

Naively inserting the above operator in the MQM action is not equivalent to gen-

erating a tachyon deformation in the Matrix Mechanics, because the dependence

on the positive and negative momentum modes cannot be separated out. How-

ever, the authors of [82] show that this is possible in the scaling limit described

below.

We consider the case R = 1. The first step is to analytically continue the time

to imaginary values t → −it. We have to also take the limit t → ∞ and at the

same time scale µB → etµB. Dropping a normalization factor, the determinant

operator Eq. (2.77) then becomes:

det

(
1− X+

µB

)±
1 = e∓

∑
n

1
n
µ−nB tr(Xn

+). (2.78)

The above tachyon deformation is the same as that we obtained by inserting the

operator det(1 − Z/µB)±1 in the Normal Matrix Model. If the matrix model

time was analytically continued to t→ it then the corresponding determinant in

the Matrix mechanics is det(1 − X−/µB)±1 which is equivalent to inserting the

operator det(1− Z†/µB)±1 in the NMM path integral.

It is now possible to compute the expectation value of the operator in Eq. (2.78),

using the fact that the tachyon deformed partition function of the matrix model is

a Baker-Akheizer function. Using the properties of this function the Kontsevich-

Penner model Eq. (2.18) is obtained at R = 1. This work thus relates this model

to Matrix Mechanics in the presence of FZZT branes.

The above argument was also extended to the Type 0 string. In this case

the authors argued that the corresponding matrix integral similar to the one

derived by Imbimbo and Mukhi [26] can be found at R = 1/2 by inserting the

macroscopic loop operators in the Matrix Mechanics for the Type 0 theories.

This also reproduces the time-independent matrix model for the Type 0A theory

derived in [46, 83].
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Chapter 3

Noncritical String Correlators,

Finite-N Matrix Models and the

Vortex Condensate

In this chapter we carry out a systematic study of correlation functions of mo-

mentum modes in the Euclidean c = 1 string, as a function of the radius and to all

orders in perturbation theory. We obtain simple explicit expressions for several

classes of correlators in terms of special functions. The Normal Matrix Model is

found to be a powerful calculational tool that computes c = 1 string correlators

even at finite N . This enables us to obtain a simple combinatoric formula for the

2n-point function of unit momentum modes, which after T-duality determines

the vortex condensate. We comment on possible applications of our results to

T-duality at c = 1 and to the 2d black hole/vortex condensate problem [84].

3.1 Introduction

The c = 1 string (an excellent review is Ref.[6]) is a perturbatively consistent

string theory in two spacetime dimensions. One of its attractive features is that it

is solvable: from the powerful techniques of Matrix Quantum Mechanics (MQM),

correlation functions of the momentum modes (“tachyons”) can be determined to
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all orders in the string coupling (inverse cosmological constant). This holds true

even in the Euclidean theory at finite radius R. Another feature is that its gen-

eralisation to the type 0 noncritical string, has similar properties in perturbation

theory but is believed to also be non-perturbatively well-defined.

This makes the c = 1 string and its cousins a good laboratory to study var-

ious open questions in string theory. Two such questions that we would like to

understand better in the noncritical context are the properties of string-scale

black holes, and the nature of various dualities, including open-closed string

duality[49][50][51]. Much work has been done on the former (some interesting

recent studies can be found in Refs.[85][86][87]), while the latter question has

also yielded some important illuminations[61][59][58][63][68][48][82].

It is known[36][27] that basic properties of black holes in noncritical string the-

ory are controlled by condensates of winding tachyons in the Euclidean-continued

background. These are thermal tachyons: strings winding around the compact

time direction. It would therefore be useful to know the correlators of winding

modes in Euclidean noncritical string theory to all orders in the string coupling

(and even nonperturbatively in the stable type-0 case) as a function of µ and

R, where µ−1 is the inverse string coupling and R is the radius of the Euclidean

direction (inverse temperature). From the matrix model point of view, winding

modes are related to the nonsinglet sector of the model, in which the eigenvalue

fermions are no longer free but mutually coupled[88][89]. Computing correlators

in this way is a harder task[28] and has raised some new puzzles involving leg

factors which we will discuss in a later section. But one way to find the desired

correlators is to assume that T-duality holds and perform it on the momentum

correlators. This provides one of our motivations to study momentum correlators

in the Euclidean theory in more explicit detail than has already been done.

As mentioned above, momentum correlators in the Euclidean c = 1 string

are known in principle. They are summarised in the Toda hierarchy or W∞

symmetries[69], or Hirota bilinear equations, or Normal Matrix Model (NMM)[25],

all of which are supposed to be mutually equivalent. For the special case of

self-dual radius R = 1 of the Euclidean time direction, they are encoded in a
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Kontsevich-Penner matrix model[26][90] (see also [7][78]). We will summarise

some relevant information about these solutions below. But while all these for-

mal solutions allow us to extract the perturbation series for any specific correlator

after a sufficient amount of work, we do not have many explicit answers in terms

of special functions depending on the radius R and inverse string coupling µ.

At finite radius, correlators have been computed mostly at tree-level (corre-

sponding to the dispersionless limit of the Toda hierarchy) or to a few low orders

in perturbation theory. For example, while the 2n-point function of n unit wind-

ing modes and n anti-winding modes is known as a function of n and R at tree

level [91][27], an explicit expression for the same correlator to all orders in per-

turbation theory does not seem to exist in the literature1. To be more specific,

denote by Tq the tachyons of momentum q = n/R, and by Tq the tachyons of

n units of winding, where q = nR is the value of pL = −pR in vertex operator

language. An explicit form is known for 〈(T−1/R)n(T1/R)n〉 at tree level. The

T-dual of this expression was used in Ref.[27] to extract the critical behaviour

of the Sine-Liouville theory defined by perturbing the original c = 1 string with

T−R + TR and then tuning the cosmological constant µ to zero. In particular,

Ref.[27] showed that a sensible theory exists after this tuning, but only when the

radius of the Euclidean direction lies in the range 1 < R < 2.

One would like to know the structure of this correlator to all string loop orders.

Accordingly, in what follows we will study 〈(T−1/R)n(T1/R)n〉 in detail, and one

of our main results will be a simple formula for this correlator as a function

of µ and R for every n. We expect this to lead to a better understanding of

the exponentiated correlator 〈exp(T−1/R + T1/R)〉, which in turn is T-dual to the

vortex condensate 〈exp(T−R + TR)〉 that relates directly to Euclidean 2d black

holes.

Another motivation for our work is to understand T-duality of the c = 1 ma-

trix quantum mechanics. This is established at the level of spectrum of states,

since the partition function without perturbations is known to be T-dual[8]. Also,

1A differential equation for these correlators was written down in[27] together with an

iterative solution to a few orders. Related work on Euclidean correlators can be found in

Refs.[53],[54].
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a formal argument has been given[27] that the winding correlators, like the mo-

mentum correlators, are given by a Toda hierarchy1. However, to our knowledge,

beyond this result and a computation in [28], there has been no direct compar-

ison of correlators in the momentum and winding sectors2. A convincing test

of T-duality would consist of computing pure-momentum correlators in terms

of free fermion eigenvalues, T-dualising the answers and comparing them with

pure-winding correlators computed from the nonsinglet Hamiltonian. Ideally this

should even be done beyond tree level. Although we will not be able to carry out

such a test here, we have tried to systematise one side of the duality in a way that

can be eventually compared with the other side when nonsinglet computations

become more practicable.

In particular, the most direct way to check T-duality comes from comparing

two-point functions. Accordingly we work out all two-point functions of momen-

tum modes. In Ref.[28], the two-point function of unit-momentum modes was

computed and an attempt made to match the leading result with a computation

in the first nonsinglet sector of the matrix model, namely the adjoint sector. The

comparison revealed the presence of unexplained normalisation factors. It was

pointed out in Ref.[28] that if one could compute two-point functions of more

general winding modes, namely 〈T−nRTnR〉, one might be able to shed some light

on these normalisation factors. With this motivation we have performed this

computation and obtained a simple explicit result, again as a function of µ and R

and for all n. In a later section we discuss the relation to the non-singlet sectors.

Our initial computations have been performed using both the MQM and a

model of constant matrices called the Normal Matrix Model (NMM)[25], with

perfect agreement between the answers. In the former case we used the known

infinite-radius correlators in the physical MQM (real and noncompact time)[93],

and a formula which converts these to the correlators for Euclidean compact

1For a discussion of T-duality in type 0A,B matrix models, see Ref.[92].
2In addition to pure momentum or pure winding correlators, one would also like to know the

correlators for a mixture of momentum and winding modes. In this case one has no choice but

to tackle the difficult nonsinglet sector problem. The system is not expected to be integrable

and the correlation functions are not known so far.
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time[94]. In the latter case, we will describe how one performs computations

after reducing the NMM to eigenvalues. One surprise emerging from comparison

of the two approaches is that the NMM successfully computes correlators even

when the matrices are of finite rank N , a stronger property than was claimed

in Ref.[25], who did however suggest that the model contains some information

even at finite N . We find that it actually contains complete information at finite

N in the following sense: given a correlator, there is a minimum value Nmin

such that this correlator when computed in the NMM gives the correct result,

to all orders in 1/µ2, for all N > Nmin. This makes the NMM a potentially

powerful combinatoric tool. We then go on to demonstrate its power by deriving

a combinatoric formula for the general correlation function 〈(T−1/R)n(T1/R)n〉 for

any n.

We start in Section 3.2 by describing the two relevant matrix models, Matrix

Quantum Mechanics and Normal Matrix Model. The former is too well-known

to need a detailed discussion and we skip directly to the calculational techniques

and answers. For the latter, we review the model in some detail, with special

attention to the role of the matrix rank N . In Section 3.3 we work out some

relevant correlators as a function of µ and R from MQM. In Section 3.4 we

reproduce these correlators from the NMM, where we note the phenomenon that

for a fixed correlator, the NMM at any N greater than a minimum value gives the

complete answer. After a discussion of why this works, we use this property to

derive a combinatoric formula for correlators of any number of unit momentum

modes. In Section 3.5 we discuss applications of these results to some physically

interesting problems, and conclude in Section 3.6. Several calculational details

are presented in the appendices.
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3.2 Matrix Quantum Mechanics and Normal Ma-

trix Model

3.2.1 Matrix Quantum Mechanics

Matrix Quantum Mechanics is a model of a singleN×N hermitian time-dependent

matrix M(t). In the absence of perturbations, the partition function of the model

is given by:

Z
(N)
MQM =

∫
[dM ] exp

[
−N

∫
dt tr

(
(DtM)2 +M2

)]
(3.1)

where DtM ≡ Ṁ + i[At,M ] is the covariant derivative with respect to the time

component of a gauge field.

The gauge field acts as a Lagrange multiplier and projects the model to the

singlet sector, which is a system of N non-interacting non-relativistic fermions

moving in an inverted harmonic oscillator potential. In the double-scaling limit,

the fermi sea is filled nearly to the top and the number of fermions is taken to

infinity. The scaled distance to the top of the potential, µ, is kept finite and

corresponds to the cosmological constant. This model provides a description of

2D string theory, with µ−1 playing the role of the string coupling gs.

The physical modes of 2D string theory can be constructed in terms of fermion

eigenvalues. In [93] this model was used to calculate correlation functions of

c = 1 string theory at infinite radius. One starts by computing correlators of

free-fermion bilinears, which in turn can be used to extract correlators of the

loop operators:

O(k, `) =

∫
dt eikt tr e−`M(t) (3.2)

Extracting the leading behaviour of these loops for small `, one has

O(k, `) ∼ `|k| Tk (3.3)

The Tk are identified with the c = 1 string theory tachyons. When compared with

the corresponding operators in Liouville theory, there is a change of normalisation:

Tk|MQM = Γ(|k|) Tk|Liouville (3.4)
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However this fact will not be relevant for us, since in what follows we will always

work with the operators Tk in the MQM basis, i.e. the LHS of the above equation.

When the time direction is Euclidean and compact, we are in the finite tem-

perature theory. Starting from the infinite-radius correlator, one can show[94]

that correlators in the Euclidean theory at finite radius are obtained as:

〈Tq1Tq2 · · ·Tqn〉R =
1

2R
∂µ

sin
(

1
2R
∂µ
)〈Tq1Tq2 · · ·Tqn〉∞ (3.5)

In addition one must replace the momentum-conserving δ-function as:

δ
(∑

i

qi

)
→ Rδ∑

i qi,0
(3.6)

The above prescriptions follow from the fact that the compact radial direction

introduces an additional factor in the loop momentum integrals of the infinite-

radius calculation, and this factor can now be taken out of the integrals whence

it becomes a differential operator acting on the infinite-radius answer1.

In the finite-temperature theory, the above modes can be thought of as carry-

ing “momentum” in the time direction. In this situation one also expects to find

winding modes corresponding to the thermal scalars of finite-temperature string

theory. Many physical properties of string theory are encoded in these degrees

of freedom, which are therefore quite important to study. To find them in the

matrix model we must go beyond the singlet sector, in which the gauge field

is topologically trivial and can be gauged away. Consider the gauge-invariant

Wilson-Polyakov loop variable:

WR = trR P exp(i

∮
Atdt) (3.7)

where the trace is performed in the representation R of SU(N). When R is the

fundamental representation, this is to be associated with a unit winding mode:

WR=N ∼ TR (3.8)

1It is also possible to calculate correlators directly at finite radius using the “reflection

coefficient” formalism of Ref.[69]. Though we will not use this here, it would be interesting to

know if our explicit results follow as easily in that approach.
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Similarly the trace in the anti-fundamental will be T−R. One can also have

loops where the trace continues to be in the fundamental but the contour winds

multiple times over the Euclidean time direction. Computation of the correla-

tion functions of all these Wilson-Polyakov loops is done by observing that in

their presence, the matrix model receives contributions from definite non-singlet

sectors. In these sectors it reduces to eigenvalue fermions but now with mutual

interactions. For example, the two-point function of unit winding modes can be

identified as follows:

〈T−RTR〉
∣∣∣
Liouville theory

∼ 〈WN̄WN〉
∣∣∣
MQM

∼ 〈Wadjoint〉
∣∣∣
MQM

(3.9)

Thus computing the partition function of MQM in the adjoint sector determines

the two-point function of winding modes. Since in principle this is an independent

computation from that of the momentum tachyon correlators, it can actually be

used to check T-duality of the c = 1 string. We will return to this issue in a

subsequent section.

3.2.2 Normal Matrix Model

The Normal Matrix Model (NMM)[25] is a relatively simple model of a complex

matrix Z and its Hermitian adjoint, with the constraint that the two commute

(hence Z is said to be “normal”). The potential is polynomial with an additional

logarithmic piece. The matrix Z is constant rather than time-dependent, so in

this sense it is more similar to the c < 1 string backgrounds which do not have a

time direction1.

The NMM is proposed to describe the correlators of the c = 1 string to all

orders in perturbation theory, as follows. Let us introduce its partition function:

Z
(N)
NMM(ν, t, t) =

∫
[dZdZ†] e

tr
(
−ν(ZZ†)R+(Rν−N+R−1

2 ) logZZ†−ν
∑∞
k=1(tkZ

k+tkZ
†k)
)

(3.10)

1Perhaps this is the underlying reason why the NMM describes Euclidean c = 1 strings at

an arbitrary radius R, but does not have a simple R → ∞ limit where one might recover the

Lorentzian theory.
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3.2 Matrix Quantum Mechanics and Normal Matrix Model

Here R, ν are some (in general, complex) parameters, which will correspond to

the compactification radius of Euclidean time and the cosmological constant re-

spectively. The parameters tk, tk are couplings to the gauge-invariant operators

trZk, trZ†
k

and Z, Z† are N ×N matrices satisfying:

[Z,Z†] = 0 (3.11)

The operators trZk, trZ†
k

are identified with the tachyons Tk/R, T−k/R of momen-

tum ± k
R

respectively.

Since the matrix Z commutes with its adjoint, the two can be simultaneously

diagonalised. The diagonalising matrices drop out of the action leaving behind

Vandermonde factors. It turns out that one gets a single power of the Vander-

monde for the eigenvalues z1, z2, . . . , zN of Z, together with its complex conjugate

corresponding to Z†. Thus, for example, the partition function at tk = tk = 0 is:

ZNMM =

∫ N∏

i=1

d2zi
∏

i<j

|zi − zj|2 e−ν
∑N
i=1(ziz̄i)

R+(Rν−N+R−1
2 )

∑N
i=1 log ziz̄i (3.12)

with an obvious generalisation to include the tachyon perturbations.

At tk = t̄k = 0, it can be shown (though not directly from the action) that

the NMM is invariant under the T-duality operation:

R→ 1

R
, µ→ µR (3.13)

This invariance is broken by the presence of momentum modes. Indeed, after

T-duality, the tachyons T±k/R of the c = 1 string turn into winding modes of

±k units of winding, or equivalently (in vertex-operator language) of left/right

momentum (pL, pR) = ±(kR,−kR). In what follows, these modes will be denoted

TkR,T−kR.

In [25] two distinct equivalences between the NMM and the c = 1 string were

proposed. The first, referred to as “Model I”, requires us to take the large-N

limit of the NMM. The result in this case was that:

Zc=1(µ, t, t) = lim
N→∞

Z
(N)
NMM(ν, t, t), (3.14)
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3.2 Matrix Quantum Mechanics and Normal Matrix Model

after the analytic continuation ν = −iµ.

However, another equivalence, “Model II”, was proposed which did not involve

a large-N limit. It was argued that the c = 1 string theory can be obtained from

the NMM at finite N , provided ν is set to the special value N
R

(note that this

corresponds to an imaginary cosmological constant):

Zc=1

(
µ = iN

R
, t, t

)
= Z

(N)
NMM

(
ν = N

R
, t, t

)
, (3.15)

In other words, the claim1 is that an NMM calculation for a fixed integer value

of N determines Zc=1 for a particular (imaginary) value of µ, namely

µ = i
N

R
(3.16)

If we T-dualise the above considerations so that t, t become couplings to winding

tachyons, this relation becomes

µ = iN (3.17)

The above results seem to indicate that for finite N we can only generate the

answer at a fixed µ, in which case we would never obtain the perturbative expan-

sion in powers of 1/µ2. However, below we will compute winding correlators using

the NMM, and will see that it turns out much more powerful than expected. It

actually does reproduce the entire perturbative correlators, as functions of µ and

R, even at finite values of N . Evidence for this fact, as well as an explanation of

it, will be provided in subsequent sections.

1The authors of Ref.[25] stated this a little differently: that one obtains c = 1 string

amplitudes as a function of µ by computing NMM correlators as a function of N and µ, and

then continuing N to the imaginary value −iµR. This procedure is less well-defined, as it

requires us to make a discrete parameter continuous.
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3.3 Correlators from Matrix Quantum Mechanics

3.3 Correlators from Matrix Quantum Mechan-

ics

3.3.1 Two-point functions

We start by presenting formulae for the two-point function 〈T−n/RTn/R〉 to all

orders in 1
µ2 , from the Matrix Quantum Mechanics (MQM) approach. We will

derive these formulae, valid at arbitary radius, starting from the infinite-radius

formulae presented in [93]. We start by quoting the closed-form expression for the

infinite-radius two-point function 〈T−qTq〉, or more precisely the first derivative

of the two-point function with respect to the cosmological constant, which is

actually more convenient for our purposes:

∂µ〈T−qTq〉∞ = (Γ(−q))2 Im eiπq/2

(
Γ
(

1
2
− iµ+ q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ− q

)
)
, (3.18)

where q > 0. For clarity of presentation we will drop the leg-pole factors (Γ(−q))2

in what follows, keeping in mind that they can be restored whenever needed.

Now we obtain the corresponding amplitudes at a finite radius R, using

Eqs.(3.5) and (3.6):

〈T−qTq〉R = R
1

2R

sin
(

1
2R
∂µ
) Im eiπq/2

(
Γ
(

1
2
− iµ+ q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ− q

)
)

where the first factor of R comes from the replacement of the δ-function by a

Kronecker δ as in Eq. (3.6). The differential operator in front is real and acts

only on functions of µ, so it can be moved inside and we thus need to evaluate

1

2 sin
(

1
2R
∂µ
)
(

Γ
(

1
2
− iµ+ q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ− q

)
)

This can be done very easily by expanding the operator as follows

1

2 sin
(

1
2R
∂µ
) = −i

∞∑

j=0

ei(j+
1
2) 1

R
∂µ
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3.3 Correlators from Matrix Quantum Mechanics

Using this we get the required expression as

−i
∞∑

j=0

(
Γ
(

1
2
− iµ+ q + j

R
+ 1

2R

)

Γ
(

1
2
− iµ+ j

R
+ 1

2R

) − Γ
(

1
2
− iµ+ j

R
+ 1

2R

)

Γ
(

1
2
− iµ− q + j

R
+ 1

2R

)
)

(3.19)

Next, we choose q = n/R. We see that the jth term from the first sum cancels

the (j + n)th term from the second sum. So only the j = 0, 1, . . . , n − 1 terms

from the second sum remain. Defining r = n− j, the above expression becomes1:

〈T−n/RTn/R〉 = Re eiπn/2R
n∑

r=1

Γ
(

1
2
− iµ+ (r − 1

2
) 1
R

)

Γ
(

1
2
− iµ+ (r − n− 1

2
) 1
R

) (3.20)

In order to obtain the expansion of this expression in powers of 1/µ2, we can

rewrite it in terms of the special functions:

F±(a, b;µ) ≡ Γ(1
2
− iµ+ a)

Γ(1
2
− iµ+ b)

± Γ(1
2
− iµ− b)

Γ(1
2
− iµ− a)

(3.21)

defined in Eq.(B.2) of Ref.[93]. We have:

〈T−n/RTn/R〉 = Re eiπn/2R
n/2∑

r=1

F+
(

(r − 1
2
) 1
R
, (r − n− 1

2
) 1
R

;µ
)
, n even (3.22)

= Re eiπn/2R

(
1
2
F+
(
n

2R
,− n

2R
;µ
)

+

(n−1)/2∑

r=1

F+
(

(r − 1
2
) 1
R
, (r − n− 1

2
) 1
R

;µ
))

, n odd

Next we use the asymptotics for large µ:

F+(a, b;µ) = e−iπ(a−b)/2 µa−b f(a, b;µ) (3.23)

where f(a, b;µ) is a power series in 1
µ2 with real coefficients and starting with a

constant term:

f(a, b;µ) = 2− 1
12

(a−b)(a−b−1)
(
3(a+ b)2 − (a− b)− 1

) 1

µ2
+O

(
1

µ4

)
(3.24)

1Here and in what follows, we drop the R subscript in the correlators wherever it is obvious

that they are at finite R.
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It follows that, for even n:

〈T−n/RTn/R〉 = Re µn/R
n/2∑

r=1

f
(

(r − 1
2
) 1
R
, (r − n− 1

2
) 1
R

;µ
)

= µn/R
n/2∑

r=1

f
(

(r − 1
2
) 1
R
, (r − n− 1

2
) 1
R

;µ
)

=

∣∣∣∣∣
n∑

r=1

Γ(1
2
− iµ+ (r − 1

2
) 1
R

)

Γ(1
2
− iµ+ (r − n− 1

2
) 1
R

)

∣∣∣∣∣ (3.25)

The first step above follows because the function f is real. The final equality is

true for all n, and not just even values. This then is the complete answer for

the perturbative expansion of two-point functions of momentum correlators at

arbitrary radius.

Specialising to n = 1, we find the following expression, which will be useful

later on:

〈T−1/RT1/R〉 =

∣∣∣∣∣
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 1

2R

)
∣∣∣∣∣ (3.26)

After a T-duality

R→ 1/R, µ→ µR (3.27)

we get the unit-winding two-point function

〈T−RTR〉 =

∣∣∣∣∣
Γ
(

1
2
− iµR + R

2

)

Γ
(

1
2
− iµR− R

2

)
∣∣∣∣∣ (3.28)

This expression was recently derived by Maldacena[28]. We should note that the

above answer has to be multiplied by the leg pole factor
(
Γ(−R)

)2
, which we

dropped after Eq. (3.18).

3.3.2 Four-point functions

In this section we turn to the computation of higher point functions. In particular,

we extend the results for the four-point function from MQM to finite R and then

specialise to the case of unit winding modes. In this case we will be able to find

an explicit all-orders result after summing an infinite series.
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3.3 Correlators from Matrix Quantum Mechanics

Upto leg pole factors (which can be unambiguously restored when needed)

the connected four-point function at infinite radius is[93]:

∂µ〈(T−qTq)2〉conn
∞ = Im eiπq

[
F+(2q, 0;µ)− F+(q,−q;µ) +

∞∑

n=1

(−1)n

n!
2

(
Γ(−q + n)

Γ(−q)

)2

×
(

Γ
(
2q − n+ 1

2
− iµ

)

Γ
(

1
2
− iµ

) − Γ
(
q − n+ 1

2
− iµ

)

Γ
(
−q + 1

2
− iµ

)
)]

, (3.29)

where q > 0 and the function F+ is defined in Eq. (3.21).

Substituting Eq. (3.21) in Eq. (3.29) we have

∂µ〈(T−qTq)2〉conn
∞ = Im eiπq

[
Γ
(

1
2
− iµ+ 2q

)

Γ
(

1
2
− iµ

) +
Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ− 2q

) − 2
Γ
(

1
2
− iµ+ q

)

Γ
(

1
2
− iµ− q

)

+2
∞∑

n=1

(−1)n

n!

(
Γ(−q + n)

Γ(−q)

)2
(

Γ
(

1
2
− iµ+ 2q − n

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ+ q − n

)

Γ
(

1
2
− iµ− q

)
)]

(3.30)

The connected finite-R amplitude is, therefore

〈(T−qTq)2〉conn
R = R

1
2R
∂µ

sin
(

1
2R
∂µ
)〈(T−qTq)2〉conn

∞

We use the expansion Eq. (3.3.1) of the differential operator and set q = 1/R to

get

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(
−Γ

(
1
2
− iµ+ 3

2R

)

Γ
(

1
2
− iµ− 1

2R

) +
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 3

2R

)

−2
∞∑

n=1

(−1)n

n!

(
Γ(− 1

R
+ n)

Γ(− 1
R

)

)2
Γ
(

1
2
− iµ+ 3

2R
− n

)

Γ
(

1
2
− iµ− 1

2R

)
)

(3.31)

It is convenient to add and subtract a term corresponding to n = 0 in the sum-

mation. This extends the sum from 0 to ∞, while the subtracted term changes

the sign of the first term above, after which the first two terms combine into an

F+. Thus we get:

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(
F+( 3

2R
,− 1

2R
;µ)

−2
∞∑

n=0

(−1)n

n!

(
Γ(− 1

R
+ n)

Γ(− 1
R

)

)2
Γ
(

1
2
− iµ+ 3

2R
− n

)

Γ
(

1
2
− iµ− 1

2R

)
)

(3.32)
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The sum is now easy to evaluate using the integral representations for the three

Γ-functions in the numerator that depend on n (see Appendix 3.7.2). This finally

leads to:

〈(T−1/RT1/R)2〉conn = Re eiπ/R
(

F+( 3
2R
,− 1

2R
;µ)− 2

(
1
2
F+( 1

2R
,− 1

2R
;µ)
)2
)

=

∣∣∣∣F+( 3
2R
,− 1

2R
;µ)− 2

(
1
2
F+( 1

2R
,− 1

2R
;µ)
)2
∣∣∣∣ (3.33)

One can verify that the two terms above are, respectively, the full (connected

plus disconnected) correlator, and its disconnected part.

3.4 Correlators in the finite-N Normal Matrix

Model

Having obtained explicit expressions for all two-point and a particular four-point

function from the MQM, as a function of the cosmological constant µ and radius

R, we now attempt to recover the same results from the NMM. This first of

all provides a test of the NMM and its effectiveness. But once we explore the

systematics it will become clear that we can compute much more. In fact, we

will obtain a complete combinatorial formula for the 2n-point functions of unit-

momentum correlators. Via T-duality, this determines the corresponding winding

correlators. We expect this to be useful in determining the full vortex condensate

to all orders in perturbation theory.

As mentioned before, in the process of studying the NMM we will encounter

a rather surprising result: for the purpose of computing correlators, one can

actually take N to be a small finite value and yet obtain the correct answer

as a function of µ. The finite value of N will be determined by the operators

whose correlators we are calculating. For this purpose it is convenient to classify

tachyon correlators into sectors labelled by an integer, the total positive momen-

tum P flowing through that correlator, measured in units of 1/R. For example in

〈T−k1/RT−k2/RTm1/RTm2/R〉, where k1, k2,m1,m2 are all positive, the total positive

momentum is P = m1 +m2 = k1 +k2. This number will determine the minimum
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3.4 Correlators in the finite-N Normal Matrix Model

value of N required in the NMM to compute these correlators. In what follows

we will first consider all correlators in the sectors P = 1 and P = 2. In the

former case there is only a single two-point function, while in the latter case we

have two, three and four-point functions. After presenting some examples we will

discuss why the theory works in this way.

3.4.1 Two-point functions: examples

Example: n = 1

We begin by computing the two point function of the unit momentum oper-

ator. Since total momentum is conserved, this operator is paired with the one of

negative unit momentum. So we will calculate the two point function 〈T−1/RT1/R〉
of unit momentum operators.

We first calculate the partition function of NMM at N = 1:

ZN=1
NMM(t = 0) =

∫
dzdz̄ e−ν(zz̄)R+(Rν−1+R−1

2 ) log zz̄ (3.34)

Setting z =
√
meiθ, dzdz̄〉dmdθ, we have:

ZN=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0

dmdθ e−νm
R+(Rν−1+R−1

2 ) logm

= 2π

∫ ∞

0

dmm(Rν−1+R−1
2 )e−νm

R

=
2π

R
ν−(ν+ 1

2
− 1

2R)Γ
(
ν + 1

2
− 1

2R

)
(3.35)

As a function of ν, this is not the correct partition function of the c = 1 string, but

it reduces to the correct partition function if in the above expression we set ν = 1
R

and compare this with Zc=1( i
R
, t = 0, t = 0). This fact is a direct consequence

of the claim in Ref.[25], see Eq. (3.15). It is also worth noting that the partition

function at N = 1 is not invariant under T-duality. In fact, T-duality in the

NMM partition function is recovered only in the limit N → ∞. This makes it

clear that the correct partition function, as a function of µ and R, can never be

recovered at finite N .
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For correlators, things are quite different, as we will now see. For the two-point

function, we find:

∂−1∂1Z
N=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0

dmdθme−νm
R+(Rν−1+R−1

2 ) logm

=
2π

R
ν−(ν+ 1

2
+ 1

2R)Γ
(
ν + 1

2
+ 1

2R

)
(3.36)

From Eq. (3.35) and Eq. (3.36) we have:

∂−1∂1 ln ZN=1
NMM(t = 0) = ν−

1
R

Γ
(
ν + 1

2
+ 1

2R

)

Γ
(
ν + 1

2
− 1

2R

) (3.37)

Finally, we have to analytically continue ν = −iµ. The result is complex, but can

easily be seen to have the form of an overall phase times a real power series in

1/µ2. Dropping the phase is then equivalent to taking the modulus of the above

expression. This gives:

〈T−1/RT1/R〉N=1
NMM = µ−

1
R

∣∣∣∣∣
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 1

2R

)
∣∣∣∣∣ (3.38)

which agrees with Eq. (3.26) upto the prefactor, µ−1/R, which indicates that the

“tachyons” of the NMM are normalised differently from those of MQM. Indeed

we will argue later that the relationship is:

Tn/R|NMM = µ−n/2R Tn/R|MQM (3.39)

We have discovered the surprising result that the exact two-point correlator of

unit momentum tachyons is correctly calculated (as a function of µ and R) using

only the 1 × 1 Normal Matrix Model! According to Eq. (3.15), we should have

expected the result to be correct only for µ = i/R. We will see that a similar

feature holds for all two-point correlators, though the minimum required value

of N depends on the correlator under consideration. Later we will extend this

observation to higher-point correlators.

Example: n = 2

We consider another example, the correlator 〈T−2/RT2/R〉. In this case, ac-

cording to the prediction in Eq. (3.15), we can perform a calculation at N = 1
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and the result so obtained will be valid at the special value of the cosmological

constant ν = 1. However, we now face a puzzle. In the NMM at N = 1, one

cannot distinguish the four correlators:

〈T−2/R T2/R〉, 〈T−2/R T1/R T1/R〉, 〈T−1/R T−1/R T2/R〉, 〈T−1/R T−1/R T1/R T1/R〉
(3.40)

because all of these are represented by the same NMM correlator 〈z2z̄2〉. There-

fore, assuming Eq. (3.15) continues to hold, either it has to be the case that all

four correlators become the same at ν = 1
R

, or else at best we can only hope to

obtain some linear combination of them.

The calculation is straightforward and upon continuing to ν = −iµ and taking

the modulus, we find:

〈T−2/RT2/R〉N=1
NMM = µ−2/R

∣∣∣∣∣
Γ
(

1
2
− iµ+ 3

2R

)

Γ
(

1
2
− iµ− 1

2R

)
∣∣∣∣∣ (3.41)

This can be compared with the known result from Eq. (3.25). Specialising to the

present case, and changing to the NMM normalisation via Eq. (3.39) gives us:

〈T−2/RT2/R〉 =

∣∣∣∣
Γ(1

2
− iµ+ 1

2R
)

Γ(1
2
− iµ− 3

2R
)

+
Γ(1

2
− iµ+ 3

2R
)

Γ(1
2
− iµ− 1

2R
)

∣∣∣∣ (3.42)

Comparing Eqs.(3.41),(3.42), we see that the NMM result for this correlator at

N = 1 is not correct. This is not a surprise. But now we see that it is incorrect

even at the special value µ = i/R, which appears to contradict Eq. (3.15). As

we will see, this is due to the fact that the same NMM correlator can describe

different tachyon correlation functions for low N . Indeed, one can check that the

answer we have obtained at N = 1 in Eq. (3.41) is actually a linear combination

of the correlators in Eq. (3.40) as calculated from matrix quantum mechanics.

Let us continue by evaluating the NMM correlator at N = 2. In this case

the operator we are dealing with is T2/R ∼ trZ2 which is linearly independent of

(T1/R)2 ∼ (trZ)2 once Z is a 2× 2 matrix, so there is no longer a risk of mixing

for the operators in Eq. (3.40). The computation is given in an Appendix, and

leads to the answer Eq. (3.72), which after changing to the NMM normalisation
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is:

〈T−2/RT2/R〉N=2
NMM =

∣∣∣∣∣
Γ
(

1
2
− iµ+ 3

2R

)

Γ
(

1
2
− iµ− 1

2R

) +
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 3

2R

)
∣∣∣∣∣ (3.43)

Following Eq. (3.15) we would expect that this should give the correct answer for

µ = 2i/R. But now there is a surprise, since in fact it agrees perfectly with the

MQM result Eq. (3.42) for all values of µ. Thus for the purposes of calculating

〈T−2/RT2/R〉 in c = 1 string theory, to all orders in the string coupling, a 2 × 2

matrix model is sufficient.

To summarise, we have found evidence that an NMM calculation of tachyon

correlators at finite N (where the minimum required value of N depends on the

correlator in question) gives the correct tachyon correlators for the c = 1 string,

to all orders in perturbation theory. Below we will collect more evidence for

this property, which appears to go far beyond the result of Ref.[25] as stated in

Eq. (3.15) above.

3.4.2 Two-point functions: general case

Let us now consider the general case 〈T−n/RTn/R〉. and try to derive this result

from the NMM. We will find that for this correlator, the NMM with N = n is

sufficient to give the correct result. Indeed, when we compute in the N×N NMM

starting at N = 1 and increasing N in integer steps, we obtain the right c = 1

string correlator (as a function of µ) as long as N ≥ n, though not for N < n.

Thus the NMM calculation “stabilises” at a certain minimum value of N .

Since we will be computing normalised correlators, we start by computing the

(unperturbed) partition function at a general value of N . This is given by

ZNNMM(t = 0) =

∫ ∞

0

N∏

r=1

dmr

∫ 2π

0

N∏

r=1

dθr (3.44)

×
N∏

j<k

(
mj +mk −

√
mjmk(e

iθjk + e−iθjk)
)
e−ν(

∑N
r=1m

R
r )+(Rν−N+R−1

2 )(
∑N
r=1 logmr)

The next step is to perform the integration over the θ’s. In general this will

be quite tedious, because one has to pick out terms which are independent of θ
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by expanding out the Vandermonde factor. However, we notice that since the

above expression is invariant under permutations of m’s, we can determine all

terms surviving the θ integrals if we know just one of them, by permuting the

m’s among themselves.

The first such term is just the product of the first term from each of the Van-

dermonde factors, which is mN−1
1 mN−2

2 · · ·mN−1. Thus we have, after evaluating

the θ integrals

ZNNMM(t = 0) = (2π)NN !

∫ ∞

0

N∏

r=1

dmr

N−1∏

j=1

mN−j
j (3.45)

× e−ν(
∑N
r=1 m

R
r )+(Rν−N+R−1

2 )(
∑N
r=1 logmr)

= (2π)NN !
N∏

r=1

ν−(ν+ 1
2
−(r− 1

2) 1
R)Γ

(
ν + 1

2
−
(
r − 1

2

)
1
R

)

¿From now on we will restrict to the case N = n.

The next step is to compute the two point function and then normalise by

the above partition function. We have:

∂−n∂nZ
N=n
NMM(t = 0) =

∫ n∏

r=1

d2zr

n∏

j<k

|zj − zk|2
(

n∑

l=1

znl

)(
n∑

l=1

z̄nl

)

×e−ν(
∑n
r=1(zr z̄r)R)+(Rν−n+R−1

2 )(
∑n
r=1 log zr z̄r)

=

∫ ∞

0

n∏

r=1

dmr

∫ 2π

0

n∏

r=1

dθr

n∏

j<k

(
mj +mk −

√
mjmk(e

iθjk + e−iθjk)
)

×
(

n∑

r=1

(√
mr

)n
einθr

)(
n∑

r=1

(√
mr

)n
e−inθr

)

×e−ν(
∑n
r=1m

R
r )+(Rν−n+R−1

2 )(
∑n
r=1 logmr) (3.46)

In this case also we can avoid tedious calculation by applying the permutation

trick. The contribution to the first term from the Vandermonde is same as before,

and the contribution from trZn trZ†n is
∑n

r=1m
n
r . The net contribution is then

63



3.4 Correlators in the finite-N Normal Matrix Model

(
∑n

r=1 m
n
r )mn−1

1 mn−2
2 · · ·mn−1. Proceeding as before we have after the θ integrals

∂−n∂nZ
N=n
NMM(t = 0) = (2π)nn!

∫ ∞

0

n∏

r=1

dmr

(
n∑

r=1

mn
r

)
n−1∏

j=1

mn−j
j

×e−ν(
∑n
r=1m

R
r )+(Rν−n+R−1

2 )(
∑n
r=1 logmr)

= (2π)nn!
n∑

j=1

[
ν−(ν+ 1

2
−(j−n− 1

2) 1
R)Γ

(
ν +

1

2
−
(
j − n− 1

2

)
1

R

)

×
n∏

r=1
r 6=j

ν−(ν+ 1
2
−(r− 1

2) 1
R) Γ

(
ν +

1

2
−
(
r − 1

2

)
1

R

)]
(3.47)

From Eq. (3.45) and Eq. (3.47) we find (after changing variables j〉n+ 1− r):

〈T−n/RTn/R〉N=n
NMM = ν−n/R

n∑

r=1

Γ
(

1
2
− iµ+ (r − 1

2
) 1
R

)

Γ
(

1
2
− iµ+ (r − n− 1

2
) 1
R

) (3.48)

As before, we analytically continue ν = −iµ and take the modulus to get:

〈T−n/RTn/R〉N=n
NMM = µ−n/R

∣∣∣∣∣
n∑

r=1

Γ
(

1
2
− iµ+ (r − 1

2
) 1
R

)

Γ
(

1
2
− iµ+ (r − n− 1

2
) 1
R

)
∣∣∣∣∣ (3.49)

After changing normalisation via Eq. (3.39), we see that this agrees perfectly with

Eq. (3.25).

The above calculation was performed with matrices of rank N = n. It can

easily be repeated for the other cases. When N is smaller than n, we find that

the answer, as a function of µ, is not equal to the correct two-point function, and

does not become the correct one even after choosing µ = in/R. As before, this

is due to “contamination” by correlators of higher point functions carrying the

same total momentum, because for N < n the corresponding correlators in the

NMM are not all linearly independent. For N > n, instead, we actually get the

same final answer as for N = n. The calculational procedure we described above

seems to suggest that extra terms arise for N > n, but actually they are cancelled

by contributions from the θ dependent terms in the Vandermonde factor. Thus

when we take the ratio of ∂−n∂nZ and Z we end up with the RHS of Eq. (3.48).

Therefore as long as we take N ≥ n, we get the right answer (independent of N)

for every N . This is what we referred to as “stabilisation” above.
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3.4.3 Four-point functions

Now we would like to compute the four-point function in the Normal Matrix

Model. For N = 1, the calculation has already been performed, since as we

noted above, it is the same as the corresponding calculation for the two-point

function in Eq. (3.41) (more precisely the disconnected four-point function is the

same as this two-point function). As we explained there, the result so obtained

is a linear combination of the correct two, three and four-point functions of the

c = 1 string, and to distinguish them we need to go to a higher value of N .

Accordingly we have computed the above four-point function using the N = 2

NMM. The derivation can be found in Appendix 3.7.3, and the result is:

〈(T−1/RT1/R)2〉N=2
NMM = µ−2/R

∣∣∣∣F+( 3
2R
,− 1

2R
;µ)− 1

2

(
F+( 1

2R
,− 1

2R
;µ)
)2
∣∣∣∣ (3.50)

Changing from MQM to NMM normalisation using Eq. (3.39), and inserting the

usual 1/R factor, we see that Eq. (3.50) above is identical to Eq. (3.33).

For completeness, let us briefly consider the two three-point functions

〈T−2RTRTR〉N=2
NMM , 〈T2RT−RT−R〉N=2

NMM (3.51)

The two are actually equal to each other because of the symmetry X → −X,

where X is the Euclidean time direction. We have calculated these correlators

both from MQM and NMM (at N = 2) and the agreement is exactly as for the

cases considered above.

3.4.4 Why it works

As we reviewed in Section 3.2, the Normal Matrix Model determines every mo-

mentum correlator by differentiation with respect to the momentum couplings

t, t. However, the correlators so obtained should only be correct in the limit

N → ∞ (“Model I”, Eq. (3.14)) or the special values N = νR (“Model II”,

Eq. (3.15)). Now in the previous subsections we have shown in several examples

(including the infinite set of two-point functions) that, given the total momentum

P flowing in the correlator, the NMM with matrices of any rank N ≥ P suffices
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to compute the correlator completely as a function of µ and R. In view of this,

the NMM appears to go beyond its expected range of validity. Here we will give

an explanation as to how this comes about.

The basic observation is that the phenomenon we are observing is not to be

viewed as an application of Model II, but rather of Model I. Indeed, using Model

II and a definite value of N , it is clear from Eq. (3.15) that the answers obtained

are correct only for a definite value of ν, namely ν = N/R. This relation between

N and ν defines a line in (N, ν) space, and the points on this line where N takes

integer values are the ones where the procedure works. However, it is clear that

in this way one can never recover the full ν dependence at a fixed N .

In contrast, in Model I one is supposed to compute correlators at an arbitrarily

large value of N and in the limit N →∞, the correct answers are obtained as a

function of ν. What we will now show is that, after computing a given correlator

of total momentum P in this way, and then dividing by the partition function,

infinitely many terms cancel out exactly in the ratio. The remaining terms,

which actually contribute to the correlator of interest, are the same as one would

compute for a finite value of N , namely N = P .

The argument goes as follows. From the derivation we have given in the

previous subsections and the appendices, any correlator is generated (after θi

integrations) by inserting an expression of the form
∏N

i=1m
αi
i into themi integrals,

where {αi} correspond to ordered partitions of P . Therefore we should first of

all choose N large enough so that all such partitions can be realised and are

distinguishable. This is possible for N ≥ P . For N < P we will miss some

partitions, and thus the answer cannot be correct. But the case N > P realises

the same partitions as the case N = P and thus gives the same answer. This

causes what we earlier called “stabilisation”, which amounts to saying that the

result for N = P is identical to the result for any N > P , and therefore for

N = ∞. Invoking the converse of stabilisation, we can therefore start with the

model defined at N = ∞ and “bring back” the value of N to any finite value

N ≥ P without changing the result. This explains why a finite-N matrix model

is sufficient to compute any momentum correlator.
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3.4.5 Combinatorial result for 2n-point functions

We have shown that the NMM is an effective tool by re-computing known corre-

lators. Now that we understand how and why it works, we apply it to com-

pute a new result: the full (connected plus disconnected) 2n-point function

〈(T−1/RT1/R)n〉 for every n and to all orders in perturbation theory. The result,

derived in Appendix 3.7.4, is the following:

〈(T−1/RT1/R)n〉 =

∣∣∣∣∣∣
∑

{ki}

C({ki})2

n∏

i=1

Γ
(

1
2
− iµ+ (ki − n+ 1

2
) 1
R

)

Γ
(

1
2
− iµ− (i− 1

2
) 1
R

)

∣∣∣∣∣∣
(3.52)

with C({ki}) defined as:

C({ki}) =
∑

P

(−1)P

n∏

i=1

(
n−∑i−1

j=1(kj − Pj)

ki − Pi

)
(3.53)

Here, {ki} are strictly ordered partitions of n(n+ 1)/2, namely:

k1 > k2 > · · · > kn,
n∑

i=1

ki =
n(n+ 1)

2
(3.54)

and P denote permutations of the n numbers n− 1, n− 2, · · · , 0.

Let us examine this result more closely. In principle, for every n the answer is

a sum of terms, each one being the ratio of n Γ-functions divided by n Γ-functions.

However in practice, some of the numerator and denominator terms can cancel

out. We can see this more explicitly if we list the first few special cases, of which

the first two have already been noted above:

〈T−1/RT1/R〉 =

∣∣∣∣∣
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 1

2R

)
∣∣∣∣∣

〈(T−1/RT1/R)2〉 =

∣∣∣∣∣
Γ
(

1
2
− iµ+ 3

2R

)

Γ
(

1
2
− iµ− 1

2R

) +
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 3

2R

)
∣∣∣∣∣ (3.55)

〈(T−1/RT1/R)3〉 =

∣∣∣∣
Γ(1

2
− iµ+ 5

2R
)

Γ(1
2
− iµ− 1

2R
)

+ 4
Γ(1

2
− iµ+ 3

2R
)

Γ(1
2
− iµ− 3

2R
)

+
Γ(1

2
− iµ+ 1

2R
)

Γ(1
2
− iµ− 5

2R
)

∣∣∣∣

The pattern emerging so far is misleadingly simple, as we see with the next
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example, the 8-point function:

〈(T−1/RT1/R)4〉 =

∣∣∣∣∣
Γ(1

2
− iµ+ 7

2R
)

Γ(1
2
− iµ− 1

2R
)

+ 9
Γ(1

2
− iµ+ 5

2R
)

Γ(1
2
− iµ− 3

2R
)

+ 9
Γ(1

2
− iµ+ 3

2R
)

Γ(1
2
− iµ− 5

2R
)

+
Γ(1

2
− iµ+ 1

2R
)

Γ(1
2
− iµ− 7

2R
)

+ 4
Γ(1

2
− iµ+ 1

2R
)

Γ(1
2
− iµ− 1

2R
)

Γ(1
2
− iµ+ 3

2R
)

Γ(1
2
− iµ− 3

2R
)

∣∣∣∣∣ (3.56)

We see that as the number of operators in the correlator grows, one gets products

of more and more Γ-functions in the numerator and denominator. In this example

we also see clearly that the coefficients are perfect squares.

Ideally one would like to know the connected part of the 2n-point function.

In principle this can of course be obtained by repeated application of Eq. (3.52),

but one would like a more explicit and useful expression. However, for the most

likely application, to the vortex condensate, we will not really need to make the

distinction between connected and disconnected correlators. The vortex conden-

sate corresponds to the partition function of a perturbed theory, and to find the

connected component of that it suffices to take a logarithm. We will discuss this

issue further in the following section.

3.5 Applications

3.5.1 T-duality at c = 1

In this subsection we discuss how our results can be applied to check T-duality of

the c = 1 matrix model. As we have seen, in the Euclidean (finite-temperature)

MQM, the momentum and winding modes with respect to the time direction

are independently defined. The former arise from macroscopic loops defined in

terms of fermion bilinears, while the latter are Wilson-Polyakov loops in the

thermal direction, which project the theory onto nonsinglet sectors. From the

continuum description we expect that there should be T-duality between these

two sets of observables. Indeed, in Ref.[27] it has been formally argued that,

like the momentum-perturbed matrix model, the winding-perturbed MQM also

corresponds to the τ -function of a Toda hierarchy. To understand T-duality
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better, one would like to compare explicit correlation functions computed from

the momentum and winding sides.

An attempt to directly check T-duality was made by Maldacena in [28], where

the following two quantities were compared: (i) the two-point function of unit-

momentum tachyons, after T-duality, and (ii) the partition function of MQM in

the adjoint sector. From Eq. (3.28) we see that (i) is equal to:

〈T−RTR〉 =

∣∣∣∣∣
Γ
(

1
2
− iµR + R

2

)

Γ
(

1
2
− iµR− R

2

)
∣∣∣∣∣ (3.57)

However, at this point we recall that leg-pole factors of Γ(−|q|) were dropped after

Eq. (3.18). Restoring them and taking the large-µ asymptotics of this correlator,

we find1:

〈T−RTR〉 =
(
Γ(−R)

)2
(µR)R

(
1 +

1

24

(
R− 1

R

)
µ−2 + O

(
µ−4
))

(3.58)

On the other hand, (ii) is obtained by solving MQM in the adjoint sector. In

the large N limit, Maldacena obtained the leading (tree level) contribution to the

partition function in this sector as:

Zadj

Zsing

= 〈Wadj〉 =
1

4 sin2 πR
µR =

1

4π2

(
Γ(R + 1)Γ(−R)

)2
µR (3.59)

The power of µ agrees with that in the leading term of Eq. (3.58). The remaining

discrepancy can be assigned to the normalisation of the fundamental Wilson-

Polyakov loop (or equivalently to the normalisation of the original momentum

modes), and we see that Eqs.(3.59) and (3.58) agree to leading order if we change

the normalisation of this loop variable to:

WN →
1

2π

R
R
2

Γ(R + 1)
WN (3.60)

This is a relatively simple change of normalisation2, and appears to specify the

basis in which T-duality holds in MQM.

1The factor RR was not written in Ref.[28].
2Notice that the normalisation factor becomes trivial at the special radius R = 1.
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It is not entirely surprising that one needs to change normalisation of the

matrix model observables in order to implement T-duality. Indeed, this duality

is most manifest in the worldsheet or Liouville approach, in which the momentum

and winding vertex operators come with a natural normalisation and are related

to each other by the simple change (XL, XR) → (XL,−XR). On the matrix

model side, momentum operators in the MQM are related to the corresponding

Liouville operators by a change of normalisation, Eq. (3.4). So one should expect

that winding operators in MQM are also related to Liouville winding operators

by a change of normalisation.

This is not to say we understand the nature of these normalisation factors

in general. In fact, as stressed in Ref.[28], we need more examples in order to

check the consistency of this picture. As an example, if one could compute the

genus-1 correction to the adjoint sector partition function, this could be compared

with the genus-1 term in Eq. (3.58). Similarly, if one could compute the leading

term for those higher representations that correspond to 2n-point functions of the

winding tachyon, then one could match this with the asymptotics of the latter,

which can be read off from our results in Section 3.4.5.

There will also be representations corresponding to the correlators of mul-

tiply wound tachyons TnR. These correlators can be found by T-dualising the

relevant momentum correlators, for example the two-point functions are found

by T-dualising Eq. (3.25), leading to:

〈T−nRTnR〉 =
(
Γ(−nR)

)2

∣∣∣∣∣
n∑

r=1

Γ(1
2
− iµR + (r − 1

2
)R)

Γ(1
2
− iµR + (r − n− 1

2
)R)

∣∣∣∣∣ (3.61)

= n(µR)nR
(
Γ(−nR)

)2

(
1− nR(nR− 1)

(
(n2 − 1)R2 − nR− 1

)

24R2
µ−2 + O

(
µ−4
)
)

In the matrix model, this should correspond to the fundamental Wilson-Polyakov

loop with a contour that winds n times over the time direction. In principle we are

allowed an independent choice of normalisation for each winding number. In fact

the momentum and winding modes have corresponding freedoms in normalisation,

and the only thing relevant for T-duality is the relative normalisation between

them. So when we consider the nonsinglet sector related to multiply wound
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loops, and the corresponding tachyons of n units of momentum, the leading-

order comparison will be used to fix the normalisation and the loop corrections

will constitute a genuine check of T-duality.

To summarise, we have not been able to address the problem of T-duality but

only set up one side of it. Namely, we have exhibited the all-orders finite-radius

correlators computed from the momentum side, after performing a T-duality

transformation. This constitutes a prediction to be checked once it is properly

understood how to perform nonsinglet computations for different representations

and to higher orders in string perturbation theory.

There is one more intriguing point that we would like to mention. The cor-

relators we have computed take very special values at the selfdual radius R = 1,

the point of enhanced SU(2) symmetry. In particular, all loop corrections to

the two-point function of unit momentum tachyons vanish, as can be seen from

Eq. (3.28). Thus the tree level answer is exact1. By T-duality the same property

should hold for the two-point function of unit winding modes. It is plausible

that one could extract this simple property just from the structure of the nonsin-

glet Hamiltonian – in this case it is the adjoint Hamiltonian that was studied in

Ref.[28], specialised to R = 1. Similarly, at R = 1 the other two-point functions

have perturbation series that terminate at a finite number of loops, as one can

easily check from Eq. (3.61). So, for consistency this must also be a property

of the antisymmetric-antisymmetric representations referred to above. It may

be simpler to derive this kind of general result in the nonsinglet sector than to

actually compute coefficients with precision.

3.5.2 Vortex condensate and black holes

It is believed that the Euclidean 2D black hole background, defined in the contin-

uum by an SL(2, R/U(1) CFT, is equivalent to the c = 1 matrix model perturbed

by fundamental Wilson-Polyakov loops:

SMQM → SMQM + λWN + λ̄WN̄ (3.62)

1This was already known long ago, for example as the puncture equation in the Kontsevich-

Penner model[26].

71



3.5 Applications

The basis for this belief is the FZZ conjecture[36], which relates the black hole

background to Sine-Liouville theory1. Via the equivalence in Eq. (3.8), the latter

is the same as the perturbed background above.

To be precise, the FZZ conjecture is not really an either/or statement wherein

one uses either the black hole background or the Sine-Liouville perturbation. It

has increasingly become clear that the backgrounds that one might call “black

hole” or “Sine-Liouville” are the same, and both perturbations are turned on

simultaneously. Depending on the value of the worldsheet coupling, one or the

other of these perturbations is more dominant, but for example the exact corre-

lation functions have poles corresponding to both perturbations2. In the present

work we will not focus on these details, but will be content to treat the black hole

story as a motivation to understand the vortex condensate:

〈eλWN+λ̄WN̄ 〉
∣∣∣
MQM

(3.63)

One way to compute this condensate would be to sum over an infinite set of

nonsinglet sectors in the MQM with some definite weights. However, as we have

seen, the technology to do this seems rather limited at present. An alternative is

to assume T-duality to compute the correlator:

〈eλTR+λ̄T−R〉 =
∞∑

n=0

∞∑

m=0

λn

n!

λ̄m

m!
〈(TR)n(T−R)m〉 =

∞∑

n=0

|λ|2n
(n!)2

〈(TRT−R)n〉 (3.64)

where the last equality follows from conservation of winding number.

Now from the computation in Appendix 3.7.4, we have the following result

after T-duality:

〈(T−RTR)n〉 =

∣∣∣∣∣∣
∑

{ki}

C({ki})2

n∏

i=1

Γ
(

1
2
− iµR− (i+ ki − 1

2
)R
)

Γ
(

1
2
− iµR− (i− 1

2
)R
)

∣∣∣∣∣∣
(3.65)

where {ki} are strictly ordered partitions of n(n + 1)/2, and C({ki}) are the

combinatorial coefficients given in Eq. (3.93).

1This conjecture has been proved by Hori and Kapustin[95] in the N = 2 supersymmetric

case. As Maldacena has argued[28], suitably orbifolding both sides of their argument leads to

a proof for the bosonic case.
2See for example Ref.[86]. We are grateful to Ari Pakman for explaining this to us.
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The above correlators contain both connected and disconnected contributions.

We can now pass to the generating function:

〈eλTR+λ̄T−R〉 =
∞∑

n=0

|λ|2n
(n!)2

∣∣∣∣∣∣
∑

{ki}

C({ki})2

n∏

i=1

Γ
(

1
2
− iµR− (i+ ki − 1

2
)R
)

Γ
(

1
2
− iµR− (i− 1

2
)R
)

∣∣∣∣∣∣
(3.66)

This is the partition function in the presence of a vortex condensate, and its

logarithm is the free energy of the perturbed theory. So one does not need at any

point to compute individual connected correlators.

The above expression is completely explicit and does not require integrating

any equation or developing a recursion relation. We expect it will be useful to

to extract physical quantities of interest related to the Euclidean 2d black hole.

This is beyond the scope of the present work, however, and we hope to return to

a more detailed analysis of this formula in the future.

Again it is worth pointing out that at the selfdual radius R = 1 the vortex

condensate is known exactly, though deriving it from the above expression would

not be the easiest way. The puncture equation of Ref.[26] simply tells us that:

〈eλTR+λ̄T−R〉|R=1 = |e−iµλλ̄| (3.67)

and one can check easily that this agrees with the cases in Eq. (3.55) specialised

to R = 1.

The significance for the Euclidean 2d black hole of this simple result has

not, to our knowledge, been explored. While it is true that the black hole CFT

corresponds to a radius R = 3
2
, it is believed[27] to have a marginal deformation

to other radii at least in the range 1 < R < 2. So the physical consequences of

the simple formula above at R = 1 would be worth understanding better.

3.6 Conclusions

In this work we have examined the familiar c = 1 bosonic noncritical string the-

ory, or rather its Euclidean (finite temperature) version, from the perspective of

correlation functions. Both old and new techniques were used to develop sim-

ple, elegant and explicit formulae as functions of two variables: the cosmological
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constant µ and the compactification radius or inverse temperature R. The key

results are summarised in Eqs.(3.25),(3.33),(3.52). In addition we have shown

that the Normal Matrix Model is a powerful computational tool.

An obvious extension of this work would be to the case of noncritical type

0 strings[11],[10]. In Ref.[9], explicit expressions are obtained for the partition

functions of type 0A and 0B strings in the presence of fluxes. These expressions

are richer than the corresponding ones for the bosonic noncritical string, both

because of the flux dependence and because they are nonperturbative in µ. Our

work should generalise quite straightforwardly, particularly to the Euclidean type

0B case, and the correlators so obtained will contain nonperturbative information

about the theory.

A detailed investigation into the physical questions that motivated the present

exercise, namely a better understanding of the 2d black hole background as well

as of T-duality in the matrix model, is left for subsequent work. We also note

that the physical origin of the Normal Matrix Model has not yet been understood.

As it is clearly a correct and useful description of the c = 1 string, and moreover

makes sense only in the Euclidean context, it would be worth trying to put it on a

similar footing as MQM in terms of the dynamics of some appropriate (Euclidean)

D-branes.

3.7 Useful formulae

In the following sections we list some useful formulae and some details of the

computation described in this chapter.

3.7.1 Computation of two-point functions in the NMM

Here we present some of the details of how to compute two-point functions in the

Normal Matrix Model. To start with, for the partition function we have

ZN=2
NMM(t = 0) =

∫
d2z1d

2z2 |z1 − z2|2

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+R−1
2 )( log z1z̄1+ log z2z̄2) (3.68)
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As before, we change variables zi =
√
mi e

iθi , d2zi〉dmi dθi and we get

ZN=2
NMM(t = 0) =

∫ ∞

0

dm1dm2

∫ 2π

0

dθ1dθ2

(
m1 +m2 −

√
m1m2(eiθ12 + e−iθ12)

)

×e−ν(mR1 +mR2 )+(Rν−2+R−1
2 )( logm1+ logm2)

= 4π2

∫ ∞

0

dm1dm2 (m1 +m2)(m1m2)(Rν−2+R−1
2 )e−ν(m

R
1 +mR2 )

= 8π2

R2 ν
−(ν+ 1

2
− 1

2R)Γ
(
ν + 1

2
− 1

2R

)
× ν−

(
ν+

1
2
− 3

2R

)
Γ
(
ν + 1

2
− 3

2R

)
, (3.69)

where θ12 ≡ θ1 − θ2. In a similar manner we have

∂−2∂2Z
N=2
NMM(t = 0) =

∫
d2z1d

2z2 |z1 − z2|2(z2
1 + z2

2)(z̄2
1 + z̄2

2)

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+R−1
2 )( log z1z̄1+ log z2z̄2)

=

∫ ∞

0

dm1dm2

∫ 2π

0

dθ1dθ2

(
m1 +m2 −

√
m1m2(eiθ12 + e−iθ12)

)

×
(
m2

1 +m2
2 +m1m2e

2iθ12 +m1m2e
−2iθ12

)
e−ν(mR1 +mR2 )+(Rν−2+R−1

2 )( logm1+ logm2)

= 4π2

∫ ∞

0

dm1dm2 (m1 +m2)(m2
1 +m2

2)(m1m2)(Rν−2+R−1
2 )e−ν(m

R
1 +mR2 )

Evaluating the integrals on m1,m2 we get

∂−2∂2Z
N=2
NMM(t = 0) = 8π2

R2 ν
−(ν+ 1

2
+ 3

2R)Γ
(
ν + 1

2
+ 3

2R

)
× ν−(ν+ 1

2
− 3

2R)Γ
(
ν + 1

2
− 3

2R

)

+8π2

R2 ν
−(ν+ 1

2
+ 1

2R)Γ
(
ν + 1

2
+ 1

2R

)
× ν−(ν+ 1

2
− 1

2R)Γ
(
ν + 1

2
− 1

2R

)

(3.70)

From Eq. (3.69) and Eq. (3.70) we have

〈T−2/RT2/R〉N=2
NMM = ν−2/R

(
Γ
(
ν + 1

2
+ 3

2R

)

Γ
(
ν + 1

2
− 1

2R

) +
Γ
(
ν + 1

2
+ 1

2R

)

Γ
(
ν + 1

2
− 3

2R

)
)

(3.71)

As before, to get the correct two point function we have to analytically continue

ν = −iµ and take the modulus of the above expression. This gives:

〈T−2/RT2/R〉N=2
NMM = µ−2/R

∣∣∣∣∣
Γ
(

1
2
− iµ+ 3

2R

)

Γ
(

1
2
− iµ− 1

2R

) +
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 3

2R

)
∣∣∣∣∣ (3.72)
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3.7.2 Evaluation of a summation in the MQM four-point

function

In order to show the equivalence between Eqs. (3.32) and (3.33) we need to prove

the following identity:

∞∑

n=0

(−1)n

n!

(
Γ(− 1

R
+ n)

Γ(− 1
R

)

)2
Γ
(

1
2
− iµ+ 3

2R
− n

)

Γ
(

1
2
− iµ− 1

2R

) =

(
Γ
(

1
2
− iµ+ 1

2R

)

Γ
(

1
2
− iµ− 1

2R

)
)2

(3.73)

Let us start with the expression:

E =
∞∑

n=0

(−1)n

n!

(
Γ(− 1

R
+ n)

Γ(− 1
R

)

)2

Γ
(

1
2
− iµ+ 3

2R
− n

)
(3.74)

Using the integral representation of the Γ function we write this as:

E =
1

(
Γ(− 1

R
)
)2

∞∑

n=0

(−1)n

n!

∫
d3t (t1t2)−

1
R

+n−1t
−n+ 1

2
−iµ+ 3

2R
−1

3 e−t1−t2−t3 (3.75)

The sum over n can now be performed immediately and we have:

E =
1

(
Γ(− 1

R
)
)2

∫
d3t e

− t1t2
t3 (t1t2)−

1
R
−1 t

1
2
−iµ+ 3

2R
−1

3 e−t1−t2−t3

=
1

(
Γ(− 1

R
)
)2

∫
d3t e

−t1(1+
t2
t3

)
(t1t2)−

1
R
−1 t

1
2
−iµ+ 3

2R
−1

3 e−t2−t3 (3.76)

Using the change of variables t1 → t1(1 + t2
t3

) and performing the integral on t1

we get:

E =
1

Γ(− 1
R

)

∫
d2t t

− 1
R
−1

2 t
1
2
−iµ+ 3

2R
−1

3 t
− 1
R

3 (t2 + t3)
1
R e−t2−t3 (3.77)

We next introduce a parameter α which allows us to write the above equation as:

E =
1

Γ(− 1
R

)

(
− ∂

∂α

) 1
R
∫
d2t t

− 1
R
−1

2 t
1
2
−iµ+ 1

2R
−1

3 e−α(t2+t3)

∣∣∣∣
α=1

(3.78)

Changing variables ti → αti we have:

E =
1

Γ(− 1
R

)

(
− ∂

∂α

) 1
R

α−
1
2

+iµ+ 1
2R

∣∣∣
α=1

∫
dt2 t

− 1
R
−1

2 e−t2
∫
dt3 t

1
2
−iµ+ 1

2R
−1

3 e−t3

= Γ(1
2
− iµ+ 1

2R
)

(
− ∂

∂α

) 1
R

α−
1
2

+iµ+ 1
2R

∣∣∣
α=1

(3.79)
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Using the relation: (
− ∂

∂α

)m
αn
∣∣∣
α=1

=
Γ(−n+m)

Γ(−n)
(3.80)

we finally have:

E =

(
Γ(1

2
− iµ+ 1

2R
)
)2

Γ(1
2
− iµ− 1

2R
)

(3.81)

Using Eq. (3.74) and dividing both sides by Γ(1
2
− iµ − 1

2R
) we immediately get

Eq. (3.73).

3.7.3 Four-point function in NMM

We now briefly describe the calculation of the connected four-point function of

unit momentum modes in the NMM. This is obtained by differentiating the free

energy F with respect to the couplings. We thus have:

〈(T−1/RT1/R)2〉 = ∂2
−1∂

2
1F

= 〈(T−1/RT1/R)2〉disconn − 2〈T−1/RT1/R〉2 (3.82)

where F = ln ZNMM . The second term in the above equation can be calculated

from the NMM with N = 2 and is given by:

〈(T−1/RT1/R)2〉disconn = 〈(trZ†)2(trZ)2〉N=2
NMM

= ν−2/R

(
Γ
(
ν + 1

2
+ 3

2R

)

Γ
(
ν + 1

2
− 1

2R

) +
Γ
(
ν + 1

2
+ 1

2R

)

Γ
(
ν + 1

2
− 3

2R

)
)

The explicit calculation is very similar to the calculation of 〈T−2/RT2/R〉 from the

NMM. The disconnected piece is simply the square of the two-point function listed

in Eq. (3.37). Putting everything together the connected four-point function is

given by:

〈(T−1/RT1/R)2〉conn
NMM = ν−2/R

[
Γ
(
ν + 1

2
+ 3

2R

)

Γ
(
ν + 1

2
− 1

2R

) +
Γ
(
ν + 1

2
+ 1

2R

)

Γ
(
ν + 1

2
− 3

2R

)

−2

(
Γ(n+ 1

2
+ 1

2R
)

Γ(n+ 1
2

+ 1
2R

)

)2
]

(3.83)
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Analytically continuing ν = −iµ and taking the modulus, and then using the

definition of F+ in Eq. (3.21), we finally get:

〈(T−1/RT1/R)2〉conn
NMM = (µ)−2/R

∣∣∣∣F+( 3
2R
,− 1

2R
;µ)− 1

2

(
F+( 1

2R
,− 1

2R
;µ)
)2
∣∣∣∣ (3.84)

3.7.4 2n-point functions in NMM

Here we present the detailed calculation of the 2n-point functions from the NMM.

In what follows we will take the rank of the matrix, N , to be equal to n. We

have:

(∂−1∂1)nZN=n
NMM(t = 0) =

∫ n∏

i=1

d2zi

n∏

i<j

|zi − zj|2
(

n∑

i=1

zi

)n( n∑

i=1

z̄i

)n

×e−ν
∑n
r=1(zr z̄r)R+(Rν−n+R−1

2 )
∑n
r=1 log zr z̄r (3.85)

We would now like to make the substitution zi =
√
mi e

iθi and perform the θ

integrals. The remaining integrand will then be a function of the mi and we will

find that it has the form
(∑

{ki}C({ki})2
∏

im
ki
i + permutations

)
e−SNMM . Here

{ki} are positive integers corresponding to strictly ordered partitions of n(n+1)/2,

i.e.:
n∑

i=1

ki = n(n+1)
2

, k1 > k2 > · · · > kn ≥ 0 (3.86)

The permutations referred to are of the mi. Because the mi are integration

variables, summing over permutations simply amounts to multiplying by a factor

of n!. The constant coefficients have been labelled C({ki})2 in anticipation of the

fact that they will turn out to be squares. After performing the integration over

mi and dividing by ZNMM we get the final answer as a sum of ratios of products of

gamma functions, with each term in the sum corresponding to a strictly ordered

partition {ki} of n(n+ 1)/2.

We will first show that the coefficients are perfect squares C({ki})2. After

that we will turn to the calculation of the C({ki}). Consider the expression:

U =

(
n∑

i=1

zi

)n n∏

j<k

(zj − zk). (3.87)
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The full integrand is then UŪ times the exponential factor. Because the action is

independent of the θ’s, the entire θ-dependence of the integrand is in UŪ. Note

that U has only positive powers of eiθi and Ū has only negative powers. Only the

θ-independent terms in the expansion of UŪ will survive the θ integrals.

It is easy to see that if we expand U, Ū then we get:

U =
∑

{αi}

C({ki})
n∏

i=1

zkii + permutations

Ū =
∑

{αi}

C({ki})
n∏

i=1

z̄kii + permutations, (3.88)

with {ki} defined as before. It is now clear that the coefficients of θ-independent

terms in TT̄ must be perfect squares, as the phase of a term in the first expression

of Eq. (3.88) can only be cancelled by the complex conjugate term from the second

expression, which has the same coefficient as the first term.

Let us now determine the coefficients C({αi}). First we note the following

property of the positive phase part of the Vandermonde:

n∏

j<k

(zj − zk) =
∑

P

(−1)P

n∏

j=1

z
Pj
j , (3.89)

where P is a particular permutation of the n integers (n− 1, n− 2, · · · , 0) and Pj

denotes the jth element of the permutation P1. The sign for the first permutation

is positive by construction. Any other permutation can be arrived at by a series

of interchanges zi ↔ zj. Each such interchange introduces a minus sign in the

Vandermonde. Thus even permutations have a positive sign, while odd permu-

tations have a negative sign, leading to Eq. (3.89). Expanding the first factor in

Eq. (3.87) in a multinomial series and using Eq. (3.89) we get:

U =


∑

{βi}

n∏

i=1

(
n−∑i−1

j=1 βj

βi

)
zβii



(∑

P

(−1)P

n∏

j=1

z
Pj
j

)

=
∑

{βi}

∑

P

(−1)P

n∏

i=1

(
n−∑i−1

j=1 βj

βi

)
zβi+Pi
i (3.90)

1For example, Pj = n− j when P is the identity permutation.
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where {βi} are the unordered partitions of n.

Let us examine the possible values of the exponent ki = βi + Pi in the above.

If ki = kj for some i 6= j then the corresponding coefficient is zero. This can

be traced back to the fact that the expression Eq. (3.87) is odd under pairwise

interchange of the z’s. Therefore we can rewrite the above as:

U =
∑

ki 6=kj∑
i ki=n(n+1)/2

∑

P

(−1)P

n∏

i=1

(
n−∑i−1

j=1(kj − Pj)

ki − Pi

)
n∏

i=1

zkii (3.91)

Because the ki are all distinct, we can limit ourselves to strictly ordered sets

satisfying k1 > k2 > · · · kn. The other orderings are obtained by permuting these

ones, or equivalently by permuting the zi’s. Thus we have:

U =
∑

k1>k2>···>kn∑
i ki=n(n+1)/2

C({ki})
n∏

i=1

zkii + (permutations of zi) (3.92)

with

C({ki}) =
∑

P

(−1)P

n∏

i=1

(
n−∑i−1

j=1(kj − Pj)

ki − Pi

)
(3.93)

Finally we combine U with Ū and integrate over the angles to get:

(∂−1∂1)nZN=n
NMM = (2π)n

∫ n∏

i=1

dmi

∑

{ki}

C({ki})2

n∏

i=1

mki
i e

∑n
i=1(−νmRi +(Rν−n+R−1

2
) logmi)

+permutations (3.94)

= (2π)nn!
∑

{ki}

C({ki})2

n∏

i=1

ν−( 1
2

+ν+(ki−n+ 1
2

) 1
R)Γ

(
1
2

+ ν + (ki − n+ 1
2
) 1
R

)

Using the expression for the partition function ZNMM from Eq. (3.45) for N = n

we have:

(∂−1∂1)nZN=n
NMM

ZN=n
NMM

= ν−n/R
∑

{ki}

C({ki})2

n∏

i=1

Γ
(

1
2

+ ν + (ki − n+ 1
2
) 1
R

)

Γ
(

1
2

+ ν − (i− 1
2
) 1
R

) (3.95)

The 2n-point function is given by analytically continuing ν = −iµ, changing to

MQM normalisation using Eq. (3.39) (which amounts to removing the power of
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ν in front), and finally taking the modulus:

〈(T−1/RT1/R)n〉 =

∣∣∣∣∣∣
∑

{ki}

C({ki})2

n∏

i=1

Γ
(

1
2
− iµ+ (ki − n+ 1

2
) 1
R

)

Γ
(

1
2
− iµ− (i− 1

2
) 1
R

)

∣∣∣∣∣∣
(3.96)

with C({ki}) given by Eq. (3.93).
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Chapter 4

FZZ Algebra

We have briefly discussed the connection between the vortex condensate of Sine-

Liouville theory and the two dimensional black hole in Chapter 3. We revisit the

duality in this chapter by considering the two possible Sine-Liouville dressings

together. We show that this choice is consistent with the structure of correlation

functions, and that the OPE of the two dressings yields the black hole deformation

operator. As an application of this approach, we investigate the role of higher

winding perturbations in the context of c = 1 strings, where we argue that they

are related to higher-spin discrete states that generalize the 2d black hole operator

[96].

4.1 Introduction

It has long been known that the bosonic string admits a two-dimensional black-

hole like background, described as a gauged SL(2, R)/U(1) WZW model[35] and

can also be thought of for some values of the parameters as a solution of the

lowest order (in α′) effective action[97, 98]. Moreover, it was shown that when

viewed as a perturbation of the c = 1 string theory, the leading term in this

solution uniquely extends to a full solution of closed string field theory[37].

Some years ago, Fateev, Zamolodchikov and Zamolodchikov[36] proposed that

the gauged SL(2, R)/U(1) CFT has a dual description in terms of a free theory
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(with a linear dilaton) perturbed by a Sine-Liouville potential. This remarkable

relation between two seemingly different models, the so called FZZ duality, has

been explored and applied in several ways (see for example [27, 99, 100, 101, 102,

103]). The duality has an N = 2 supersymmetric version [95, 104, 105], as well

as a realization on the boundary of the worldsheet [106, 107].

On the other hand, progress made during the last few years in the study

of non-rational conformal field theories (see [5, 108, 109] for reviews) has shown

that both dressings of Liouville-like perturbations in linear dilaton theories appear

in the exact solutions [110]. The latter typically have two classical limits, and

in each limit one of the two perturbations disappears. This suggests that the

classically vanishing operator is a non-perturbative quantum effect generated by

the backreaction of the first one.

Therefore it is natural to consider a Sine-Liouville theory where both dressings

are taken into account and to ask how the FZZ duality fits in such a setting. In

this work we propose an answer to this question which gives a new perspective

on the FZZ duality. Our approach is based on the observation that the OPE of

the two Sine-Liouville dressings yields the black hole perturbation. Therefore the

latter operator closes a sort of algebra which we have dubbed the FZZ algebra.

In order to preserve the exact marginality of the perturbations, the black hole

operator should then be added to the action. Finally, a perturbative computation

will show that the coefficient in front of the second sine-Liouville should be put

to zero. In this way, the standard form of the FZZ duality is recovered, with just

one Sine-Liouville perturbation along with that of the black hole.

This approach to the FZZ duality suggests in turn a natural generalization

of the FZZ algebra in the c = 1 non-critical string context. This is motivated

by the fact that in this case, the two-dimensional black hole is the first of an

infinite family of solutions to the closed string field theory equations, each one

corresponding to one of the discrete states of the c = 1 string [37]. We find that

when Sine-Liouville perturbations with different winding numbers are turned on,

all the discrete states of the c = 1 can be generated by multiple OPEs. This

strongly points to the existence of an infinitely generalized FZZ duality in the
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c = 1 string, which should be further investigated.

The organization of this work is as follows. In Section 2 we briefly review

the two-dimensional black hole background and the FZZ duality. In Section

3 we introduce the FZZ algebra, we show that all the interactions involved are

compatible with the parafermionic symmetry of the SL(2, R)/U(1) coset and that

the second Sine-Liouville dressing is consistent with the correlation functions of

the theory. In Section 4, we briefly review the c = 1 string theory and present

our proposal for the enlargement of the FZZ algebra in this model. Section 5

contains the conclusions.

4.2 Euclidean 2d Black Hole and FZZ Duality

4.2.1 2d Black Hole - Review

We start by reviewing some basic properties of the two dimensional cigar or

black hole solution in noncritical string theory [35, 97, 98] This will also serve to

establish some notation and conventions.

This black hole solution can be written as an exact conformal field theory

(all orders in α′), namely an SL(2, R)/U(1) WZW model [35], whose Euclidean

version is a σ-model with metric:

ds2 = k

(
(1− e2Qφ) dt2 +

1

1− e2Qφ
dφ2

)
,

Φ− Φ0 = Qφ, −∞ < φ < 0 . (4.1)

Here k is the level of the SL(2, R) WZW model and Q = 1√
k−2

.

By a change of coordinates, this solution can also be written:

ds2 = k
(
dr2 + tanh2 r dθ2

)

Φ− Φ0 = −2 log cosh r, −∞ < r < 0 . (4.2)

The geometry of the Euclidean black hole is that of a cigar ending at r = 0. Its

asymptotic radius as r → −∞ is

R =
√
k . (4.3)
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4.2 Euclidean 2d Black Hole and FZZ Duality

The value of the dilaton at the tip, Φ0, can be identified with the mass of the

black hole:

M ∼ e−2Φ0 . (4.4)

The 2d black hole can either be considered by itself as a string background, or

adjoined to another “internal” CFT to form the total string background. In the

former case, conformal invariance of the worldsheet theory requires:

ctot =
3k

k − 2
− 1 = 26 ⇒ k = 9

4
⇒ R = 3

2
. (4.5)

Therefore in this case one is in the regime of small k, and the spacetime solution

is not very reliable. On the other hand, if we add an internal CFT then it is easy

to see that k can be arbitrarily large and one expects the spacetime solution to be

a reliable guide to the physics. In this and the next few sections we will assume

the most general situation, with k arbitrary. Later we will specialise to the case

where there is only a black hole and no internal CFT.

An important role will be played by the fact that the 2d black hole back-

ground has a parafermionic SL(2, R)/U(1) symmetry. Note that a cosmological

Liouville perturbation would spoil this symmetry. Hence we assume there is

no cosmological perturbation, which is physically acceptable since the would-be

strong coupling region is already cut off by the black hole geometry.

For large negative φ, the black hole metric can be written

ds2 = k
(

(1− e2Qφ) dt2 + (1 + e2Qφ)dφ2
)
,

= k
(
dt2 + dφ2 − (dt2 − dφ2)e2Qφ

)
. (4.6)

Thus, infinitesimally the black hole is generated by a perturbation

∆S = (∂X∂̄X − ∂φ∂̄φ)e2Qφ . (4.7)

The second term is a pure gauge in BRST cohomology. Therefore the black hole

background is generated by the operator:

B = ∂X∂̄Xe2Qφ . (4.8)
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It should be kept in mind that this operator only describes the 2d black hole

far away from the horizon, in the weak-coupling region φ → −∞. However, it

unambiguously generates the full solution, in the sense that a CFT perturbed

by B will flow to the CFT of the Euclidean 2d black hole[37]. In this process

the spacetime gets cut off at the horizon, leading to the well-known property

that winding number is violated: a string wrapped around the Euclidean time

direction in the asymptotic region can be slipped off at the horizon. Violation

of winding number is not, however, evident from inspection of the operator B,

which by itself conserves winding number.

4.2.2 FZZ Duality

The FZZ duality [36] states that the Euclidean 2d black hole discussed above is

“dual” to the Sine-Liouville perturbation of the linear dilaton theory.

The latter arises by coupling a compact “matter” coordinateX to the Liouville

field. Since X is compact, it can be split into X = XL + XR. Let us normalize

the holomorphic fields XL and φ(z) as (α′ = 1)

X(z)X(w) ∼ φ(z)φ(w) ∼ −1

2
log(z − w) . (4.9)

and similarly for the anti-holomorphic fields XR, φ(z̄). The worldsheet stress

tensor is

T = −(∂X)2 − (∂φ)2 +Q∂2φ, (4.10)

with

Q =
1√
k − 2

, (4.11)

and the central charge is

c = 2 + 6Q2 , (4.12)

which is the same as Eq. (4.5). The linear dilaton is given by

Φ− Φ0 = Qφ , (4.13)
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4.2 Euclidean 2d Black Hole and FZZ Duality

so that, with gs = eΦ0eQφ, the theory is weakly coupled as φ→ −∞.

The vertex operators of this theory are written:

Vα,β = e2iαXe2βφ , (4.14)

and have conformal dimension

∆ = α2 + β(Q− β) . (4.15)

The wave function corresponding to these operators is obtained by multiplying

by g−1
s ∼ e−Qφ. It follows that whenever β < Q

2
the wave function is non-

normalizable, in that it is peaked about the weak-coupling region φ → −∞.

This is sometimes called the “allowed” dressing. Its insertion creates a local

deformation of the worldsheet. For β > Q
2

the wave function decays at weak

coupling and is normalizable, and its insertion creates a non-local deformation.

If the theory is perturbed by an operator that creates a “wall” at strong

coupling, the situation is different. Only one linear combination of right-moving

and left-moving waves survives. As a consequence, the corresponding Euclidean

operator will be a linear combination of normalizable and non-normalizable ones.

Now let us introduce the Sine-Liouville perturbations:

T+
±R = e±iR(XL−XR) e(Q−|Q− 1

Q
|)φ , (4.16)

where as before, R =
√
k. The subscript labels the “winding momentum” for the

matter part of the vertex operator, while the sign in the superscript labels the

Liouville dressing. In particular, the above operators both have the “allowed”

value of the Liouville dressing, so that the corresponding wave-functions grow at

weak coupling and are non-normalizable. These operators carry winding number

±1 around the Euclidean time direction.

The FZZ duality states that the 2d black hole theory is equivalent to Sine-

Liouville. One of our goals in what follows will be to make this notion more

precise. However first let us review the existing evidence for this duality. It

comes from the knowledge of the exact two- and three-point functions (on the

sphere) of the 2d black hole theory. For example, the two-point function, which
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we will re-obtain below, is:

R(j,m, m̄) =

(
µπΓ( 1

k−2
)

Γ(1− 1
k−2

)

)1−2j
Γ(2j − 1)Γ(1 + 2j−1

k−2
)

Γ(−2j + 1)Γ(1− 2j−1
k−2

)

Γ(−j + 1 + m̄)Γ(−j + 1−m)

Γ(j + m̄)Γ(j −m)
.

(4.17)

The poles in the first two Γ-functions of the numerator reflect the noncompact

nature of the target space [111]. It can be shown that the positions of the poles

of the first Γ-function, occurring at

j = 0,−1
2
,−1,−3

2
, · · · (4.18)

can be obtained using the black hole operator as a screening charge, and the

residues at these poles can be computed using free field techniques. Together

this determines the above correlator. On the other hand, the poles of the second

Γ-function, at

1 +
2j − 1

k − 2
= 0,−1,−2, · · · (4.19)

can be obtained using the Sine-Liouville operator as the screening charge, and

their residues again give the remaining factors in the correlator. The agreement

has also been shown to hold for three point functions in [99, 101], for processes

conserving and violating winding number.

It is intriguing that this duality works quite similarly to channel duality in

critical string theory, where summing over the residues at the s-channel poles

gives the same answer as summing over the residues at the t-channel poles. We

are not aware if this similarity has any further implications.

4.3 FZZ Algebra

Let us now study the linear dilaton theory with a Sine-Liouville perturbation. In

previous treatments it has been standard to add to the worldsheet action just

one of the two “dressings” of the Sine-Liouville operator1. Here we will start

1In fact, in [27], the dressing is chosen to connect to the semiclassical limit valid for Q→∞.

This is normalizable for Q < 1 and becomes non-normalizable for Q > 1.
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by considering simultaneously both sine-Liouville dressings. This point of view

has already been demonstrated to be useful in similar contexts (see for example

[110]).

As we will see shortly, this approach provides a direct link between Sine-

Liouville theory and the 2d black hole. We will demonstrate that the linear dilaton

theory perturbed by both dressings of Sine-Liouville operators requires the black

hole perturbation operator to be turned on for consistency, i.e. exact marginality

of the perturbation. So it would seem that the true perturbed theory has both

Sine-Liouville and black hole operators turned on at the same time. But this is

not the end of the story. A perturbative quantum computation will show that the

relative coefficients between all the perturbations are determined self-consistently,

in such a way that the coefficient of the second Sine-Liouville perturbation should

be set to zero. In other words, the second Sine-Liouville perturbation disappears

after fulfilling the role of forcing the black hole perturbation to be present.

We will first describe the general arguments justifying this procedure, and

will then show that using various different combinations of the Sine-Liouville

operators (of both dressings) and black hole operator as screeners is consistent

with the structure of the correlators of the theory and fixes the relative coefficients

of the different perturbations. A certain parafermionic symmetry will prove useful

in the discussion.

4.3.1 The Algebra of the Interactions

The perturbation to the action is as follows1

S → S +

∫
d2z
(
T+
R + T+

−R + T−R + T−−R
)
. (4.20)

Between them, these four terms incorporate both signs of the matter momentum

as well as both signs of the Liouville dressing. The operators T+
±R were given in

Eq. (4.16) while the other two are given by:

T−±R = e±iR(XL−XR) e(Q+|Q− 1
Q
|)φ , (4.21)

1This is really Cosine-Liouville rather than Sine-Liouville.
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As these operators are all of conformal dimension (1, 1), the above perturba-

tion is marginal to first order. Now consider the requirements of exact marginality.

The general rule is that the perturbations will be exactly marginal if their OPE

does not produce another (1, 1) operator[2]. However, if they do produce such an

operator then we are required to add that operator back into the Lagrangian to

restore marginality.

Now it is easily seen that the following OPE holds between the mutually

conjugate operators T+
R and T−−R (a similar relation holds between T−R and T+

−R):

T+
R(z, z̄)T−−R(w, w̄) ∼ 1

|z − w|2∂X∂̄X e2Qφ + · · · (4.22)

Here we have exhibited only the (1, 1) operator appearing on the RHS. More

singular terms correspond to operators that are BRST trivial. Even among the

(1, 1) operators that can appear, we have dropped BRST-trivial contributions

such as ∂φ∂̄φ e2Qφ.

On the right hand side of the above equation, we recognise the black hole

perturbation operator. This tells us that the Sine-Liouville theory (when viewed

as a perturbation of the original action by operators of both Liouville dressings)

is not by itself exactly marginal, but marginality can be restored by including the

black hole perturbation. In turn, it is known that the latter perturbation can be

built up into a solution of closed string field theory which, being unique, must be

equivalent to Witten’s SL(2, R)/U(1) CFT1.

It is worth noting that, as in [112], the operators generated by requiring exact

marginality to second order are not quite the physical operators, but rather some

variants of them with an extra multiplicative factor of the Liouville field φ in

front. In the present case the black-hole operator would be replaced by:

∂X∂̄Xe2Qφ → φ ∂X∂̄Xe2Qφ . (4.23)

This is reminiscent of the fact that, at c = 1, the cosmological operator in the

linear dilaton theory is not really eQφ but φ eQφ. As in that case, the distinction

between the operator with and without a φ in front is expected to be unimportant

for a large class of explicit computations.

1This was demonstrated for k = 9/4 in [37].
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4.3.2 Parafermionic symmetry

To justify and spell out the above observations, we will now perform a more

explicit study of the linear dilaton theory perturbed by Sine-Liouville and black

hole operators. A useful tool in this study is the fact that when the dilaton

slope of φ is Q = 1√
k−2

and the radius of the compact direction is R =
√
k,

the symmetry of the worldsheet is expanded from Virasoro to the parafermionic

SL(2, R)/U(1) algebra. A representation of this symmetry in terms of the φ and

X bosons can be obtained by adding one free boson Z, normalized as in (4.9),

and starting with the following free-field representation of the level k SL(2, R)

current algebra

J3 = −
√
k∂Z , (4.24)

J± = (i
√
k∂X ∓

√
k − 2∂φ) e

∓ 2√
k

(iX−Z)
.

Since J3 corresponds to the direction gauged to obtain the SL(2, R)/U(1) coset,

the parafermionic generators can be obtained by dropping Z from the above

expressions. This gives

ψ± = (i
√
k∂X ∓

√
k − 2∂φ)e

∓ 2i√
k
X
. (4.25)

The currents (4.24) and (4.25) have similar anti-holomorphic copies. A generic

primary of the coset can be written in terms of SL(2, R) quantum numbers as

Vj,m,m̄ = e2jQφe
− 2im√

k
XLe

− 2im̄√
k
XR , (4.26)

with

m =
n+ kw

2
m̄ =

n− kw
2

(4.27)

where n and w are the momentum and the winding of the X direction. This state

has conformal dimensions

∆j,m = −j(j − 1)

k − 2
+
m2

k
, (4.28)

∆̄j,m̄ = −j(j − 1)

k − 2
+
m̄2

k
, (4.29)
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and descends to the SL(2, R)/U(1) coset from an SL(2, R) primary with spin j

and J3
0 = m, J̄3

0 = m̄.

We are interested in turning on marginal perturbations to the flat background

which preserve the SL(2, R)/U(1) symmetry. Natural candidates are exponen-

tials of X and φ. Consider the OPE

ψ±(z) eiaXL+bφ(w) ∼ ∓b
√
k − 2

(z − w)
1± a√

k

e
bφ(w)+i(a∓ 2√

k
)XL(w)

(1 +O(z − w))

∓ k

2
∂z

(
e
∓i 2√

k
XL(z)+iaXL(w)

(z − w)
± a√

k

)
ebφ(w) . (4.30)

Requiring mutual locality and no single pole fixes a = w
√
k, with w a non-zero

integer. Thus the perturbation will be a winding mode belonging to the spectrum

of the theory, if we combine left- and right-movers with opposite signs for w. For

each w, there are two values of b which give an operator with ∆ = ∆̄ = 1. For

the case of one unit of winding, the Sine-Liouville operators are

S1
± ≡ λ1T

+
±R = λ1e

±i
√
k(XL−XR)+ 1

Q
φ , (4.31)

S2
± ≡ λ2T

−
±R = λ2e

±i
√
k(XL−XR)+(2Q− 1

Q
)φ . (4.32)

Turning on Liouville-like perturbations in linear dilaton theories has the effect of

screening the strong coupling region φ → +∞. This is indeed the case for S1
±.

For S2
±, this happens only when 2Q > 1/Q, i.e., k < 4. This region includes the

k = 9/4 value corresponding to the pure two-dimensional black hole. Therefore,

we will trust the Lagrangian description of the theory perturbed with S2
± in the

region k < 4, and resort to the analytical continuation of the results otherwise.

The important point is that both operators are compatible with the SL(2, R)/U(1)

symmetry. Now, the chiral black hole perturbation ∂Xe2Qφ should also be com-

patible with the SL(2, R)/U(1) symmetry. This is indeed the case, but happens

only at a fixed point of the gauge orbit of the BRST trivial state ∂φe2Qφ. To find

this point, consider

B = (∂X + α∂φ) e2Qφ . (4.33)
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Its OPE with ψ+ is

ψ+(z)B(w) ∼ e
−2i

X(z)√
k

+2Qφ(w)

(
−1

2

√
k − 2

(z − w)2
+
∂φ(w)

z − w

)
×
(
α + i

√
k − 2

k

)
,(4.34)

and this fixes α = −i
√

k−2
k

. For this value of α, the OPE of ψ− with B is

ψ−(z)B(w) ∼ − i√
kQ2

∂w

(
e2Qφ(w)

z − w

)
e
−2i

X(z)√
k (4.35)

so the integrated screening charge
∮
dwB(w) also commutes with ψ−. In the

following we rescale B by a constant and add the antichiral factor, so we will use

B = µ

(
i
√
k∂XL +

1

Q
∂φ

)(
i
√
k∂̄XR +

1

Q
∂̄φ

)
e2Qφ (4.36)

This, then, is the form of the black hole perturbation that is consistent with the

parafermionic symmetry. We will make use of this, along with the Sine-Liouville

operators of Eqs.(4.31),(4.32), as screening charges in the following subsections.

4.3.3 Correlation functions

Let us consider the two-point function of the interacting SL(2, R)/U(1) theory

with all the perturbations turned on. The vertex operators Vj,m,m̄ and V−j+1,m,m̄

have the same conformal dimension and correspond to incoming and outgoing

waves with the same momentum. We normalize them such that

〈V−j+1,m,m̄Vj,−m,−m̄〉 = 1 , (4.37)

and we will consider the two-point function

R(j,m, m̄) = 〈Vj,m,m̄Vj,−m,−m̄〉 . (4.38)

We ignore the divergent delta functions in both (4.38) and (4.37). Using the

SL(2, R) quantum numbers is useful because the coset theory inherits the struc-

ture of degenerate operators and fusion rules of the SL(2, R) algebra. This in turn

will allow us compute (4.38) by exploiting the trick of Teschner [19, 100, 113].
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The affine SL(2, R) algebra has degenerate primaries at spins [114]

jr,s = −(r − 1)

2
− (s− 1)

2
k′ , (4.39)

where k′ ≡ k − 2 and r, s are integers with either r, s > 0 or r < 0, s ≤ 0. The

OPE of a primary with spin jr,s gives only a finite number of fields, according to

fusion rules that were worked out in [115]. Below we will consider the constraints

on the two-point function (4.38) which follow from the degenerate primaries with

spins j = −1/2 and j = −k′/2.

The j = −1/2 degenerate field

The fusion of the degenerate primary V− 1
2
, 1
2
, 1
2

with any other primary gives [115]

V− 1
2
, 1
2
, 1
2
Vj,m,m̄ ∼ C+

j,m,m̄

[
Vj− 1

2
,m+ 1

2
,m̄+ 1

2

]
+ C−j,m,m̄

[
Vj+ 1

2
,m+ 1

2
,m̄+ 1

2

]
. (4.40)

Consider the auxiliary three-point function

〈Vj,m,m̄(x1), Vj+ 1
2
,−m− 1

2
,−m̄− 1

2
(x2)V− 1

2
, 1
2
, 1
2
(z)〉 . (4.41)

Taking z → x1 it is equal to

C−j,m,m̄R

(
j +

1

2
,m+

1

2
, m̄+

1

2

)
. (4.42)

Taking z → x2 it is equal to

C+
j,m,m̄R(j,m, m̄) . (4.43)

Equating the two expressions we get

R(j + 1
2
,m+ 1

2
, m̄+ 1

2
)

R(j,m, m̄)
=
C+
j,m,m̄

C−j,m,m̄
. (4.44)

This is a functional equation for R(j,m, m̄) that depends on the structure con-

stants C±j,m,m̄, which, from (4.37) and (4.40), are given by

C+
j,m,m̄ = 〈V−j+ 3

2
,−m− 1

2
,−m̄− 1

2
(∞)V− 1

2
, 1
2
, 1
2
(1)Vj,m,m̄(0)〉 , (4.45)

C−j,m,m̄ = 〈V−j+ 1
2
,−m− 1

2
,−m̄− 1

2
(∞)V− 1

2
, 1
2
, 1
2
(1)Vj,m,m̄(0)〉 , (4.46)
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where

Vj,m,m̄(∞) = lim
z,z̄→∞

z2∆j,m z̄2∆̄j,m̄Vj,m,m̄(z, z̄) (4.47)

is the standard BPZ conjugate. In this approach, the computation of C±j,m,m̄

(and similar constants associated to the second degenerate field below) is the

only perturbative result needed, and allows to compare the role of the black

hole/Sine-Liouville interactions. The presence of the background charge Q in the

φ direction implies, for a correlator such as

〈 n∏

i=1

e2αiQφ(zi)
〉
, (4.48)

the anomalous conservation law

n∑

i=1

αi = 1. (4.49)

From (4.26) it follows that (4.49) is satisfied for C+
j,m,m̄ without any insertion of

the interactions, so we have C+
j,m,m̄ = 1. For C−j,m,m̄, we can satisfy (4.49) by

inserting one cigar screening charge (4.36). This gives

C−j,m,m̄ =

∫
d2z〈V−j+ 1

2
,−m− 1

2
,−m̄− 1

2
(∞)B(z)V 1

2
, 1
2
, 1
2
(1)Vj,m,m̄(0)〉free (4.50)

To compute the integrand, we use the free field correlators

〈ei
2m+1√

k
XL(∞)

e
− i√

k
XL(1)

e
− 2im√

k
XL(0)〉 = 1 ,

i
√
k〈ei

2m+1√
k
XL(∞)

∂XL(z)e
− i√

k
XL(1)

e
− 2im√

k
XL(0)〉 = − 1/2

z − 1
− m

z
,

〈
e(−2j+1)Qφ(∞)e2Qφ(z)e−Qφ(1)e2jQφ(0)

〉
= z−2jQ2

(z − 1)Q
2

,

1

Q

〈
e(−2j+1)Qφ(∞)∂φe2Qφ(z)e−Qφ(1)e2jQφ(0)

〉
=

(
1/2

z − 1
− j

z

)
z−2jQ2

(z − 1)Q
2

,

and similar antiholomorphic expressions. This gives

C−j,m,m̄ = µ(m+ j)(m̄+ j)

∫
d2z|z|− 4j

k−2
−2|z − 1| 2

k−2

= −µ π

k′2
(m+ j)(m̄+ j)γ

(
−2j

k′

)
γ

(
2j − 1

k′

)
γ (1/k′) , (4.51)
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where γ(x) = Γ(x)/Γ(1− x) and we have used (4.93).

We now show that one obtains the same expression for C−j,m,m̄ using the Sine-

Liouville interactions of both dressings as screening charges. The conservation

law (4.49) can also be satisfied by inserting one screening of type S1 and one of

type S2, see (4.31)-(4.32). This gives

C−j,m,m̄ =

∫
d2zd2w〈V−j+ 1

2
,−m− 1

2
,−m̄− 1

2
(∞)S1

+(w)S2
−(z)V− 1

2
, 1
2
, 1
2
(1)Vj,m,m̄(0)〉free

= λ1λ2

∫
d2zd2w|z − w|−4|z − 1| 2

k−2 zm+j− 2j
k−2 z̄m̄+j− 2j

k−2 w−m−j w̄−m̄−j .

To compute this integral we can change variables from (z, w) to (z, y = w/z),

and we get

C−j,m,m̄ = λ1λ2

∫
d2y|1− y|−4y−m−j ȳ−m̄−j ×

∫
d2z|z|−2− 4j

k−2 |1− z| 2
k−2 , (4.52)

= −λ1λ2 Γ(−1)
π2

k′2
(m+ j)(m̄+ j)γ

(
−2j

k′

)
γ

(
2j − 1

k′

)
γ (1/k′) ,(4.53)

where we have used twice eq.(4.93). Thus we have obtained precisely the same

expression (4.51) for C−j,m,m̄ using both Sine-Liouville screenings, and we can

identify

µ = λ1λ̃2 , (4.54)

where

λ̃2 = πΓ(−1)λ2 (4.55)

is a renormalized value of λ2. The reason to renormalize only λ2 in the product

λ1λ2 will become clear below.

The j = −k′/2 degenerate field

For this case, the fusion rules are [115]

V− k′
2
, k
′

2
, k
′

2
Vj,m,m̄ ∼ C̃+

j,m,m̄

[
V
j− k′

2
,m+ k′

2
,m̄+ k′

2

]
+ C̃−j,m,m̄

[
V
j+ k′

2
,m+ k′

2
,m̄+ k′

2

]

+ C̃×j,m,m̄

[
V k′

2
−j+1,m+ k′

2
,m̄+ k′

2

]
. (4.56)
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A similar reasoning as that used above leads leads to the functional equation

R(j + k′

2
,m+ k′

2
, m̄+ k′

2
)

R(j,m, m̄)
=
C̃+
j,m,m̄

C̃−j,m,m̄
. (4.57)

As before, we can set

C̃+
j,m,m̄ = 〈V−j+ k′

2
+1,−m− k′

2
,−m̄− k′

2
(∞)V− k′

2
, k
′

2
, k
′

2
(1)Vj,m,m̄(0)〉 = 1 , (4.58)

since the conservation law (4.49) is satisfied without any perturbative insertion.

As for

C̃−j,m,m̄ = 〈V−j− k′
2

+1,−m− k′
2
,−m̄− k′

2
(∞)V− k′

2
, k
′

2
, k
′

2
(1)Vj,m,m̄(0)〉 , (4.59)

we can satisfy (4.49) by inserting two Sine-Liouville S1 interactions. This gives

C̃−j,m,m̄ =

∫
d2zd2w〈V−j− k′

2
+1,−m− k′

2
,−m̄− k′

2
(∞)S1

−(w)S1
+(z)V− k′

2
, k
′

2
, k
′

2
(1)Vj,m,m̄(0)〉free

= λ2
1

∫
d2zd2w|z − w|−2k+2|z − 1|2k′ zm−j z̄m̄−j w−m−j w̄−m̄−j . (4.60)

Changing now variables from (z, w) to (z, y = w/z) we get

C̃−j,m,m̄ = λ2
1

∫
d2z|z|−4j−2k′|z − 1|2k′ ×

∫
d2y−m−j ȳ−m̄−j|1− y|−2(k−1) ,

= λ2
1π

2γ (−2j − k′ + 1) γ (2j − 1)
Γ(−m− j + 1)

Γ(−m− j − k′ + 1)

Γ(m̄+ j + k′)

Γ(m̄+ j)
,(4.61)

where we have used (4.93) twice.

Now that we have the structure constants, the solution to the functional

equations (4.44) and (4.57) is

R(j,m, m̄) = (µπγ(1/k′))1−2j
Γ(2j − 1)Γ(1 + 2j−1

k−2
)

Γ(−2j + 1)Γ(1− 2j−1
k−2

)

Γ(−j + 1 + m̄)Γ(−j + 1−m)

Γ(j + m̄)Γ(j −m)

(4.62)

which is the expression we wrote above in (4.17). Also, we get also the relation

λ2
1π

2 = (µπγ(1/k′))k
′

(4.63)
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which was first obtained in [100] by similar methods. Given this relation, it is

clear that λ2 rather than λ1 is the coefficient which should absorb the divergence

coming from Γ(−1) in (4.53). But since from (4.54) we see that λ̃2 is finite, it

follows from (4.55) that λ2 is effectively renormalized to zero, and therefore the

second Sine-Liouville screening disappears from the theory.

Also note from (4.54) and (4.63) that only one of the three coefficients µ, λ1, λ̃2

is independent. The expression (4.62) for R(j,m, m̄) is symmetric under m↔ m̄

for m − m̄ ∈ Z, using (4.90). It satisfies R(−j + 1,m, m̄) = R−1(j,m, m̄), and

for delta normalizable states (j = 1
2

+ iR) it is a phase, namely, the phase shift

between an incoming and an outgoing wave.

Using the Teschner trick one can also obtain the three-point function, and the

same special structure constants we computed above enter similarly as an input

for functional relations for the three-point function, which follow from crossing

symmetry of an auxiliary four-point function [116].

Therefore, in this efficient approach to compute the correlators, the role of the

second Sine-Liouville dressing is established for two and three point functions. It

would be interesting to use the second Sine-Liouville screening to perform free-

field computations similar to those in [99].

4.4 Generalized FZZ Algebra

As an application of the considerations detailed above, we will investigate a gen-

eralized class of Sine-Liouville models. The FZZ algebra procedure will then be

employed to find the analogs of the dual black hole operators. However, such op-

erators exist only in the special case of c = 1 matter coupled to Liouville theory.

Therefore we will first give a brief survey of the relevant aspects of c = 1 string

theory, including a listing of some interesting physical states in the cohomology,

before proceeding to the model.
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4.4.1 Cohomology of c = 1 strings

The c = 1 string is a special case of the linear dilaton background of Section 2.2

where we set Q = 2 to get a total central charge c = 26. With a cosmological

perturbation to cut off the strong coupling region, the worldsheet action is:

Sc=1 =

∫
d2z
(
−∂X∂̄X + ∂φ∂̄φ+ 2R̂(z, z̄)φ+ 4πµ e2φ

)
. (4.64)

The string loop expansion in this theory is an expansion in 1
µ2 . The coordinate

X has the interpretation of time, but in what follows we will consider its Eu-

clidean continuation, corresponding to the case of finite temperature. Thus X is

Euclidean (spacelike) and compactified:

X(z, z̄) ∼ X(z, z̄) + 2πR . (4.65)

The physical fields of the theory are defined by the BRST procedure, which is

most tractable when the worldsheet theory is a free field theory. In the present

case, the theory (at least in the given variables) is free only at µ = 0, the limit in

which the effective string coupling is infinite. For this case, the BRST cohomology

has been worked out in [117, 118, 119, 120, 121, 122]. As observed in [123], at

nonzero µ we can still use part of the previous results.

Let us therefore start by reviewing the cohomology at µ = 0. One important

class of physical operators1 are the momentum “tachyons”:

T±n
R

= ei
n
R
X e(2∓ n

R
)φ, n ∈ Z (4.66)

with left and right conformal dimensions equal to 1. These are just the special

cases of the operators already introduced in Eqs.(4.16),(4.21). As before, the

superscripts ± refer to non-normalizable/normalizable operators respectively.

Another important class of observables are the winding modes. Writing X =

XL +XR, we define X̃ = XL −XR in terms of which:

T±nR = ei nR X̃ e(2∓nR)φ, n ∈ Z . (4.67)

1Here and in what follows, we refer to a dimension (1, 1) operator as a physical operator if

it is BRST invariant after integration over the worldsheet. Typically such operators are also

BRST invariant when multiplied by the ghost field combination cc̄. We need to be more specific

about the ghost dependence of a physical operator only if this dependence is nontrivial.
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These are clearly also (1, 1) operators.

The operators T n
R

and TnR are dual to each other under (timelike) T-duality:

XR → −XR, φ→ φ− logR (4.68)

under which X → X̃ and

R→ 1

R
, µ→ µR . (4.69)

Note that T0 = T0 = e2φ is the cosmological operator.

There are other modes of dimension (1, 1). They are called “discrete states”[120,

121] and can be thought of as two-dimensional “remnants” of the higher-spin

fields that exist in critical string theory. We start by writing the following chiral

operators at the self-dual radius R = 1

W±
s,n(z) = Ps,n(∂jX) e2inXL e(2∓2s)φL (4.70)

where s = 0, 1
2
, 1, . . . , and n, n′ = s, s− 1, . . . , 1− s,−s and Ps,n is a polynomial

in derivatives of XL with conformal dimension s2 − n2. In particular, Ps,±s = 1.

Because the above operators depend only on the left-moving part of the Li-

ouville field, which is a noncompact scalar field, they are not physical operators.

The physical operators are the combinations:

Y ±s;n,n′(z, z̄) = W±
s,n(z)W̄±

s,n′(z̄) . (4.71)

For n = n′ = ±s the above operators are the momentum modes T±2s, while for

n = −n′ = ±s they are the winding modes T±2s. The remaining ones, with n < s

or n′ < s are the true discrete states. The time-independent discrete states are

those with n = n′ = 0. Simple examples are the ones with s = 1, 2 for which the

relevant c = 1 primaries are:

P1,0 = ∂X ,

P2,0 = (∂X)4 + 3
2
(∂2X)2 − 2∂X∂3X , (4.72)

and the corresponding non-normalizable discrete-state operators are:

Y +
1;0,0 = ∂X∂̄X , (4.73)

Y +
2;0,0 = P2,0P̄2,0 e

−2φ . (4.74)

100



4.4 Generalized FZZ Algebra

Although the above states have been tabulated for a specific radius R = 1, they

will exist at other radii as long as n+ n′ is an integer multiple of 1/R and n− n′
is an integer multiple of R. In particular this constraint is always satisfied for

n = n′ = 0, independent of the radius, hence the time-independent discrete states

Y +
s;0,0 exist for all radius. Of course s has to be an integer in order for n = n′ = 0

to be allowed. Since we are working at general values of the radius, we will

concentrate on this set of time-independent discrete states.

The first nontrivial state in this collection is just Y +
1,0,0 = ∂X∂̄X, the radius-

changing operator. In the critical string this would have just been the zero-

momentum mode of the graviton/dilaton. Here it is a “remnant” of those fields,

and is forced to have zero momentum. The other discrete states are similar

remnants of excited tensor states of the string, with fixed momenta.

Note that for the radius operator appearing in Eq. (4.73) there is a normaliz-

able, or non-local, counterpart:

Y −1,0,0 = ∂X∂̄X e4φ . (4.75)

This is precisely the black hole perturbation of the previous sections, specialised

to the case Q = 2. It has been shown [37] that starting from a perturbation of

the c = 1 string by Y −1,0,0, there is no obstruction to finding a classical solution of

closed string field theory (CSFT) to all orders in α′, and moreover the solution so

obtained is unique. Therefore, starting with Eq. (4.6) one generates an exact (at

tree level) CFT describing a string background. It follows that this CFT must be

the SL(2, R)/U(1) black hole CFT. This closes the gap between the spacetime

solution, valid only for large k, and the CFT, which lacks a direct spacetime

interpretation.

But it also suggests a generalization. Observe that:

Y −s;0,0 = Ps,0P̄s,0(∂jX, ∂̄jX) e(2+2s)φ (4.76)

for s = 0, 1, 2, . . . defines an infinite family of normalizable operators, of which

the first two (s = 0, 1) are the cosmological and black hole perturbations. Now

the considerations in Ref.[37] were shown to be generally applicable to all these
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operators. Therefore each of them similarly generates a unique classical solution

of CSFT, and so must correspond to some exact CFT. Unlike the first nontrivial

case (s = 1, the usual 2d black hole) where the CFT is the SL(2, R)/U(1) nonlin-

ear σ-model, the CFT in the other cases is not explicitly known. The form of the

states in Eq. (4.76) suggests that we are dealing with higher-spin generalizations

of the 2d black hole. As we will now argue, these are related by a generalized

FZZ duality to Sine-Liouville perturbations of higher winding number.

4.4.2 Higher Winding Sine-Liouville Perturbations

Supposing that instead of the unit winding perturbation V = T1, we perturb the

action of the linear dilaton theory by Sine-Liouville operators of winding number

2:

T±±2R = e±2iR(XL−XR) e(2∓2R)φ (4.77)

(recall that the ± sign in the subscript refers to the sign of the winding number

while the one in the superscript refers to the dressing). It is easily checked that

the OPE between mutually conjugate operators of this type is again the black

hole perturbation:

T+
2R(z, z̄)T−−2R(w, w̄) ∼ 1

|z − w|2∂X∂̄X e4φ + · · · (4.78)

The same will be true for pairs of mutually conjugate operators of any winding

number – in every case, the output of the OPE is the 2d black hole perturbation.

One way to understand this is that we can orbifold the compact time direction

to enhance the radius by an integer factor. The multiply wound Sine-Liouville

perturbation of the original theory then become singly-wound perturbations in

the orbifolded theory. But orbifolding in time does not affect the black hole

perturbation operator, which is time-independent.

Things become more interesting if we perturb the theory simultaneously by

operators of different winding numbers. As a first example, consider the theory

perturbed by the single and double-winding operators:

S → S +

∫
d2z (T+

R + T+
−R + T−R + T−−R + T+

2R + T+
−2R + T−2R + T−−2R) (4.79)
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In this case, examining the OPE algebra, we find that the product of three of

these operators can potentially produce a new (1, 1) operator on the RHS:

T±−2R(z1, z̄1)T∓R(z2, z̄2)T∓R(z3, z̄3) ∼ P2,0(∂X)P̄2,0(∂̄X) e6φ = Y −2,0,0 (4.80)

where T±nR can be read off from Eq. (4.67) and P2,0 is given explicitly in Eq. (4.72).

Let us work this out in more detail. We have:

T+
2R(z1, z̄1)T−−R(z2, z̄2)T−−R(z3, z̄3) = : e2iRX1e(2−2R)φ1 : : e−iRX2e(2+R)φ2 : : e−iRX3e(2+R)φ3 :

=
1

|z12|4−2R

1

|z13|4−2R

1

|z23|4+4R
: eiR(2X1−X2−X3) : : e(2−2R)φ1+(2+R)φ2+(2+R)φ3 :

(4.81)

where we have used the shorthand Xi ≡ X(zi, z̄i) and similarly for φi, as well as

zij ≡ zi − zj.
After integration over the zi, the RHS of the above may be written

∫ 3∏

i=1

d2wi
1

|w1|4−2R

1

|w2|4−2R

1

|w1 − w2|4+4R
O(wi, w̄i) (4.82)

where we have defined w1 ≡ z1 − z2, w2 ≡ z1 − z3, w3 = z3, and

O(wi, w̄i) ≡
[
: eiR(2X(w2+w3)−X(w2−w1+w3)−X(w3)) : × (w → w̄)

]
: e6φ(w3,w̄3) :

(4.83)

Here we have moved all the Liouville fields φi to the location w3 and dropped the

new terms that arise in doing this. As we will see, at the end this will only lose

us some terms that are trivial in the BRS cohomology.

Finally we expand the X-dependent vertex operator about the point w3 as:

[
: eiR(2X(w2+w3)−X(w2−w1+w3)−X(w3)) : × (w → w̄)

]
:=
∣∣∣

∞∑

n1,n2=0

wn1
2 (w2−w1)n2An1,n2(w3)

∣∣∣
2

(4.84)

where the operators An1,n2 are built out of holomorphic derivatives of X, namely

∂X, ∂2X, · · · and have conformal dimension (∆, ∆̄) = (n1 +n2, 0). Their complex

conjugates have dimension (0, n1 + n2). Anticipating that the final contribution

can only come from physical operators in the cohomology, we keep only those
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operators in the sum which are of the form |An1,n2|2 with n1 + n2 = 4. Then the

combined matter-Liouville operator in Eq. (4.83) can be replaced by:

|w2|2n1|w1 − w2|2n2|An1,n2(w3)|2 : e6φ(w3,w̄3) : (4.85)

Now we see that the composite operator

|An1,n2(w3)|2 : e6φ(w3,w̄3) : (4.86)

has conformal dimension (1, 1) and is a local operator depending only on (w3, w̄3).

The coefficient functions depend only on w1, w2 and combine under the integral

sign into an expression of the form:
∫
d2w1d

2w2
1

|w1|α
1

|w2|β
1

|w1 − w2|γ
(4.87)

for some α, β, γ satisfying α+β+γ = 4. Thus the coefficient of the (1, 1) operator

is logarithmically divergent, the sign of a nontrivial β-function.

At this stage it is clear without further computation that the operator An1,n2

must be the Virasoro primary P2,0 defined in Eq. (4.72). The reason is that the

three operators whose OPE we are computing are all in the cohomology and

the output must therefore also be in the cohomology. Given the total matter

and Liouville momenta of the fields on the LHS of the multiple OPE, there is a

unique such operator that can appear on the RHS. Hence we have shown that

the higher-spin black hole operator

Y −2,0,0 = P2,0(∂X)P̄2,0(∂̄X) e6φ (4.88)

appears in the β-function of the theory perturbed as in Eq. (4.79), thereby justi-

fying Eq. (4.80).

The above result is quite general. For example, one can check that:

T±NR(z1, z̄1)T∓−R(z2, z̄2) · · ·T∓−R(zN , z̄N) ∼ PN,0(∂X)P̄N,0(∂̄X) e(2+2N)φ = Y −N,0,0

(4.89)

Thus the higher-spin black hole operator of label N (i.e. Liouville momentum

2 + 2N) arises when we perturb the linear dilaton theory with Sine-Liouville

operators of windings 1 and N .
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We see that, in a similar sense as for the FZZ algebra of the previous section,

the multiply-wound Sine-Liouville operators are linked to higher-spin black holes.

More precisely, perturbing by all Sine-Liouville operators of winding numbers

1, 2, · · · , N gives rise to higher-spin black holes with all labels up to N (the

spins realised in this way are 2k2, k = 1, 2 · · · , N). This should be viewed as a

generalization of the FZZ duality, and we expect that also here the coefficients of

half of the Sine-Liouville operators get renormalized to zero.

To produce only a definite higher-spin black hole forN ≥ 2, one must fine-tune

the perturbation strengths so that the lower-spin operators are not produced.

4.5 Conclusions

In this work we presented a new approach to the FZZ duality between the two-

dimensional black hole and the sine-Liouville conformal field theory. In this

approach the duality is to be understood as coming from the fact that the Sine-

Liouville perturbations of both dressings induce, via their mutual OPE, the oper-

ator representing a black hole deformation, and one the of the two Sine-Liouville

perturbations then disappears because its coefficient gets renormalized to zero.

This approach has led us to propose a generalized FZZ duality for the c = 1

string. One side of this duality is a CFT generated by perturbing the linear dila-

ton background with higher-spin analogues of the black hole operator. Finding

an exact description of this CFT would be very helpful in understanding this gen-

eralized duality better, though that appears to be a hard problem on which no

progress has been made since the existence proof in Ref.[37]. One might instead

try to use the holographic description in terms of double-scaled matrix models to

get more insight into the nature of the theory that results from the fully back-

reacted higher spin perturbation. Also, even partial progress in the worldsheet

treatment of the higher spin perturbations (e.g. some correlation functions) could

provide relevant tests for the generalized FZZ duality we have proposed.
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4.6 Useful formulae

Γ(x)Γ(1− x) =
π

sin(πx)
(4.90)

γ(x) ≡ Γ(x)

Γ(1− x)
(4.91)

γ(x+ 1) = −x2γ(x) (4.92)∫

R2

d2x xax̄ā(1− x)b(1− x̄)b̄ = π
Γ(1 + a)

Γ(−ā)

Γ(1 + b)

Γ(−b̄)
Γ(−ā− b̄− 1)

Γ(a+ b+ 2)
(4.93)

= (a, b←→ ā, b̄)

The above integral is well defined only when a− ā, b− b̄ ∈ Z, and it is only then

that the second line holds.

4.7 Further Developments

The FZZ duality was recently investigated from the point of view of the fully

interacting SL(2, R)/U(1) theory by Pakman [124]. In this work the author pro-

poses a quantization of the Liouville field φ and finds the quantum versions of

the vertex operators used earlier in this chapter. The FZZ duality is verified by

matching the correlators computed from the Sine-Liouville theory and the black

hole CFT. It is interesting that the reflection amplitudes R(j,m, n) obtained from

the quantized operators coincide with the ones obtained earlier in this chapter

using the properties of degenerate operators of the parafermionic symmetry dis-

cussed in Section 4.3.2. In this chapter we have used the free field representations

of the operators, which is valid when the SL(2, R)/U(1) theory is non-interacting.

In another work by Giribet and Leoni [125] a twisted version of the FZZ

duality was considered. On the Liouville side, instead of turning on unit (n = ±1)

winding and anti-winding operators considered in Eq. (4.20) the authors use a

“twisted” deformation where only the n = 1 and n = 2 winding modes are turned

on:

S → S +

∫
d2z
(
T+
R + T+

2R

)
. (4.94)
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It was shown that using these operators as screening charges the FZZ conjecture

can be proved in the twisted Sine-Liouville model. The authors also presented

a general prescription to check the correspondence for any N -point tree level

correlation functions of the SL(2, R)/U(1) WZW model. Since this work also

uses higher winding operators (namely two units of winding), it remains to be

seen how our proposal for the generalized FZZ duality applies in this case.
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Chapter 5

Noncritical-topological

correspondence: Disc amplitudes

and noncompact branes

In this chapter we examine the duality between type 0 noncritical strings and

topological B-model strings, with special emphasis on the flux dependence. The

former theory is known to exhibit holomorphic factorization up to a subtle flux-

dependent disc term. We give a precise definition of the B-model dual and propose

that it includes both compact and noncompact B-branes. The former give the fac-

torized part of the free energy, while the latter violate holomorphic factorization

and contribute the desired disc term. These observations are generalized to ra-

tional radii, for which we derive a non-perturbatively exact result. We also show

that our picture extends to a proposed alternative topological-anti-topological

picture of the correspondence for type 0 strings [126].

5.1 Introduction

It has been known for some time[38, 39, 40, 41, 42] that noncritical string theories

in two spacetime dimensions have a topological description. Subsequently the

actual correspondence between them and their topological duals on a Calabi-Yau
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manifold was found by Ghoshal and Vafa[43]. Noncritical c = 1 string theory at

the self-dual radius is perturbatively equivalent to topological string theory on a

deformed conifold. For integer multiples of the self-dual radius, the corresponding

topological theory lives on a ZZn orbifold of the conifold geometry. The noncritical-

topological equivalence was shown both via Landau-Ginsburg models and using

the ground ring[121] construction.

The above correspondence has led to considerable illumination of the existence

and properties of noncritical strings. But because the bosonic c = 1 string is

nonperturbatively unstable, it has not been possible to extend the equivalence

to the nonperturbative level. Such an extension can be explored in the case of

the nonperturbatively stable Type 0 string theories in two dimensions. These too

have a description in terms of topological string theory, first proposed in Ref.[46]

and further explored in Refs.[47, 83, 127]. The Calabi-Yau dual to noncritical

type 0 strings at a special radius is a ZZ2 orbifold of the conifold, while for integer

multiples of this radius it is a ZZ2n orbifold.

One of the most interesting aspects of noncritical type-0 strings is the possibil-

ity of turning on background RR fluxes: type 0A theory has two RR gauge fields

and type 0B theory has an RR scalar whose equations of motion admit linear

growth in space and time[10]. Thus in both cases there is a pair of independent

RR fluxes q and q̃. At the level of the closed string perturbation expansion the

theory depends only on |q| + |q̃|, but at the disc level there is a subtle and im-

portant additional term in the free energy which depends on |q| − |q̃|, as found

by Maldacena and Seiberg in [9]. Only after this extra term is included in the

free energy, one finds a satisfactory physical interpretation wherein one of the two

fluxes is sourced by ZZ 0-branes while the other has no sources.

However, the dual topological B-model of Refs.[46] and [83] depends on the

complex-structure moduli of the orbifolded conifold, which in turn depend on the

fluxes only through the combination |q| + |q̃|. Thus it is not obvious how the

correspondence can be extended to incorporate this effect. Our aim here will be

to re-examine the duality with particular reference to flux dependence. We will

make the existing proposal more precise and will then argue that the topological
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side must be extended to incorporate a new feature, namely noncompact branes1.

When placed at appropriate locations, they contribute precisely the desired disc

term in the free energy. Thereafter we generalise these observations to integer

multiples of the special radius and to infinite radius.

One key difference between our analysis and previous ones is that we use the

result of Ref.[9] which we consider to be rigorously true as a convergent integral

representation of the full (nonperturbative) free energy of type 0 strings.

5.2 Noncritical-topological duality

5.2.1 Bosonic case

In this section we briefly review some relevant aspects of topological string the-

ory on noncompact Calabi-Yau spaces. The simplest example is the conifold,

described by the equation

zw − px = 0, (5.1)

where z, w, p, x are complex coordinates of IC4. This is therefore a three complex

dimensional non-compact manifold. It has a singularity at the origin. The sin-

gularity can be removed by blowing up an S3 cycle at the origin, after which the

equation becomes:

zw − px = µ, (5.2)

where µ is in general complex and its modulus determines the size of the S3.

Eq. (5.2) is known as the deformed conifold (DC) and µ is its complex structure

parameter. The singularity in Eq. (5.1) can alternatively be removed by blowing

up an S2 at the origin. The resulting manifold is the resolved conifold (RC).

The topological A model on any given Calabi-Yau is a theory of quantised de-

formations of the Calabi-Yau, sensitive only to the Kähler moduli. The B model

is similar but depends only on the complex structure moduli. The noncritical-

topological duality proposed by Ghoshal and Vafa[43] stems from the observation[121]

1A tentative indication of a role for noncompact branes in this duality was found in Ref.[46].
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that the ground ring of c = 1 string theory at the self-dual radius has four gen-

erators z, w, p, x that are worldsheet operators of conformal dimension 0 in the

BRST cohomology, satisfying the conifold relation Eq. (5.2) where

µ = igsµM (5.3)

and µM is the cosmological constant on the worldsheet in the noncritical string

theory1. Based on this and other evidence, they argued that the c = 1 string

with cosmological constant µM at self-dual radius is equivalent to the topological

B-model on the deformed conifold with deformation parameter µ. In particular

their argument requires the genus-g partition functions of the two theories to

coincide. Writing the genus expansions of the free energies of the c = 1 theory

and the topological theory on the deformed conifold as:

Fc=1(µM) =
∞∑

g=0

Fc=1
g µ2−2g

M

Ftop,DC(µ) =
∞∑

g=0

Ftop,DC
g µ2−2g (5.4)

the claim then amounts to:

Fc=1
g = (igs)

2−2gFtop,DC
g , all g (5.5)

for which ample evidence has been found[128, 129]. There is also expected to be a

1-1 correspondence between the physical observables (tachyons in the c = 1 case

and deformations of S3 in the B-model case) and their correlators (for a recent

discussion, see Ref.[130]).

Going beyond the self-dual radius, it has long been known[44] that the ground

ring of the c = 1 string at integer multiples of the self-dual radius, R = p, is a ZZp

1The factor of i exhibited here is often dropped in the literature, though it has been correctly

placed in Refs.[47, 127]. It is important because the genus expansion of the topological string

free energy is F top =
∑

g χgµ
2−2g, with coefficients that alternate in sign (given by the virtual

Euler characteristic of the moduli space of genus g Riemann surfaces), while that of the c = 1

string is Fc=1 =
∑

g |χg|(gsµM )2−2g and is therefore positive in every genus as befits a unitary

theory. A discussion of this point may be found in Ref.[7].
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orbifold of the conifold. This space has p singularities connected by (complex)

lines. The deformed version of this space is described by the equation:

zw −
p∏

k=1

(px− µk) = 0 (5.6)

which has n homology 3-spheres of size µ1, µ2, . . . , µp, each concealing one of

the singularities. The geometry develops a conifold singularity if any of the µi’s

become zero, and a line singularity if µi = µj for i 6= j. If the µi’s are all distinct

and nonzero, the manifold is non-singular.

We expect the n deformation parameters to be in correspondence with p

distinct (non-normalisable) deformations of the noncritical string theory[131]. If

we only choose to perform the cosmological constant deformation µM then these

p deformation parameters must be determined in terms of µM . It has been shown

via a Schwinger computation[45] that for an integer radius the parameters µk are

given by igs
µM+ik

p
, and k = −p−1

2
,−p−1

2
+ 1, · · · , p−1

2
. Moreover, the free energy

factorises1 into a sum of contributions as follows:

F
R=p
c=1 (µ) = Ftop,DOCp({µk}) =

p−1
2∑

k=− p−1
2

Ftop,DC(µk) (5.7)

This factorisation can be understood in the Riemann surface formulation of

[78]. In this approach one thinks of the following class of noncompact Calabi-

Yaus:

zw −H(p, x) = 0 (5.8)

as a fibration described by the pair of equations:

zw = H, H(p, x) = H (5.9)

The fibre is zw = H, a complex hyperbola, and the base is the complexified p, x

plane. Above points in the base satisfying H(p, x) = 0, the fibre degenerates to

zw = 0, a pair of complex planes intersecting at the origin. Such points in the

1We use the word “factorise” even though the free energy splits into a sum, rather than a

product, of terms. What factorises is of course the partition function.
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5.2 Noncritical-topological duality

base form a Riemann surface, and it is this surface that governs the physics of

the topological string theory. Moreover the function H(p, x) plays the role of a

Hamiltonian and lends an integrable structure to the system.

In the present case of the orbifolded conifold of Eq. (5.6), the Hamiltonian is:

H(p, x) =

p∏

k=1

(px− µk) (5.10)

and hence the Riemann surface H(p, x) = 0 factorises into disjoint Riemann

surfaces[83]. This is the physical reason for the factorisation of the free energy

into a sum of contributions, one for each branch of the Riemann surface.

The above statements are meaningful only at the level of string perturbation

theory, since the bosonic c = 1 is not well-defined nonperturbatively. Moreover,

the computation of Ref.[45] is performed by manipulating a divergent series. Later

we will discuss the analogous relation for the type 0A string, and will demonstrate

factorisation of the free energy without ever using perturbation expansions or

divergent series. In this way we will reliably show that it is nonperturbatively

exact.

5.2.2 Type 0 case, R = 1

In Ref.[46] and subsequently Ref.[47, 83, 127], the above ideas were applied to the

case of the type 0A string. Here it is convenient to choose units in which α′ = 2.

A new feature of the type 0A string relative to the bosonic case (for more details,

see Refs.[9, 10, 132] and references therein) is that it has two distinct quantised

parameters q and q̃. In the Liouville description these arise as the fluxes of

two distinct Ramond-Ramond 2-form field strengths, Ftφ, F̃tφ. The theory has a

symmetry, labelled S-duality, under which the cosmological constant µM changes

sign and at the same time, F ↔ F̃ . In the more powerful matrix quantum

mechanics (MQM) description of the same string theory, the fluxes have quite an

asymmetric origin. For µM < 0, q is the difference in the number of D0 and D̄0

branes, or the net number of D0 branes, in the MQM. On the other hand, q̃ is the

coefficient of a Chern-Simons term involving gauge fields on the branes and anti-
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branes. For µM > 0 the roles of q, q̃ are reversed. On reducing to eigenvalues, each

of the integers q and q̃ can be interpreted as the quantised angular momentum

of fermions moving in the complex plane. Moreover, if both are turned on there

is an additional coupling term arising from projection to nonsinglet sectors, such

that the Hamiltonian eventually depends only on (q + q̃).

The Euclidean type 0A theory has a special value of the radius, R = 1 in these

units, at which the correspondence with the topological string is simplest. This

radius is the analogue of the self-dual radius for the bosonic c = 1 string. For type

0A noncritical strings at the special radius, the corresponding dual geometry in

the topological string has been proposed[46] to be a deformed ZZ2 orbifold of the

conifold (DOC). The identification is again based on the analysis of the ground

ring of the noncritical theory. The DOC dual to the type 0A string has two S3’s

whose complex structure parameters are identified1 with the type 0A parameters

µM , q̂ = q + q̃ as:

µ = igs(µM − iq̂
2

) =
gs
2
y

µ′ = −igs(µM + iq̂
2

) =
gs
2
ȳ (5.11)

with:

y = q̂ + 2iµM (5.12)

Thus the equation of the DOC is:

zw + (px− µ)(px− µ′) = 0 (5.13)

Notice that complex conjugation exchanges the moduli of the two S3’s and acts

as S-duality of the noncritical string. This is because both conjugation and S-

duality act as q̂ → q̂, µM → −µM . As a result the S-duality of type 0A noncritical

strings is explicitly geometrised in the topological B-model dual.

We note at this point that a different point of view about noncritical-topological

duality for type 0 strings is espoused in Ref.[47], according to which the topo-

logical string is defined on the “holomorphic square root” of the space we have

1Again, this identification substantially agrees with that in Refs.[47, 127] but differs from

that in Refs.[46, 83] by factors of i.
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been discussing, which is an ordinary conifold rather than an orbifolded one.

The noncritical-topological correpondence then has to be reformulated by saying

that we have to add topological and anti-topological free energies. While this

seems to fit in with the picture of topological strings emerging from black hole

studies[133, 134], it is not clear that in practical terms it differs from the older

proposal of Ref.[46]. However we will see later that our proposal for a precise

topological dual involving noncompact branes can also be phrased in topological-

anti-topological language.

The manifold Eq. (5.13) exists and is nonsingular for all nonzero µ 6= µ′.

However, the topological B-model on it is dual to type 0A noncritical string theory

only in the special case µ′ = µ̄. With this restriction, the space is nonsingular as

long as µ has an imaginary part. From Eq. (5.11), this will in turn be the case as

long as the cosmological constant µM of the noncritical theory is nonzero, which

is natural since µM cuts off the strong coupling end of the Liouville direction.

Of course from the matrix model point of view there is still a sensible string

theory when µM = 0, but one in which the standard genus expansion of the

continuum theory does not hold, and where the role of the string coupling is

played by the inverse RR flux. The region where the RR flux is of the same order

as, or larger than, the cosmological constant has received some discussion in the

literature[12, 135].

The above identification leads to the following proposed equality between type

0A string and topological B model free energies:

F0A(µM , q, q̃, R = 1) = Ftop,DOC
(
µ =

gs
2
y, µ′ =

gs
2
ȳ
)

(5.14)

Using arguments analogous to those described above for the bosonic string, we

also find that the RHS perturbatively factorises:

Ftop,DOC
(
µ =

gs
2
y, µ′ =

gs
2
ȳ
)

= Ftop,DC
(gs

2
y
)

+ Ftop,DC
(gs

2
ȳ
)

(5.15)

In principle we can now investigate the validity of the above correspondence be-

yond perturbation theory. This point was considered in Refs.[47, 127]. However,

the methods used there involve manipulation of divergent series, and we will be
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able to derive all our correspondences using convergent integral representations

of the relevant special functions.

Let us see how this works in some detail. As in Ref.[83], we consider the open-

string dual of the DOC obtained from the Gopakumar-Vafa correspondence[23].

This theory lives on a resolved orbifolded conifold (ROC) with two P 1’s whose

(complex) size parameter is irrelevant in the B-model but which have respectively

N1, N2 2-dimensional B-branes wrapped over them, where:

N1 =
y

2
=
q̂

2
+ iµM

N2 =
ȳ

2
=
q̂

2
− iµM (5.16)

The number of branes in this correspondence is inevitably complex, and therefore

a prescription is required to complexify starting from real integer values1.

In the open string description, the partition function arises as follows. Using

Eqs.(5.11) and (5.12), we find:

Ftop,DOC
(
µ =

gs
2
y, µ′ =

gs
2
ȳ
)

= Ftop,ROC
(
N1 =

y

2
, N2 =

ȳ

2

)

= Ftop,RC
(
N =

y

2

)
+ Ftop,RC

(
N =

ȳ

2

)
(5.17)

where in the last step, factorisation of the Hamiltonian H(p, x) has been used.

On an ordinary resolved conifold, the free energy of N D-branes is given by

the log of the matrix integral:

e−Ftop,RC(N) =
1

vol(U(N)

∫
dMe−

1
2

trM2

=
(2π)

N2

2

vol(U(N)
(5.18)

Now we use[24]

vol(U(N)) =
(2π)

1
2

(N2+N)

G2(N + 1)
(5.19)

where G2(x) is the Barnes double-Γ function[136] defined by:

G2(z + 1) = Γ(z)G2(z), G2(1) = 1 (5.20)

1However, we see that the total number of branes in the background N1 + N2 = q̂ is real

and integer. This is striking, and somewhat reminiscent of fractional branes, though we do not

have an explanation of this fact.

116



5.2 Noncritical-topological duality

Thus we find

−Ftop,RC
(
N =

y

2

)
− Ftop,RC

(
N =

ȳ

2

)
=
(

logG2

(y
2

+ 1
)
− y

4
log 2π

)
+ c.c.

(5.21)

Let us compare the above with what we know about the noncritical string starting

from the matrix model. In Ref.[9] the authors have given a complete nonpertur-

bative solution for the free energy of Type 0 noncritical strings at arbitrary radius

R. The free energy of type 0A theory is given by:

−F0A(µM , q, q̃, R) = Ω(y,R) + Ω(ȳ, R) +
πµMR

2
(|q| − |q̃|) (5.22)

where the function Ω is defined by the convergent (for Re y > −
(
1 + 1

R

)
) integral:

Ω(y,R) ≡ −
∫ ∞

0

dt

t

[
e−

yt
2

4 sinh t
2

sinh t
2R

− R

t2
+
Ry

2t
+

(
1

24

(
R +

1

R

)
− Ry2

8

)
e−t

]

(5.23)

At the special radius R = 1 it is easily shown from the integral form that:

Ω(y,R = 1) = logG2

(y
2

+ 1
)
− y

4
log 2π (5.24)

where G2 is the Barnes function discussed above.

If we temporarily ignore the last term in Eq. (5.22), we see that the free energy

is the sum of holomorphic and antiholomorphic contributions. Moreover, each of

these is known to be the (complexified) free energy of the bosonic c = 1 string at

radius R[6]. This is in agreement with Eqs.(5.14),(5.15).

However, the last term in Eq. (5.22) does not seem to come from the topo-

logical string. We will discuss this issue in the following section. First we will

generalise the considerations of this subsection to the case where the radius of

the time circle is different from R = 1, in particular to integer radii. We will also

comment on the case of rational radii R = p
p′

.

5.2.3 Integer radius

We have seen that the c = 1 bosonic string at R = p (an integer multiple of the

self-dual radius R = 1) is dual to a topological string living on a Zn orbifold of the
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conifold. An analogous result has been proposed for the type 0A string[47]. We

will provide a simple and general derivation of this result using only properties

of convergent integral representations.

Inserting the value R = p into the expression for Ω, Eq. (5.23), we rewrite the

first term in the integrand:

e−
yt
2

4 sinh t
2

sinh t
2p

→ e−
yt
2

4(sinh t
2
)2

sinh t
2

sinh t
2p

(5.25)

Next, use:
sinh t

2

sinh t
2p

=

p∑

k=1

e
t

2p
(p−(2k−1)) (5.26)

Now define:

yk = y +
−p+ (2k − 1)

p
, k = 1, 2, . . . , p (5.27)

Using the identities:

p∑

k=1

1

t2
=

p

t2

p∑

k=1

yk
2t

=
py

2t

p∑

k=1

(
1

12
− y2

k

8

)
=

1

24

(
p+

1

p

)
− py2

8
(5.28)

of which only the third one is not completely obvious, but nonetheless easy to

prove. It follows that:

Ω
(
y,R = p

)
=

p∑

k=1

Ω(yk, R = 1) (5.29)

We see that the free energy at rational radius factorises into 2p distinct contribu-

tions, of which p are holomorphic in y and the remaining are anti-holomorphic.

Each of the contributions corresponds to a theory at R = 1, or equivalently to

the contribution of topological B-branes. The factorisation is exact.

Let us analyse this in some more detail. First, by definition Re y ≥ 0, which

not only ensures convergence of the LHS of Eq. (5.29), but also ensures that
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the RHS is convergent since this implies that Re yk > −
(
1 + 1

R

)
= −2 for all k.

Therefore the equality is between convergent integral representations as promised.

From the above result we can conclude that for type 0 string theory at every

integer radius R = p, there is an exact noncritical-topological correspondence

where the corresponding topological string lives on a Z2p orbifold[44] of the coni-

fold, whose deformed version is:

zw −
k=p∏

k=1

(px− µk)
k=p∏

k=1

(px− µ̄k) (5.30)

where

µk =
gs
2
yk (5.31)

and yk are defined in Eq. (5.27). This manifold has 2p independent 3-cycles that

occur in complex conjugate pairs. The factorisation into contributions from these

cycles is nonperturbatively exact upto non-universal terms, and even those terms

vanish identically at integer 0A radius.

The resolved version of this correspondence would involve the same Z2p orb-

ifold of the conifold but now with the 2p singularities blown up into P 1’s with

Nk B-branes wrapped over each of the first p cycles, and the complex conjugate

number of branes on the remaining p cycles, where:

Nk =
yk
2

(5.32)

As before, the partition function in this picture arises from the vol(U(N) factors

associated to each set of Nk branes, giving the most direct derivation of the

noncritical-topological correspondence.

This generalized correspondence too can be phrased in topological-anti-topological

language. In this case the topological theory lives on a Zp orbifold, with p cycles

labelled by an integer k and Nk branes wrapped on each of them. The remain-

ing contribution to the free energy arises on combining with the anti-topological

version of this theory.
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5.2.4 Rational radius

Let us now consider more general rational radii of the form R = p
p′

, with p and

p′ co-prime. A similar derivation to the previous one goes through in this case,

though the interpretation presents some subtleties that we will discuss.

Inserting the value of R into the expression for Ω, Eq. (5.23), we send t→ t
p′

and then rewrite the first term in the integrand:

e
− yt

2p′

4 sinh t
2p′

sinh t
2p

→ e
− yt

2p′

4(sinh t
2
)2

sinh t
2

sinh t
2p′

sinh t
2

sinh t
2p

(5.33)

Using Eq. (5.26) and defining:

yk,k′ =
y − p′ + (2k′ − 1)

p′
+
−p+ (2k − 1)

p
, k = 1, 2, . . . , p; k′ = 1, 2, . . . , p′

(5.34)

we find the following identities, generalising Eq. (5.28):

p∑

k=1

p′∑

k′=1

1

t2
=

pp′

t2

p∑

k=1

p′∑

k′=1

yk,k′

2t
=

py

2t

p∑

k=1

p′∑

k′=1

(
1

12
−
y2
k,k′

8

)
=

1

24

(
p

p′
+
p′

p

)
− py2

8p′
(5.35)

Thus we find:

Ω
(
y,R =

p

p′

)
=

p′∑

k′=1

p∑

k=1

Ω(yk,k′ , R = 1)−
(

1

24

( p
p′

+
p′

p

)
− py2

8p′

)
log p′ (5.36)

Thus, at rational radius the free energy factorises into 2pp′ distinct contributions,

of which pp′ are holomorphic in y and the remaining are anti-holomorphic. How-

ever, in general the factorisation is exact only upto an analytic and therefore

non-universal term. If we consider the special case of p′ = 1, corresponding to in-

teger radius in the type 0A theory, then the non-universal term vanishes. On the

other hand if we take p = 1, corresponding to even integer radius in the type 0B
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theory, then the non-universal term is present. Subtracting the two expressions

(after scaling y → ym in one of them) we find:

Ω

(
ym,R =

1

m

)
− Ω (y,R = m) = −

(
1

24

(
m+

1

m

)
− y2

8m

)
logm (5.37)

which is precisely Eq.(A.39) of [9]. There, we see that the apparent violation of

T-duality by the extra term is actually harmless and can be understand as due to

the difference in natural cutoffs for type 0A and 0B. This explains the presence

of the non-universal term, and confirms that its presence can be ignored.

We would now like to interpret the above factorisation property in terms of

contributions from singularities. For the bosonic string, the original ground ring

analysis of Ref.[44] tells us that the (singular) ring at R = p
p′

is a Zp×Zp′ orbifold

of the conifold. Assuming that in type 0 strings the parameters are complexified

and occur in complex-conjugate pairs, we expect in this case to find a Z2p × Z2p′

orbifold of the form:

p′∏

k′=1

(zw − αk′)
p′∏

k′=1

(zw − ᾱk′) =

p∏

k=1

(px− βk)
p∏

k=1

(px− β̄k) (5.38)

for some set of p + p′ complex parameters αk′ , βk. Such a space no longer has

an interpretation as a fibration over a Riemann surface and the analysis of its

partition function is therefore more complicated. We expect that for some (not

necessarily simple) choice of the parameters, the free energy on this space can be

written as a sum of terms as in Eq. (5.36) but will not be able to show this here.

An alternate interpretation of the factorised free energy is that it corresponds

to a Z2pp′ orbifold of the conifold:

zw −
k=p
k′=p′∏

k=1
k′=1

(px− µk,k′)
k=p
k′=p′∏

k=1
k′=1

(px− µ̄k,k′) (5.39)

where

µk,k′ =
gs
2
yk,k′ (5.40)

and yk,k′ are defined in Eq. (5.34). This manifold has 2pp′ independent 3-cycles

that occur in complex conjugate pairs. The resolved version of this space has the
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2pp′ singularities blown up into P 1’s with Nk,k′ B-branes wrapped over each of

the first pp′ cycles, and the complex conjugate number of branes on the remaining

pp′ cycles, where:

Nk,k′ =
yk,k′

2
(5.41)

The advantage of this latter interpretation is that it preserves the fibred structure

of the manifold with a Riemann surface as the base, and therefore all previous

computations manifestly go through in the same way. Unfortunately this inter-

pretation is at variance with the original proposal[43] that the variety occurring

on the topological B-model side is in correspondence with the ground ring on the

noncritical side.

5.3 Disc amplitudes and noncompact branes

5.3.1 R = 1

In the correspondence between noncritical type 0A strings and the B-model on

the conifold Eq. (5.13) (and more generally Eq. (5.30)) that we have discussed

above, there is right away a puzzle. The former depends on three parameters,

q, q̃, µM , which in the continuum Liouville description arise as the two independent

RR fluxes and the cosmological constant (in the matrix model description these

three parameters arise as a net D-brane number, a Chern-Simons term and the

Fermi level respectively[9, 10]). However the topological dual only depends on

the complex number y = |q|+ |q̃|+2iµM , and therefore on only two of these three

parameters. It reproduces most of the free energy, which indeed depends only on

two parameters and is the sum of mutually complex conjugate terms. However,

the extra term in the free energy:

Fdisc,2 = −πR
2
µM(|q| − |q̃|) (5.42)

is unaccounted for (the reason for the label on this contribution will become clear

shortly).

This term is responsible for an important effect. From the factorised part of

the free energy one extracts the following disc contribution in the limit of large

122



5.3 Disc amplitudes and noncompact branes

µ and fixed q̂[9]:

Fdisc,1 = +
πR

2
|µM |(|q|+ |q̃|) (5.43)

Hence the total disc amplitude is:

Fdisc = Fdisc,1 + Fdisc,2 =
πR

2

[(
|µM | − µM

)
|q|+

(
|µM |+ µM

)
|q̃|
]

(5.44)

This can be written as:

Fdisc = (2πR)
µM
2
|q̃|, µM > 0

= (2πR)
|µM |

2
|q|, µM < 0 (5.45)

The physical interpretation is that for µM > 0 the RR flux of q̃ units associated

to the gauge field Ã is supported by |q̃| ZZ branes in the vacuum, with the con-

tribution per brane to the free energy being given by the product of its extent in

Euclidean time (2πR) and its tension ( |µM |
2

). The other flux of q units associated

to the gauge field A has no source. Similarly for µM < 0 the vacuum contains |q|
ZZ branes sourcing the first flux while the other flux of q̃ units is not supported

by any source..

Note that in the absence of the term Fdisc,2 there is no satisfactory physical

interpretation of the disc amplitude in terms of ZZ branes. This makes the term

extremely important for a consistent noncritical string theory.

We now propose that the missing term is supplied, on the topological side,

by noncompact B-branes wrapping a degenerate fibre of the Calabi-Yau over the

Riemann surface H(p, x) = 0. Such branes have been extensively studied in

Refs.[78, 137] where they have been shown to give rise to the Kontsevich param-

eters of topological matrix models. These branes are, in particular, fermionic.

Since we are considering the free energy of the string theory, we work in the vac-

uum where such Kontsevich branes are absent. However, as we now explain, it is

still possible to place noncompact branes at infinity on the Riemann surface and

they can reproduce just the desired term in the free energy.

Consider the case R = 1. Suppose we place a single noncompact B-brane

along one branch of the degenerate fibre over a point x on the Riemann surface.
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5.3 Disc amplitudes and noncompact branes

We would like to isolate its contribution to the free energy compared with that

of a brane at a fixed reference position x∗, or in other words we assume that the

brane is asymptotically at x∗ but its interior region has been moved to x. The

action of such a brane has been shown[78, 137] to be1:

S(x) =
1

gs

∫ x

x∗

p(z) dz (5.46)

As we have seen, for the case of interest to us the Riemann surface consists

of two disjoint factors:

xp =
gs
2
y, xp =

gs
2
ȳ (5.47)

Thus a brane on the first branch contributes:

S(x) =
µ

gs
ln

x

x∗
(5.48)

Let us now place one noncompact brane above each of the two branches, and

take their asymptotic positions to be at x∗, x
′
∗ which will both be sent to infinity.

Then their total contribution to the free energy is:

S(x, x′) =
1

2

(
y ln

x

x∗
+ ȳ ln

x′

x′∗

)
(5.49)

Now we will choose our branes such that x, x′ are also at infinity, but rotated by

angles θ, θ′ respectively along the circle at infinity relative to the original points

x∗, x
′
∗. Namely:

x = x∗ e
iθ, x′ = x′∗ e

iθ′ (5.50)

It follows that:

S(x1, x2) =
i

2
(y θ + ȳ θ′)

= −µM(θ − θ′) + i
q̂

2
(θ + θ′) (5.51)

The factors of gs have conveniently cancelled out, and the real part of the above

contribution is proportional to µM . Now if we choose:

θ = −θ′ = π

4
(|q| − |q̃|) (5.52)

1In the language of Ref.[78], we place the branes in the “x-patch” and never move them to

the “p-patch”.
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5.3 Disc amplitudes and noncompact branes

p = ∞

x∗1

x∗2x = ∞ x1

x2

Figure 5.1: The Riemann surface with noncompact branes at infinity.

we find that the noncompact branes give a contribution:

S = −π
2
µM(|q| − |q̃|) (5.53)

to the free energy, precisely equal to that in Eq. (5.42) at R = 1.

To summarise, we have shown that if we place a noncompact B-brane at

x→∞ on each branch of the Riemann surface

H(p, x) = (px− µ)(px− µ′) = 0 (5.54)

and moreover require that the branes wind at infinity by the angles in Eq. (5.52),

we precisely reproduce the disc contribution to the free energy of Eq. (5.42). This

situation is depicted in Fig.5.1.

This then completes the definition of the topological dual to type 0A strings

at the special radius.

The above system also has a description in topological-anti-topological lan-

guage. As we have seen, the topological theory then lives on the pure conifold,

having a Riemann surface with only one branch. Now we place a single non-

compact brane on it with winding angle θ given by Eq. (5.52). Adding the

anti-topological theory introduces the second noncompact brane with winding

−θ and we recover the correct free energy.

5.3.2 Integer and rational radius

Let us now extend these considerations to other integer radii. At radius R = p,

we have the possibility of placing noncompact branes at infinity on each of
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5.3 Disc amplitudes and noncompact branes

2n branches of the Riemann surface H(x, p) = 0 obtained from Eq. (5.30).

Parametrising the angles by which these branes wind as:

xi = x∗i e
i θi , x′i = x′∗i e

i θ′i , (5.55)

the contribution of these branes to the free energy is:

S(xi, x
′
i) =

i

2

n∑

j=1

(
yj θj + ȳj θ

′
j

)

= −µM
n∑

j=1

(θj − θ′j) + i
n∑

j=1

q̂j
2

(θj + θ′j) (5.56)

where

q̂j = q̂ − 1 +
2j − 1

n
, j = 1, 2, . . . , n (5.57)

It is natural to take

θj = −θ′j =
π

4
(|q| − |q̃|) , all j = 1, 2, . . . , n (5.58)

which leads to a contribution to the free energy:

S = −πn
2
µM(|q| − |q̃|) (5.59)

in precise agreement with Eq. (5.42) for R = n.

It appears as if in this case the noncompact brane configuration is not unique.

However, note that choosing θj = −θ′j for all j is essential to make the free energy

real. After this, the choice we have made is the most symmetric one which gives

the correct disc amplitude.

In the topological-anti-topological approach, we would instead have p branches

in the Riemann surface and therefore p noncompact branes with associated angles

θk. The remaining noncompact branes with angles −θk then arise on the anti-

topological side.

It is quite nontrivial that we were able to reproduce the subtle disc term by

a simple configuration of noncompact branes in every case. The scaling with gs

of the holomorphic Chern-Simons action and of the complex-structure moduli

µk,k′ defined in Eq. (5.40) exactly cancel out. Moreover, µk,k′ all have a common
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5.4 Discussion

imaginary part proportional to µM . These facts were important in allowing us to

obtain the desired contribution from noncompact branes.

Now let us briefly consider rational radius. If we accept the Z2p×Z2p′ orbifold

interpretation of Eq. (5.38) then it is not clear how to extend the above consid-

erations to radius R = p
p′

. This is because the manifold is no longer of the form

zw = H(p, x) and therefore the Riemann surface interpretation itself needs to be

generalized, which lies beyond the scope of the present work.

5.4 Discussion

One of our main results has been that the noncritical-topological correspondence

for type 0 noncritical strings has to include noncompact branes on the topological

side. This introduces a dependence on a new parameter which we interpret as |q|−
|q̃| on the noncritical side, and renders the duality consistent with the dependence

of the noncritical theory on three parameters: µM , q and q̃.

The identification between the phases of noncompact branes and the parame-

ter |q|− |q̃|, via Eq. (5.52), appears rather ad hoc. From Eq. (5.52) it is tempting

to imagine that there could be a missing normalisation factor of 8 which changes
π
4

to 2π. In that case one could have postulated that the noncompact branes

have an integer winding at infinity and this integer gets identified with the inte-

ger |q| − |q̃|. This would make the identification a little less ad hoc. However we

did not find such a missing normalisation factor.

Given that the subtle disc term is required in the noncritical string by consis-

tency, one may ask if the presence of noncompact branes in the topological theory

is also a consistency requirement. However, this seems not to be the case. On the

noncritical side there is the possibility of ZZ branes in the vacuum, and it is only

after including the subtle term that the vacuum has a definite intepretation as

containing or not containing such branes. However ZZ branes do not (so far) have

a direct analogue on the topological side and so it is possible that the topological

theory without the subtle disc term, and hence with an exactly holomorphically

factorised free energy, is consistent by itself. The only thing that would fail is its
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5.4 Discussion

correspondence to the noncritical theory. Nevertheless it would be interesting if

there were a way to understand ZZ branes from the noncritical side. It would be

equally interesting to understand the presence[9] of qq̃ fundamental strings in the

vacuum, for which we have not found a direct topological explanation.

We also found that the free energy of the full type 0A theory has a nonper-

turbatively exact factorisation into contributions from compact and noncompact

branes. Apparently there is no room for any interactions between these differ-

ent branes, or in other words the open strings stretched among any two of these

branes (both compact, or both noncompact, or one of each) seem to decouple

completely. This is somewhat puzzling but must be related in some way to the

topological nature of the theory as well as to having distinct branches of the

Riemann surface H(p, x) = 0.

It is amusing that compact and noncompact branes make use of different

pieces of the holomorphic Chern-Simons theory restricted to a 2-cycle[138]:

S =
1

gs

∫
tr(Φ1D̄Φ0 +W (Φ0)ω) (5.60)

For compact branes, the first term can be shown to be irrelevant while the sec-

ond one gives a matrix-valued superpotential, which for our case is simply an

independent quadratic for each branch of the Riemann surface. For noncompact

branes it is the second term which is irrelevant (because the volume is infinite,

we subtract the free energy of deformed compact branes from the undeformed

ones[137]) while the first term leads to the expression
∫
pdx. In this case there is

no matrix model, because we have placed only one brane on each branch.

It is clearly of interest to generalise our construction to include more non-

compact branes that act as sources for incoming closed-string tachyons on the

noncritical side1, as well as non-normalisable deformations of the conifold which

are associated to outgoing tachyons[78]. When carried out for the general orb-

ifolded conifold Eq. (5.30), this will provide the analogue of the Normal Matrix

Model[25, 48] for type 0 strings, valid for all rational radius. This is an im-

portant generalisation of the KP[26] model which has already been found using

1Our noncompact branes do not act as such sources precisely because they are located at

x→∞.
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5.4 Discussion

the topological string construction for both bosonic c = 1 strings[78] and type 0

strings[46].

As is well known, topological descriptions of noncritical strings are simplest

at R = 1 in appropriate units, and can then be generalized to integer multiples

of this radius, as done before for bosonic strings and in this chapter for type 0

strings. In this way we can describe the Euclidean or finite-temperature version

of the theory. To get to the zero-temperature case one then has to take the

limit R → ∞. This limit has been explored before, most recently in Ref.[139]

where it was related to deconstruction. Our analysis in the present work can

potentially add something to this story. Consider Eq. (5.34) at p′ = 1 and take

p → ∞. In this limit we find that yk,k′ varies continuously in the open interval

(y−1, y+1). From Eq. (5.12) this amounts to saying that the RR flux effectively

varies continuously over the same interval. This suggests a higher-dimensional

origin and may again link the topological theory to deconstruction in some way.

As we have seen, all our considerations extend to the topological-anti-topological

picture of Ref.[47], which seems more natural in one sense. The Z2p orbifolded

conifold has in principle 2p independent complex structure parameters µk, µ̄k.

The noncritical-topological correspondence requires half of them to be constrained

to be complex conjugates of the other half, which is naturally achieved if we

think of the system in the topological-anti-topological way. In that case only

the p parameters µk can be independent. However, as we have seen, the µk are

all determined in terms of two parameters embodied in y, and the topological-

anti-topological picture does not seem to help in explaining this fact. Therefore,

if it is to be genuinely useful, perhaps it needs to be extended to a generalized

principle where the holomorphic part of the free energy further factorises into

contributions from p independent theories.

129



Chapter 6

Conclusions and Open Questions

In the work presented so far we have investigated several aspects of non-critical

string theory. We have found the following results:

i) In the work presented in Chapter 2 we have demonstrated an interesting

correspondence valid at the the self dual radius R = 1 between two matrix

model descriptions of the c = 1 non-critical bosonic string. The Normal Ma-

trix model derived by Alexandrov, Kazakov and Kostov [25] depends only

on closed string parameters which are the couplings to momentum deforma-

tions, while the Konsevich-Penner model derived by Imbimbo and Mukhi

[26] depends on open string-like parameters, which we propose should have

an interpretation as the boundary cosmological constants for FZZT-like

branes in the matrix model. Our map between the two models thus seems

to encode open-closed string duality for the c = 1 noncritical string.

ii) Using the Normal Matrix Model for the c = 1 string, we have developed a

technique to easily calculate arbitrary correlation functions of momentum

modes to all orders at a general radius R. In Chapter 3 we use this method

to give an answer for the 2n-point correlator of unit momentum modes.

This particular correlator can be used to find the partition function for a

condensate of unit winding modes, which is dual to the two dimensional

black hole (known as the FZZ duality). Techniques for performing exact

computations for winding mode correlators are not known at present. Our
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results can be used to explicitly check T-duality for the matrix model once

computations for these winding correlators are available.

iii) In Chapter 4 we propose a new interpretation for the FZZ duality between

the c = 1 non-critical string perturbed by Sine-Liouville operators and the

two dimensional black hole. This is done by introducing a new term in the

action which is a Sine-Liouville term with a different Liouville dressing. We

show that this change makes the connection between the Sine-Liouville and

the black hole CFT’s more transparent. Developing this argument further

we consider a generalized version of the FZZ duality where the non-critical

string action is perturbed by higher winding modes. We conjecture that

the multiply-wound Sine-Liouville operators are linked to higher-spin black

holes.

iv) Topological string theory on a conifold space provides an alternative de-

scription of the non-critical string theory. We investigate this connection in

context of the Type 0 non-critical string in Chapter 5. We present a com-

plete non-perturbative topological dual to the Type 0A non-critical string.

Non-compact topological branes wrapped over a degenerate fibre of the

conifold space turn out to be an important ingredient which allows us to

construct the topological dual.

Finally, we list some unsolved problems which are suitable for future work:

• The continuum counterparts of the inverse determinant operators that we

encountered in the matrix models in Chapter 2 are not known. Knowledge

of these operators would pin-point the corresponding open string degrees of

freedom and thus clarify open/closed duality for the non-critical string.

• The equivalent of the Normal Matrix Model for general radius R for Type

0 theories is not known (however, there is a Kontsevich-like two matrix

model valid at R = 1 [46]). Such a model has an immediate application

in computing exact correlation functions in Type 0 theories, extending our

work in Chapter 3.
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• The vortex condensate for bosonic and Type 0 strings have not been studied

in detail because of the technical difficulty of computing the infinite sum

over 2n-point functions. As mentioned earlier, it is also needed to show

T-duality in the matrix model.

• The CFT dual to the generalized Sine-Liouville theory is not completely

solved, as the continuum treatment of this CFT proves difficult. If a double-

scaled matrix model dual is derived, we can use it to calculate the higher

winding correlators and check our generalized FZZ conjecture.

It is hoped that some of these results will illuminate the more physically relevant

critical string theories.
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