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Synopsis

The theory of continuous phase transitions is one of the foundations of statistical mechanics and

condensed matter theory. A central concept in this theory is that of the ”order parameter”; its non-

zero expectation value characterizes a broken symmetry of the Hamiltonian in an ordered phase and

it goes to zero when the symmetry is restored in the disordered phase. According to the accepted

paradigm due to Landau and Ginzburg, the physics near continuous phase transitions is dominated

by the long distance fluctuations of the order parameter field(s) and can be described by a continuum

field theory written in terms of the order parameter fields(s) and its gradients, where all terms con-

sistent with the symmetries of the order parameter are allowed in general. The resulting field theory

cannot be analyzed by asimpleperturbation in general, as individual terms of the perturbation se-

ries diverge as the critical point is approached. However this difficulty is overcome by using general

renormalization-group ideas, and this provides the sophisticated Landau-Ginzburg-Wilson (LGW)

formalism for thinking about critical phenomena for a variety of different situations. For example, the

LGW formalism gives us a method to calculate the critical exponents associated with a continuous

phase transition, which are the numbers that characterize the power law divergences in various ther-

modynamic quantities on approaching the critical point.

In recent years, a different kind of phase transitions has generated a lot of interest, namely tran-

sitions that take place at zero temperature. In such transitions, a non-thermal control parameter like

pressure, magnetic field or chemical composition is varied to access the transition point. In such

cases, the order is destroyed or changed solely by quantum fluctuations which arise because of non-

commuting (and hence, competing) terms in the Hamiltonian of the system. Such zero temperature

phase transitions are called Quantum Phase Transitions. Theoretically, the LGW paradigm again pro-

vides the basic framework to understand these critical points. The critical modes are again presumed

to be the long distance, long time fluctuations of the order parameter field, where the inverse temper-

ature acts as the ”imaginary” time direction, and thed-dimensional quantum system can be mapped

to somed + 1 dimensional classical system asT → 0.

Are there quantum phase transitions which lie outside this well known LGW paradigm? In this

thesis, we will review in detail the physics of the recently proposed ”deconfined critical point” [1].

Here the critical theory is most naturally expressed in terms of certain fractionalized degrees of free-

dom, instead of the order parameter fields. The order parameter fields characterizing the phases

v



on either side of the critical point emerge as composites of the fractionalized fields. Moreover, in

such cases, an emergent topological conservation law arises precisely at the quantum critical point.

These type of critical points clearly violate the standard LGW paradigm. We set up the necessary

background and review a particular example from 2d quantum magnetism with spinS = 1/2 on

the square lattice to illustrate such critical points. There may be other examples of such deconfined

critical points in strongly correlated electron systems, which might explain the experimental puzzles

associated with such systems in the future.
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Chapter 1

Introduction

In this thesis, we would review the novel physics of ”deconfined critical points” which was recently

proposed by Senthilet. al [1] as an example of a quantum phase transition (atT = 0) which violates

the well established Landau-Ginzburg-Wilson paradigm to understand continuous phase transitions.

In this chapter, we briefly explain the philosophy of the the LGW paradigm and how it explains the

some of the remarkable properties associated with continuous phase transitions such as scaling and

universality.

Phase transitions abound in nature and are familiar to us from a variety of everyday examples

such as boiling of water and melting of ice. One can also think of morecomplicatedexamples such

as the transition of a metal into the superconducting state and of a paramagnet into magnetically or-

dered state(s) upon lowering the temperature. These transitions occur by varying an external control

parameter and normally, there is a qualitative change in the system properties on passing through the

transition. In the examples given above, the transitions are temperature driven and are examples of fi-

nite temperature phase transitions. Here macroscopic order at low temperature (e.g., crystal structure

of a solid) is destroyed at high enough temperature because of thermal fluctuations.

It is useful to categorize phase transitions into two types. The melting of ice into water is an

example of afirst-order phase transition. At the melting point of ice, the energy absorbed from

the surrounding environment to melt the ice is called the latent heat which equalsT4S whereT is

the temperature and4S is the change in entropy between ice and water at the melting point. The

transition is first-order because the system’s entropy, which is a first derivative of the Gibbs free

energy, is discontinuous. A first-order transition also occurs at the boiling point of water. However,

if water is at a sufficiently high temperature and pressure, there is no transition between a liquid and

a gas. The limiting pressure and temperature above which there is no phase transition are called the

critical pressure and critical temperature, respectively. At the critical pressure and temperature, there

is acontinuous phase transition, because the first derivatives of the Gibbs free energy are continuous

(there is a divergence of the specific heat and the compressibility, which are second derivatives of the

free energy). This point in thep − T phase diagram is called thecritical point and is at the end of

3
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Figure 1.1: Phase diagrams of (a) the liquid-gas transition, and (b) the ferromagnetic transition for a

uniaxial magnet. Notice the similarity between the two (1/v = ρ↔ M, P↔ H).

a curve of first-order transition points called the coexistence curve. Other examples of continuous

phase transitions are the Curie point of ferromagnets, a similar transition for antiferromagnets and the

transition between superconducting and normal metals.

A central concept in the theory of phase transitions is that of an ”order parameter” [2], which is

essential to formulate a quantitative theory of the same. An order parameter is any quantity which is

non-zero in the ordered phase where some symmetry of the microscopic interactions is broken, and

is zero in the disordered phase where the symmetry is restored. Also, the value of the order parame-

ter should reflect which of the symmetry-related states does a system choose when it spontaneously

breaks a symmetry in the ordered state. To illustrate this concept, let us consider the example of uni-

axial ferromagnets. In uniaxial magnets, the spins find it energetically favourable to only point along

a certain axis (call it thez axis) because of crystal field effects. Thus, we can associate an Ising like
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variablesi = ±1 at each site of the crystal, which indicates the state of the spin at that site. Note that

the Hamiltonian is invariant undersi → −si ∀ i, i.e., a global spin flip operation does not change the

energy of a given microstate{si}. Here the average magnetization per site〈s〉 = 〈1/N ∑
i si〉, where

N is the number of sites in the system, acts as the correct order parameter. In the high temperature

paramagnetic phase, the spins have an equal probability of pointing in both directions and therefore,

〈s〉 = 0. However, in the low temperature ferromagnetic phase, the system chooses a direction (up or

down with respect to thezaxis) for the spins to order and therefore,〈s〉 , 0. Also, the order parameter

〈s〉 changes sign under global spin flip and hence differs in sign (but not in magnitude) for the two

possible symmetry-related ordered states at a givenT. The order parameter goes to zero smoothly

when the system goes over from the ordered to the disordered state for continuous phase transitions.

On the other hand, it jumps from a non-zero value to zero discontinuously at the critical point for a

first-order phase transition.

We will focus primarily on continuous transitions from here. Continuous phase transitions are

characterized by thermodynamic quantities such as the specific heat, the magnetic susceptibility and

the isothermal compressibility, diverging at the critical point [3, 4]. The divergences typically follow a

power law near the transition. The powers are called thecritical exponents. Remarkably, transitions

as different as the liquid-gas and uniaxial ferromagnetic transition can be described by the same set of

critical exponents and are said to belong to the sameUniversality class[3, 4]. The phenomenon of

Universality is the following: All phase transitions can be divided into a small number ofuniversality

classesdepending upon the dimensionality of the system and the symmetries of the order parameter

(long-ranged interactions bring additional complications). Within a universality class, all phase tran-

sitions have identical behaviour in the critical region, only the variables used to describe the critical

region are different from case to case.

For example, the principal critical exponents for the uniaxial ferromagnetic transition are defined

in the following manner [4]. It is useful to define two dimensionless measures of the deviation from

the critical point: the reduced temperaturet = (T − Tc)/Tc, and the reduced external magnetic field

h = H/kBTc. Then the exponents are:

• α: The specific heat in zero fieldC ∼ A|t|−α, apart from terms regular int.

• β: The spontaneous magnetizationlimH→0+M ∝ (−t)β.

• γ: Zero field susceptibilityχ = (∂M/∂H)|H=0 ∝ |t|−γ.

• δ: At T = Tc, the magnetization varies withh according toM ∝ |h|1/δ.

• ν: The spin-spin correlation lengthξ diverges ast → 0 (this is generally true for continuous

phase transitions), withh = 0, according toξ ∝ |t|−ν.



6 Chapter 1. Introduction

• η: Exactly at the critical point, the spin-spin correlation functionG(r) does not decay exponen-

tially, but rather according toG(r) ∝ 1/rd−2+η.

The critical exponents of the liquid-gas critical point can be defined by analogy with the uniaxial

magnet case [4]:

• CV ∝ |t|−α atρ = ρc.

• ρL − ρG ∝ (−t)β gives the shape of the coexistence curve near the critical point.

• isothermal compressibilityχT ∝ |t|−γ.

• |p− pc| ∝ |ρ − ρc|δ gives the shape of the critical isotherm near the critical point.

The exponentsν andη are defined as for the ferromagnet, withG(r) now being the density-density

correlation function. The exponents of these two very different transitions are identical because of

universality. Moreover, these critical exponents are normally not simple rational numbers (like 1/2,

say) when measured in experiments. For example, the liquid-gas transition in sulphurhexafluoride [5]

has been studied experimentally and it has been found that

|ρL − ρG| ∝ |T − Tc|0.327±0.006 (1.1)

The exponent has been measured in other fluids like He3 and the its value agrees within error bars.

Similarly the exponent in uniaxial magnetic systems have been measured (e.g. in DyAlO3 [6]) and

found to be identical to the liquid-gas transition exponents within error bars.

How does one explain universality and calculate quantities like critical exponents associated with

continuous phase transitions? A key physical insight, largely due to Landau and Ginzburg [2], is that

these universal critical singularities are associated with long-wavelength low-energy fluctuations of

the order parameter field (call itm(x) for concreteness). The idea is to construct an effective free

energy (see Ref [2])L which is local in terms of the order parameter field and its gradients, and is

analytic. ThusL can be thought of as a Taylor expansion of a general functionf (m(x),4m(x), · · ·).
The only restriction on the expansion would be that each term in it is consistent with the symmetries of

the order parameter field and thatL → ∞ as|m(x)| → ∞ so that the order parameter stays bounded.

E.g., at zero magnetic field, the uniaxial magnet can be modeled by a scalar order parameterm(x)

and the effective free energy is invariant underm(x) → −m(x) because of the spin flip symmetry in

the problem. The coefficients of the expansion can be thought to be phenomenological parameters

which are non-universal functions of microscopic interactions and external parameters such as the

temperature and magnetic field. Then we can write down the partition functionZ as

Z =

∫
Dm(x) exp

(
−β

∫
ddxL(m(x),4m(x), ··)

)
(1.2)
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Let us now motivate the Landau theory for thesimpleexample of a uniaxial ferromagnet in zero

magnetic field. Because the magnetic field is set to zero, only the temperatureT is to be fine-tuned to

Tc to achieve the critical point. Also, because of them(x)→ −m(x) symmetry,

βL =
1
2

(4m)2 + a(t)m2 + b(t)m4 + ·· (1.3)

wheret = (T − Tc)/Tc. Now how do we determine the functionsa(t),b(t) etc? Close to the critical

point t = 0, we do not need to know the full functionsa(t),b(t) and can get away with their leading

Taylor expansion terms. Also, we know that fort > 0, 〈m〉 = 0 while for t < 0, 〈m〉 , 0 and〈m〉 falls

continuously to zero ast → 0−. We can expand the functionsa(t) andb(t) as

a(t) = a0 + a1t + ··

b(t) = b0 + b1t + ··
If we want a single continuous phase transition att = 0 and non-zero magnetization fort < 0, it is

easy to see thata0 = 0, a1 > 0 andb0 > 0. Thus we can take the effective free energy as

L =
1
2

(4m(x))2 + a1t m(x)2 + b0m(x)4 (1.4)

wherea1,b0,Tc are all phenomenological constants in the theory. The Landau-Ginzburg way of look-

ing at phase transitions brings universality to the forefront because the effective theory is only based

on the symmetry properties of the order parameter field, and does not care about the microscopic

origin of the order. In general, the functional integrals obtained cannot be solved analytically and

approximations need to be made. Clearly, the simplest thing to do is to make a saddle-point approxi-

mation. This amounts to doingLandau mean-field theory, where we can ignore fluctuations of the

order parameter field and take it to be a constant and minimize the resulting free energy. Thus, for the

above example, we have

LMF = a1t m2 + b0m
4 (1.5)

wherem is a constant now. Calculating the critical exponents in this formalism, we getα = 0, β =

1/2, γ = 1, δ = 3, ν = 1/2 andη = 0, independent of the dimensiond. However, these values are

quite different from the experimentally obtained values of the critical exponents. The discrepancy

between the mean-field results and experiments signal the failure of the mean field approximation.

The problem arises because of the neglect of fluctuations of the order parameter field in the mean-

field approximation. Because the correlation length diverges on approaching a continuous critical

point, there are fluctuations of the order parameter field at all length scales, and these fluctuations get

coupled due to interaction terms in the theory. One can check for the self-consistency of the Landau

mean-field theory and see when the contribution due to fluctuations can be neglected. For them4

type theory above, it turns out that the fluctuations can be neglected only whend > 4, and thus the

saddle-point type calculations are no longer reliable ind = 3.
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The task of calculating the critical exponents correctly and capturing the non-analytic behaviour

of various thermodynamic observables when approaching the critical point is achieved by combining

Renormalization Group (RG) techniques to the Landau-Ginzburg effective theory (see Ref [3, 4]).

Let us illustrate the basic idea of an RG through an example [4]. Consider the two-dimensional fer-

romagnetic Ising model on a square lattice. Instead of calculating the partition function at one go,

let us integrate out the degrees of freedom in small steps orcoarse-grain. Let us make the following

transformation: we divide the square lattice into 3×3 blocks, each containing 9 spins. To each block,

we assign a new variables′ = ±1, depending on whether the majority of spins in the block are up(+1)

or down(-1). Notice that our blocking rule respects the up-down symmetry of the microscopic model

because flipping the 9 spins of a block also changes the sign of the block spins′. When this is done,

we rescale the whole picture by a linear factor of 3, so that the blocks are the same size as the original

squares. After a few iterations of this process a typical configuration withT > Tc will evolve to

complete randomness, while a configuration withT < Tc will evolve to all spins up or all spins down.

However, atT = Tc, the configuration obtained after the iterations isstatisticallythe same as the first

picture,i.e. it is an equally probable configuration at the critical point. This observation illustrates the

scale invariance of the critical point (ξ → ∞ asT → Tc).

Let us formalize this blocking procedure. Suppose we have a set of spins{s} and

Z =
∑

{s}
exp(−H({s})) (1.6)

so that the probability distribution of a particular configuration{s} is

P({s}) =
1
Z exp(−H({s})) (1.7)

where we have absorbedβ in the definition ofH. We set out to coarse-grain the system by defining

general block spins. To do this, we introduce a conditional probabilityP({s′}|{s}). This is the proba-

bility of finding the block spin configuration{s′}, given that the original spin configuration is{s}. For

example, the 3× 3 blocking introduced above would have

P({s′}|{s}) =
∏

B

δ

s′B − sgn
∑

iεB

(si)

 (1.8)

Heres′B labels the new block spin made out of the nine original spins. BecauseP({s′}|{s}) is a proba-

bility, we must have
∑

{s′}
P({s′}|{s}) = 1 (1.9)

Using Eqn1.9, we can now write

Z =
∑

{s}

∑

{s′}
P({s′}|{s}) exp(−H({s})) =

∑

{s′}
exp(−H′({s′})) (1.10)
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whereH′ is the new Hamiltonian in terms of the block spin variables. Furthermore, because the new

block spins are local functions of the old spins, this coarse-graining preserves all the long distance

physics of the model. After blocking, it is convenient to shrink the system by a factor 1/3 in both

directions so that each block spin occupies the same space as the old spin. Repeating this procedure,

we thus get a sequence of Hamiltonians, all with the same long-distance physics.

H({s})→ H′({s′})→ H′′({s′′})→ ·· (1.11)

This is an example of a RG flow. Suppose there exists a Hamiltonian such that

H∗ → H∗ (1.12)

Such a HamiltonianH∗ is afixed point of the renormalization group transformation and corresponds

to a scale-invariant critical point. How do neighbouring hamiltonians behave under the RG ? Consider

a hamiltonianH which lies near the fixed pointH∗

H = H∗ +
∑

i

giOi (1.13)

where theOi represent additional interactions. Under the RG flow, we will have

H → H∗ +
∑

i

g′i Oi (1.14)

NearH∗ the flow ofgi would be linear:gi → g′i = Ai jg j + O(g2). In general,Ai j is not symmetric, but

let us assume that it is diagonalizable. Also, let us assume thatOi is chosen so that the matrixAi j is

diagonal with entriesΛi. Then

gi → Λigi → Λ2
i gi → ·· (1.15)

If |Λi | < 1 the coefficient ofOi decreases under the renormalization group flow and we say that such

Oi are irrelevant . Conversely, if|Λi | > 1, the coefficient ofOi increases under the RG flow and we

say that suchOi are relevant perturbations ofH∗. When |Λi | = 1, we say thatOi is a marginal

perturbation. Relevant operators take us away from criticality. For example, the magnetic field is a

relevant perturbation for the Ising model critical point and any non-zero value of the field destroys

criticality. The subspace spanned by the irrelevant directions is called thebasin of attraction of the

fixed pointH∗, since the irrelevant couplings flow to zero under the RG. This provides an explanation

of universality [3, 4] in that very many microscopic details of the system make up a huge space of

irrelevant operators comprising the basin of attraction. Scaling arises [4] because the behaviour near

the fixed point makes the singular part of the free energy a generalized homogeneous function of the

form Fs(λahh, λat t) = λFs(h, t), whereh andt are the reduced magnetic field and reduced temperature

defined earlier. Because thermodynamic observables can be obtained by suitable differentiation of the

free energy, they also show scaling behaviour close to the critical point.
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Although the idea of RG is relatively simple, calculating the flows explicitly can be quite difficult.

Sophisticated approximation techniques [3] like theε(= 4− d)-expansion and largeN expansion can

be used to solve the RG systematically but we will not discuss these here.

During recent years, a different class of phase transitions has generated a lot of interest, namely

transitions which take place at zero temperature (see book by Sachdev [7]). A non-thermal control

parameter such as pressure, magnetic field or chemical composition is varied to access the transition

point. In these examples, the order is destroyed or changed solely by quantum fluctuations which

come because of non-commuting (and hence competing) terms in the Hamiltonian of the system.

These zero temperature phase transitions are called Quantum Phase Transitions (QPT).

At first glance, it might appear that the study of QPT is not of great interest because the transi-

tion only occurs atT = 0 which is impossible to access experimentally. However the presence of

quantum critical pointscan affect finite temperature properties [7] as can be seen from the follow-

ing argument [8]. Consider a quantum critical point separating two distinct ground states with very

different quantum ordering and low-lying excitations. Close to the critical point, there is only a tiny

difference between the energies of the two states, and only at very low temperatures is a particular

one picked up as a ground state. At these temperatures, we can model the physics in terms of the

low-lying excitations ofthisground state, which are the ”quasiparticles” associated with its ordering.

At a somewhat different parameter value on the other side of the critical point, a different state will

be picked up as the ground state and a quasiparticle picture would again apply at very low tempera-

tures. However, the nature of the quasiparticles would in general be very different from the previous

ones. At higher temperatures, it is impossible to ignore the competition between the two ground states

and their respective quasiparticles, and complex behaviour which is not characteristic of either of the

ground states can arise. In fact, it has been proposed that the anomalous properties of materials such

as the cuprate superconductors is because of the proximity to quantum critical points separating two

distinct phases.

How does one analyze quantum critical phenomena? Theoretically, the Landau-Ginzburg-Wilson

(LGW) paradigm again provides the basic framework to understand these critical points. Critical

modes associated with a QCP are again presumed to be the long-distance, long-time fluctuations of

the order parameter field. In fact, ad-dimensional quantum system is equivalent (at least, formally)

to somed + 1 dimensional classical system [7] as the temperatureT → 0. This statement may be

understood by writing the partition functionZ

Z = Tr(exp(−βĤ))

(whereĤ is an operator now) as a path integral by splitting exp(−βĤ) as [exp(−(1/~)δτĤ]N where

δτ → 0,N → ∞ such thatNδτ = β~ in ”imaginary time”β~ (the operator exp(−βĤ) looks like the

time-evolution operator of quantum mechanics exp(−iĤt) in imaginary time). Then the expression
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Figure 1.2: Schematic phase diagram in the vicinity of a QCP. The horizontal axisg represents the

non-thermal control parameter tuning which drives the quantum phase transition,and the vertical axis

is temperatureT. In the region marked quantum critical, there is competition between the two ground

states and their quasiparticles, which can lead to unconventional properties.

for the path integral looks like a classical partition function for a system withd+1 dimensions, expect

that the dimension of the system in imaginary time is finite in extent and equals~β . As T → 0, the

system size in this extra ”time” direction diverges, and we get a trulyd + 1 dimensional effective

classical theory.

Are there quantum phase transitions which lie outside the well-known LGW paradigm? Indeed

there are cases where Landau order parameters do not capture the true order in a quantum phase.

The well known phenomenon where this happens is the quantum Hall effect that occurs in a two-

dimensional electron gas in high magnetic field. The electron does not survive as a quasiparticle in

fractional quantum Hall states; and the order in such a state cannot be captured by a local Landau

order parameter as the distinction between the states is not that of a symmetry but rather istopolog-

ical in nature. There are continuous transitions between distinct quantum Hall state which cannot

obviously be described by a conventional Landau-type treatment of the transition. But what about

transitions between phases which can be characterized using Landau order parameters? Is it possible

to violate the LGW paradigm in such cases? Recent work by Senthilet. al [1] show that such a

breakdown is possible in certain phase transitions in two-dimensional quantum magnetism. For these

critical points, the best starting point for the description of the critical theory is not in terms of the

order parameter, but an emergent set of fractionalized degrees of freedom which arenatural degrees

of freedom only at the critical point.

In the next few chapters, we will set up the necessary background and then explain this remarkable

possibility.
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Chapter 2

Effective Theory of Quantum

Antiferromagnets

Let us consider spinS = 1/2 moments on a 2D square lattice interacting with the following Hamilto-

nian:

H =
∑

i, j

Ji j Si · Sj (2.1)

where all couplingsJi j > 0 are antiferromagnetic in nature and respect lattice symmetries. Thus the

interactions preserve both lattice symmetries andS U(2) spin rotation symmetry. This model is the

generalized antiferromagnetic Heisenberg model of spin half which emerges naturally as an effective

Hamiltonian for Mott insulators (see Auerbach’s book [9]).

What are the possible ground states of such a Hamiltonian? The simplest ground state we may

think of is the so called Ńeel state (see Fig 2.1). Consider the nearest-neighbour Heisenberg antifer-

romagnet. Classically, the ground state is the state withSz = +1/2 (z axis being arbitrary) on one

sublattice andSz = −1/2 on the other sublattice. However, the staggered magnetization, which acts

as the order parameter for the Néel state, does not commute with the Hamiltonian and the simple-

minded classical ground state is not the true ground state of the quantum problem. Does Néel order

survive in the quantum ground state or is the ground state something else, without any long range

Néel order? Clearly, quantum fluctuations increase as one decreases the value of spinS. It has been

rigorously shown [10] that for the nearest-neighbour Heisenberg antiferromagnet on ad-dimensional

hypercubic lattice, the ground state has Néel order for allS whend ≥ 3 and forS ≥ 1 whend = 2.

The interesting case ofS = 1/2 on the square lattice remains out of reach of these rigorous methods.

However, numerical simulations [11] show that the ground state does have long range Néel order. The

Néel state has been observed in a variety of insulators, which includes La2CuO4, the parent compound

of the cuprate superconductors. The Néel state breaks spin rotation symmetry and the order parameter

is a single vector~N (the Ńeel vector), defined to describe a state of staggered magnetization,

~Sr = εr ~Nr (2.2)

13
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whereεr equals+1 on one sublattice and−1 on the other sublattice. The Néel state has〈~Nr〉 , 0 and

the low-energy excitations of the state are linearly dispersing spin waves. These spin waves are the

gapless modes due to the broken spin rotation symmetry and have two independent polarizations (this

follows very generally from the Goldstone Theorem).

What about possible ground states of this Hamiltonian which do not break spin rotation symmetry?

From above, we know that the Hamiltonian must then consist of non-nearest neighbour interactions

also. For example, we can think of theJ1 − J2 model on the square lattice, where in addition to the

nearest neighbour interactionJ1, one also has next nearest neighbour interactionJ2. The classical

limit of this model has collinear Ńeel order for allJ2/J1. For very smallJ2, Néel order survives in

the quantum ground state as well. However, numerical and series expansion studies [12] forS = 1/2

have shown that this model loses the order aroundJ2/J1 ≈ 0.4 and spin rotation symmetry is restored.

The ground state breaks lattice symmetry instead.

More generally, such paramagnetic states can be broadly divided into two classes. Firstly there

are states that can be described as “valence bond solid” (VBS) states. In a simple caricature of such

a state, each spin forms a singlet with one of its neighbouring spins resulting in an ordered pattern

of “valence bonds” (the singlets) (see Fig 2.1). For spin 1/2 systems on a square lattice, such states

necessarily break lattice translational symmetry and the ground state is four-fold degenerate. The

symmetry can be broken in two different ways, leading to what is called columnar order and plaquette

order (Fig 2.1). In the plaquette state, singlets bonds resonate coherently between the two horizontal

and vertical bonds of the elementary square plaquettes on the lattice (shown as dotted and undotted

valence bonds in Fig 2.1). This type of ordering is called spin-Peierls ordering. A suitable order

parameter for VBS order is the following :

ψVBS =
1
N

∑

i

(
(−1)xi ~Si · ~Si+x̂ + i(−1)yi ~Si · ~Si+ŷ

)
(2.3)

The order parameterψVBS is a complex number andψ4
VBS is real and positive for columnar order

(ψVBS = +1,+i,−1,−i) and real and negative for plaquette order (ψVBS = 1 + i,−1 + i,−1− i,1− i).

In the S=1/2 VBS states there is an energy gap for spin-carrying S=1 quasiparticle excitations, which

can be thought of as an adiabatic continuation of simply breaking a singlet valence bond into a triplet.

Typically there is a coupling between the spin exchange energy and phonon displacements, which

leads to lattice distortions whose pattern reflects the distribution of〈~Si · ~S j〉.

A second class of more exotic paramagnetic states [13, 14, 15, 16, 17] is also possible in prin-

ciple: in these states the valence bond configurations resonate amongst each other and form a “spin

liquid”. The resulting state has been argued to possess excitations with fractional spin 1/2 and inter-

esting topological structure. However, we will not discuss these exotic states any further in this thesis.
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In this chapter, our objective is to show that in the Néel phase or close to it, the long distance low

energy fluctuations of the Ńeel order parameter are captured by the quantum O(3) non linear sigma

model (NLσM) with the Euclidean action (here the lattice coordinater = (x, y) has been promoted to

a continuum spatial coordinate andτ is imaginary time):

Sn = S0 + SB

S0 =
1
2g

∫
dτ

∫
d2r


(
∂n̂
∂τ

)2

+ c2 (∇r n̂)2



SB = iS
∑

r

εrAr (2.4)

We will then rewrite the quantum O(3) NLσM in another set of variables, theCP1 representation,

which would turn out to be very useful to describe the critical theory.

Heren̂r ∝ εr~Sr is a unit three component vector that represents the Néel order parameter. The term

SB contains crucial quantum-mechanical Berry phase effects, and is sensitive to the precise quantized

value,S of the microscopic spin on each lattice site:Ar is the (directed) area enclosed by the curve

mapped out by the time evolution of ˆnr(τ) on the unit sphere. These Berry phases play an unimportant

role in the low energy properties of the Néel phase, but are crucial in correctly describing the quantum

paramagnetic phase (VBS). In fact, the VBS state arises naturally in the largeg limit if one carefully

takes the Berry phases into account. Thus the NLσM field theory augmented by these Berry phase

terms is, in principle, powerful enough to correctly describe both the Néel state and the VBS quantum

paramagnet; and the quantum phase transition (QPT) between these two states. The Néel-VBS QPT

for S = 1/2 spins on the square lattice has been argued to be an exotic phase transition outside the

LGW paradigm in Ref [1].

2.1 Path Integral for Quantum Spins

Now we describe how to write the partition function of spins interacting via a generalized Heisenberg

Hamiltonian (Eqn 2.1) in terms of a path integral. We shall consider the spinS = 1/2 case in detail

here to show things very explicitly [18], the generalization to the case of an arbitrary spin is not

difficult (a good reference for this is [7]).

2.1.1 Spin Coherent States

To write a path integral, clearly we cannot use theSz = | ↑, ↓〉 basis. Instead, we go to an overcomplete

basis|N̂〉 where

~S · N̂|N̂〉 =
1
2
|N̂〉 (2.5)



16 Chapter 2. Effective Theory of Quantum Antiferromagnets
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Figure 2.1: Ground states of the square latticeS = 1/2 quantum antiferromagnet. The couplingg

controls the strength of quantum spin fluctuations about the magnetically ordered Néel state (g = 0

is the classical limit). There is broken spin rotation symmetry in the Néel state and broken lattice

symmetry in the Valence Bond Solid (VBS) state. There can be two different orderings for the VBS

state as shown in Figure, columnar ordering and plaquette ordering.

(more generally, the RHS isS|N̂〉). N̂ defines a direction on the unit sphere and the North Pole of the

sphere may be identified with the state| ↑〉. One can easily figure out the state|N̂〉 by rotating the

“standard” state| ↑〉. The transformation is simply|N̂〉 = exp(−iθM̂ · ~S)| ↑〉, where the unit vector̂M

is defined in Fig 2.2, where~S = ~σ/2 (σx, σy andσz being the usual Pauli matrices). Writing it out

explicitly, we have

|N̂〉 = cos
θ

2
| ↑〉 + sin

θ

2
exp(iφ)| ↓〉 (2.6)

Clearly, this basis is overcomplete, which can be seen by computing|〈N̂|N̂′〉|2 = (1+ N̂ · N̂′
)/2 (on the

RHS, N̂ denotes the unit vector̂N). What is the resolution of identity in terms of these states? For

spinS = 1/2,
∫

dN̂
2π
|N̂〉〈N̂| =

∫
d(cosθ)dφ

2π
|N̂〉〈N̂| = II (2.7)

(More generally, the completeness relation is (2S + 1)
∫

dN̂
4π |N̂〉〈N̂| = II.) Another useful property to

note is that

〈N̂|~S|N̂〉 =
1
2

N̂ (2.8)

The RHS isSN̂ in general. Now let us figure out how to write down the path integral representation

for the partition functionZ. First consider a single spin for notational convenience.

Z =
∑

α

〈α|exp(−βH)|α〉

=

∫
DN̂(0)〈N̂(0)|exp(−βH)|N̂(0)〉 (2.9)
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Figure 2.2: The rotation of the state| ↑〉 by an angle ofθ about the axisM̂ takes it to the state|N̂〉.
This can be used to determine the state|N̂〉 easily.

We then perform the usual trick of breaking up the exponential exp(−βH) into a large number of

exponentials of infinitesimal (imaginary) time evolution operators:

Z =

∫
DN̂(τ0)DN̂(τ1) · · · DN̂(τn)

n∏

i=0

〈N̂(τi + ε)|exp(−εH)|N̂(τi)〉 (2.10)

where|N̂(τ0 + nε)〉 = |N̂(τ0)〉 (PBC) andnε = β. What is〈N̂(τi + ε)|exp(−εH)|N̂(τi)〉 asε → 0 ? It is

easy to see that the answer is exp[−ε(〈N̂|dN̂
dτ 〉 + H(SN̂))]. Then in the limitε → 0, we may rewrite the

partition function as

Z =

∫
DN̂(τ) exp

(
−

∫ β

0
dτ(〈N̂|dN̂

dτ
〉 + H(SN̂))

)
; |N̂(0)〉 = |N̂(β)〉 (2.11)

Notice that
∫ β

0
dτ〈N̂|dN̂

dτ 〉 is a purely imaginary phase term. This term has an elegant geometric inter-

pretation which we will work out in the next section.

2.1.2 Geometric Interpretation of the Phase Term

First, let us consider a single spin and defineM̂(τ) through the relation:|N̂(τ)〉 = exp(−iθ(τ)M̂(τ) ·
~S)| ↑ 〉. We further introduce the following notation,|N̂(u, τ)〉 = exp(−iuθ(τ)M̂(τ) · ~S)| ↑〉 whereu ε

[0,1]. Thus|N̂(0, τ〉 = | ↑〉 and|N̂(1, τ〉 = |N̂(τ)〉 and the vector̂N(u, τ) moves from the north pole of

the unit sphere tôN(τ) along the circle of constantφ asu is increased from 0 to 1. Then using the fact

that M̂(τ) · N̂(u, τ) = 0 and〈N̂(u, τ)|~S|N̂(u, τ)〉 = SN̂(u, τ), we get the following relation:

〈N̂(τ)|dN̂(τ)
dτ
〉 = iS

∫ 1

0
duθ(τ)M̂(τ) · dN̂(u, τ)

dτ
(2.12)

We can further simplify the expression by using the relationN̂(u, τ) × ∂N̂(u,τ)
∂u = θ(τ)M̂(τ). Putting this

in the above formula, we get the following result for the phase term:
∫ β

0
dτ〈N̂(τ)|dN̂(τ)

dτ
〉 = iS

∫ β

0
dτ

∫ 1

0
duN̂(u, τ) · (∂N̂(u, τ)

∂u
× ∂N̂(u, τ)

∂τ
) (2.13)
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NP

N(τ) N(τ+dτ)

θuN(u,τ) integrate over u

integrate over τ

Figure 2.3: The geometric interpretation of the berry phase term as the directed areaA swept by the

“string” attached to the north pole and the instantaneous position ofN̂(τ). The phase term equals

iSA.

Eqn 2.13 has an elegant geometric interpretation [See Fig 2.3]. Because of the periodic boundary

condition (PBC) onN̂(τ), the vectorN̂(τ) traces a closed path on the surface of a unit sphere. Imagine

attaching a “string” from the north pole of the sphere to the instantaneous position ofN̂(τ). Then the

RHS of Eqn 2.13 is the (directed) area swept by this string on the unit sphere. If the path ofN̂(τ)

is in the anticlockwise (clockwise) sense with respect to the north pole, the contribution is positive

(negative). Note that the choice of the north pole on the unit sphere is arbitrary and the phase term is

only defined modulo 4π. However, this is not a problem because of the quantization of the value of the

spinS. The generalization to the case of a system of spins interacting via the generalized Heisenberg

hamiltonian (Eqn 2.1) is immediate.

Z =

∫ ∏

i

DN̂i(τ) exp

−iS
N∑

i=1

Ai − S2

∫ β

0
dτ

∑

i, j

Ji j N̂i · N̂j

 (2.14)

with the boundary condition that̂Ni(0) = N̂i(β) for all i (i refers to the 2d lattice site).

2.1.3 Coarse Graining

The classical Heisenberg hamiltonian would have a staggered state as its ground state on the (bipar-

tite) square lattice. Any pair of spins is either parallel or antiparallel, thus the ordering is collinear.

Let us consider here quantum antiferromagnets whose classical ground state have collinear Néel or-

der. Such an ordering can be expected to be present at least over short distances in the quantum case.

Noncollinear ordering arises on nonbipartite lattices or even on bipartite lattices with certain types of

further neighbour interactions. Such cases would not be considered here.
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If the Néel order survives even for a few lattice spacings, we may think of doing a continuum

theory in terms of new fields ˆn and~L, wheren̂ and~L refer to the staggered and uniform component of

the magnetization. We write

N̂i(xi , τ) = εin̂(xi , τ)

(
1− (

ad

S
)2~L2(xi , τ)

)1/2

+
ad

S
~L(xi , τ) (2.15)

whered(= 2) id the dimension of the lattice anda is the lattice spacing. Because of the condition

N̂i · N̂i = 1, we getn̂i · n̂i = 1 (that’s why the notation ˆn) andn̂i · ~Li = 0. Also, because of the implicit

assumption of at least short range Néel order being present, we immediately have~L2 � S2a−2d.

Using Eqn 2.15, we can rewrite the HamiltonianH(SN̂) = JS2 ∑
i j N̂i · N̂ j to the lowest order in~L as

JS2 ∑
i j [(n̂i − n̂j)2/2 + (a2d/S2)~Li · ~L j]. Now, we go the continuum limit and get

Z =

∫

PBC
Dn̂D~Lδ(n̂2 − 1)δ(~L · n̂) exp

−iS
N∑

i=1

Ai −
∫ β

0
dτ

∫
ddx(

ρs

2
(∇r n̂)2 + S2

~L2

2χ⊥
)

 (2.16)

whereρs = JS2/ad−2 andχ⊥ = S2/(2dJad). Let us consider the Berry phase terms now. Insert the

parameterization of thêN field in terms ofn̂ and~L and retain to first order in~L.

SB = iS
N∑

i=1

Ai

= iS
N∑

i=1

∫ β

0
dτ

∫ 1

0
duN̂i(u, τ) · (∂N̂i/∂u× ∂N̂i/∂τ)

= iS
∑

i

εi

∫ β

0
dτ

∫ 1

0
du[n̂ · (∂n̂/∂u× ∂n̂/∂τ)]

+ i
∫

ddx
∫ β

0
dτ

∫ 1

0
du[n̂ · (∂n̂/∂u× ∂~L/∂τ) + n̂ · (∂~L/∂u× ∂n̂/∂τ) + ~L · (∂n̂/∂u× ∂n̂/∂τ)]

(2.17)

Note that~L, ∂n̂/∂τ and∂n̂/∂u are all perpendicular to ˆn and thus they lie in the same plane, and the

last term in the above equation is zero. Moreover, we note that ˆn·(∂n̂/∂u×∂~L/∂τ)+n̂·(∂~L/∂u×∂n̂/∂τ)

equals∂/∂τ[n̂ · (∂n̂/∂u× ~L)] + ∂/∂u[n̂ · (~L× ∂n̂/∂τ)]. Doing the “surface” integrals overτ andu in the

two terms and noting that the first term vanishes because of the periodicity of ˆn and~L in τ and in the

second term, theu = 0 term vanishes, we finally get

SB = iS
∑

i

εi

∫ β

0
dτ

∫ 1

0
du[n̂ · (∂n̂/∂u× ∂n̂/∂τ) −

∫
ddx

∫ β

0
dτ~L · (n̂× ∂n̂/∂τ) (2.18)

Putting the above expression in Eqn 2.16 and integrating out the~L field, we finally get the result

(quantum O(3) NLσM) as shown in Equation 2.4.
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2.1.4 Topological Nature of the Berry Phase Term

Let us first evaluate the Berry phase termSB = iS
∑

i εiAi in d = 1. Let us examine the contribution

of two neighbouring sites,i andi + 1 to SB. The weightsεi will have opposite signs on the two sites,

so the net contribution is the difference of these areas. We further assume that the order parameter

field n̂ only varies slightly betweeni andi + 1. Then we can write

Ai+1 −Ai ≈ a
∫ β

0
dτn̂(xi) · (∂n̂(xi)/∂xi × ∂n̂(xi)/∂τ) (2.19)

The summation inSB can be carried out over pairs of sites. All terms are of the same sign and the

summation can thus be easily converted into an integral. We then get

SB = i(2πS)[
1
4π

∫
dx

∫ β

0
dτn̂ · (∂n̂/∂x× ∂n̂/∂τ)]

= i(2πS)Q (2.20)

The termQ is called the “Pontryagin index”, is topological in nature and can only take integer values

(see Polyakov’s book [19]). In order for the NLσM action to be finite in the infinite volume limit, we

have to consider the boundary condition:

n̂(~x)→ n̂0; |~x| → ∞ (2.21)

where~x is now a point in the (x, τ) plane. Therefore, since infinity can be viewed as one point, our

~x-space is topologically a sphere. Each configuration ˆn(~x) defines a map of such a sphere in~x-space

onto the sphere ˆn2 = 1, which givesS2→ S2. It is known that such maps can be classified by integers

Q which define the number of times the second sphere is covered by the first one. The simplest

example of theQ-map is described by the formulas [19]:

θ̃ = θ; φ̃ = Qφ ( mod 2π) (2.22)

where (θ, φ) and (̃θ, φ̃) are the polar and azimuthal angles of the first and second sphere.Q , 0 con-

figurations are called skyrmions. AQ = 1 configuration is shown in Fig 2.4. Thus the Berry phase in

d = 1 is SB = i2πS QwhereQ is the skyrmion number of the spin configuration.

What happens in higher dimensions e.g.d = 2? There, one has to calculate the Berry phase

by summing over a given spin configuration in (x, y, τ) space. It is easy to see that the Berry phase

vanishes for anysmoothfield configuration of ˆn [20]. We calculateQ for each configuration of ˆn in

the x − τ plane and then sum up over all thex − τ planes [call that objectQx,τ(y) whereyεZZ and

refers to they coordinate]. Now, by assumption, ˆn is continuous, and henceQx,τ(y) is a continuous

integer-valued function. ThusQx,τ(y) is a constant! Thus,SB = i(2πS)Q
∑

ny
(−1)y which vanishes in

the continuum limit. This argument holds for any spatial dimension greater than one.
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Figure 2.4: (a)Real-space representation of a skyrmion in the Néel field n̂. Spins in the center are

pointing down whereas spins on the boundaries point up. The charge of this skyrmion isQ = 1.

Also shown in (b)The skyrmion number is suddenly changed at a hedgehog event in space time. The

Real-space representation of a hedgehog event (the two spin configurations represent different time

slices) is shown. A hedgehog corresponds to a singular configuration of ˆn at one space-time point

where the skyrmion number changes. All spins are pointing outwards of a hedgehog. Figures taken

from F. Alet et al., Physica A 369 (2006) 122-142.

However, if one allows for singular configurations in the field ˆn, then the skyrmion number can

change [20] and the Berry phase term might become important. For example, ford = 2, the n̂

field lives in the (x, y, τ) space, and the natural topological defects in this situation are “hedgehogs”

configurations. A hedgehog is a configuration of the ˆn vectors, which is singular at one space-time

point but smooth everywhere else (see Fig 2.4(b)). The skyrmion numberQ changes when one crosses

the singularity. What is the role of these topological defects? In the Néel phase, hedgehogs are very

costly energetically and are therefore absent. Deep within a paramagnet, the spins fluctuate essentially

independent of each other. In this case, the hedgehogs are indeed present. We will see in the next

chapter that the proliferation of these hedgehogs not only destroy the Néel phase, but also break the

lattice symmetry when they condense [20].

2.2 CP1 formulation of the theory

It would be helpful to rewrite the above NLσM field theory in the so-called CP1 formulation (see

review by Sachdev [21] or Auerbach [9]) to analyze the novel physics of the quantum critical point

between the Ńeel and the VBS states, as it turns out to be the natural description of the critical

point. The Ńeel order parameter ˆn transforms as a vector and hence, is a spin 1 object. Suppose we

decompose the ˆn field into two complex fields (z↑, z↓):

n̂ = z∗α~σαβzβ, (α, β =↑, ↓) (2.23)

where~σ are the usual Pauli matrices. The constraint ˆn · n̂ = 1 translates to|z↑|2 + |z↓|2 = 1. z is nothing

but a spinon (spin-1/2 object). Thus the physical Ńeel field has been written in terms of these spinons,



22 Chapter 2. Effective Theory of Quantum Antiferromagnets

which are fractionalized degrees of freedom. Remarkably, it turns out that these are the natural vari-

ables to describe the the critical point of the Néel-VBS transition for spin-1/2 moments on the square

lattice. It will turn out that the theory is that of twochargedcomplex fieldsz↑, z↓ interacting with a

singleU(1) gauge field. It is easy to understand where the gauge field comes from. The physical field

n̂ has two independent components (remember the unit length constraint). However, the description

is terms ofzhas three independent components instead (because of|z↑|2 + |z↓|2 = 1). This extra degree

of freedom corresponds to the gauge freedom in the description. The localU(1) gauge freedom is

simply zα → zα exp(iφ) andz∗α → z∗α exp(−iφ) which leaves the physical Ńeel fieldn̂ invariant. Also,

because of the above transformation, thezfield is charged with respect to theU(1) gauge field (zandz∗

are oppositely charged), while the Néel fieldn̂ is neutral. Now let us explicitly do the steps see all this.

Firstly, by definition (Eqn 2.23), we have

nx = z∗↑z↓ + z∗↓z↑

ny = i(z∗↑z↓ − z∗↓z↑)

nz = z∗↑z↑ − z∗↓z↓ (2.24)

From this, we can easily verify that

1
4

(∂µn̂) · (∂µn̂) = (∂µz
∗
α)(∂µz

∗
α) + (z∗α∂µzα)(z

∗
β∂µzβ) (2.25)

The localU(1) symmetry strongly reminds us of gauge theories. Suppose we invent a gauge potential

Aµ (a real field) which has the following transformation:

zα → zα exp(iφ)

Aµ → Aµ + ∂µφ (2.26)

Then as is usual in gauge theories, we define the quantityDµ = (∂µ − iAµ). Then its transformation is

simple.

Dµzα = (∂µ − iAµ)zα → (Dµzα) exp(iφ)

(Dµzα)
∗ = (∂µ + iAµ)z

∗
α → (Dµzα)

∗ exp(−iφ) (2.27)

which means that (Dµzα)∗(Dµzα) is invariant under the gauge transformation. Then we write the

gauge invariant quantity 1/4|∂µn̂|2 as (Dµzα)∗(Dµzα) and figure out theAµ by comparison. This gives

Aµ = −iz∗α∂µzα, which is real and satisfies the transformation property of the gauge field stated earlier.

Then, ignoring the Berry phase term, we may immediately write our earlier field theory as:

Z =

∫
D2zDAµDλ exp

−
1
g

∫
dτd2x[

∑

µ

|(∂µ − iAµ)z|2 − iλ(|z|2 − 1)]

 (2.28)

The fieldAµ can be promoted to an independent degree of freedom in the path integral above [9] be-

cause it appears only till quadratic order in the action and the Euler-Lagrange equationδL
δAµ

= 0 gives
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back the correct definition ofAµ.

What about the Berry phase? It can be shown that [9]

1
2

n̂ · (∂µn̂× ∂νn̂) = ∂µ(z
∗
α∂νzα) − ∂ν(z∗α∂µzα)

= ∂µAν − ∂νAµ (2.29)

Now the skyrmion numberQ at any instant of (imaginary) time is

2πQ =

∫
d2x(∂xAy − ∂yAx) (2.30)

The RHS is nothing but the flux of the gauge field at that instant of time. Now, we have already seen

thatQ changes due to hedgehog configurations of the Néel field. Also, taking the usual definition of
~B = ~O× ~A, we see that the above implies that~O · ~B , 0 at the cores of the hedgehogs. Thus monopoles

of the gauge theory which change the flux by±2π are identified as the hedgehog configurations in

the usual Ńeel field picture. The Berry phase term naturally forces us to consider configurations with

monopoles (the total charge of the monopoles should be zero to respect periodicity) in our partition

function and hence the gauge fieldAµ is to be treated as a compactU(1) gauge field, i.e.,Aµ is an angle

defined modulo 2π instead of being an ordinary number [There are no monopoles for non-compact

Aµ, e.g. in the usual electrodynamics]. We will now do a careful analysis with the Berry phase term

present and see what is the actual path integral forZ.

2.2.1 Analysis with the Berry Phase present

The main problem in calculating the Berry phase is that one has to keep track of the areas enclosed by

the curves traced out by all the spins on the unit sphere (remember the Berry phase equalsiS
∑

r εrAr)

. This seems complicated because the area is a global object defined by the whole curve, and cannot

be obviously associated with a local portion of the curve. One convenient way to proceed is the fol-

lowing.

We discretize imaginary time, choose a fixed arbitrary point ˆn0 on the unit sphere, and write the

area of the closed loop as a sum of the areas of a large number of spherical triangles. Note that

each triangle is associated with a local portion of the curve ˆn(τ). We now need an expression for

A(n̂1, n̂2, n̂3), defined as half the area of the spherical triangle with vertices ˆn1, n̂2 andn̂3 [think of n̂1

asn̂j(τ), n̂2 asn̂ j(τ + dτ) andn̂3 asn̂0 for concreteness, where ˆn0 is identified with the north pole of

the sphere]. The required expression is (see Sachdev and Park [22]):

exp(iA) =
1 + n̂1 · n̂2 + n̂2 · n̂3 + n̂3 · n̂1 + in̂1 · (n̂2 × n̂3)

[2(1 + n̂1 · n̂2)(1 + n̂2 · n̂3)(1 + n̂3 · n̂1)]1/2
(2.31)

The above formula looks very complicated. However, a far simpler expression [22] is obtained after

transforming to the spinor variables. Let us define a variableAi j associated with each pair of vertices
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i, j.

Ai j = arg[z∗iαzjα] (2.32)

[We are thinking of 2+1 dimensions as a three dimensional lattice now.] Notice thatAi j is a compact

field defined modulo 2π. Moreover, under the gauge transformationzα → zα exp(iφ), we haveAi j →
Ai j−φi +φ j, thusAi j behaves like a compactU(1) gauge field (also note thatA ji = −Ai j ). How is this

compact field related to our earlier definition of the gauge fieldAµ? Aµ is just the naive continuum

limit of Ai j . The classical result for the half-area of the spherical triangle can be written in the

following simple form in terms of the presentU(1) gauge variables:

A(n̂1, n̂2, n̂3) = A12 +A23 +A31 (2.33)

Note that the total area is invariant under the gauge transformation ofAi j and that the half-area is

ambiguous modulo 2π (as it should be). We can finally write down a useful expression forA[n̂(τ)].

We assume that imaginary time is discretized into timesτ j separated by intervals4τ. Also, we denote

by j + τ the site at timeτ j + 4τ, and defineA j, j+τ ≡ A jτ. Then

A[n̂(τ)] =
∑

j

A jτ (2.34)

Note that this expression is a gauge-invariant function of theU(1) gauge field. We are now ready

to write down the field theory with the Berry phase properly taken into account (see Sachdev’s re-

view [21]).

(i) Discretize space-time into a cubic lattice of pointsj.

(ii) On each space-time pointj, we represent the quantum spin operator~S j by ~S j = ε jSn̂j where

ε j is the staggering factor on the square lattice as before. In the quantum fluctuating Néel state, we

can reasonably expect ˆnj to be a slowly varying function ofj.

(iii) Associated with each ˆnj, define a spinorzjα using Eq 2.23.

(iv) With each link of the cubic lattice, we use Eq 2.32 to associate with it aA jµ ≡ A j, j+µ. Here

µ = x, y, τ extends over the 3 space-time directions.

Using this notation, the field theory (written on the lattice) becomes:

Z̃ =
∏

jα

∫
dzjα

∏

j

δ(|zjα|2 − 1) exp


1
g

∑

〈i j 〉
n̂i · n̂ j + i2S

∑

j

ε jA jτ

 (2.35)

The above expression can be made to look more like a conventional lattice gauge theory [21]by

writing it in the following manner.

Z =
∏

jµ

∫ 2π

0

dAjµ

2π

∏

jα

∫
dzjα

∏

j

δ(|zjα|2 − 1) exp


1
g

∑

jµ

(z∗jαe
−iA jµzj+µ,α + c.c.) + i2S

∑

j

ε jAjτ

(2.36)
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Note that we have introduced a new fieldAjµ, on each link of the cubic lattice, which is integrated

over. LikeA jµ, this is also a compactU(1) gauge field because all terms in the action above are

invariant under an analogous gauge transformation ofAjµ. The very close relationship betweeñZ
andZ may be seen by explicitly integrating over theAjµ in the previous expression and using the

relation

z∗iαzjα =

(
1 + n̂i · n̂j

2

)1/2

eiAi j (2.37)

The integrals overAjµ can be done exactly because the integrand factorizes into terms on each link

that depend only on a singleAjµ. The Berry phase term obtained after the integrations is exactly the

same as inZ̃. Also, the integrand contains a real action that is solely a sum over functions of ˆni · n̂j on

nearest neighbour links: iñZ this function is simply ˆni · n̂j/g, but the corresponding function obtained

fromZ is more complicated (it involves the logarithm of a Bessel function), and has distinct forms

on spacial and temporal links. However, these details should not affect the universal properties and

we will work with the formZ for convenience. We note two crucial ingredients in the present theory

which would be crucial in what follows: firstly theU(1) gauge field is compact and secondly, our

model contains a Berry phase term which can be interpreted as aJµAµ term associated with a current

Jjµ = 2Sε jδµτ of static charges±2S on each site.

The properties ofZ are quite evident for smallg [21]. Here one can ignore the Berry phase term

and the ground state should have Néel order, with the low-lying excitations being linearly dispersing

spin waves. How does one see it in this gauge theory picture? The Neel phase corresponds to the

“Higgs Phase” of the gauge theory as given in Eqn 2.35.

The matter fieldzα acquires a finite expectation value which automatically gives a mass to the

gauge photon. However, crucially there are two complex fields (z↑, z↓) in the problem and only one

gets a finite mass by “higgsing” theU(1) gauge fieldAµ. The other complex field is still gapless and

produces a doublet of spin-waves in the Néel field picture. Let us illustrate this by saying that the

Néel vector picks up thez axis for ordering for notational simplicity. This corresponds to saying that

〈z↑〉 = 1 and〈z↓〉 = 0 [note thatz↑ andz↓ cannot be simultaneously be equal to one because of the

constraint|z↑|2 + |z↓|2 = 1] . Then thez↑ field higgses the gauge field and itself gets gapped. However,

thez↓ field is still massless and generates two linearly dispersing modes. These are nothing but the

deformations of thenx and theny fields because these are linear inz↓ (see Eqn 2.24). We will briefly

describe the Higgs mechanism below.

When a continuous symmetry is spontaneously broken, there are gapless excitations called Gold-

stone modes connecting the possible vacua to each other. However, the situation is different in the

presence of gauge fields. The Goldstone modes and the gauge fields conspire to create massive ex-

citations, destroying both the massless photon mode of the gauge field and the massless Goldstone

mode in the process [23]. This effect is what leads to the Meissner effect in a superconductor where
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an external magnetic field can penetrate the superconductor only upto a certain characteristic length

known as the London penetration depth.

For clarity, consider a charged fieldφ coupled to an abelian gauge fieldAµ, where the action is

given by

S = (∂µ + iAµ)φ
∗(∂µ − iAµ)φ + rφ∗φ + u(φ∗φ)2 +

r2

4u
(2.38)

where the minimum ofV(φ) = rφ∗φ + u(φ∗φ)2 + r2

4u wherer < 0,u > 0 occurs for a non-zero value of

φ∗φ (−r/2u), and the action is invariant under the local transformation

φ→ exp(−iθ)φ

Aµ → Aµ + ∂µθ

First, consider the case without the gauge fields. Also, let us make the choice that the fieldφ orders

in the real direction. Thus, we haveφ = φ1 + iφ2 whereφ1 =
√−r/2u + φ

′
1(x) and〈φ′1〉 = 〈φ2〉 = 0.

Putting this in the Lagrangian, we see that there is no (φ2
2) term, showing thatφ2 is the Goldstone

mode associated with theU(1) symmetry breaking (however, theφ
′
1 excitations are massive).

Now, we put in the gauge fields and do the same exercise. Then to quadratic order, we get the

following result

S = (∂µφ
′
1)(∂µφ

′
1) +
|r |B2

µ

2u
+ 2|r |(φ′1)2 + higher order (2.39)

whereBµ = Aµ −
√

2u/|r |∂µφ2. The net result is that the gauge field has acquired a mass whileφ2

has disappeared fromS. We started with a system describing a charged scalar field (two states) and a

massless gauge field with two polarization states. After spontaneous symmetry breaking of the mat-

ter field, we are left with a massive vector fieldBµ with three polarizations and one real scalar field,

which leaves the correct number of degrees of freedom.

The situation is much more complicated for largeg where one gets a paramagnetic phase due to

strong quantum fluctuations. Here the Berry phase term in the action plays a crucial role and cannot

be ignored. We will study the paramagnetic phase in the next chapter and see how to deal with the

Berry phase.



Chapter 3

Quantum Paramagnetic Phase

What about the paramagnetic state of the generalized antiferromagnetic Heisenberg Hamiltonian,

where spin rotation symmetry is restored. If we ignore the Berry phase terms in the field theory

developed in the previous chapter, we would get anordinary paramagnet with a non-degenerate dis-

ordered ground state with a finite energy gap to other states. However, a theorem recently proven by

Hastings [24] for generalized Heisenberg models with periodic boundary conditions shows that the

above mentioned plain paramagnet does not exist in 2D at T = 0. Barring exotic spin liquid states

mentioned before, the ground state would then have to be degenerate, with a gap to the excited states;

and would then break some other symmetry in the thermodynamic limit. In this chapter, we carefully

take the Berry phase terms in account and show how a quantum paramagnet with the correct symme-

try breaking arises in the largeg limit.

3.1 Mapping to a Height Model

For largeg, we can perform the analog of a “high-temperature” expansion [21] ofZ (Eqn 2.35). We

expand the integrand in powers of 1/g and perform the integral overzjα term-by-term. The result is

then an effective theory for the compactU(1) gauge fieldAjµ alone. An explicit expression for the

effective action of this theory can be obtained in powers of 1/g: this has the structure that higher

powers of 1/g yield terms dependent upon gauge-invariantU(1) fluxes on loops of all sizes residing

on the links of the cubic lattice. For largeg, it is sufficient to retain only the simplest such term on

elementary square plaquettes, yielding the following partition function:

Z̃A =
∏

jµ

∫ 2π

0

dAjµ

2π
exp


1
e2

∑

2

cos(εµνλ4νAjλ) + i2S
∑

j

ε jAjτ

 (3.1)

wheree monotonically increases withg, in fact e2 ∼ g4 (εµνλ is the totally antisymmetric tensor in

three space-time dimensions). Here the cosine term represents the conventional Maxwell action for

a compactU(1) gauge theory: it is the simplest local term consistent with the gauge symmetry of

Ajµ and which is periodic underAjµ → Ajµ + 2π. We would now perform a series of transformations

27
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Figure 3.1: The non-zero values ofa0
jµ shown in the figure. The circles are the sites of the direct

lattice, while the crosses are the sites of the dual lattice. Theajµ are all zero forµ = τ, x while the

only non-zero values ofa0
jy are shown above. Note that the flux satisfies Eqn 3.3.

(see Vojta and Sachdev [25]) on Eqn 3.1 to bring it to a much more convenient form from which the

properties of the paramagnet will be deduced. First the cosine term in Eqn 3.1 is replaced by a Villain

sum over periodic Gaussians:

ZA =
∑

a jµ

∏

jµ

∫ 2π

0

dAjµ

2π
exp

−
e2

2

∑

j,µ

a2
jµ + i

∑

2

εµνλajµ4νAjλ + i2S
∑

j

ε jAjτ

 (3.2)

whereajµ is an integer-valued vector field on the links on the dual cubic lattice (let us identify each

dual lattice point with the direct lattice site closest to it on its top-right corner). Now, let us choose a

’background’ajµ = a0
jµ flux which satisfies the following relation:

εµνλ4νa0
jλ = ε jδµτ (3.3)

Any integer valued solution of Eqn 3.3 is an acceptable choice fora0
jµ, and a particularly con-

venient choice [21, 25] is shown in Fig 3.1. Then we can write Eqn 3.2 in a more symmetric form

as

ZA =
∑

a jµ

∏

jµ

∫ 2π

0

dAjµ

2π
exp

−
e2

2

∑

j,µ

a2
jµ + i

∑

2

εµνλajµ4νAjλ + i2S
∑

j

εµνλa
0
jµ4νAjλ

 (3.4)

Define another integer-valued vector field ˜ajµ which satisfies ˜ajµ = a jµ +2S a0
jµ. Then, Eqn 3.4 can

be rewritten as

ZA =
∑

ã jµ

∏

jµ

∫ 2π

0

dAjµ

2π
exp

−
e2

2

∑

j,µ

(ãjµ − 2S a0
jµ)

2 + i
∑

2

εµνλãjµ4νAjλ

 (3.5)

Now the integration overAjµ can be trivially performed, and it yields the constraintεµνλ4νãjλ = 0. We

solve this constraint by writing ˜ajλ as the gradient of an integer-valued ‘height’ fieldhj which lives on

the sites of the dual lattice:

Zh =
∑

h j

exp

−
e2

2

∑

j,µ

(4µhj − 2S a0
jµ)

2

 (3.6)
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Figure 3.2: The new fieldsY j andZ jµ introduced in Eqn 3.7. Only theµ = τ components ofZ jµ are

non-zero (Z jµ = δµτεi/8) and are shown in (b). The fieldY j takes four different values on the four

sublattices of the dual lattice as shown in (a).

The above expression can be cast into a more illuminating form by splittinga0
jµ into a curl-free and a

divergence-free part and writing it in terms of new fixed fields,Y j andZ jµ as follows:

a0
jµ = 4µY j + εµνλ4νZ jλ (3.7)

The values of the new fields are shown in Fig 3.2. Putting in the decomposition of Eqn 3.7 into Eqn

3.6, we get

Zh =
∑

H j

exp

−
e2

2

∑

j,µ

(4µH j)
2

 (3.8)

where

H j = hj − 2SY j (3.9)

is the new height variable. Notice thatZ jλ has dropped out of the final expression. We have been able

to reduce the problem with the Berry phase term into a height model where the action is purely real.

From the above equation, we can easily get the following field theory:

Zc =
∑

Q jµ

∏

j,µ

∫ π

−π

dAjµ

2π
exp

−
1

2e2

∑

j

(εµνλ4νAjλ − 2πQ jµ)
2 + i4πS

∑

j

Y j4µQ jµ

 (3.10)

To get Eqn 3.10 from Eqn 3.8, simply introduce an integer fieldM jµ = 4µhj and introduce an addi-

tional field Ajµ to enforce the constraintεµνλ4νM jλ = 0. Then we use Poisson Summation formula

(
∑+∞

n=−∞ g(n) =
∑+∞

m=−∞
∫ +∞
−∞ dφg(φ)e2πimφ) to replace the integer fieldM jµ by a real fieldφ jµ. Then the

variablesφ jµ can be integrated out to finally give Eqn 3.10.

The partition function written in the form of Equation 3.10 gives us a remarkable piece of physics.

4µQ jµ is the magnetic monopole number at the dual lattice sitej, which is equivalent to a hedgehog
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core being located there as we saw earlier. But notice that the monopoles (or, hedgehogs) carry a

Berry phase ofei4πSY j , whereY j takes four different values on the four sublattices of the dual square

lattice. Thus, in a phase where the hedgehogs get condensed, lattice symmetry can be broken because

of the Berry phase attached to them.

Now we analyze the height model given in Eqn 3.8 to get the nature of the paramagnetic ground

state. Firstly,d-dimensional height models of the form considered here can be mapped to ad-

dimensional lattice Coulomb Gas problem [22]. We elevate the height variableh j (in Eqn 3.8) to

a continuous field by using the Poisson Summation formula, to get

Zh =
∑

mj

∫ ∞

−∞

∏

j

dH j exp

−
e2

2

∑

j,µ

(4µH j)
2 − 2πi

∑

j

mj(H j + 2SYi)

 (3.11)

Now the gaussian integrals overH j can be easily performed to give the following result.

Zh =
∑

mj

exp

−
2π2

e2

∑

j, j′
mjG( j − j′)mj′ − i4πS

∑

j

mjY j

 (3.12)

whereG(r) is the lattice Green’s function satisfying42G(r) = δr,0. This is nothing but a plasma with

integer chargesmj interacting via Coulomb interactions, and the system being charge neutral. For

d = 2, ignoring the Berry phase term, the model has a finite-temperature phase transition from an

insulator to a conductor upon increasing the temperature. In fact, this is the famous KT transition in

d = 2. In the insulator phase, opposite charges are bound tightly to each other while in the conduc-

tor phase, the charges are free to move without pairing. Ford = 3, the attraction between opposite

charges is much weaker (1/r instead of beingln(r)) and the system is a conductor at any finite temper-

ature. In height models, the conductor phase is the smooth phase where the height is locked to some

particular integer value; while the insulator phase is the rough phase where the integer constraint on

the heights become unimportant and the surface becomes rough (being described by a pure Gaussian

theory). In the 3D height model, the Coulomb Gas mapping implies that there is no roughening tran-

sition and the interface is always smooth. If there were no Berry phases present, the heightH j would

have locked to some integer value and the interface would have been smooth. Even when the Berry

phases are present, the interface remains smooth on the average despite the local corrugation in the

interface configuration introduced by the offsets 2SY j. We will now show that any well-defined value

for the average height̄H (H j defined in Eqn 3.9) necessarily breaks lattice symmetry forS = 1/2.

The argument runs as follows [21]. Call the four sublattices of the square latticeW,X,Y,Z.

Suppose we perform a 90◦ rotation about a direct lattice point on the square lattice, which makes

W → Z,X → W,Y → X,Z → Y. Then we would have naively thought that the heights transform

ashW → hZ,hX → hW,hY → hX,hZ → hY. However, there are different offsets present at the four

different sublattice, as seen in Eq 3.9, which makes the above height transformation incorrect. The

reason is simple to see. As shown in Fig 3.3, the height difference (for the total height, including the
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Figure 3.3: The non-trivial transformation of theh field because of the presence of different offsets

on the different sublattices of the dual square lattice.

offset) transforms properly for bonds 1 and 2, but does not for bonds 3 and 4. For the height differ-

ences to transform correctly, we see thathW transforms tohZ − 1 as shown in Fig 3.3. Thus, because

of the different offsets present, the transformation ishW → hZ − 1,hX → hW,hY → hX,hZ → hY under

W→ Z,X → W,Y→ X,Z → Y. This impliesH̄ → H̄ − 1/4 under a 90◦ rotation which means that

there is a four-fold symmetry breaking for a smooth height phase, a scenario consistent with Hastings

Theorem [24].

In gauge theory language, the VBS state corresponds to theconfined phaseof the theory. This

can be understood in the following manner [26]. Consider the excitations of the quantum paramagnet.

Excitations are formed by breaking a valence bond, which leads to a three-fold degenerate state with

total spinS = 1, as shown in Fig 3.4(a). This broken bond can hop from site to site, leading to a

triplet quasiparticle excitation. The spin-1 excitation is composed of two spin 1/2 spinons. Let us

now try to separate the two spinons, see Fig3.4(b). This causes a rearrangement of valence bonds

along the ”string” connecting the two spinons. These valence bonds form a line defect with respect to

the underlying VBS order (see Fig 3.4(b)) and the ”string” connecting the spinons cost a finite energy

per unit length. This means that theS = 1/2 spinons are always bound together intoS = 1 exci-

tations and are hence confined in the VBS side. Thus, the ‘string tension’ of the confining potential

is provided by the spontaneous VBS order. We should note the dual role played by the monopole

configurations of the gauge field (hedgehogs). When they proliferate, the Néel order cannot survive.

At the same time their proliferation induces broken lattice symmetry.
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(a) (b)

Figure 3.4: (color online). (a) Picture of the bosonicS = 1 excitation in the quantum paramagnet. (b)

Fission of theS = 1 excitation into two spin 1/2 spinons. The spinons are ”connected” by a string of

valence bonds (denoted by dashed ovals) which lie onweakerbonds, this string costs a finite amount

of energy per unit length and leads to the confinement of the spinons.

3.2 VBS from proliferation of hedgehogs

After the rather abstract proof of the symmetry breaking in the VBS state, we look at the symmetry

breaking in the paramagnet from another point of view. In the Néel phase, the monopole events

(hedgehogs in spin language) are suppressed at low energies. However, in the quantum paramagnet,

the space-time configurations of the Néel field must be riddled with monopoles. This can be formally

thought of by saying that the spinons interact with a compact gauge fieldAµ, due to which there is

also a term in the Lagrangian which creates or destroys monopoles of the gauge field:

Lmp =

∞∑

n=1

λn(r)([vrτ]
n + [v†rτ]

n) (3.13)

where v†rτ and vrτ insert monopoles of strength 2π and−2π at the space-time point (r, τ), respectively.

Then in the paramagnetic phase, we have a ‘condensation’ of the skyrmion number changing operator

v. Now, the non-trivial transformation of this operator under lattice symmetry operations (which are

due to the Berry phases) leads to broken lattice symmetry in the paramagnet -this may be identified

as VBS order (this argument is due to Senthilet. al.[1]). Let us see how.

Firstly, the skyrmion number is a topological index and hence, is unchanged under globalS U(2)

rotations. Hence the skyrmion number changing operator v† is also aS U(2) scalar. Likewise the VBS

order parameter is also aS U(2) scalar. We now consider the effect of lattice transformations on the

operator v†. Underπ/2 rotations in the counterclockwise direction about a direct lattice site, the Berry

phase associated with a skyrmion creation event changes by exp(iπS). Specializing toS = 1/2, we

have

Rπ/2 : v† → iv† (3.14)

Now consider lattice translation operationsTx,y corresponding to translations by one unit alongx, y
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directions along the lattice. Firstly,

Tx : n̂r → −n̂r+x̂

Ty : n̂r → −n̂r+ŷ (3.15)

because of the staggering implicit in the definition of ˆn. Now, the skyrmion numberQ is odd under

n̂→ −n̂. Consequently,Tx,y converts v† to v. Furthermore, due to the difference in Berry phase factors

for monopoles centered on adjacent plaquettes on the direct lattice, there is a phase factor introduced

by the translation. Calculating it, we get:

Tx : v†r → −ivr+x̂

Ty : v†r → +ivr+ŷ (3.16)

Thus a paramagnetic state with a uniform non-zero expectation value of v† breaksRπ/2,Tx,Ty and can

be identified to VBS order.
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Chapter 4

Critical Theory

From the previous sections, we saw that an effective field theory which captures both the Néel state

and the VBS state can be written in terms of spinons interacting with a compactU(1) gauge theory in

the following manner:

Z =
∏

jµ

∫ 2π

0

dAjµ

2π

∏

jα

∫
dzjα

∏

j

δ(|zjα|2 − 1) exp


1
g

∑

jµ

(z∗jαe
−iA jµzj+µ,α + c.c.) + i2S

∑

j

ε jAjτ

 (4.1)

For smallg, the Ńeel state is found and corresponds to the Higgs phase in this language, while for

largeg, we obtain a four-fold symmetry breaking VBS state which corresponds to the confined phase

of the gauge theory. Now, we turn to describe the novel physics at the critical point seperating the

Néel and the VBS states.

What is the expectation about the critical behaviour from theclassicalLandau-Ginzburg-Wilson

(LGW) approach? Here, we need to identify the order parameter fields and construct a free energy as

an expansion in powers of the order parameter fields and gradients of those fields. There are two order

parameter fields in the Ńeel-VBS transition, the Ńeel fieldn̂ and the VBS order parameter fieldψVBS.

These two order parameters are apparently independent in that the Néel order parameter describes

broken spin rotation symmetry while the VBS order parameter describes broken lattice symmetry. A

LGW description of the competition between such two kinds of orders would then generically predict

either a first-order transition, or an intermediate region of coexistence where both orders simultane-

ously exist, or an intermediate region with neither order. A direct continuous transition between these

two broken symmetry phases would seem to require fine-tuning to a ”multicritical” point. However,

as was shown in recent work [1], in the specific case of a Néel-VBS transition on the square lattice,

the transitioncan generically be continuouswithout any fine-tuning, due to subtle quantum interfer-

ence effects that invalidate the Landau analysis.

The problem with trying to write down a local Landau theory with the Néel and the VBS order

parameter fields is the following. As we saw in the last chapter, the topological defects of the Néel or-

der parameter (hedgehogs) have a non-trivial structure. When the defects proliferate, not only do they

35
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kill the long-range Ńeel order (which is expected) but also induce the broken symmetry of the VBS

phase. To construct a theory of a continuous transition between these two phases in terms of these

order parameters, it would be necessary to associate the VBS order parameter with the hedgehogs

of the Ńeel order parameter. This implies that the two order parameter fields will have long-ranged

”statistical” interactions with each other. Consequently, a local theory which includes only the two or-

der parameter fields but no other field is highly unlikely to describe the physics of the critical point [1].

Recent work by Senthil et al. [1] has proposed the following picture for the Néel to VBS T=0

phase transition forS = 1/2 spins on the square lattice in 2d. First, contrary to the predictions of the

LGW theory, a generic continuous phase transition between the Néel state and the VBS paramagnet

is indeed possible. The theory of such a quantum critical point is obtained simply by taking a naive

continuum limit ofZ in Eq 4.1 while ignoring both the compactness of the gauge field and the

Berry phases. Remarkably, these complications of the lattice modelZ, which we saw from previous

chapters is essential for the complete theory, have effects which cancel each other out, butonly at the

critical point. Note that compactness on its own is a relevant perturbation which cannot be ignored

(as we will see shortly in a later example), i,.e., without Berry phases, the compact and non-compact

lattice CP1 model have distinct critical theories. However, as noted by Senthil et al. [1],the non-

compactCP1 model has the same critical theory as the compactCP1 model withS = 1/2 Berry

phases. Taking the naive continuum limit ofZ in Eq 4.1 and softening the hard-constraint onzjα,

we obtain the proposed theory for the confined critical point between the Néel state and the VBS

paramagnet forS = 1/2 [1]:

Zdecon f ined=

∫
Dzα(r, τ)DAµ(r, τ) exp

(
−

∫
d2rdτ

[
|(∂µ − iAµ)zα|2 + s|zα|2 +

u
2

(|zα|2)2 + κ(εµνλ∂νAλ)
2
])
(4.2)

We have also included included a kinetic term for the gauge field above, and one can imagine this to be

generated by integrating out large momentumzjα. On its own,Zc describes the transition from a mag-

netically ordered phase withzjα condensed ats< sc, to a disordered state with a gaplessU(1) photon

at s> sc, wheresc is the critical point ofZc. Thes< sc phase corresponds to the Néel phase ofZ (Eq

4.1) forg < gc. However, thes> sc phase does not obviously correspond to theg > gc bond ordered,

fully gapped, paramagnet ofZ. This is repaired by accounting for the compactness of the gauge field

and the Berry phases: it is no longer possible to neglect them, while it is safe to do so atg = gc. The

combinedeffects of compactness and Berry phases are thereforedangerously irrelevantat g = gc [a

dangerously irrelevant perturbation is irrelevant at the critical point, but relevant in the ordered phase].

We will illustrate this conspiracy between the compactness of the gauge field and the Berry phases

at the critical point by considering a simpler problem of only one kind of matter fieldzj interacting

with the gauge field instead of two kinds of fieldszj↑ andzj↓, following Ref [21].
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4.1 Simpler Problem: Lattice Model at N = 1

Consider theS = 1/2 antiferromagnet in the presence of a staggered magnetic field (say in thez

direction). Such a field would clearly preferz↑ overz↓ becausenx andny would be close to zero. We

can then write thezj field as exp(iθ j) to satisfy the unimodular constraint and then get the following

simplified theory:

Zs =
∏

j

∫ 2π

0

dθ j

2π

∫ 2π

0

dAjµ

2π
exp


1
e2

∑

2

cos(εµνλ4νAjλ) +
1
g

∑

j,µ

cos(4µθ j − Ajµ) + i2S
∑

j

ε jAjτ

(4.3)

We will now be concerned with the behaviour of the critical point of the above theory. However, rather

than attackZs directly, we will consider a sequence of simpler models, to illustrate how compactness

alone is a relevant perturbation in the theory but isneutralizedby the Berry phases at the critical point

[a good discussion of all this is given in [21]].

4.1.1 Non-compactU(1) gauge theory without Berry phase

Dropping both compactness and Berry phases,Zs reduces to

Zs,1 =
∏

j

∫ 2π

0

dθ j

2π

∫ ∞

−∞
dAjµ exp

−
1

2e2

∑

2

(εµνλ4νAjλ)
2 +

1
g

∑

j,µ

cos(4µθ j − Ajµ)

 (4.4)

We will now show that the model is dual to the 3D XY model, as was shown first by Dasgupta and

Halperin [27]. Firstly, we use the Villain form for the cosine term in the action and a Hubbard-

Stratonovich field for the term exp(− 1
2e2

∑
2(εµνλ4νAjλ)2). Thus

exp


1
g

∑

j,µ

cos(4µθ j − Ajµ)

 →
∑

J jµ

exp


−g
2

∑

j,µ

J2
jµ + i

∑

j,µ

Jjµ(4µθ j − Ajµ)



exp

−
1

2e2

∑

2

(εµνλ4νAjλ)
2

 →
∫ +∞

−∞
dPjµ exp

(
−e2

2
P2

jµ − iP jµεµνλ4νAjλ

)
(4.5)

whereJ jµ is an integer-valued field andPjµ is real valued. Then we can writeZs,1 as

Zs,1 =
∏

j

∫
dθ j

2π

∫
dAjµ

∑

J jµ

∫
dPjµ exp[−e2

2

∑

j,µ

P2
jµ −

g
2

∑

j,µ

J2
jµ + i

∑

j

Jjµ(4µθ j − Ajµ)

− i
∑

2

εµνλPjµ4νAjλ] (4.6)

In this form, the integrals overθ j andAjµ can be performed easily and give the following constraints:

4µJjµ = 0

Jjµ = εµνλ4νPjλ (4.7)
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We ”solve” these constraints by writing:

Jjµ = εµνλ4νbjλ

Pjµ = bjµ − 4µφ j (4.8)

wherebjλ is an integer-valued field andφ j is a real field. Then we have

Zs,1 =
∏

j

∫ +∞

−∞
dφ j

∑

b jµ

exp

−
e2

2

∑

j,µ

(bjµ − 4µφ j)
2 − g

2

∑

2

(εµνλ4νbjλ)
2

 (4.9)

The ”hard” integer constraint onbjµ can then be softened in the following manner,

Zs,1 =
∏

j

∫ +∞

−∞
dφ j

∫ +∞

−∞
dbjµ exp

−
e2

2

∑

j,µ

(bjµ − 4µφ j)
2 − g

2

∑

2

(εµνλ4νbjλ)
2 + t

∑

j,µ

cos(2πbjµ)


(4.10)

wheret > 0. Now,bjµ = 4µφ j + Pjµ. ClearlyPjµ is a massive field and can be integrated out by doing

a saddle point integration aboutPjµ = 0. Thus, we finally get

Zs,1 =
∏

j

∫ +∞

−∞
dφ j exp

t
∑

j,µ

cos(2π4µφ j)

 (4.11)

This is nothing but the 3D XY model, which can be equally written using the complex scalarψ

(ψ = exp(iφ)), in the form

Zs,1 =

∫
Dψ(r, τ) exp

(
−

∫
d2rdτ(|∂µψ|2 + s|ψ|2 +

u
2
|ψ|4)

)
(4.12)

where the two phases are〈ψ〉 , 0 corresponding to ferromagnetic ordering of the XY spins and

〈ψ〉 = 0 corresponding to the paramagnetic state. Thus, the critical point ofZs,1 is in the 3D XY

universality class.

4.1.2 CompactU(1) gauge theory without Berry phase

Now we put the further complication of compactness into our theory. Thus we have

Zs,2 =
∏

j

∫ 2π

0

dθ j

2π

∫ 2π

0

dAjµ

2π
exp


1
e2

∑

2

cos(εµνλ4νAjλ) +
1
g

∑

j,µ

cos(4µθ j − Ajµ)

 (4.13)

We can repeat the manipulations of the last section here. Introduce two Villain forms for the

cosines and carrying out a similar analysis, we get the same form as Eqn 4.9 but with bothbjµ andφ j

being integer fields now. Again, softening the integer constraint, we get:

Zs,2 =
∏

j

∫ +∞

−∞
dφ j

∫ ∞

−∞
dbjµ exp

−
e2

2

∑

j,µ

(bjµ − 4µφ j)
2 − g

2

∑

2

(εµνλ4νbjλ)
2 + t

∑

j,µ

cos(2πbjµ) + ym

∑

j

cos(2πφ j)


(4.14)
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Again, we see thatPjµ is a massive field and can be integrated out. Then we get that

Zs,2 =
∏

j

∫ +∞

−∞
dφ j exp

t
∑

j,µ

cos(2π4µφ j) + ym

∑

j

cos(2πφ j)

 (4.15)

Physically, this the the 3D XY model placed in a magnetic field, which can again be written in terms

of ψ(= exp(iφ)) as

Zs,2 =

∫
Dψ(r, τ) exp

(
−

∫
d2rdτ(|∂µψ|2 + s|ψ|2 +

u
2
|ψ|4 − ym(ψ + ψ∗)

)
(4.16)

However, this model has no phase transition as〈ψ〉 , 0 for all s. Thus, making the gauge field

compact is a strongly relevant perturbation in itself.

4.1.3 CompactU(1) gauge theory with Berry phase

Now we turn to the full theory with both compactness and Berry phases included.

Zs,3 =
∑

Qaµ

∏

j,µ

∫ 2π

0
(
dAjµ

2π
)(

dθ j

2π
) exp[− 1

2e2

∑

j,µ

(εµνλ4νAjλ − 2πQaµ)
2 +

1
g

∑

j,µ

cos(4µθ j − Ajµ)

+ 2πi
∑

j

Ya4µQaµ] (4.17)

We again use the trick on introducing a Villain form for the cosine term in the action (introduce integer

valued fieldsJ jµ for it) and introduce a Hubbard-Stratonovich fieldPjµ for the exp[− 1
2e2

∑
j,µ(εµνλ4νAjλ−

2πQaµ)2]. Then, we can easily perform the sum over the integer valued fieldsQaµ. This gives the fol-

lowing constraint:

Pjµ − 4µYa = Bjµ (4.18)

whereBjµ is integer valued. Also, doing the integration overθ j gives

4µJjµ = 0 (4.19)

, which can be solved by puttingJjµ = εµνλ4νb jλ wherebjλ is an integer valued field. Putting these

two constraints into the action, we get

Zs,3 =
∑

Bjµ,b jµ

∫
dAjµ

2π
exp[−e2

2

∑

jµ

(Bjµ + 4µYa)
2 − i

∑

2

Bjµ(εµνλ4νAjλ)

− g
2

∑

j,µ

(εµνλ4νbjλ)
2 − i

∑

j,µ

(εµνλ4νbjλ)Ajµ] (4.20)

Integrating outAjµ, we get the constraintεµνλ4νbjλ = εµνλ4νBjλ. We can solve this by puttingBjµ =

bjµ + 4µχa whereχa is a integer field. Thus, we get

Zs,3 =
∑

b jµ,χa

exp

−
e2

2

∑

j,µ

(bjµ + 4µ(χa +Ya))
2 − g

2

∑

j,µ

(εµνλ4νbjλ)
2

 (4.21)
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We then relax the integer constraint onbjµ andχa and get

Zs,3 =

∫
DbjµDχa exp[−e2

2

∑

j,µ

(bjµ + 4µ(χa +Ya))
2 − g

2

∑

j,µ

(εµνλ4λbjλ)
2 + t

∑

jµ

cos(2πbjµ)

+
∑

j,µ

∑

n

λn cos(2πnχa)] (4.22)

Then we do the following shifts in the fields:

χ̃a = χa +Ya

b̃jµ = bjµ + 4µχ̃a (4.23)

Then, clearlỹbjµ is a massive field and we can integrate it out by doing a saddle point integration

aboutb̃jµ = 0. Doing this, we get the following result

Zs,3 =

∫
Dχ̃a exp

t
∑

j,µ

cos(2π4µχ̃a) +
∑

j,µ

∑

n

λn cos(2πn(χa − Ya))

 (4.24)

Thus the model reduces to the 3D XY model with various n-fold anisotropies of strengthsλn. Now,

the shift byYa leads to rapid spacial oscillations of these anisotropy terms, which do not survive the

continuum limit unless n=0 (mod 4). Thus, the leading anisotropy is at n=4 !

Hence, the critical properties of the model are that of the 3D XY model with a four-fold anisotropy

termλ4.

Zs,3 =

∫
Dψ(r, τ) exp

(
−

∫
d2rdτ(|∂µψ|2 + s|ψ|2 +

u
2
|ψ|4 − λ4(ψ

4 + ψ∗4)
)

(4.25)

It is known from previous work [28] that theλ4 perturbation is irrelevant at the 3D XY critical point.

Thus, the universality class of the critical point of the full theory is the same as that of a theory where

both compactness and Berry phases are neglected.

4.2 N = 2 critical point

What happens in the case ofN = 2 which is relevant for us here? Consider a generalizedCPN−1

model of anN-component complex fieldz that is coupled to a compactU(1) gauge field with the

same Haldane Berry phases as in theN = 2 case of interest. We already saw above that atN = 1, the

model displays a continuous transition between a Higgs phase and a paramagnetic VBS phase with

confined spinons. Also, the instanton events are irrelevant at the critical point due to the quadrupling

caused by the Berry phases. Now consider the case whereN is large. The scaling dimension of the

q-monopole operator was computed by Murthy and Sachdev [29] and their results give a dimension
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∝ N. For largeN this is much larger thanD = 3, and hence theq = 4 monopoles are strongly irrel-

evant for largeN. (However, unlike theN = 1 case, the single monopole operator is irrelevant even

without the Berry phases for largeN) Thus, by continuity, one expects theq = 4 monopole events to

be irrelevant for theN = 2 case too.

From the above considerations, we arrive at the following picture of the critical point. The two

phases of the theory are the Néel and the VBS phase. In the Néel phase, the monopoles (or, hedge-

hogs) are energetically costly and are gapped. In the gauge theory language, this phase corresponds

to the Higgs phase. On the VBS side, the monopoles proliferate and destroy the Néel order. Also,

because of the Berry phase they carry, the VBS state breaks lattice symmetry. This phase corre-

sponds to the confined phase of the gauge theory and here the presence of monopoles is essential

both to explain the symmetry breaking of the state and the confinement of theS = 1/2 spinons into

spin 1 excitations. Importantly, the Berry phases carried by the monopoles is different on the four

sublattices of the square lattice, which leads to destructive interference between different tunneling

paths for single monopoles. This interference effectively kills all monopole events unless they are

quadrupled, corresponding to a skyrmion number change of±4 (we have already seen this happen

in the N = 1 model). This quadrupling makes the monopole tunneling events irrelevant at the criti-

cal point (more precisely, it can be shown explicitly forN = 1 and largeN andshouldhold forN = 2).

The irrelevance of the monopole tunnelings implies that the hedgehogs are absent at low energies

at the QCP. This leads to the conservation of the skyrmion numberQ at the critical point because the

hedgehogs, responsible for changing the skyrmion number, are absent at low energies at the critical

point. Thisemergent conservationof

Q =
1
4π

∫
d2r(n̂ · ∂xn̂× ∂yn̂)

provides a precise notion ofdeconfinementat the QCP [26]. In gauge theory language, because of

the irrelevance of the monopole events, the gauge flux
∫

d2r(∂xAy−∂yAx) is conserved, and the gauge

theory can be thought to be deconfined for all low-energy properties.

It is useful to compare the behaviour of the Néel-VBS QCP with the 3D O(3) critical point which

would have been obtained if we had ignored the Berry phases in the problem through the usual map-

ping of ad dimensional quantum system to somed+ 1 dimensional classical system. It is known [30]

that there is a finite density of ”free” hedgehogs at theD = 3 O(3) critical point. Contrast the critical

behaviour of the hedgehogs with a well known and familiar example: vortices in the 2D XY model

which exhibits the Kosterlitz-Thouless (KT) transition. Imagine we are examining a model with a

short-distance momentum cutoff, Λ. Let the mean density of vortices be ¯ρv, and a dimensionless mea-

sure of this is ¯ρvΛ
−2. Now we perform an RG transformation, integrating out tightly bound dipoles

of vortices, and gradually reduce the value ofΛ. It is known that at the KT critical point the vortex

fugacity ultimately flows to zero [31], i.e., as we scaleΛ to smaller values, the dimensionless vor-
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tex density, ¯ρvΛ
−2 ultimately scales to zero. This is the precise form of the statement that there are

no free vortices at the KT critical point. However, the behaviour of the density of hedgehogs at the

D = 3 O(3) critical point is dramatically different.ρ̄hΛ
−3 remains a finite number [30] of order unity

even after RG scaling to the longest length scales. On the other hand, the deconfined QCP has ¯ρhΛ
−3

flowing to zero as the hedgehogs become irrelevant at the QCP.

4.3 Consequences of deconfined QCP

• Since the critical theory (see Eq 4.2) is isotropic in spacetime (2+1 dim), we immediately get

that the dynamical critical exponentz = 1 for the deconfined QCP (ξτ ∼ ξz).

• The difference between this transition and the Heisenberg transition in 3D is most clearly

brought out by comparing the anamolous dimension of the Néel orderη in both the cases.

For the Heisenberg transition, the value ofη ≈ 0.033. However, for the deconfined QCP, the

value ofη is significantly larger and is found to beη ≈ 0.65 numerically [32]. In Ref [32],

both the non-compactU(1) theory interacting with charged spinons (Eq 4.2) and the Heisen-

berg model with suppression offreehedgehogs were studied numerically. In both the models,

a continuous phase transition was obtained and the critical exponents agreed reasonably well

with each other, after suitable identification of observables in the spin language to the observ-

ables in the gauge theory. Because of the conservation of the skyrmion numberQ at the critical

point, we immediately know that the scaling dimension of the gauge fieldAµ is −1. Thus, the

spinons interact with a potentialV(R) ∼ 1/R at large distanceR, which implies that they are

not confined at the critical point and ”emerge” as good degrees of freedom. At the tree level,

treating the spinons as free, the two-pointzα correlator will decay at the critical point as

〈z∗α(r)zα(0)〉 ∼ 1
|r |D−2

(4.26)

whereD = 3 is the dimension of space-time. In the same approximation, we then obtain the

correlations for the Ńeel order parameter to be

〈n̂(r) · n̂(0)〉 ∼ 〈z∗α(r)zα(0)〉2 ∼ 1
|r |2(D−2)

(4.27)

Identifying the right hand side of the above equation with|r |−(D−2+η), we obtainη = 1. So,

already at the Gaussian level, the deconfined critical point has a large value ofη [26]. It is

obviously changed because of the ignored interactions and Monte-Carlo simulations [32] show

thatη ≈ 0.65.

• The conservation of the skyrmion numberQ also fixes the scaling dimension of the flux density

(or Néel skyrmion density ˆn·(∂xn̂×∂yn̂) in terms of the spin variables) operatorf0 = (∂xAy−∂yAx).
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Figure 4.1: Schematic RG flows for theS = 1/2 square lattice quantum antiferromagnet. The theory

Zdecon f ined in Eqn 4.2 describes only the lineλ4 = 0, it is thus a theory for the phase transition

between the Ńeel state and theU(1) spin liquid with a gapless ‘photon’ state. However, the lattice

antiferromagnet always has a non-zero bare value of the monopole fugacityλ4 because the gauge field

is compact. As discussed, theλ4 perturbation is irrelevant atg = gc. However, theg→ ∞ U(1) spin

liquid fixed point is unstable toλ4, and the paramagnet is therefore a gapped VBS paramagnet.

At criticality, this conservation lae implies that the flux-flux correlator〈 f0(R) f0(0)〉 ∼ R−4 at

long distances.

• The presence of the dangerously irrelevant perturbation which we denote byλ4, the bare monopole

fugacity (more precisely, the quadruple-hedgehog fugacity), implies that there are two distinct

length scales which diverge [1, 26] as we approach the critical point from the VBS side. This

may be understood in the following manner. We look at the schematic RG flow for the Néel-

VBS quantum phase transition in Fig 4.1. We can identify four fixed points in the flow diagram-

the Ńeel fixed point, theU(1) spin liquid fixed point, the Deconfined QCP and the VBS fixed

point. Whenλ4 is set to zero by hand, i.e., the monopoles are suppressed, we get the the-

ory Zdecon f ined (Eqn 4.2). As we commented earlier, the paramagnetic phase of this theory

does not break lattice symmetry and has a ‘photon’ mode because of the deconfined nature of

the gauge field. Because of the presence of photons, the flux-flux correlators of this phase,

〈 f0(R) f0(0)〉 ∼ R−3 for largeR. This power law decay of the flux correlator is absent in an or-

dinary paramagnet. This phase corresponds to theU(1) spin liquid. This explains the RG flow

for theλ4 = 0 line. Also, because theU(1) spin liquid is unstable to the insertion of monopoles,

the fixed point is unstable in theλ4 direction. By continuity, any flow line starting withg > gc

andλ4 , 0 will initially flow towards theU(1) spin liquid fixed point, and only later will turn

and flow to the ultimate VBS fixed point. Thus the initial flow away from the critical fixed point

is not towards the stable paramagnet but towards the unstableU(1) spin liquid state. RG flows
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Figure 4.2: Structure of correlations on approaching the critical point from the VBS side. Two diverg-

ing length scales,ξ and and a much longer lengthscaleξVBS, are present. As usual, for length scalesR

shorter thanξ, quantum critical (Q.C.) correlations are observed-e.g. spin-spin correlators are power

law and flux-flux correlators fall off as∼ R−4. At intermediate length scalesξ � R � ξVBS, spin

correlators are exponentially decaying while flux-flux correlators take on the free photon form∼ R−3.

At the longest length scales, only VBS order is present.

with this structure have the general consequence of having two distinct diverging length or time

scales (or equivalently two vanishing energy scales). Consider the paramagnetic side close to

the transition (see Fig 4.2).

First there is the spin correlation lengthξ whose divergence is described byZdecon f ined. At this

scale there is a crossover from the critical fixed point to the unstable paramagneticU(1) spin

liquid fixed point which has the free photon. However the instability of this spin liquid fixed

point to VBS order and confinement occurs at a much larger scaleξVBS which diverges as a

power ofξ. Thus, on approaching the critical point from the VBS side, for length scalesR� ξ,

we get quantum critical correlations as usual, where for example the spin-spin correlators show

power law decay, while the flux-flux correlations have theR−4 form described above. At in-

termediate length scales,ξ � R� ξVBS, the spin-spin correlations fall off exponentially, but

the flux-flux density correlators are power law but now decay asR−3 which is characteristic of

flux correlators in the presence of photons. Finally at the longest length scalesξVBS� R, VBS

order is established and the photon mode is destroyed.

How is ξVBS related toξ ? On scaling grounds, we would expect that

ξVBS ∼ ξ f (λ4ξ
3−4) (4.28)

where f is a scaling function and 3−4 is the RG eigenvalue ofλ4. Becauseλ4 is assumed to be

irrelevant at the critical point, therefore4 > 3 (D = 2+ 1). For length scalesξ � R� ξVBS, we
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can regard the VBS phase asXY ordered inψVBS, though with a weak four-fold anisotropyλ4.

Hence, the low energy variation of the phaseθ of the VBS order parameterψVBS ∼ |ψ|exp(iθ)

is described by the energy [1]

E(θ) =

∫
d2x

(
K̃
2
|4θ|2 − λ̃4 cos 4θ

)
(4.29)

whereK̃ andλ̃4 ∝ λ4 are renormalized parameters on the scale of the correlation lengthξ. Now,

we can easily estimate the length scale beyond which the anisotropy term would dominate

over the gradient term in Eq 4.29. Consider producing a slow twist in theθ field of the form

θ = π
2 cos

(
πx
2L

)
where the phase ofψVBS twists fromπ/2 at x = 0 to 0 atx = L. Then the length

L beyond which the energy cost due to the anisotropy term dominates over the gradient term

scales as
√

K̃/λ̃4, which implies thatξVBS ∼ λ−1/2
4 . This requires thatf (x) ∼ x−1/2 immediately

giving us

ξVBS ∼ ξ(4−1)/2 (4.30)

ThusξVBS grows more rapidly thanξ as the quantum critical point is approached from the VBS

side [1, 26].
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Chapter 5

Discussion

In this thesis, we discussed at length the physics of the recently proposed ”deconfined critical point” [1].

The deconfined critical point has an emergent topological conservation law which makes the use of

the terminology ”deconfined” precise for such critical points. Moreover, the critical theory is most

naturally expressed in terms of fractionalized degrees of freedom. The order parameter fields charac-

terizing the phases on either side of the critical point emerge as composites of the fractionalized fields.

The particular example we studied was the Néel-VBS quantum phase transition forS = 1/2 moments

on a 2d square lattice. These type of critical points clearly violate the standard LGW paradigm,

because the order parameters are not directly related to the critical modes. We also found that these

QCP’s have large anomalous dimensions for the order parameter fields, unlike the usual critical points

where the anomalous dimension is typically small. There may be other such examples of deconfined

QCP’s in strongly correlated electron systems, which might go some way in explaining various ex-

perimental puzzles associated with such systems. For example, it should be interesting to see whether

a similar scenario exists for quantum critical points in doped Mott insulators, which might then lead

to a strongly non-Fermi liquid like behaviour in the quantum critical region of such critical points and

help understand the physics of the cuprate superconductors.

Since the deconfined critical point scenario has yet to receive experimental verification, it would

be very useful to constructtoy modelswhich can then be analyzed analytically or numerically to

check for the presence of such critical points. ContinuousT = 0 transitions between two ordered

phases had been suggested before the theory of deconfined critical points was formulated in Ref [33,

34]. However, more detailed studies failed to confirm their existence. Instead, many studies have

pointed to a weakly first-order antiferromagnetic-VBS transition [35, 36, 37, 38, 39] or other scenarios

inconsistent with deconfined criticality [40]. However, recent quantum monte carlo studies on a

particular model by Sandvik [41] shows a Néel-VBS phase transition consistent with the deconfined

quantum critical point scenario. However, given the current status, more work needs to be done to

establish the correctness of this novel idea.

47
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