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Synopsis

The theory of continuous phase transitions is one of the foundations of statistical mechanics anc
condensed matter theory. A central concept in this theory is that of the "order parameter”; its non-
zero expectation value characterizes a broken symmetry of the Hamiltonian in an ordered phase an
it goes to zero when the symmetry is restored in the disordered phase. According to the accepte
paradigm due to Landau and Ginzburg, the physics near continuous phase transitions is dominate
by the long distance fluctuations of the order parameter field(s) and can be described by a continuur
field theory written in terms of the order parameter fields(s) and its gradients, where all terms con-
sistent with the symmetries of the order parameter are allowed in general. The resulting field theory
cannot be analyzed by simpleperturbation in general, as individual terms of the perturbation se-
ries diverge as the critical point is approached. However thiicdity is overcome by using general
renormalization-group ideas, and this provides the sophisticated Landau-Ginzburg-Wilson (LGW)
formalism for thinking about critical phenomena for a variety dfetient situations. For example, the
LGW formalism gives us a method to calculate the critical exponents associated with a continuous
phase transition, which are the numbers that characterize the power law divergences in various the
modynamic quantities on approaching the critical point.

In recent years, a fferent kind of phase transitions has generated a lot of interest, namely tran-
sitions that take place at zero temperature. In such transitions, a non-thermal control parameter lik
pressure, magnetic field or chemical composition is varied to access the transition point. In suct
cases, the order is destroyed or changed solely by quantum fluctuations which arise because of no
commuting (and hence, competing) terms in the Hamiltonian of the system. Such zero temperatur
phase transitions are called Quantum Phase Transitions. Theoretically, the LGW paradigm again prc
vides the basic framework to understand these critical points. The critical modes are again presume
to be the long distance, long time fluctuations of the order parameter field, where the inverse temper
ature acts as the "imaginary” time direction, and thdimensional quantum system can be mapped
to somed + 1 dimensional classical systemBs- 0.

Are there quantum phase transitions which lie outside this well known LGW paradigm? In this
thesis, we will review in detail the physics of the recently proposed "deconfined critical point” [1].
Here the critical theory is most naturally expressed in terms of certain fractionalized degrees of free-
dom, instead of the order parameter fields. The order parameter fields characterizing the phase

\Y



on either side of the critical point emerge as composites of the fractionalized fields. Moreover, in
such cases, an emergent topological conservation law arises precisely at the quantum critical point.
These type of critical points clearly violate the standard LGW paradigm. We set up the necessary
background and review a particular example frochd@iantum magnetism with spi@ = 1/2 on

the square lattice to illustrate such critical points. There may be other examples of such deconfined
critical points in strongly correlated electron systems, which might explain the experimental puzzles
associated with such systems in the future.
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Chapter 1

Introduction

In this thesis, we would review the novel physics of "deconfined critical points” which was recently
proposed by Senthdt. al[1] as an example of a quantum phase transitio (at0) which violates

the well established Landau-Ginzburg-Wilson paradigm to understand continuous phase transitions
In this chapter, we briefly explain the philosophy of the the LGW paradigm and how it explains the
some of the remarkable properties associated with continuous phase transitions such as scaling a
universality.

Phase transitions abound in nature and are familiar to us from a variety of everyday examples
such as boiling of water and melting of ice. One can also think of monaplicatedexamples such
as the transition of a metal into the superconducting state and of a paramagnet into magnetically or
dered state(s) upon lowering the temperature. These transitions occur by varying an external contrc
parameter and normally, there is a qualitative change in the system properties on passing through tr
transition. In the examples given above, the transitions are temperature driven and are examples of f
nite temperature phase transitions. Here macroscopic order at low temperature (e.g., crystal structul
of a solid) is destroyed at high enough temperature because of thermal fluctuations.

It is useful to categorize phase transitions into two types. The melting of ice into water is an
example of dirst-order phase transition. At the melting point of ice, the energy absorbed from
the surrounding environment to melt the ice is called the latent heat which efualsvhereT is
the temperature andS is the change in entropy between ice and water at the melting point. The
transition is first-order because the system’s entropy, which is a first derivative of the Gibbs free
energy, is discontinuous. A first-order transition also occurs at the boiling point of water. However,
if water is at a sfficiently high temperature and pressure, there is no transition between a liquid and
a gas. The limiting pressure and temperature above which there is no phase transition are called tf
critical pressure and critical temperature, respectively. At the critical pressure and temperature, ther
is acontinuous phase transition because the first derivatives of the Gibbs free energy are continuous
(there is a divergence of the specific heat and the compressibility, which are second derivatives of th
free energy). This point in thp — T phase diagram is called tlegitical point and is at the end of

3



4 Chapter 1. Introduction

Figure 1.1: Phase diagrams of (a) the liquid-gas transition, and (b) the ferromagnetic transition for a
uniaxial magnet. Notice the similarity between the twpMZE p & M, P & H).

a curve of first-order transition points called the coexistence curve. Other examples of continuous
phase transitions are the Curie point of ferromagnets, a similar transition for antiferromagnets and the
transition between superconducting and normal metals.

A central concept in the theory of phase transitions is that obader parameter” [2], which is
essential to formulate a quantitative theory of the same. An order parameter is any quantity which is
non-zero in the ordered phase where some symmetry of the microscopic interactions is broken, and
is zero in the disordered phase where the symmetry is restored. Also, the value of the order parame-
ter should reflect which of the symmetry-related states does a system choose when it spontaneously
breaks a symmetry in the ordered state. To illustrate this concept, let us consider the example of uni-
axial ferromagnets. In uniaxial magnets, the spins find it energetically favourable to only point along
a certain axis (call it the axis) because of crystal fieldfects. Thus, we can associate an Ising like



variables = +1 at each site of the crystal, which indicates the state of the spin at that site. Note that
the Hamiltonian is invariant undey — —s V i, i.e., a global spin flip operation does not change the
energy of a given microstafes}. Here the average magnetization per ¢ge= (1/N >, s), where

N is the number of sites in the system, acts as the correct order parameter. In the high temperatur
paramagnetic phase, the spins have an equal probability of pointing in both directions and therefore
(s) = 0. However, in the low temperature ferromagnetic phase, the system chooses a direction (up o
down with respect to theaxis) for the spins to order and therefof®), # 0. Also, the order parameter

(s) changes sign under global spin flip and hend&eds in sign (but not in magnitude) for the two
possible symmetry-related ordered states at a giveithe order parameter goes to zero smoothly
when the system goes over from the ordered to the disordered state for continuous phase transition
On the other hand, it jumps from a non-zero value to zero discontinuously at the critical point for a
first-order phase transition.

We will focus primarily on continuous transitions from here. Continuous phase transitions are
characterized by thermodynamic quantities such as the specific heat, the magnetic susceptibility an
the isothermal compressibility, diverging at the critical point [3, 4]. The divergences typically follow a
power law near the transition. The powers are callecthizal exponents Remarkably, transitions
as dtferent as the liquid-gas and uniaxial ferromagnetic transition can be described by the same set ¢
critical exponents and are said to belong to the shmigersality class[3, 4]. The phenomenon of
Universality is the following: All phase transitions can be divided into a small numbenigérsality
classedepending upon the dimensionality of the system and the symmetries of the order paramete
(long-ranged interactions bring additional complications). Within a universality class, all phase tran-
sitions have identical behaviour in the critical region, only the variables used to describe the critical
region are dierent from case to case.

For example, the principal critical exponents for the uniaxial ferromagnetic transition are defined
in the following manner [4]. It is useful to define two dimensionless measures of the deviation from
the critical point: the reduced temperatdre (T — T.)/T., and the reduced external magnetic field
h = H/kgT.. Then the exponents are:

e «: The specific heat in zero field ~ Alt|™®, apart from terms regular in

B: The spontaneous magnetizationg_o, M o« (-t)°.

v: Zero field susceptibility = (0M/dH)|x-o o< [t[7.

5. At T = T, the magnetization varies withaccording toM oc |h|*/°,

v. The spin-spin correlation lengthdiverges ag — 0 (this is generally true for continuous
phase transitions), with = 0, according t& o< |t|™.
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e 7. Exactly at the critical point, the spin-spin correlation funct{efr) does not decay exponen-
tially, but rather according t&(r) oc 1/r4-2+,

The critical exponents of the liquid-gas critical point can be defined by analogy with the uniaxial
magnet case [4]:

e Cy o [t|™™ atp = pc.

e p. — pc o« (—t)? gives the shape of the coexistence curve near the critical point.
e isothermal compressibility+ oc |t[7.

e |p-pd x |p - pcl’ gives the shape of the critical isotherm near the critical point.

The exponents andn are defined as for the ferromagnet, wir) now being the density-density
correlation function. The exponents of these two vefffedent transitions are identical because of
universality. Moreover, these critical exponents are normally not simple rational numbers/dike 1
say) when measured in experiments. For example, the liquid-gas transition in sulphurhexafluoride [5]
has been studied experimentally and it has been found that

lou = pol o [T = T[232m0000 (1.1)

The exponent has been measured in other fluids like He3 and the its value agrees within error bars.
Similarly the exponent in uniaxial magnetic systems have been measured (e.g. in DyAIO3 [6]) and
found to be identical to the liquid-gas transition exponents within error bars.

How does one explain universality and calculate quantities like critical exponents associated with
continuous phase transitions? A key physical insight, largely due to Landau and Ginzburg [2], is that
these universal critical singularities are associated with long-wavelength low-energy fluctuations of
the order parameter field (call m(x) for concreteness). The idea is to construct firative free
energy (see Ref [2]X which is local in terms of the order parameter field and its gradients, and is
analytic. ThusL can be thought of as a Taylor expansion of a general fundtfoifx), Am(x), - - -).

The only restriction on the expansion would be that each term in it is consistent with the symmetries of
the order parameter field and thét— oo as|m(x)] — o so that the order parameter stays bounded.
E.g., at zero magnetic field, the uniaxial magnet can be modeled by a scalar order pamaixeter

and the &ective free energy is invariant undexx) — —m(x) because of the spin flip symmetry in

the problem. The cdicients of the expansion can be thought to be phenomenological parameters
which are non-universal functions of microscopic interactions and external parameters such as the
temperature and magnetic field. Then we can write down the partition fungtias

z= [omy eXp(—ﬁ [ ddxz:(m<x),Am(x),--)) 1.2)



Let us now motivate the Landau theory for thienpleexample of a uniaxial ferromagnet in zero
magnetic field. Because the magnetic field is set to zero, only the tempéeFasite be fine-tuned to
T, to achieve the critical point. Also, because of thix) — —m(xX) symmetry,

BL = %(Am)2 +a(t)m? + b)m* + -- (1.3)

wheret = (T - T,)/T.. Now how do we determine the functioag), b(t) etc? Close to the critical
pointt = 0, we do not need to know the full functioat), b(t) and can get away with their leading
Taylor expansion terms. Also, we know that far 0, (m) = 0 while fort < 0, (m) # 0 and{m) falls
continuously to zero as— 0-. We can expand the functioa¢t) andb(t) as

alt) = ag+ agt + -

b(t) = bo + blt + -

If we want a single continuous phase transitiort at 0 and non-zero magnetization fok O, it is
easy to see that, = 0,a; > 0 andby > 0. Thus we can take thdfective free energy as

L= %(Am(x))2 + &gt m(X)” + bom(x)* (1.4)

whereay, by, T, are all phenomenological constants in the theory. The Landau-Ginzburg way of look-
ing at phase transitions brings universality to the forefront becausedfdatiee theory is only based

on the symmetry properties of the order parameter field, and does not care about the microscopi
origin of the order. In general, the functional integrals obtained cannot be solved analytically and
approximations need to be made. Clearly, the simplest thing to do is to make a saddle-point approxi
mation. This amounts to doingandau mean-field theory, where we can ignore fluctuations of the
order parameter field and take it to be a constant and minimize the resulting free energy. Thus, for the
above example, we have

Lyvr = agt e + b0m4 (15)

wherem s a constant now. Calculating the critical exponents in this formalism, we ge0D,3 =

1/2,y = 1,6 = 3,v = 1/2 andn = 0, independent of the dimensialh However, these values are
quite diferent from the experimentally obtained values of the critical exponents. The discrepancy
between the mean-field results and experiments signal the failure of the mean field approximation
The problem arises because of the neglect of fluctuations of the order parameter field in the mean
field approximation. Because the correlation length diverges on approaching a continuous critical
point, there are fluctuations of the order parameter field at all length scales, and these fluctuations ge
coupled due to interaction terms in the theory. One can check for the self-consistency of the Landal
mean-field theory and see when the contribution due to fluctuations can be neglected. for the
type theory above, it turns out that the fluctuations can be neglected onlydvkef and thus the
saddle-point type calculations are no longer reliable in 3.



8 Chapter 1. Introduction

The task of calculating the critical exponents correctly and capturing the non-analytic behaviour
of various thermodynamic observables when approaching the critical point is achieved by combining
Renormalization Group (RG) techniques to the Landau-Ginzbufteetive theory (see Ref [3, 4]).

Let us illustrate the basic idea of an RG through an example [4]. Consider the two-dimensional fer-
romagnetic Ising model on a square lattice. Instead of calculating the partition function at one go,
let us integrate out the degrees of freedom in small stepsanse-grain Let us make the following
transformation: we divide the square lattice inte 3 blocks, each containing 9 spins. To each block,
we assign a new variabk = +1, depending on whether the majority of spins in the block are p(

or down(-1). Notice that our blocking rule respects the up-down symmetry of the microscopic model
because flipping the 9 spins of a block also changes the sign of the blocK sjhen this is done,

we rescale the whole picture by a linear factor of 3, so that the blocks are the same size as the original
squares. After a few iterations of this process a typical configuration With T, will evolve to
complete randomness, while a configuration Witk T, will evolve to all spins up or all spins down.
However, afl = T, the configuration obtained after the iterationstetisticallythe same as the first
picture,i.e. itis an equally probable configuration at the critical point. This observation illustrates the
scale invariance of the critical poinf & oo asT — T).

Let us formalize this blocking procedure. Suppose we have a set of{sparsd

Z =) expEH(s)) (1.6)
(s}
so that the probability distribution of a particular configuratighis

P((s) = % expCH((s)) (1.7)

where we have absorb@dn the definition ofH. We set out to coarse-grain the system by defining
general block spins. To do this, we introduce a conditional probaliilitg }|{s}). This is the proba-
bility of finding the block spin configuratiofs'}, given that the original spin configuration{is. For
example, the X 3 blocking introduced above would have

P(siish = [o [SB - SgnZ(s)) (1.8)

B ieB

Heres; labels the new block spin made out of the nine original spins. Beda(§sg|{s}) is a proba-
bility, we must have

TP s = 1 (1.9)
{s)
Using Eqnl1.9, we can now write

Z=> > P(sHiis) expCH(s)) = ) expEH (is') (1.10)
{st {s}

(s}



whereH’ is the new Hamiltonian in terms of the block spin variables. Furthermore, because the new
block spins are local functions of the old spins, this coarse-graining preserves all the long distance
physics of the model. After blocking, it is convenient to shrink the system by a fa¢gBinlboth
directions so that each block spin occupies the same space as the old spin. Repeating this procedu
we thus get a sequence of Hamiltonians, all with the same long-distance physics.

H({s}) — H'({s}) - H"({s"}) — - (1.11)
This is an example of a RG flow. Suppose there exists a Hamiltonian such that
H* — H* (1.12)

Such a Hamiltoniamd* is afixed point of the renormalization group transformation and corresponds
to a scale-invariant critical point. How do neighbouring hamiltonians behave under the RG ? Consider
a hamiltoniarH which lies near the fixed poird*

H=H"+> g0, (1.13)
i
where theO, represent additional interactions. Under the RG flow, we will have

H—H+> g0, (1.14)
i

NearH* the flow ofg; would be linearg, — g = Ajg; + O(g?). In general Ajj is not symmetric, but
let us assume that it is diagonalizable. Also, let us assuméXhatchosen so that the matri; is
diagonal with entrieg\;. Then

g — Aig — Afg — - (1.15)

If |Ai] < 1 the codficient of O; decreases under the renormalization group flow and we say that such
O, areirrelevant. Conversely, iflAj] > 1, the coéficient of O; increases under the RG flow and we
say that suclD; arerelevant perturbations oH*. When|Aj| = 1, we say tha, is amarginal
perturbation. Relevant operators take us away from criticality. For example, the magnetic field is a
relevant perturbation for the Ising model critical point and any non-zero value of the field destroys
criticality. The subspace spanned by the irrelevant directions is calldshie of attraction of the

fixed pointH*, since the irrelevant couplings flow to zero under the RG. This provides an explanation
of universality [3, 4] in that very many microscopic details of the system make up a huge space of
irrelevant operators comprising the basin of attraction. Scaling arises [4] because the behaviour nee
the fixed point makes the singular part of the free energy a generalized homogeneous function of th
form Fg(A*h, A2t) = AF¢(h, t), whereh andt are the reduced magnetic field and reduced temperature
defined earlier. Because thermodynamic observables can be obtained by suffatdatifition of the

free energy, they also show scaling behaviour close to the critical point.
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Although the idea of RG is relatively simple, calculating the flows explicitly can be gutieult.
Sophisticated approximation techniques [3] like &ée 4 — d)-expansion and largd expansion can
be used to solve the RG systematically but we will not discuss these here.

During recent years, afiierent class of phase transitions has generated a lot of interest, namely
transitions which take place at zero temperature (see book by Sachdev [7]). A non-thermal control
parameter such as pressure, magnetic field or chemical composition is varied to access the transition
point. In these examples, the order is destroyed or changed solely by quantum fluctuations which
come because of non-commuting (and hence competing) terms in the Hamiltonian of the system.
These zero temperature phase transitions are called Quantum Phase Transitions (QPT).

At first glance, it might appear that the study of QPT is not of great interest because the transi-
tion only occurs afl = 0 which is impossible to access experimentally. However the presence of
guantum critical pointgan affect finite temperature properties [7] as can be seen from the follow-
ing argument [8]. Consider a quantum critical point separating two distinct ground states with very
different quantum ordering and low-lying excitations. Close to the critical point, there is only a tiny
difference between the energies of the two states, and only at very low temperatures is a particular
one picked up as a ground state. At these temperatures, we can model the physics in terms of the
low-lying excitations othis ground state, which are the "quasiparticles” associated with its ordering.

At a somewhat dferent parameter value on the other side of the critical pointffardnt state will

be picked up as the ground state and a quasiparticle picture would again apply at very low tempera-
tures. However, the nature of the quasiparticles would in general be \féeyedit from the previous

ones. At higher temperatures, it is impossible to ignore the competition between the two ground states
and their respective quasiparticles, and complex behaviour which is not characteristic of either of the
ground states can arise. In fact, it has been proposed that the anomalous properties of materials such
as the cuprate superconductors is because of the proximity to quantum critical points separating two
distinct phases.

How does one analyze quantum critical phenomena? Theoretically, the Landau-Ginzburg-Wilson
(LGW) paradigm again provides the basic framework to understand these critical points. Ciritical
modes associated with a QCP are again presumed to be the long-distance, long-time fluctuations of
the order parameter field. In factdadimensional quantum system is equivalent (at least, formally)
to somed + 1 dimensional classical system [7] as the temperafure 0. This statement may be
understood by writing the partition functiap

Z = Tr(exp(pH))

(whereH is an operator now) as a path integral by splitting exa{) as [exp((1/h)stH]N where
6t — 0,N — oo such thatNér = S# in "imaginary time” 87 (the operator exp{3H) looks like the
time-evolution operator of quantum mechanics expit) in imaginary time). Then the expression
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A non-universal
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Figure 1.2: Schematic phase diagram in the vicinity of a QCP. The horizontad) agmesents the
non-thermal control parameter tuning which drives the quantum phase transition,and the vertical axis
is temperaturd . In the region marked quantum critical, there is competition between the two ground
states and their quasiparticles, which can lead to unconventional properties.

for the path integral looks like a classical partition function for a system avthh dimensions, expect
that the dimension of the system in imaginary time is finite in extent and egal&s T — 0, the
system size in this extra "time” direction diverges, and we get a iyl dimensional fective
classical theory.

Are there quantum phase transitions which lie outside the well-known LGW paradigm? Indeed
there are cases where Landau order parameters do not capture the true order in a quantum pha:
The well known phenomenon where this happens is the quantum fiadt ¢hat occurs in a two-
dimensional electron gas in high magnetic field. The electron does not survive as a quasiparticle in
fractional quantum Hall states; and the order in such a state cannot be captured by a local Landau
order parameter as the distinction between the states is not that of a symmetry but raihelos-
ical in nature. There are continuous transitions between distinct quantum Hall state which cannot
obviously be described by a conventional Landau-type treatment of the transition. But what about
transitions between phases which can be characterized using Landau order parameters? Is it possik
to violate the LGW paradigm in such cases? Recent work by Segtthial [1] show that such a
breakdown is possible in certain phase transitions in two-dimensional quantum magnetism. For thes
critical points, the best starting point for the description of the critical theory is not in terms of the
order parameter, but an emergent set of fractionalized degrees of freedom whictiuaed degrees
of freedom only at the critical point.

In the next few chapters, we will set up the necessary background and then explain this remarkable
possibility.
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Chapter 2

Effective Theory of Quantum
Antiferromagnets

Let us consider spi = 1/2 moments on a2 square lattice interacting with the following Hamilto-
nian:

H= ZJijSi .S (2.1)
i,

where all couplings);; > 0 are antiferromagnetic in nature and respect lattice symmetries. Thus the
interactions preserve both lattice symmetries 8d{2) spin rotation symmetry. This model is the
generalized antiferromagnetic Heisenberg model of spin half which emerges naturallyféecawee
Hamiltonian for Mott insulators (see Auerbach’s book [9]).

What are the possible ground states of such a Hamiltonian? The simplest ground state we ma
think of is the so called Bel state (see Fig 2.1). Consider the nearest-neighbour Heisenberg antifer-
romagnet. Classically, the ground state is the state ®ite +1/2 (z axis being arbitrary) on one
sublattice and, = —1/2 on the other sublattice. However, the staggered magnetization, which acts
as the order parameter for thee®l state, does not commute with the Hamiltonian and the simple-
minded classical ground state is not the true ground state of the quantum problem. &besdér
survive in the quantum ground state or is the ground state something else, without any long range
Néel order? Clearly, quantum fluctuations increase as one decreases the valuesofispas been
rigorously shown [10] that for the nearest-neighbour Heisenberg antiferromagnetdimansional
hypercubic lattice, the ground state haseNorder for allS whend > 3 and forS > 1 whend = 2.

The interesting case & = 1/2 on the square lattice remains out of reach of these rigorous methods.
However, numerical simulations [11] show that the ground state does have long reeigeder. The

Néel state has been observed in a variety of insulators, which includ€siOg the parent compound

of the cuprate superconductors. Thed\state breaks spin rotation symmetry and the order parameter
is a single vectoN (the Neel vector), defined to describe a state of staggered magnetization,

S = &N (2.2)

13
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wheree, equals+1 on one sublattice andl on the other sublattice. Thegl state ha$l<l,> # 0 and

the low-energy excitations of the state are linearly dispersing spin waves. These spin waves are the
gapless modes due to the broken spin rotation symmetry and have two independent polarizations (this
follows very generally from the Goldstone Theorem).

What about possible ground states of this Hamiltonian which do not break spin rotation symmetry?
From above, we know that the Hamiltonian must then consist of non-nearest neighbour interactions
also. For example, we can think of tde— J, model on the square lattice, where in addition to the
nearest neighbour interactiahh, one also has next nearest neighbour interacljonThe classical
limit of this model has collinear 8kl order for allJ,/J;. For very smalld,, Néel order survives in
the quantum ground state as well. However, numerical and series expansion studies $12]1(2
have shown that this model loses the order araiiid;, ~ 0.4 and spin rotation symmetry is restored.

The ground state breaks lattice symmetry instead.

More generally, such paramagnetic states can be broadly divided into two classes. Firstly there
are states that can be described as “valence bond solid” (VBS) states. In a simple caricature of such
a state, each spin forms a singlet with one of its neighbouring spins resulting in an ordered pattern
of “valence bonds” (the singlets) (see Fig 2.1). For spihsystems on a square lattice, such states
necessarily break lattice translational symmetry and the ground state is four-fold degenerate. The
symmetry can be broken in twoftkrent ways, leading to what is called columnar order and plaquette
order (Fig 2.1). In the plaquette state, singlets bonds resonate coherently between the two horizontal
and vertical bonds of the elementary square plaquettes on the lattice (shown as dotted and undotted
valence bonds in Fig 2.1). This type of ordering is called spin-Peierls ordering. A suitable order
parameter for VBS order is the following :

pves = 3 ((F1V'S - Sus +i(-11'S, - Sug) @3)

The order parametefyss is a complex number angl} . is real and positive for columnar order
(Yves = +1, +i,-1, —i) and real and negative for plaquette ordgjds = 1 +i,-1+1i,-1—1i,1-1).

In the S=1/2 VBS states there is an energy gap for spin-carryiaty uasiparticle excitations, which

can be thought of as an adiabatic continuation of simply breaking a singlet valence bond into a triplet.
Typically there is a coupling between the spin exchange energy and phonon displacements, which
leads to lattice distortions whose pattern reflects the distributig8;0fS i

A second class of more exotic paramagnetic states [13, 14, 15, 16, 17] is also possible in prin-
ciple: in these states the valence bond configurations resonate amongst each other and form a “spin
liquid”. The resulting state has been argued to possess excitations with fractionglzpimdlinter-
esting topological structure. However, we will not discuss these exotic states any further in this thesis.
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In this chapter, our objective is to show that in theé\phase or close to it, the long distance low
energy fluctuations of the &l order parameter are captured by the quantum O(3) non linear sigma
model (NLo-M) with the Euclidean action (here the lattice coordinate(x, y) has been promoted to
a continuum spatial coordinate ands imaginary time):

Sn = So+SB
1 o [(0n)? 2
Sy = 2—gfd7'fd r{(g) +C2(Vrn)l
Sg = iSZerﬂr (2.4)
r

We will then rewrite the quantum O(3) NtM in another set of variables, tH@P! representation,
which would turn out to be very useful to describe the critical theory.

Heren, o er§r is a unit three component vector that represents & brder parameter. The term
Sg contains crucial quantum-mechanical Berry phaseces, and is sensitive to the precise quantized
value,S of the microscopic spin on each lattice sitd; is the (directed) area enclosed by the curve
mapped out by the time evolution of(7) on the unit sphere. These Berry phases play an unimportant
role in the low energy properties of theell phase, but are crucial in correctly describing the quantum
paramagnetic phase (VBS). In fact, the VBS state arises naturally in thegléimgi if one carefully
takes the Berry phases into account. Thus therMLfield theory augmented by these Berry phase
terms is, in principle, powerful enough to correctly describe both thel State and the VBS quantum
paramagnet; and the quantum phase transition (QPT) between these two stategefiBSIQPT
for S = 1/2 spins on the square lattice has been argued to be an exotic phase transition outside th
LGW paradigm in Ref [1].

2.1 Path Integral for Quantum Spins

Now we describe how to write the partition function of spins interacting via a generalized Heisenberg
Hamiltonian (Eqgn 2.1) in terms of a path integral. We shall consider theSpinl/2 case in detail

here to show things very explicitly [18], the generalization to the case of an arbitrary spin is not
difficult (a good reference for this is [7]).

2.1.1 Spin Coherent States

To write a path integral, clearly we cannot use$ie- | T, |) basis. Instead, we go to an overcomplete
basis|N) where

S-NINy = 2Ny (2.5)
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Neel VBS

or

Columnar Plaquette

gt

Figure 2.1: Ground states of the square latiice 1/2 quantum antiferromagnet. The coupligg

controls the strength of quantum spin fluctuations about the magnetically ordeetdtiste d = O

is the classical limit). There is broken spin rotation symmetry in tiéelNtate and broken lattice
symmetry in the Valence Bond Solid (VBS) state. There can be tWerdnt orderings for the VBS
state as shown in Figure, columnar ordering and plaquette ordering.

(more generally, the RHS BIN)). N defines a direction on the unit sphere and the North Pole of the
sphere may be identified with the stat¢). One can easily figure out the stalé) by rotating the
“standard” stat¢ 7). The transformation is simplyNy = expiéM - S)| 1), where the unit vectok

is defined in Fig 2.2, wher§ = #/2 (o, oy ando, being the usual Pauli matrices). Writing it out
explicitly, we have

. 6 0
IN) = cosz| T) + sinz exp(4)| 1) (2.6)

Clearly, this basis is overcomplete, which can be seen by compiig )2 = (1+ N-N')/2 (on the
RHS, N denotes the unit vectdd). What is the resolution of identity in terms of these states? For
spinS =1/2,

dN ~ «  (d(cost)dp o~
f§|N><N|—fT|N><N|—I (2.7)

(More generally, the completeness relation iS (Ql)f%llﬂ)(lﬂl = 1.) Another useful property to
note is that

(NISINY = =N (2.8)

The RHS isSN in general. Now let us figure out how to write down the path integral representation
for the partition functiorZ. First consider a single spin for notational convenience.

Z

D (alexppH)la)

f DRIOXK(0) explAH)IR(O)) (2.9)
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S y M= -sing

¢ ;3,(}, M, = €0s @
M;=0

X

Figure 2.2: The rotation of the statd') by an angle ob about the axigVl takes it to the statgN).
This can be used to determine the stﬁt}aeasily.

We then perform the usual trick of breaking up the exponential-g&g] into a large number of
exponentials of infinitesimal (imaginary) time evolution operators:

- [ DDA -+ DR | [ + &) expe-eHINr)) 210)

where|N(ro + ne)) = [N(ro)) (PBC) andne = 8. What is(N(r; + €)| exp(eH)|N(z;)) ase — 0 ? Itis
easy to see that the answer is ea«;(KNij—t‘) + H(SN))]. Then in the limite — 0, we may rewrite the
partition function as

- B ~ dN - - -
- [ Di@exp[- [ ar(SH + HS): 180D = 1R 211)

Notice thatfo'B dT(N%) is a purely imaginary phase term. This term has an elegant geometric inter-
pretation which we will work out in the next section.

2.1.2 Geometric Interpretation of the Phase Term

First, let us consider a single spin and defWiér) through the relation|N(7)) = expio(r)M(z) -

S)I 1 ). We further introduce the following notatiofN(u, 7)) = expiud(r)M(z) - S)| 1) whereu e
[0,1]. Thus|N(O, 7} = | 1) and|N(L, 7) = |[N(r)) and the vectoN(u, 7) moves from the north pole of
the unit sphere t&l(r) along the circle of constagtasu is increased from 0 to 1. Then using the fact
thatM(7) - N(u, 7) = 0 and{N(u, 7)|S|N(u, 7)) = SN(u, 7), we get the following relation:

(e )|M>- sf dub(r) V() - d'\'(“ ")

(2.12)

We can further simplify the expression by using the relatifn, 7) x 5““”) = 9(r)M(7). Putting this
in the above formula, we get the following result for the phase term.

b dN@ ([ v ON(u,7)  dN(u, 7)
fodT<N(T)| 9 >_ISLdTL duN(u, 7) - ( 0 X 5 ) (2.13)




18 Chapter 2. Hective Theory of Quantum Antiferromagnets

3

/ ntegrate over T

Figure 2.3: The geometric interpretation of the berry phase term as the directed avegpt by the
“string” attached to the north pole and the instantaneous positid#(tf The phase term equals
ISA.

Egn 2.13 has an elegant geometric interpretation [See Fig 2.3]. Because of the periodic boundary
condition (PBC) orN(r), the vectoiN(r) traces a closed path on the surface of a unit sphere. Imagine
attaching a “string” from the north pole of the sphere to the instantaneous positiéf)ofThen the

RHS of Eqn 2.13 is the (directed) area swept by this string on the unit sphere. If the pa¢h)of

is in the anticlockwise (clockwise) sense with respect to the north pole, the contribution is positive
(negative). Note that the choice of the north pole on the unit sphere is arbitrary and the phase term is
only defined moduloA. However, this is not a problem because of the quantization of the value of the
spinS. The generalization to the case of a system of spins interacting via the generalized Heisenberg
hamiltonian (Eqn 2.1) is immediate.

A N Y o
Z:flTlDNi(T)eXp[—iS;ﬂi_Szj; dT;JijNi.Nj) (2.14)

with the boundary condition tha¥,(0) = N;(8) for all i (i refers to the @ lattice site).

2.1.3 Coarse Graining

The classical Heisenberg hamiltonian would have a staggered state as its ground state on the (bipar-
tite) square lattice. Any pair of spins is either parallel or antiparallel, thus the ordering is collinear.

Let us consider here quantum antiferromagnets whose classical ground state have calelear N

der. Such an ordering can be expected to be present at least over short distances in the quantum case.
Noncollinear ordering arises on nonbipartite lattices or even on bipartite lattices with certain types of
further neighbour interactions. Such cases would not be considered here.
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If the Néel order survives even for a few lattice spacings, we may think of doing a continuum
theory in terms of new fields and L, whererfandL refer to the staggered and uniform component of
the magnetization. We write

. ad V2 oA
(6. 7) = ahx, ) (1= (IC200) - + L) 219

whered(= 2) id the dimension of the lattice aralis the lattice spacing. Because of the condition
N - Ni = 1, we getn; - fi = 1 (that's why the notation)"andr, - L; = 0. Also, because of the implicit
assumption of at least short rang@ell order being present, we immediately hafe< S2a-2.
Using Eqn 2.15, we can rewrite the HamiltoniglgSN) = JS? 37;; N; - N to the lowest order it as
IS? 3l — Ay)2/2 + (a2¢/S?)L - Lj]. Now, we go the continuum limit and get

R R N ] 2
Z= DADLS(A* — 1)6(L - A) exp[—iSZﬂi - f dr f dx(2(v,h)? + S2—)| (2.16)
PBC 1 0 2 2x.

whereps = JS?/a%2 andy, = S?/(2dJ&"). Let us consider the Berry phase terms now. Insert the
parameterization of thN field in terms of"andL and retain to first order ify.

N
iS > A
i=1
N 3 1 . . .
iSZ f dr f duNi(u, 7) - (ON;/0u x oN;/67)
i=1 V0 0

8 1
s> e f dr f dulfr - (87/8u x 9h/d7)]
i 0 0

3 1
i f d?x f dr f du[fr - (9R/Au x AL/87) + A - (AL/0u x 87”/67) + L - (9A/du x dA/H7)]
0 0
(2.17)

Se

+

Note thatl, 9f/dr anddn/du are all perpendicular to and thus they lie in the same plane, and the
last term in the above equation is zero. Moreover, we notentiiéh/ouxdL/d7) + - (AL/dux df/o7)
equalsd/ar[h- (87/oux L)] + 8/0uh - (L x 7/87)]. Doing the “surface” integrals overandu in the
two terms and noting that the first term vanishes because of the periodicitarmﬂfin 7 and in the
second term, tha = 0 term vanishes, we finally get

B 1 B
SB:iSZei f dr f du[f - (9R/du x 9R/dT) — f d?x f drL - (A x 8R/o7) (2.18)
i 0 0 0

Putting the above expression in Eqn 2.16 and integrating ouk theld, we finally get the result
(quantum O(3) NkrM) as shown in Equation 2.4.
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2.1.4 Topological Nature of the Berry Phase Term

Let us first evaluate the Berry phase teBg = iS }; .A; in d = 1. Let us examine the contribution

of two neighbouring sites,andi + 1 to Sg. The weights; will have opposite signs on the two sites,

so the net contribution is the féierence of these areas. We further assume that the order parameter
field A only varies slightly betweenandi + 1. Then we can write

Aip — A = afﬂ drfi(x) - (9A(x)/9% x OR(x)/7) (2.19)
0

The summation irBg can be carried out over pairs of sites. All terms are of the same sign and the
summation can thus be easily converted into an integral. We then get

Sg

i(an)[% f dx fo Bdrﬁ-(@ﬁ/axxaﬁ/ar)]
i(27S)Q (2.20)

The termQ is called the “Pontryagin index”, is topological in nature and can only take integer values
(see Polyakov’'s book [19]). In order for the WM action to be finite in the infinite volume limit, we
have to consider the boundary condition:

N(X) — fo; X — oo (2.21)

wherex is now a point in the X, 7) plane. Therefore, since infinity can be viewed as one point, our
X-space is topologically a sphere. Each configuratiof) defines a map of such a spherexispace

onto the sphere?’= 1, which givesS? — S2. It is known that such maps can be classified by integers

Q which define the number of times the second sphere is covered by the first one. The simplest
example of the&)-map is described by the formulas [19]:

6=6; ¢=Q¢p ( mod 2) (2.22)

where ¢, ¢) and @, ¢) are the polar and azimuthal angles of the first and second spBeted con-
figurations are called skyrmions. @ = 1 configuration is shown in Fig 2.4. Thus the Berry phase in
d = 1isSg = i27S QwhereQ is the skyrmion number of the spin configuration.

What happens in higher dimensions ed).= 2? There, one has to calculate the Berry phase
by summing over a given spin configuration kY, r) space. It is easy to see that the Berry phase
vanishes for angmoothfield configuration oh20]. We calculateQ for each configuration afi in
the x — 7 plane and then sum up over all tike- 7 planes [call that objedQy.(y) whereyeZ and
refers to they coordinate]. Now, by assumption,is continuous, and hencd@, - (y) is a continuous
integer-valued function. Thu®y.(y) is a constant! ThusSg = i(2rS)Q X, (-1) which vanishes in
the continuum limit. This argument holds for any spatial dimension greater than one.
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Time
Hedgehog

Skyrmion

(a) (b)

Figure 2.4: (a)Real-space representation of a skyrmion in &l fieldi. Spins in the center are
pointing down whereas spins on the boundaries point up. The charge of this skyrnfos i&.

Also shown in (b)The skyrmion number is suddenly changed at a hedgehog event in space time. The
Real-space representation of a hedgehog event (the two spin configurations repfésemi dime

slices) is shown. A hedgehog corresponds to a singular configuratinrabbrie space-time point
where the skyrmion number changes. All spins are pointing outwards of a hedgehog. Figures taken
from F. Alet et al., Physica A 369 (2006) 122-142.

However, if one allows for singular configurations in the fialdhien the skyrmion number can
change [20] and the Berry phase term might become important. For exampl, o, then’
field livesin the (x,y, 7) space, and the natural topological defects in this situation are “hedgehogs”
configurations. A hedgehog is a configuration of theeCtors, which is singular at one space-time
point but smooth everywhere else (see Fig 2.4(b)). The skyrmion nuphtleanges when one crosses
the singularity. What is the role of these topological defects? In #el Nhase, hedgehogs are very
costly energetically and are therefore absent. Deep within a paramagnet, the spins fluctuate essentiall
independent of each other. In this case, the hedgehogs are indeed present. We will see in the ne»
chapter that the proliferation of these hedgehogs not only destroyé&bkegiase, but also break the
lattice symmetry when they condense [20].

2.2 CP formulation of the theory

It would be helpful to rewrite the above NtM field theory in the so-called CHormulation (see
review by Sachdev [21] or Auerbach [9]) to analyze the novel physics of the quantum critical point
between the Bel and the VBS states, as it turns out to be the natural description of the critical
point. The Neel order parametertfansforms as a vector and hence, is a spin 1 object. Suppose we
decompose the field into two complex fieldsz, z,):

A =200z (@f=1,1) (2.23)

whered are the usual Pauli matrices. The constrairit = 1 translates t{z;|* + |z |? = 1. zis nothing
but a spinon (spin/2 object). Thus the physicalé¢l field has been written in terms of these spinons,
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which are fractionalized degrees of freedom. Remarkably, it turns out that these are the natural vari-
ables to describe the the critical point of thée\tVBS transition for spin/2 moments on the square
lattice. It will turn out that the theory is that of twahargedcomplex fieldsz, z; interacting with a
singleU(1) gauge field. It is easy to understand where the gauge field comes from. The physical field
A has two independent components (remember the unit length constraint). However, the description
is terms ofz has three independent components instead (becaisg efz)|* = 1). This extra degree

of freedom corresponds to the gauge freedom in the description. Thel¢tpbauge freedom is
simply z, — z, exp(¢) andz, — z: exp(-i¢) which leaves the physical@¢l fieldri invariant. Also,
because of the above transformation,zfield is charged with respect to th1) gauge fieldZ andz*

are oppositely charged), while thebl fieldriis neutral. Now let us explicitly do the steps see all this.

Firstly, by definition (Egn 2.23), we have

Ny = ZFZi + ZIZT
n = i(zz -7Zz)
n, = zZz-2zz (2.24)
From this, we can easily verify that
1. . R .
200 - @u0) = 0,2)0.Z) +(2.0,2)(Z0,2) (2.25)

The localU (1) symmetry strongly reminds us of gauge theories. Suppose we invent a gauge potential
A, (areal field) which has the following transformation:

Zy — Zo €XP(9)
A — A+ 0,9 (2.26)

Then as is usual in gauge theories, we define the quadtity (0, — iA,). Then its transformation is
simple.

D/,tza = (a/t - IAu)Za - (Duztz) equ(ﬁ)
(Duz)” = (9. +1A.)Z, — (Duz) expl-i¢) (2.27)
which means thatl{,z,)*(D,z,) is invariant under the gauge transformation. Then we write the
gauge invariant quantity/4,n|* as ©,z)*(D,z.) and figure out théy,, by comparison. This gives

A, = —iz,0,Z,, which is real and satisfies the transformation property of the gauge field stated earlier.
Then, ignoring the Berry phase term, we may immediately write our earlier field theory as:

Z= f Z)ZZZ)A#D/lexp(—é f drdzx[Zl(aﬂ—iAﬂ)zlz—i/l(lzlz—l)] (2.28)

The fieldA, can be promoted to an independent degree of freedom in the path integral above [9] be-
cause it appears only till quadratic order in the action and the Euler-Lagrange eoﬁ%&oﬁ gives
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back the correct definition d&,.

What about the Berry phase? It can be shown that [9]

1. . "
En -(0,hxo,n) = 0,(2,0,z,) - 0,(Z,0,2,)
= 0,A - 0,A, (2.29)

Now the skyrmion numbe® at any instant of (imaginary) time is

27Q = f d2X(OxAy — FyA) (2.30)

The RHS is nothing but the flux of the gauge field at that instant of time. Now, we have already seen
that Q changes due to hedgehog configurations of teelNield. Also, taking the usual definition of

B = ¥x A, we see that the above implies tivatB # 0 at the cores of the hedgehogs. Thus monopoles

of the gauge theory which change the flux b%r are identified as the hedgehog configurations in
the usual Nel field picture. The Berry phase term naturally forces us to consider configurations with
monopoles (the total charge of the monopoles should be zero to respect periodicity) in our partition
function and hence the gauge fiéidlis to be treated as a compabtl) gauge field, i.e A, is an angle
defined modulo 2 instead of being an ordinary number [There are no monopoles for non-compact
A, e.g. in the usual electrodynamics]. We will now do a careful analysis with the Berry phase term
present and see what is the actual path integrat for

2.2.1 Analysis with the Berry Phase present

The main problem in calculating the Berry phase is that one has to keep track of the areas enclosed L
the curves traced out by all the spins on the unit sphere (remember the Berry phasésejualsi;)

. This seems complicated because the area is a global object defined by the whole curve, and cann
be obviously associated with a local portion of the curve. One convenient way to proceed is the fol-
lowing.

We discretize imaginary time, choose a fixed arbitrary pognr the unit sphere, and write the
area of the closed loop as a sum of the areas of a large number of spherical triangles. Note the
each triangle is associated with a local portion of the cunft®. "We now need an expression for
ANy, Ny, N3), defined as half the area of the spherical triangle with vertigg® andns [think of n;
asnj(r), iy asnj(r + dr) andri; asn, for concreteness, wherg is identified with the north pole of
the sphere]. The required expression is (see Sachdev and Park [22]):
1+ 0y -Np+Ny-Ng+ Nz Ny +ihg - (A X Ng)

[2(1 + Ay - N)(L + Py - Az)(1 + Az - Ny)]H2

expiA) = (2.31)

The above formula looks very complicated. However, a far simpler expression [22] is obtained after
transforming to the spinor variables. Let us define a varighjeassociated with each pair of vertices
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Aij = arglz, zj.] (2.32)

[We are thinking of 2- 1 dimensions as a three dimensional lattice now.] Noticehals a compact

field defined modulo2 Moreover, under the gauge transformatin- z, exp(¢), we haveA;; —

Aij —¢i+¢;, thusA;; behaves like a compatk(1) gauge field (also note that; = —A;;). How is this
compact field related to our earlier definition of the gauge fi&gld A, is just the naive continuum
limit of A;;. The classical result for the half-area of the spherical triangle can be written in the
following simple form in terms of the preseuit(1) gauge variables:

ANy, Mg, Ng) = Arz + Az + Ass (2.33)

Note that the total area is invariant under the gauge transformatic; aind that the half-area is
ambiguous modulos2(as it should be). We can finally write down a useful expressionAfn(7)].
We assume that imaginary time is discretized into timeseparated by intervalsr. Also, we denote
by j + 7 the site at timer; + Ar, and defineA; ., = Aj;. Then

ADE)] = > Ag (2.34)
j

Note that this expression is a gauge-invariant function ofuife) gauge field. We are now ready
to write down the field theory with the Berry phase properly taken into account (see Sachdev’s re-
view [21]).

(i) Discretize space-time into a cubic lattice of poifts

(i) On each space-time point we represent the quantum spin operépby §j = ¢;SN; where
€j is the staggering factor on the square lattice as before. In the quantum fluctuathgtate, we
can reasonably expegf fo be a slowly varying function of.

(iii) Associated with eaclm;; define a spinog;, using Eq 2.23.

(iv) With each link of the cubic lattice, we use Eq 2.32 to associate withAf,a= A; ... Here
u = XY, 7 extends over the 3 space-time directions.
Using this notation, the field theory (written on the lattice) becomes:

> | | | | 1o, . .
Z= | deja . 6(|Zja|2 _ 1) exp[é (E) n-nj+ 12S E éjﬂj-,) (235)
Ja J ij f

The above expression can be made to look more like a conventional lattice gauge theory [21]by
writing it in the following manner.

2 dA 1 . ,
Z= H fo o |'] f dz, ]—[ 5(1Ziol - 1) exp[a Z(z;ae—m,uzjw +cC)+i2S Z e,-A,-T]z.ses)
ju j ju i

ja
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Note that we have introduced a new figdg,, on each link of the cubic lattice, which is integrated
over. Like Aj,, this is also a compadi (1) gauge field because all terms in the action above are
invariant under an analogous gauge transformatioA;af The very close relationship betwegh
and Z may be seen by explicitly integrating over thAg, in the previous expression and using the
relation

1+ -A\Y2
;) g7 (2.37)

ZoZjo = ( 5
The integrals oveA,, can be done exactly because the integrand factorizes into terms on each link
that depend only on a single,,. The Berry phase term obtained after the integrations is exactly the
same as ilZ. Also, the integrand contains a real action that is solely a sum over functiongipbn
nearest neighbour links: if this function is simplyn- fj/g, but the corresponding function obtained
from Z is more complicated (it involves the logarithm of a Bessel function), and has distinct forms
on spacial and temporal links. However, these details shouldffexitdahe universal properties and
we will work with the formZ for convenience. We note two crucial ingredients in the present theory
which would be crucial in what follows: firstly thg(1) gauge field is compact and secondly, our
model contains a Berry phase term which can be interpreted,as,derm associated with a current
Jju = 2S¢0,,, of static charges2S on each site.

The properties ofZ are quite evident for smadj [21]. Here one can ignore the Berry phase term
and the ground state should havéeellorder, with the low-lying excitations being linearly dispersing
spin waves. How does one see it in this gauge theory picture? The Neel phase corresponds to tf
“Higgs Phasé of the gauge theory as given in Eqn 2.35.

The matter fieldz, acquires a finite expectation value which automatically gives a mass to the
gauge photon. However, crucially there are two complex fietds,( in the problem and only one
gets a finite mass by “higgsing” thé(1) gauge fieldd,. The other complex field is still gapless and
produces a doublet of spin-waves in théelfield picture. Let us illustrate this by saying that the
Néel vector picks up theaxis for ordering for notational simplicity. This corresponds to saying that
(zy = 1 and(z;) = 0 [note thatz; andz cannot be simultaneously be equal to one because of the
constrainiz|* + |z,|> = 1] . Then thez field higgses the gauge field and itself gets gapped. However,
the z, field is still massless and generates two linearly dispersing modes. These are nothing but the
deformations of the, and then, fields because these are lineagjr(see Eqn 2.24). We will briefly
describe the Higgs mechanism below.

When a continuous symmetry is spontaneously broken, there are gapless excitations called Golc
stone modes connecting the possible vacua to each other. However, the situatitereésdin the
presence of gauge fields. The Goldstone modes and the gauge fields conspire to create massive ¢
citations, destroying both the massless photon mode of the gauge field and the massless Goldstol
mode in the process [23]. Thigfect is what leads to the Meissnefext in a superconductor where
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an external magnetic field can penetrate the superconductor only upto a certain characteristic length
known as the London penetration depth.

For clarity, consider a charged fiefdcoupled to an abelian gauge fiedd, where the action is
given by

2
S = (3, +1A)P (9, — A +18"d + U(d*B)? + er (2.38)

where the minimum o¥/(¢) = r¢*¢ + u(¢*¢)? + [1—3 wherer < 0,u > 0 occurs for a non-zero value of
¢*¢ (-r/2u), and the action is invariant under the local transformation

¢ — explif)e

A — A +0,0
First, consider the case without the gauge fields. Also, let us make the choice that tipectidtts
in the real direction. Thus, we haye= ¢; + i¢, whereg; = vV-r/2u + ¢,(X) and(¢;) = (¢2) = 0.
Putting this in the Lagrangian, we see that there is#%) ferm, showing thap, is the Goldstone
mode associated with thé(1) symmetry breaking (however, te excitations are massive).

Now, we put in the gauge fields and do the same exercise. Then to quadratic order, we get the
following result

2

, .. IrB ,
S = (0,61)(0,07) + | ;u” + 2Ir|(¢;)? + higher order (2.39)

whereB, = A, — V2u/[r[d,¢,. The net result is that the gauge field has acquired a mass ile

has disappeared fro®. We started with a system describing a charged scalar field (two states) and a
massless gauge field with two polarization states. After spontaneous symmetry breaking of the mat-
ter field, we are left with a massive vector fidbJ with three polarizations and one real scalar field,
which leaves the correct number of degrees of freedom.

The situation is much more complicated for laggerhere one gets a paramagnetic phase due to
strong quantum fluctuations. Here the Berry phase term in the action plays a crucial role and cannot
be ignored. We will study the paramagnetic phase in the next chapter and see how to deal with the
Berry phase.



Chapter 3

Quantum Paramagnetic Phase

What about the paramagnetic state of the generalized antiferromagnetic Heisenberg Hamiltonian
where spin rotation symmetry is restored. If we ignore the Berry phase terms in the field theory
developed in the previous chapter, we would gebatinary paramagnet with a non-degenerate dis-
ordered ground state with a finite energy gap to other states. However, a theorem recently proven b
Hastings [24] for generalized Heisenberg models with periodic boundary conditions shows that the
above mentioned plain paramagnet does not exisDira2T = 0. Barring exotic spin liquid states
mentioned before, the ground state would then have to be degenerate, with a gap to the excited state
and would then break some other symmetry in the thermodynamic limit. In this chapter, we carefully
take the Berry phase terms in account and show how a quantum paramagnet with the correct symm
try breaking arises in the largglimit.

3.1 Mapping to a Height Model

For largeg, we can perform the analog of a “high-temperature” expansion [2Z] Egn 2.35). We
expand the integrand in powers ofdgland perform the integral ovexy, term-by-term. The result is
then an &ective theory for the compatt(1) gauge fieldA;, alone. An explicit expression for the
effective action of this theory can be obtained in powers fgf. 1his has the structure that higher
powers of Jg yield terms dependent upon gauge-invaridiit) fluxes on loops of all sizes residing
on the links of the cubic lattice. For largg it is suficient to retain only the simplest such term on
elementary square plaquettes, yielding the following partition function:

~ 7 dA; 1 -
Za= 1—[ fo 7"‘ exp(g ZD: COSEuman A, +i2S Z €A (3.1)
ju J

wheree monotonically increases witf, in facte? ~ g* (e, is the totally antisymmetric tensor in
three space-time dimensions). Here the cosine term represents the conventional Maxwell action fo
a compactU(1) gauge theory: it is the simplest local term consistent with the gauge symmetry of
A, and which is periodic undek;, — A, + 2r. We would now perform a series of transformations

27
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TN KX
X-1X  X-1X
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Figure 3.1: The non-zero values a‘jf# shown in the figure. The circles are the sites of the direct
lattice, while the crosses are the sites of the dual lattice. a hare all zero fou = 7, x while the
only non-zero values cﬁ?y are shown above. Note that the flux satisfies Eqn 3.3.

(see Vojta and Sachdev [25]) on Egn 3.1 to bring it to a much more convenient form from which the
properties of the paramagnet will be deduced. First the cosine term in Eqn 3.1 is replaced by a Villain
sum over periodic Gaussians:

ZA _ az: 1—[ f dAJ/l eXp( %; ajgﬂ +i ; Elu,,/laj#Aij/l +i2S ZJ: EjAj‘r (32)
JH P

wherea;, is an integer-valued vector field on the links on the dual cubic lattice (let us identify each
dual lattice point with the direct lattice site closest to it on its top-right corner). Now, let us choose a
'background’a;, = a?# flux which satisfies the following relation:

€uwva Ava(j),l =€ 6/17 (33)

Any integer valued solution of Eqn 3.3 is an acceptable choica(jiorand a particularly con-
venient choice [21, 25] is shown in Fig 3.1. Then we can write Egn 3.2 in a more symmetric form
as

(3.4)

Za= Z 1—[ f dAJ# exp( ; ajzﬂ +1i ZD: Eﬂvﬂaj#AvAj/l +1i2S Z E#Ma?”AVAM

Aju

Define another integer-valued vector fielg Which satisfies;, = a;, +2S a?#. Then, Eqn 3.4 can
be rewritten as

zkznf

QAjy

[ > @ -2SE ) +i E,Ma,-#AVAM] (3.5)
Jau o

Now the integration ovef, can be trivially performed, and it yields the constraipfa,a;, = 0. We
solve this constraint by writing;; as the gradient of an integer-valued ‘height’ fieldvhich lives on
the sites of the dual lattice:

Zn=) exp(—% D (auhy 28 a?ﬂ)z) (3.6)
hj Jom
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Figure 3.2: The new field¥; andZ;, introduced in Eqn 3.7. Only the = T components ofZ;, are
non-zero IZj, = d,.€/8) and are shown in (b). The field; takes four diterent values on the four
sublattices of the dual lattice as shown in (a).

The above expression can be cast into a more illuminating form by splaﬁrigto a curl-free and a
divergence-free part and writing it in terms of new fixed fieldl$ and Z;, as follows:

&, = 0,Y+ €t Zia (3.7)

ju =

The values of the new fields are shown in Fig 3.2. Putting in the decomposition of Eqn 3.7 into Eqn
3.6, we get

Zn=) exp[—% D (auH ,-)2] (3.8)
Hj Ikt

where
Hj = h; — 2SY; (3.9)

is the new height variable. Notice thg;, has dropped out of the final expression. We have been able
to reduce the problem with the Berry phase term into a height model where the action is purely real.
From the above equation, we can easily get the following field theory:

z=[1[ 5

Qj,u j,,u d

1 .
exp{—ﬁ Z(e,uwlAvAj/l - 27TQ]/1)2 +147S Z yi AllQJ'll (310)
i i

To get Eqn 3.10 from Eqn 3.8, simply introduce an integer fMld = A,h; and introduce an addi-
tional field A;, to enforce the constrairt,,A,M;, = 0. Then we use Poisson Summation formula
Crrogn =y _t: dog(¢)e”™) to replace the integer fieltl;, by a real fields;,. Then the
variablesp;, can be integrated out to finally give Eqn 3.10.

The partition function written in the form of Equation 3.10 gives us a remarkable piece of physics.
A, Qj, is the magnetic monopole number at the dual lattice jsitehich is equivalent to a hedgehog
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core being located there as we saw earlier. But notice that the monopoles (or, hedgehogs) carry a
Berry phase o&*SYi, whereY takes four diterent values on the four sublattices of the dual square
lattice. Thus, in a phase where the hedgehogs get condensed, lattice symmetry can be broken because
of the Berry phase attached to them.

Now we analyze the height model given in Egn 3.8 to get the nature of the paramagnetic ground
state. Firstly,d-dimensional height models of the form considered here can be mapped-to a
dimensional lattice Coulomb Gas problem [22]. We elevate the height vatglfla Eqn 3.8) to
a continuous field by using the Poisson Summation formula, to get

Zh= ; I: ]T[ dH; exp[—% %}(AMH])Z — 2ri Z,: m(H; + 2syi)) (3.11)

Now the gaussian integrals ovdr can be easily performed to give the following result.
272 .. .
Zh= ; exp —= ; m;G(j — J)my — |4nszj: m;Y (3.12)
j P

whereG(r) is the lattice Green’s function satisfyingG(r) = 6,,. This is nothing but a plasma with

integer charges; interacting via Coulomb interactions, and the system being charge neutral. For

d = 2, ignoring the Berry phase term, the model has a finite-temperature phase transition from an
insulator to a conductor upon increasing the temperature. In fact, this is the famous KT transition in

d = 2. In the insulator phase, opposite charges are bound tightly to each other while in the conduc-
tor phase, the charges are free to move without pairing.dFer3, the attraction between opposite
charges is much weaker/flinstead of beindgn(r)) and the system is a conductor at any finite temper-
ature. In height models, the conductor phase is the smooth phase where the height is locked to some
particular integer value; while the insulator phase is the rough phase where the integer constraint on
the heights become unimportant and the surface becomes rough (being described by a pure Gaussian
theory). In the ® height model, the Coulomb Gas mapping implies that there is no roughening tran-
sition and the interface is always smooth. If there were no Berry phases present, the-hewglld

have locked to some integer value and the interface would have been smooth. Even when the Berry
phases are present, the interface remains smooth on the average despite the local corrugation in the
interface configuration introduced by thesets BY;. We will now show that any well-defined value

for the average heing(H j defined in Eqn 3.9) necessarily breaks lattice symmetrferl/2.

The argument runs as follows [21]. Call the four sublattices of the square Iqt%ixeY, Z.
Suppose we perform a 90otation about a direct lattice point on the square lattice, which makes
W—-2ZX-—-> WY - X, Z— Y. Then we would have naively thought that the heights transform
ashy — hz,hy - hw,hy — hy,hz — hy. However, there are flerent dfsets present at the four
different sublattice, as seen in Eq 3.9, which makes the above height transformation incorrect. The
reason is simple to see. As shown in Fig 3.3, the heighertince (for the total height, including the
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hw 1 hx—1/4 hy 4 hw—1/4
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Figure 3.3: The non-trivial transformation of thefield because of the presence oftdrent dfsets
on the diferent sublattices of the dual square lattice.

offset) transforms properly for bonds 1 and 2, but does not for bonds 3 and 4. For the héeght di
ences to transform correctly, we see thgttransforms tdy; — 1 as shown in Fig 3.3. Thus, because

of the diferent dfsets present, the transformatiorjg — h; — 1, hy — hyw, hy — hx, hz — hy under

W - Z X > WY - X,Z - Y. This impliesH — H — 1/4 under a 90rotation which means that

there is a four-fold symmetry breaking for a smooth height phase, a scenario consistent with Hastings
Theorem [24].

In gauge theory language, the VBS state corresponds toathiined phaseof the theory. This
can be understood in the following manner [26]. Consider the excitations of the quantum paramagnet.
Excitations are formed by breaking a valence bond, which leads to a three-fold degenerate state with
total spinS = 1, as shown in Fig 3.4(a). This broken bond can hop from site to site, leading to a
triplet quasiparticle excitation. The spin-1 excitation is composed of two sfdrsfiinons. Let us
now try to separate the two spinons, see Fig3.4(b). This causes a rearrangement of valence bond
along the "string” connecting the two spinons. These valence bonds form a line defect with respect to
the underlying VBS order (see Fig 3.4(b)) and the "string” connecting the spinons cost a finite energy
per unit length. This means that tie= 1/2 spinons are always bound together i&to= 1 exci-
tations and are hence confined in the VBS side. Thus, the ‘string tension’ of the confining potential
is provided by the spontaneous VBS order. We should note the dual role played by the monopole
configurations of the gauge field (hedgehogs). When they proliferate,&bkedder cannot survive.
At the same time their proliferation induces broken lattice symmetry.
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(@

Figure 3.4: (color online). (a) Picture of the boso8ie- 1 excitation in the quantum paramagnet. (b)
Fission of theS = 1 excitation into two spin A2 spinons. The spinons are "connected” by a string of
valence bonds (denoted by dashed ovals) which lieeakerbonds, this string costs a finite amount
of energy per unit length and leads to the confinement of the spinons.

3.2 VBS from proliferation of hedgehogs

After the rather abstract proof of the symmetry breaking in the VBS state, we look at the symmetry
breaking in the paramagnet from another point of view. In tleINohase, the monopole events
(hedgehogs in spin language) are suppressed at low energies. However, in the quantum paramagnet,
the space-time configurations of théé field must be riddled with monopoles. This can be formally
thought of by saying that the spinons interact with a compact gaugeAieldue to which there is

also a term in the Lagrangian which creates or destroys monopoles of the gauge field:

Lmp= D" A(0)([Vee]" + [V}]") (3.13)
n=1

where ¥, and v insert monopoles of strengtir 2nd—2r at the space-time point, ), respectively.

Then in the paramagnetic phase, we have a ‘condensation’ of the skyrmion number changing operator
v. Now, the non-trivial transformation of this operator under lattice symmetry operations (which are
due to the Berry phases) leads to broken lattice symmetry in the paramagnet -this may be identified
as VBS order (this argument is due to Sengtilal.[1]). Let us see how.

Firstly, the skyrmion number is a topological index and hence, is unchanged under$ld2l
rotations. Hence the skyrmion number changing operatisralso aS U(2) scalar. Likewise the VBS
order parameter is alsoU(2) scalar. We now consider thé&ect of lattice transformations on the
operator V. Underr/2 rotations in the counterclockwise direction about a direct lattice site, the Berry
phase associated with a skyrmion creation event changes hyr8xpEpecializing tcS = 1/2, we
have

Rep 1 Vi — v (3.14)

Now consider lattice translation operatiofig, corresponding to translations by one unit alogg
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directions along the lattice. Firstly,

Ty — —Nrg

T, >~ (3.15)

because of the staggering implicit in the definitiornofNow, the skyrmion numbe® is odd under

i - —A. ConsequentlyT,, converts V to v. Furthermore, due to theftérence in Berry phase factors

for monopoles centered on adjacent plaquettes on the direct lattice, there is a phase factor introduce
by the translation. Calculating it, we get:

Te:Vi = —iVig

Tyivl = +iviyg (3.16)

Thus a paramagnetic state with a uniform non-zero expectation vall]eb(ﬁaks&/z, Ty, Ty and can
be identified to VBS order.
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Chapter 4

Critical Theory

From the previous sections, we saw that fiecive field theory which captures both théél state
and the VBS state can be written in terms of spinons interacting with a cotdiyargauge theory in
the following manner:

2 dA 1 N .
Z= 1;[ j(; ?” l,:[ fdzja lT[ 8(1zjl* — 1) exp a;(z’f@e M2 q + C.C) + |282j: €A [(4.2)

For smallg, the Neel state is found and corresponds to the Higgs phase in this language, while for
largeg, we obtain a four-fold symmetry breaking VBS state which corresponds to the confined phase
of the gauge theory. Now, we turn to describe the novel physics at the critical point seperating the
Néel and the VBS states.

What is the expectation about the critical behaviour fromdlassicalLandau-Ginzburg-Wilson
(LGW) approach? Here, we need to identify the order parameter fields and construct a free energy a
an expansion in powers of the order parameter fields and gradients of those fields. There are two ord
parameter fields in the@e&l-VBS transition, the Bel fieldriand the VBS order parameter fielggs.

These two order parameters are apparently independent in thaetileoler parameter describes
broken spin rotation symmetry while the VBS order parameter describes broken lattice symmetry. A
LGW description of the competition between such two kinds of orders would then generically predict
either a first-order transition, or an intermediate region of coexistence where both orders simultane:
ously exist, or an intermediate region with neither order. A direct continuous transition between these
two broken symmetry phases would seem to require fine-tuning to a "multicritical” point. However,
as was shown in recent work [1], in the specific case okalN/BS transition on the square lattice,

the transitiorcan generically be continuousvithout any fine-tuning, due to subtle quantum interfer-
ence dects that invalidate the Landau analysis.

The problem with trying to write down a local Landau theory with theeNand the VBS order
parameter fields is the following. As we saw in the last chapter, the topological defects @e¢herN
der parameter (hedgehogs) have a non-trivial structure. When the defects proliferate, not only do the
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kill the long-range Neel order (which is expected) but also induce the broken symmetry of the VBS
phase. To construct a theory of a continuous transition between these two phases in terms of these
order parameters, it would be necessary to associate the VBS order parameter with the hedgehogs
of the Neel order parameter. This implies that the two order parameter fields will have long-ranged
"statistical” interactions with each other. Consequently, a local theory which includes only the two or-
der parameter fields but no other field is highly unlikely to describe the physics of the critical point [1].

Recent work by Senthil et al. [1] has proposed the following picture for tbeltb VBS =0
phase transition fo = 1/2 spins on the square lattice in 2d. First, contrary to the predictions of the
LGW theory, a generic continuous phase transition between &s $late and the VBS paramagnet
is indeed possible. The theory of such a quantum critical point is obtained simply by taking a naive
continuum limit of Z in Eq 4.1 while ignoring both the compactness of the gauge field and the
Berry phases. Remarkably, these complications of the lattice ni@dehich we saw from previous
chapters is essential for the complete theory, h&éexts which cancel each other out, bualy at the
critical point. Note that compactness on its own is a relevant perturbation which cannot be ignored
(as we will see shortly in a later example), i,.e., without Berry phases, the compact and non-compact
lattice CP! model have distinct critical theories. However, as noted by Senthil et altHé&]non-
compactCP' model has the same critical theory as the compg@Bt model withS = 1/2 Berry
phases Taking the naive continuum limit of in Eq 4.1 and softening the hard-constraintzp
we obtain the proposed theory for the confined critical point between #& Mate and the VBS
paramagnet fo = 1/2 [1]:

ZLdeconfined= f Dz,(r, 1) DA, 7) exp(— f d°rdr |(6u—iAﬂ)za|2+s420|2+§(|4|2)2+K(eMaVAA)Z])4-2)

We have also included included a kinetic term for the gauge field above, and one can imagine this to be
generated by integrating out large momenjm On its own,Z. describes the transition from a mag-
netically ordered phase witt), condensed & < s, to a disordered state with a gaplésgl) photon

ats > s, wheres; is the critical point oZ.. Thes < s, phase corresponds to thé&l phase ofZ (Eq

4.1) forg < g.. However, thes > s, phase does not obviously correspond togheg, bond ordered,

fully gapped, paramagnet @. This is repaired by accounting for the compactness of the gauge field
and the Berry phases: it is no longer possible to neglect them, while it is safe to dg sogat The
combinedeffects of compactness and Berry phases are therdéorgerously irrelevanatg = g [a
dangerously irrelevant perturbation is irrelevant at the critical point, but relevant in the ordered phase].

We will illustrate this conspiracy between the compactness of the gauge field and the Berry phases
at the critical point by considering a simpler problem of only one kind of matter fieilsteracting
with the gauge field instead of two kinds of fielgJs andz;,, following Ref [21].
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4.1 Simpler Problem: Lattice Model atN = 1

Consider theS = 1/2 antiferromagnet in the presence of a staggered magnetic field (say m the
direction). Such a field would clearly preferoverz; because, andn, would be close to zero. We
can then write the; field as expip;) to satisfy the unimodular constraint and then get the following
simplified theory:

z 1—[ dQJ 2”dA iZCOS@ AA')‘FEZCOS@ 9-—A')+iZSZE'A' 4.3)
s = eXp P s vAByvMja g 4 1Y) i1 : AL
NG J

We will now be concerned with the behaviour of the critical point of the above theory. However, rather
than attackZs directly, we will consider a sequence of simpler models, to illustrate how compactness
alone is a relevant perturbation in the theory butasitralizedby the Berry phases at the critical point

[a good discussion of all this is given in [21]].

4.1.1 Non-compactJ(1) gauge theory without Berry phase

Dropping both compactness and Berry phagsieduces to

dg;
Zs1= nfo Ejf dA;, exp
j —00

We will now show that the model is dual to th®3XY model, as was shown first by Dasgupta and
Halperin [27]. Firstly, we use the Villain form for the cosine term in the action and a Hubbard-
Stratonovich field for the term eXJp%e2 ZD(EWAVAM)Z). Thus

-g )
Z exp[7 Z JJZM + 1 Z \]jy(Ayej — Ajll)
Jju ¥ ot

—+00 e2 .
eXp( o2 (E,uv/lAvAj/l)z] - f de,J eXp(—EPi - IPijﬂwlA,,Aj,l) (4.5)

(4.4)

1 1
o2 Z(EWAAVAM)Z + 5 Z cos(.0 — Aj)
= I

1
eXp(é Z COS(A/JGJ - Aju)

whereJ;, is an integer-valued field arfg),, is real valued. Then we can wri€s; as
do; & g :
[] fZJ fdA,-,l > fdP,-,l expl-~ D> P - > DB 1D Julaul - A
i Jju b J# i
— i) EmPunA;l (4.6)
(]

In this form, the integrals ovet; andA,, can be performed easily and give the following constraints:

A#Jjﬂ =0
‘Jj,u = e,uv/lAij/l (47)
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We "solve” these constraints by writing:

Jiw = €ntbi
Pi. = Dbju— 2.9 (4.8)

in

whereb;, is an integer-valued field ang] is a real field. Then we have

Feo 5
Za= lT[ f_w de; bZl eXp(_E JZ(bju N Au¢j)2 B g Z(EMMAVbM)ZJ (4.9)
i H o

The "hard” integer constraint dmy,, can then be softened in the following manner,

+00 +00 e2
Za=|] f dg f dby, exp{—z D (0 — 8,05)° - g PGS HESSY cos(&bj#)}
J - - Ju ] i
(4.10)

wheret > 0. Now, b, = A,¢; + Pj,. ClearlyP;, is a massive field and can be integrated out by doing
a saddle point integration aboBf, = 0. Thus, we finally get

+00

Zs1= 1_[ d¢’j EXp(t Z COS(ZTAﬂ‘pJ')] (4.11)
j 0 NG

-
This is nothing but the B XY model, which can be equally written using the complex scaar
(¥ = exp(¢)), in the form

Za= f Dy(r, 7) exp(— f dzrdf(laﬂwlﬂslwl%%lwl“)) (4.12)

where the two phases af¢) # 0 corresponding to ferromagnetic ordering of the XY spins and
(yy = 0 corresponding to the paramagnetic state. Thus, the critical poi@t pfs in the D XY
universality class.

4.1.2 CompactU (1) gauge theory without Berry phase

Now we put the further complication of compactness into our theory. Thus we have

Z Z:HIZH%IZ’T dA;, exp lZcose 1A A-ﬂ)+}Zcos@ 0; — A (4.13)
s i 0 2 0 2r e2 = HyA=YEY g = H) U

We can repeat the manipulations of the last section here. Introduce two Villain forms for the
cosines and carrying out a similar analysis, we get the same form as Eqn 4.9 but willj, @ott¢;
being integer fields now. Again, softening the integer constraint, we get:

—+00 00 ez
Zo=]] f dg; f dby, exp{-E D oy, - 8,8))* - g D (Emnsbjp)? +1 ) cos(2by,) + ym Y coS(Zg))
v > o O o i
4.
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Again, we see tha;, is a massive field and can be integrated out. Then we get that

Zeo = lT[ [m do; exp[tJZ coS(2ZrA,p;) + ymzj: cos(2r¢,-)) (4.15)
H

Physically, this the the3 XY model placed in a magnetic field, which can again be written in terms
of y(= exp(¢)) as

Zs2= f Dy(r,7) exp(— f d’rdr (8,4 + syl® + glwl“ — YW + w*)) (4.16)

However, this model has no phase transitioX@s # O for all s. Thus, making the gauge field
compact is a strongly relevant perturbation in itself.

4.1.3 CompactU(1) gauge theory with Berry phase

Now we turn to the full theory with both compactness and Berry phases included.

do; 1 1
Zes = ) | fo ( “‘)( ) expl5 5 %}(ewAvAu—anaﬂ)%agcos@ﬂej—Am)

Qap Jat

+ 211 ) YaryQul (4.17)
j

We again use the trick on introducing a Villain form for the cosine term in the action (introduce integer
valued fieldsj, for it) and introduce a Hubbard-Stratonovich fi€lg for the expEs5 3 (€n18,Aj—
21Q,,)?]. Then, we can easily perform the sum over the integer valued f@JgsThis gives the fol-
lowing constraint:

P, — 2,Ya = By, (4.18)
whereB, is integer valued. Also, doing the integration ogegives
Audjy =0 (4.19)

, which can be solved by puttindj, = €,.,4,bj, whereb;, is an integer valued field. Putting these
two constraints into the action, we get

dA .
Lsz = Z f - EXp[—_ Z(Bm + 8,Y0)° i Z Bju(€vatsvAja)

Biju:bju

0 > Gty - Z(ewmvbu)Aj,,] (4.20)
Jom jou

Integrating outA;,, we get the constrairy,,,A,bj, = €,.4,Bj,. We can solve this by putting;, =
bj. + Axa Wherey, is a integer field. Thus, we get

€
Zs3 = Z exp[_z ;(blﬂ + A,u(Xa + ya))z - g %(EﬂMAVbM)Z (421)

Djusxa
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We then relax the integer constraintloj) andy, and get

Zss = f Dby, Dya exp[—— Z(b,# + Bu(xa+ V)P - 2 Z(eﬂmmb,ﬂ) + tZ cos(Zb;,)

+ Z Z A COS(2Nya)] (4.22)

Then we do the following shifts in the fields:

~

Xa = Xat+Ya
By = b+ uka (4.23)

Then, clearlyf),-ﬂ is a massive field and we can integrate it out by doing a saddle point integration
aboutBj# = 0. Doing this, we get the following result

Lsa = f Dya exp[ Z COS(Z A, Xa) + Z Z AnCOS(2N(ya — Ya)) (4.24)
o

Thus the model reduces to th® XY model with various n-fold anisotropies of strengths Now,

the shift byY, leads to rapid spacial oscillations of these anisotropy terms, which do not survive the

continuum limit unless ®0 (mod 4). Thus, the leading anisotropy is atn

Hence, the critical properties of the model are that of theX¥ model with a four-fold anisotropy
termA,.

Zss= f Dy(r, 7) exp(‘ f d’rdz(|0,u1” + slyl” + %w — Ay + ™) (4.25)

It is known from previous work [28] that th&, perturbation is irrelevant at thed3XY critical point.
Thus, the universality class of the critical point of the full theory is the same as that of a theory where
both compactness and Berry phases are neglected.

4.2 N = 2critical point

What happens in the case Nf = 2 which is relevant for us here? Consider a general2et—?

model of anN-component complex field that is coupled to a compatt(1) gauge field with the

same Haldane Berry phases as inlthe 2 case of interest. We already saw above tht atl, the

model displays a continuous transition between a Higgs phase and a paramagnetic VBS phase with
confined spinons. Also, the instanton events are irrelevant at the critical point due to the quadrupling
caused by the Berry phases. Now consider the case wherdarge. The scaling dimension of the
g-monopole operator was computed by Murthy and Sachdev [29] and their results give a dimension
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oc N. For largeN this is much larger tha® = 3, and hence thg = 4 monopoles are strongly irrel-
evant for largeN. (However, unlike theN = 1 case, the single monopole operator is irrelevant even
without the Berry phases for lard¢) Thus, by continuity, one expects tge= 4 monopole events to
be irrelevant for théN = 2 case too.

From the above considerations, we arrive at the following picture of the critical point. The two
phases of the theory are th&#l and the VBS phase. In theeBl phase, the monopoles (or, hedge-
hogs) are energetically costly and are gapped. In the gauge theory language, this phase correspor
to the Higgs phase. On the VBS side, the monopoles proliferate and destrog¢hemder. Also,
because of the Berry phase they carry, the VBS state breaks lattice symmetry. This phase corre
sponds to the confined phase of the gauge theory and here the presence of monopoles is essen
both to explain the symmetry breaking of the state and the confinement 8fth#&/2 spinons into
spin 1 excitations. Importantly, the Berry phases carried by the monopoleasedi on the four
sublattices of the square lattice, which leads to destructive interference betvifeeenditunneling
paths for single monopoles. This interferen¢ieetively kills all monopole events unless they are
guadrupled, corresponding to a skyrmion number changetafwe have already seen this happen
in theN = 1 model). This quadrupling makes the monopole tunneling events irrelevant at the criti-
cal point (more precisely, it can be shown explicitly fr= 1 and largeN andshouldhold forN = 2).

The irrelevance of the monopole tunnelings implies that the hedgehogs are absent at low energie
at the QCP. This leads to the conservation of the skyrmion nuQlzrthe critical point because the
hedgehogs, responsible for changing the skyrmion number, are absent at low energies at the critic:
point. Thisemergent conservatiorof

1
Q= Efdzr(ﬁ-axﬁxayﬁ)

provides a precise notion deconfinementat the QCP [26]. In gauge theory language, because of
the irrelevance of the monopole events, the gaugeﬁld?«(axAy —dyAy) is conserved, and the gauge
theory can be thought to be deconfined for all low-energy properties.

It is useful to compare the behaviour of thée®-VBS QCP with the B O(3) critical point which
would have been obtained if we had ignored the Berry phases in the problem through the usual map
ping of ad dimensional quantum system to sodte 1 dimensional classical system. It is known [30]
that there is a finite density of "free” hedgehogs atiEhe 3 O(3) critical point. Contrast the critical
behaviour of the hedgehogs with a well known and familiar example: vortices inDh¢Y2model
which exhibits the Kosterlitz-Thouless (KT) transition. Imagine we are examining a model with a
short-distance momentum ciitoA. Let the mean density of vortices pg and a dimensionless mea-
sure of this iso,A~2. Now we perform an RG transformation, integrating out tightly bound dipoles
of vortices, and gradually reduce the valueAofit is known that at the KT critical point the vortex
fugacity ultimately flows to zero [31], i.e., as we sca@ldéo smaller values, the dimensionless vor-
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tex density,o,A~2 ultimately scales to zero. This is the precise form of the statement that there are
no free vortices at the KT critical point. However, the behaviour of the density of hedgehogs at the
D = 3 O(3) critical point is dramatically dierent.p,A~3 remains a finite number [30] of order unity
even after RG scaling to the longest length scales. On the other hand, the deconfined @@Phas —
flowing to zero as the hedgehogs become irrelevant at the QCP.

4.3 Consequences of deconfined QCP

e Since the critical theory (see Eq 4.2) is isotropic in spacetimd (@m), we immediately get
that the dynamical critical exponent 1 for the deconfined QCR(~ &9).

e The diference between this transition and the Heisenberg transitioliis 3nost clearly
brought out by comparing the anamolous dimension of téelMrdern in both the cases.
For the Heisenberg transition, the valuenof 0.033. However, for the deconfined QCP, the
value ofy is significantly larger and is found to be~ 0.65 numerically [32]. In Ref [32],
both the non-compadi (1) theory interacting with charged spinons (Eq 4.2) and the Heisen-
berg model with suppression tfee hedgehogs were studied numerically. In both the models,
a continuous phase transition was obtained and the critical exponents agreed reasonably well
with each other, after suitable identification of observables in the spin language to the observ-
ables in the gauge theory. Because of the conservation of the skyrmion n@Qrabé#hre critical
point, we immediately know that the scaling dimension of the gauge Aigid —1. Thus, the
spinons interact with a potenti®(R) ~ 1/R at large distanc&®, which implies that they are
not confined at the critical point and "emerge” as good degrees of freedom. At the tree level,
treating the spinons as free, the two-pantorrelator will decay at the critical point as

Z.()2:(0)) ~ ﬁ (4.26)

whereD = 3 is the dimension of space-time. In the same approximation, we then obtain the
correlations for the Bel order parameter to be

(A - RO ~ (V2O ~ 55 (4.27)

Identifying the right hand side of the above equation with®-2*?, we obtainy = 1. So,
already at the Gaussian level, the deconfined critical point has a large valuRef. It is
obviously changed because of the ignored interactions and Monte-Carlo simulations [32] show
thatn ~ 0.65.

e The conservation of the skyrmion numtigalso fixes the scaling dimension of the flux density
(or Néel skyrmion density:{dx1xdyN) in terms of the spin variables) operatige= (0xA;—0yAy).
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Figure 4.1: Schematic RG flows for tise= 1/2 square lattice quantum antiferromagnet. The theory
Zdeconfinedin EQn 4.2 describes only the ling, = 0, it is thus a theory for the phase transition
between the Bel state and th&J(1) spin liquid with a gapless ‘photon’ state. However, the lattice
antiferromagnet always has a non-zero bare value of the monopole fugabegause the gauge field
is compact. As discussed, thg perturbation is irrelevant & = g.. However, theg — co U(1) spin
liquid fixed point is unstable td,, and the paramagnet is therefore a gapped VBS paramagnet.

At criticality, this conservation lae implies that the flux-flux correlat®(R)fy(0)) ~ R™* at
long distances.

e The presence of the dangerously irrelevant perturbation which we denaigetbg bare monopole
fugacity (more precisely, the quadruple-hedgehog fugacity), implies that there are two distinct
length scales which diverge [1, 26] as we approach the critical point from the VBS side. This
may be understood in the following manner. We look at the schematic RG flow forébae N
VBS quantum phase transition in Fig 4.1. We can identify four fixed points in the flow diagram-
the Neel fixed point, théJ (1) spin liquid fixed point, the Deconfined QCP and the VBS fixed
point. WhenJ, is set to zero by hand, i.e., the monopoles are suppressed, we get the the-
ory Zgeconfined (EQN 4.2). As we commented earlier, the paramagnetic phase of this theory
does not break lattice symmetry and has a ‘photon’ mode because of the deconfined nature o
the gauge field. Because of the presence of photons, the flux-flux correlators of this phase,
(fo(R) fo(0)) ~ R~3 for largeR. This power law decay of the flux correlator is absent in an or-
dinary paramagnet. This phase corresponds t&Jitig spin liquid. This explains the RG flow
for the14 = O line. Also, because tHg(1) spin liquid is unstable to the insertion of monopoles,
the fixed point is unstable in thi, direction. By continuity, any flow line starting wittp > g
and, # 0 will initially flow towards theU (1) spin liquid fixed point, and only later will turn
and flow to the ultimate VBS fixed point. Thus the initial flow away from the critical fixed point
is not towards the stable paramagnet but towards the undigh)espin liquid state. RG flows
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Figure 4.2: Structure of correlations on approaching the critical point from the VBS side. Two diverg-
ing length scales; and and a much longer lengthscélgs, are present. As usual, for length sceRes
shorter thar¥, quantum critical (Q.C.) correlations are observed-e.g. spin-spin correlators are power
law and flux-flux correlators fall 6 as~ R™*. At intermediate length scales< R < &ygs, Spin
correlators are exponentially decaying while flux-flux correlators take on the free photor ferfn

At the longest length scales, only VBS order is present.

with this structure have the general consequence of having two distinct diverging length or time
scales (or equivalently two vanishing energy scales). Consider the paramagnetic side close to
the transition (see Fig 4.2).

First there is the spin correlation lengthwvhose divergence is described B¥ieconfineda At this
scale there is a crossover from the critical fixed point to the unstable paramadiE}ispin
liquid fixed point which has the free photon. However the instability of this spin liquid fixed
point to VBS order and confinement occurs at a much larger ggakewhich diverges as a
power ofé. Thus, on approaching the critical point from the VBS side, for length séadest,

we get quantum critical correlations as usual, where for example the spin-spin correlators show
power law decay, while the flux-flux correlations have B¢ form described above. At in-
termediate length scale$, <« R < &,ps, the spin-spin correlations fallfioexponentially, but
the flux-flux density correlators are power law but now decalg@swhich is characteristic of
flux correlators in the presence of photons. Finally at the longest length §¢aes R, VBS
order is established and the photon mode is destroyed.

How is &y gs related taé ? On scaling grounds, we would expect that

ves ~ EF(148%7") (4.28)

wheref is a scaling function and-3a is the RG eigenvalue of;. Becausel, is assumed to be
irrelevant at the critical point, therefore> 3 (D = 2+ 1). For length scale$ < R < &ygs, We
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can regard the VBS phase A¥ ordered injy s, though with a weak four-fold anisotropiy.
Hence, the low energy variation of the ph#@sef the VBS order parametr, gs ~ || exp(o)
is described by the energy [1]

E@) = f dzx(gmeﬁ—hcos@) (4.29)

whereK and:l, « 1, are renormalized parameters on the scale of the correlation l&nkjtbw,

we can easily estimate the length scale beyond which the anisotropy term would dominate
over the gradient term in Eq 4.29. Consider producing a slow twist i firedd of the form

0= ’—zfcos(’zr—f) where the phase afy gs twists fromn/2 atx = 0 to 0 atx = L. Then the length

L beyond which the energy cost due to the anisotropy term dominates over the gradient term
scales asyK /44, which implies thatygs ~ 4, "%. This requires thaf (x) ~ x /2 immediately

giving us

Evps ~ £47D2 (4.30)

Thuséy s grows more rapidly tha# as the quantum critical point is approached from the VBS
side [1, 26].
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Chapter 5

Discussion

In this thesis, we discussed at length the physics of the recently proposed "deconfined critical point” [1
The deconfined critical point has an emergent topological conservation law which makes the use o
the terminology "deconfined” precise for such critical points. Moreover, the critical theory is most
naturally expressed in terms of fractionalized degrees of freedom. The order parameter fields charac
terizing the phases on either side of the critical point emerge as composites of the fractionalized fields
The particular example we studied was theeNVBS quantum phase transition 8= 1/2 moments

on a &l square lattice. These type of critical points clearly violate the standard LGW paradigm,
because the order parameters are not directly related to the critical modes. We also found that the:
QCP’s have large anomalous dimensions for the order parameter fields, unlike the usual critical point:
where the anomalous dimension is typically small. There may be other such examples of deconfines
QCP’s in strongly correlated electron systems, which might go some way in explaining various ex-
perimental puzzles associated with such systems. For example, it should be interesting to see wheth
a similar scenario exists for quantum critical points in doped Mott insulators, which might then lead
to a strongly non-Fermi liquid like behaviour in the quantum critical region of such critical points and
help understand the physics of the cuprate superconductors.

Since the deconfined critical point scenario has yet to receive experimental verification, it would
be very useful to constru¢by modelswhich can then be analyzed analytically or numerically to
check for the presence of such critical points. Continubus O transitions between two ordered
phases had been suggested before the theory of deconfined critical points was formulated in Ref [3:
34]. However, more detailed studies failed to confirm their existence. Instead, many studies have
pointed to a weakly first-order antiferromagnetic-VBS transition [35, 36, 37, 38, 39] or other scenarios
inconsistent with deconfined criticality [40]. However, recent quantum monte carlo studies on a
particular model by Sandvik [41] shows &Bl-VBS phase transition consistent with the deconfined
guantum critical point scenario. However, given the current status, more work needs to be done tc
establish the correctness of this novel idea.

a7
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