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Foreword

The cosmos has remained a favorite laboratory to test the laws of fundamental
physics - tests of the laws of gravity being the most well-known example. However,
over the last century we have progressed from merely charting the gross motion of
astrophysical objects, to observing more subtle phenomena associated with them.
Many of these phenomena depend crucially on the laws of particle physics. As a
result, astrophysics and particle physics are now connected more intimately than
ever, with a promise to yield valuable insights into the laws of Nature. Neutrinos,
being ubiquitous and weakly interacting, explore regions that are out of bounds to

other particles, and are an ideal candidate to probe this deep connection.

Our knowledge of neutrinos has seen a revolution of sorts in the last few decades,
thanks to a number of experiments on atmospheric, solar and terrestrial neutrinos.
These experiments lead us to believe that there are three flavors of massive neutrinos
Ve, v, and v, which are related to the mass eigenstates by the leptonic mixing
matrix. As a result, they can transform into each other through neutrino oscillations.
Precision measurement of neutrino masses and mixing parameters is an active area

of research and much progress is expected in the years to come.

The detection of astrophysical neutrinos, i.e. neutrinos from supernovae, active
galactic nuclei etc., is expected to lead to deep insights into astrophysical processes
and particle physics. Similarly, neutrinos from the all-pervading cosmological relic
neutrino background, which owing to their extremely low energies are practically
impossible to observe directly and only indirectly probed through measurements
of the cosmic microwave background radiation, will reveal facets of the large scale

structure and evolution of the Universe.

Vil



viii Foreword

Among astrophysical sources of neutrinos, supernovae stand out, literally by virtue
of their brilliance. During a supernova core-collapse, the star emits almost all of its
gravitational binding energy into neutrinos, over a duration of a few seconds. The
luminosity in neutrinos, for the duration of the burst, outshines the optical emission
from all other stars in the galaxy. These neutrinos, that arrive a few hours before the
explosion is seen optically, could serve as an early warning signal for astronomers. It
is expected that the high statistics neutrino signal from a future galactic supernova
will allow detailed studies of the emitted neutrinos. Such a study could reveal the
pattern of neutrino masses, necessary to reconstruct the neutrino mass matrix and its
possible underlying symmetries. The supernova neutrino signal may also allow us to
probe the leptonic mixing angle #,3 that determines the strength of the C'P violation
effects in neutrino oscillations. These are some of the frontier goals of the neutrino
physics community, and are believed to be an important step towards identifying
the nature of physics beyond the Standard Model. Moreover, one may observe time-
dependent signatures of turbulence and shock-wave propagation in the stellar matter
and thus monitor the explosion mechanism in real-time. These measurements are
likely to shed light on a problem that has eluded astrophysicists for a very long
time, i.e. how do supernovae explode? Supernova cores are also a probable site for
the synthesis of heavier nuclei, and neutrino observations could be useful to test
such a possibility. An interplay between supernova neutrinos and cosmology can be
investigated in the context of the diffuse neutrino background coming from all past
core-collapse supernovae in the Universe. This diffuse supernova neutrino signal is
sensitive to the supernova rate, closely related to the cosmic star formation rate

which is an essential probe of the evolution of galaxies and the Universe.

Supernova neutrinos have thus been a topic of interest for physicists and astrophysi-
cists alike. A satisfactory understanding of neutrino flavor conversion in supernovae
will be necessary to correctly predict and interpret many of these observations.
Previous studies on this subject took into account neutrino oscillations and their
resonant flavor conversions in the stellar mantle. It was assumed that neutrino-
neutrino interactions are too feeble to be important. However, recent studies indicate

that this assumption is not generally true. The neutrino density itself is very large
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near the supernova core, leading to extremely drastic effects. It is unavoidable
to include neutrino-neutrino interactions which give the neutrinos an additional
“effective mass” through elastic forward scattering off other neutrinos. The effective
mass is flavor-dependent, since it depends on the flavor of the other background
neutrinos. This gives rise to nonlinear neutrino oscillations, by coupling the flavor
histories of all neutrinos and antineutrinos. The nonlinear oscillations manifest
themselves in various ways, depending on the initial conditions, and have a rich
phenomenology. The study of neutrinos from these astrophysical sources therefore

demands careful consideration of these nonlinear effects.

In this thesis, we put forward a framework to study nonlinear flavor oscillations of
neutrinos. This concerns astrophysical neutrinos in general, but we concentrate
mainly on neutrinos from a galactic core-collapse supernova where these effects
are the most complicated and interesting. A large body of recent work has been
devoted to understanding the rich and complex behavior of the nonlinear neutrino
oscillations, near the supernova core. It is evident that these effects significantly
modify the spectra of emerging neutrinos. Building on the insights gained from these
recent studies, we develop a complete three-flavor framework, including the effects
of non-sphericity of the source, and predict the flavor evolution. This treatment is
largely independent of supernova phenomenology and applies equally well to dense
ensembles of neutrinos elsewhere, e.g. neutrinos in the early Universe or neutron
star mergers. We discuss phenomenological implications of nonlinear oscillations for
supernova neutrinos and show that these effects occurring deep inside the supernova
leave unmistakable signatures in the emerging neutrino spectra. We claim that it
could allow a determination of the pattern of neutrino masses even at vanishingly
small 03, thought to be a very challenging task otherwise. We show that the
nonlinear effects depend on the progenitor in the early stages of the explosion, and
speculate that this could identify the progenitor based on the observed neutrino
signal. The expected diffuse supernova neutrino flux is also shown to be modified
due to these effects. We are thus led to conclude that these results will contribute
towards a better understanding of neutrino masses and mixing, as well as supernova

astrophysics and cosmology.
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Chapter 1

Introduction

In this chapter, we outline our present understanding of neutrinos, stellar collapse
leading to a supernova (SN), and the nature of associated neutrino emission. We

then present a short review of SN neutrino phenomenology.

1.1 Neutrinos in a nutshell

There are three known neutrinos v., v, and v,, produced in association with the
corresponding charged leptons e, p and 7 respectively [1]. These are called “flavor
eigenstates”, because they are the eigenstates of the weak interactions. These aren’t
the same as the “mass eigenstates”, which are by definition the vacuum-propagation

eigenstates.

The mass eigenstates v, v and vz are related to the flavor eigenstates as

Ve 1%}
v | = Ul v , (1.1)
V- V3

where U is known as the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, or

simply the leptonic mixing matrix [2, 3]. This matrix is parameterized, following

1
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the Particle Data Group, as [1]
U= R23P13R13PJ{3312 ; (1.2)

where R;; is a Euler rotation matrix in the plane 7—j with an angle 6;; and I';3 =
Diag(1, 1, e?) encodes the C'P violating phase. The antineutrinos are similarly called
Ve, v, and v, and related to their mass eigenstates by U*. It is clear that neutrinos
produced as flavor eigenstates will propagate as a linear combination of the mass
eigenstates which will acquire non-trivial relative phases if the energy eigenvalues
are different. This naturally leads to a non-zero probability of the neutrino being
detected in another flavor at a later time. Let’s illustrate this idea using two neutrino
flavors. We start with a 1, at time ¢ = 0, which is written in terms of the mass

eigenstates and the mixing angle 6 as
|v(0)) = v = cosO|vy) + sinb|vy) . (1.3)

If the energy difference of the two mass eigenstates is AF, then the state (up to a

global phase) at time ¢ is given by

lv(t)) = cosf|vy) + e APl sin O|vsy) . (1.4)

Now, the probability of this state to be observed as a v, is |[{v|v(t))|?, which is
called the survival probability P.. of the initial state v.. For relativistic neutrinos

travelling in vacuum with momentum p we have

Am?

AE = /I +m —\/Ipl2 + mi ~ (15)

where Am? = m32 — m? is called the mass-squared difference. One therefore finds

Am?t
P, = 1 — sin? 26 sin? ( I}E ) (1.6)

This sinusoidal dependence of the flavor composition on time (sometimes rewritten

using the pathlength L = ct) is called “Neutrino Flavor Oscillations” [4].
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Neutrinos interact through the usual weak interactions which allow them to scatter
off e, p and n in the background matter. For neutrino oscillations, we mainly
consider elastic forward scattering which appear through interference with just one
power of the coupling G [5]. Almost all these contributions are flavor-blind, except
the charged scattering processes which mainly affect v, but not v, or v,, because of
the absence of u or 7 leptons in matter. The effective potential energy for v, due to
matter is thus v/2Gpn,(r), where n(r) is the local electron density of the medium.
For the 7, the potential has a relative minus sign. This extra contribution changes
the Hamiltonian, thus changing both the effective § and Am?. The matter density

can satisfy the condition
Am?/(2E) = £V2G pn.(r) (1.7)

and the energy eigenvalues can become effectively degenerate for either neutrinos
or antineutrinos, depending on the sign of Am?. This makes the effective mixing
angle approximately 7/4 causing large amplitude flavor conversions. This is called
a Mikheyev-Smirnov-Wolfenstein (MSW) resonance [5, 6]. This resonance is said
to adiabatic if n.(r) does not vary too fast along the neutrino trajectory at the

resonance, i.e

Am? sin? 2 1 -1
s (Lt} 0

7T 2F cos20 (r) dr

Tes

If v < 1 at the resonance then the resonance is said to be nonadiabatic. The Landau-
Zener level-crossing probability at the resonance, which measures the chance of one
instantaneous mass eigenstate converting to another due to the non-adiabaticity, is
given by [7, 8]

Py =e ™2, (1.9)

A similar potential V2G My (r) is also generated due to neutrinos and antineutrinos
in the background, as was first pointed out by Pantaleone [9, 10]. While it is
negligible in most circumstances, it plays a crucial role for SN neutrinos, and its
effects are the main subject of this thesis. We shall therefore discuss this issue in

detail later.
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The above understanding of neutrino oscillations and experiments using atmospheric,
solar and man-made reactor and accelerator neutrinos, allow us to measure the
relevant mass and mixing parameters (See e.g. the update as of 2008 in [11]).

The data is now described satisfactorily in the three-neutrino oscillation framework

2

atm>

defined by two mass squared differences AmZ and Am three mixing angles 6,5,

2

atm

o3 and 6q3, and the C'P-violating phase 0. The parameters 63 and |Am3,,,| are
determined by atmospheric neutrino experiments and long baseline experiments to

be

sin®fp; = 0.507008 (1.10)
|AmZ | = 2407017 x 107%eV? | (1.11)

the errors being specified at 1o. The parameters Am2 and 6y, are determined by

solar and reactor experiments to be

sin?f1, = 0.30475022 (1.12)
AmZ = T7.65%05 x 107°eV? . (1.13)
Current data on neutrino oscillations do not determine the sign of Am?2, . One

2

atm

refers to Am?2, > 0 as normal mass hierarchy and Am2 < 0 as inverted mass

atm

hierarchy. For 6,3 we know from reactor experiments
sin? 013 = 0.0170017 . (1.14)

The phase § is completely unknown. The smallness of 615 and Am? /|Am2, | tell

atm

2

~ 2 2 : :
otm ~ Amis =~ Am3,. The absolute neutrino mass is

us that Am?% ~ Am?, and Am
not known, but the sum of neutrino masses is expected to be less than about 1 eV

from cosmology [12].
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1.2 Neutrinos from core-collapse supernovae'

A star with a mass more than (8 — 10) Mg, where M, denotes the mass of the Sun,
becomes a red or a blue super giant in the final states of its life. Such stars usually
have an onion like structure, with each successive inner shell producing successively
heavier elements via nuclear reactions. The core is mainly made of iron 2, because
iron is stable and does not undergo fusion. When the mass of the iron core reaches
the Chandrasekhar limit (=~ 1.4 M), the electron degeneracy pressure is insufficient
to counter-balance the inward gravitational force. When nuclear fuel for fusion runs
out, then the core starts collapsing in the absence of radiation pressure. As the core
collapses to a radius of about 10 km, the density reaches a few times the nuclear
density and the core stiffens. The gravitational binding energy is released mainly as
neutrinos and antineutrinos of all flavors, which are copiously produced inside the
core of the SN. Most of these neutrinos cannot easily escape because the density is
very high. They remain trapped due to total internal reflection, inside what can be
crudely thought of as a neutrinosphere. The outer material, which is not in acoustic
communication with the bouncing core, keeps falling in and the energy density at the
boundary of the core and mantle keeps increasing until eventually the stellar matter
bounces off the core creating a shock-wave which goes through the star and blasts off
the outer envelope. This scenario where the shock-wave is the source of the explosion
is known as the “prompt explosion scenario” [15, 16]. However, simulations suggest
that the shock-wave loses a lot of its kinetic energy by dissociating the nuclei in the
stellar matter, as it propagates outward. As a result, the shock-wave stops after

about 100ms and doesn’t robustly cause a successful explosion.

It is therefore conjectured that more energy must be deposited in the shock-wave
while it moves outwards, for the explosion to be successful. This can happen if
neutrinos diffuse from the neutrinosphere and interact with the dense matter behind
the shockwave, and deposit some of their energy. If enough energy is transferred

to the shock-wave then the dying shock-wave can be revived and it can cause a

1We follow closely the discussion in [13].
2Some supernovae have a degenerate Oxygen-Neon-Magnesium core. They typically have a
mass of (8 — 10) M. [14]
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successful explosion by blowing off the envelope of the star. This scenario is known
as the “delayed explosion scenario” [17, 18]. The fact that almost 99% of the energy
of a SN goes out in neutrinos, makes this scenario quite plausible from energetic

grounds.

The explosion is thus essentially a complex hydrodynamic phenomenon that must
be described by elaborate numerical modelling. Although we have come a long way
since the celebrated review by Bethe [19], the exact mechanism of the explosion is
still not pinned down. The older simulations when repeated with refined physics in-
puts have failed to produce robust explosions. Even the state-of-the-art simulations
do not always end in successful explosions, indicating that our understanding of SN
explosions may still be incomplete. Ongoing attempts to improve the simulations
to produce robust explosions indicate that magnetohydrodyamics or large-scale
convection leading to efficient energy transport may be a key ingredient [20]. With
ever-increasing computational power, detailed three-dimensional simulations may

soon become possible and be able to shed some light on this issue.

For the purpose of neutrino phenomenology, what is relevant is the electron density
profile of the SN, which is proportional to the matter density itself. The static
profile (ignoring effects of shockwave propagation) is often taken to have a power-law
dependence on the radius, i.e. n.(r) o< 1/r3. This agrees well with most simulations,
e.g. Fig. 1.1 (t = 0.1 sec) taken from [21]. In the presence of the shock-wave it
becomes quite complicated, as shown in Fig. 1.1 (at later times). Realistically, even
these are to be thought of as gross over-simplifications. The SN density profile is
not likely to be spherically symmetric, or even smooth. In fact it is expected from
simulations that the region behind the shock-wave could have large fluctuations in

density, due to turbulence.

Neutrinos are emitted from a SN in roughly four distinct phases as shown in Fig.
1.2. In the collapse phase (labelled as (1) in Fig. 1.2) when the star is collapsing and
the bounce has not taken place, the flux and the average energies are comparatively
low [22]. Tt steeply rises when the shock-wave travels through the neutrinosphere,

breaking apart the nuclei. This suddenly releases a flavor-specific burst of v, for
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Figure 1.1: SN matter density profiles: In the static limit and including the motion
of the shock-wave. The figure has been taken from [21].

about a few milliseconds. This is known as the neutronization burst phase (labelled
as (2) in Fig. 1.2). In the accretion phase that follows (labelled as (3) in Fig. 1.2),
the mantle cools off by emitting neutrinos for about 1 second, while material is
still infalling and accreting. Then the shock-wave travels outwards and the proto-
neutron star at the centre cools by radiating away neutrinos for about 10 seconds.
This final phase is called the Kelvin-Helmholtz cooling phase (labelled as (4) in Fig.
1.2).

Let us now focus on the neutrinos that are expected from a SN. As the simplest
approximation one can assume that the entire binding energy Fj of the star is
converted to neutrinos. For a star that explodes and leaves aside a neutron star
with radius R and mass M, the released binding energy is Ej ~ 3G yM?/5R which

is in the ball-park of 10°® ergs for a typical SN. If one assumes equipartition of
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Figure 1.2: Neutrino emission in different stages of SN explosion. The figure has
been taken from [13].

energies among V., v, v, and their antiparticles, the total energy is split six-ways.
We know that the neutrinos are emitted from the surface of the neutrinosphere
whose radius is about 10 km (roughly the same as the surface of the neutron star).
If we apply the virial theorem to estimate the average kinetic energy FEy;, of the
particles escaping from the surface of the neutron star, we have Fy;, = GNM /2R
which is about 10 MeV. Thus the number flux of neutrinos is about 10%". These
neutrinos are emitted over a duration of order 10 seconds, a timescale that is set by

diffusion-time of the neutrinos trapped in the core.

There is a typical flavor dependence of the neutrino spectra. The v, and 7, are
produced mainly by electron capture on nuclei. Since there are more neutrons than
protons, the 7, interact less than the v,, and thus have slightly higher energies.
The v, and v, and the corresponding antiparticles, do not have charged current
interactions and thus decouple even before the 7., and therefore have a larger average

energy. It is thus expected that there will be a hierarchy of energies

(Eve) < (Ep.) < (BEy,) = (Ev,) = (Ep,) = (Ep,) . (1.15)
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There is no compelling reason to expect that the binding energy gets exactly equipar-
tioned, however if approximate equipartitioning does indeed take place, the above

hierarchy predicts that the number fluxes have the opposite hierarchy

q)l/e > (I)De > q)V/,L — q)VT - @17# - q)IjT . (116)

This is as far as one can argue on general grounds. For more quantitative predictions
about neutrino fluxes from a SN one has to appeal to the detailed simulations.
The simulations of the Livermore group [23] are again in agreement with these
expectations. On the other hand, refined simulations by the Garching group [24]
also obtained similar results. Although they did not obtain robust explosions, their
simulations employed very detailed neutrino transport and additional interactions
that were previously ignored. The neutrino fluxes predicted by the Livermore

simulation are shown in Fig. 1.3.

Note that the luminosities are time-dependent, but the average energies do not
depend strongly on time. The luminosity is very high in the early stages and
decreases slowly with time. Moreover, the relative number fluxes are seen to change.
Initially, there more 7, than v, or v, or the corresponding antiparticles, but this can
change at late-times [24]. We will often ignore the time-dependence of the primary
spectra in the present analysis for simplicity. In principle, one should include effects

of a time dependent spectra and density profile for a more complete treatment.

We could use data from the supernova SN1987A [25, 26], that occurred in the Large
Magellanic Cloud about 50 kpc away, to compare with the above estimates for the
explosion time-scale and the neutrino spectra. While it put stringent bounds on a
variety of things, it did not constrain the simulations strongly owing to low statistics
(19 events at two detectors). With present detectors like Super-Kamiokande, a
galactic SN could result in up to 10000 events in the first ten seconds of the explosion,

which will allow us to learn a lot more about SN neutrino fluxes.
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Figure 1.3: Luminosity and average energy of neutrinos as a function of post-bounce
time. The figure has been taken from [23].

1.3 Phenomenology of supernova neutrinos

Neutrinos emitted from a core collapse SN carry information about the primary
fluxes, neutrino masses and mixing, and SN dynamics. This information gets

embedded into the observed neutrino spectra, and needs to be carefully extracted.

In galaxies such as ours, supernovae occur with an estimated rate of about 1 to 3
per century [27]. It is thus expected that a future galactic SN will eventually be
observed at existing or planned experiments. This will allow detailed studies of the
emitted neutrinos [28]. Detecting neutrinos accumulated in the Universe from all
the SN explosions in the past and present epoch form a cosmic background, known
as the diffuse supernova neutrino background (DSNB) or supernova relic neutrinos
[29, 30], is also a possibility. The expected fluxes [31] are tantalizingly close to
detection thresholds at present-day detectors [32].
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A detailed interpretation of a neutrino signal from a galactic/extra-galactic SN
will depend quite sensitively on our understanding of neutrino flavor conversions.
Neutrinos, produced in the region of the neutrinosphere, freestream outwards and
pass through the core, mantle and envelope of the star. The drastically different
environments in these regions, consisting of varying densities of ordinary matter and
neutrinos, affect flavor conversions among neutrinos. The nature of neutrino flavor
conversions depends on an interplay of these densities and the natural frequency of
a neutrino Am?/(2E). Close to the neutrinosphere, neutrinos interact with matter
and other neutrinos which introduces a matter potential that is v/2Gpn.(r) and
a neutrino potential v/2Gr(n,(r) + ny(r)) respectively. Enhanced conversion can

happen in two ways - either due to matter effects, or due to the neutrino potential.

The traditional picture of flavor conversions in a SN is based on the assumption
that the effect of neutrino potential is negligible. In this picture, neutrinos that are
produced approximately as mass eigenstates at very high ambient matter density
in the core propagate outwards from the neutrinosphere. As the matter density

becomes smaller, at some r one encounters the MSW resonances. When the density

2
atm?

of about (1000 — 10000) g/cc. When the density corresponds to Am2, it is called

corresponds to Am it is called an H resonance that happens at matter densities
an L resonance that happens at matter densities of about (30 — 300) g/cc. The H

resonance takes place for neutrinos in the normal hierarchy (Am2,, > 0), and for

atm

antineutrinos in the inverted hierarchy (Am?2, < 0). The L resonance always takes

atm
place for neutrinos, since we know Am? > 0. The conversion efficiency also depends
on the gradient of n.(r) at the MSW resonance, which if large can cause further non-
adiabatic flavor conversion. In the static limit of the matter density profile, the H
resonance is adiabatic for a large 1 — 3 mixing angle (sin®6#;3 > 1073) and non-
adiabatic for small mixing angle (sin?#;3 < 107°). When the shock-wave passes
through the resonance region, it makes the resonances non-adiabatic temporarily.
Multiple shock fronts can give rise to interference effects, and turbulence generated

during the explosion may also effectively depolarize the neutrino ensemble giving an

“equal” mixture of all flavors.
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The outcoming incoherent mixture of vacuum mass eigenstates from the star travels
through the interstellar space and is observed at a detector to be a combination
of primary fluxes of the three neutrino flavors. This scenario of resonant neutrino
conversions in a SN [33] has been studied extensively to probe neutrino mixings
and SN dynamics. The work has focussed on the determination of mass hierarchy
and signatures of a non-zero 6;3 [34, 35], matter effects on the neutrino fluxes when
they pass through the Earth [36, 37, 38|, shock wave effects on observable neutrino
spectra and their model independent signatures [21, 39, 40, 41, 42, 43]. Recently,
possible interference effects for multiple resonances [44], the role of turbulence in
washing out shock wave effects [45, 46, 47], and time variation of the signal [48]
have also been explored. Interesting attempts have been also made to investigate if
SN and neutrino parameters could be extracted out of potential experimental data
[49], and to consider non-standard neutrino interactions [50] or additional neutrino

flavors [51].

3 near the

However, neutrino and antineutrino densities are about 103°=%° per cm
neutrinosphere, which makes the neutrino potential extremely significant. The thing
to be noted is that the contribution v/2Gr(n,(r) + ny(r)) is not flavor diagonal in
general; n,,n; are matrices in flavor space and depend on the flavor composition
of the entire neutrino ensemble. Such a dense gas of neutrinos and antineutrinos is
coupled to itself, making its evolution nonlinear [9, 10]. A formalism to study flavor
evolution of such dense relativistic neutrino gases was developed in [52, 53, 54],
where a set of quantum kinetic equations for their evolution were written down.
These equations have been studied in detail, though mostly in the two-flavor ap-
proximation, and the nature of flavor evolution has been identified [55, 56, 57, 58].
It was eventually understood that a dense gas of neutrinos displays collective flavor
conversion, i.e. neutrinos of all energies oscillate together, through synchronized
oscillations [59] and/or bipolar oscillations [60, 61]. Another remarkable effect of
these interactions is a partial or complete swapping of the energy spectra of two
neutrino flavors, called step-wise spectral swapping or simply spectral splits, as the
neutrinos transit from a region where nonlinear effects dominate to a region where

neutrino density is low [62, 63].
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The nonlinear effects in the context of supernovae were considered in [64, 65, 66, 67,
68]. Recent two-flavor simulations showed that the nonlinear effects affect neutrino
flavor conversions substantially [69, 70]. Different nonlinear flavor transformations
seem to play a part in different regions of the star [71]. Many features of the results
of these simulations can be understood from the “single-angle” approximation, i.e.
ignoring the dependence of the initial launching angle of neutrinos on the evolutions
of neutrino trajectories. Angular dependence of flavor evolution can give rise to
additional angle dependent features observed in two-flavor simulations [72, 73], or
to decoherence effects [57, 74]. For a realistic asymmetry between neutrino and
antineutrino fluxes, such angle dependent effects are likely to be small [75, 76].
Three-flavor effects have been studied in [77, 78, 79, 80, 81]. The dependence
on geometry of the neutrinosphere was studied in [82]. It was also shown that
nonstandard neutrino interactions can trigger these nonlinear effects for a vanishing
mixing angle [83]. A number of studies have concerned themselves with signatures
of these nonlinear effects. It is understood that nonlinear oscillations distinguish the
normal and inverted mass hierarchies even at extremely small 63 [84, 85]. Nonlinear
effects have peculiar manifestations in the neutronization-burst phase of O-Ne-Mg
supernovae [79, 80, 86, 87] leading to very specific signatures. Finally, the impact
of these nonlinear effects on the DSNB has also been studied [88].

The impact of this nonlinear evolution has also been studied in the context of cos-
mological neutrino flavor equilibration in the early Universe where the synchronized

oscillations play a significant part [89, 90, 91, 92, 93, 94, 95, 96].

Our present work addresses some aspects of this problem that were not considered
in previous literature. We investigate effects of the geometry of the emitting source,
since it is not apparent that in the absence of spherical symmetry the results would
still stay valid. We find however that under an assumption of coherence, favor evolu-
tion can be treated as one-dimensional, similar to sources with spherical symmetry.
A major part of our work however, concerns itself with three-flavor effects, i.e.
understanding nonlinear flavor conversions in the full three-flavor framework. Two-

flavor results are fairly well understood, with the exception of possibly two issues,
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viz. decoherence (or lack of it) for asymmetric systems [75], and the existence
of the antineutrino spectral split [97]. We show that the two-flavor treatment is
valid in most circumstances. However, “decoupling” of the third state is not as
obvious as in ordinary neutrino oscillations, and there can be unexpected three-
flavor effects. With this formal understanding, we look at flavor conversions in a
SN, and attempt to design smoking-gun signatures of these novel effects. One of the
striking signatures is related to the presence/absence of Earth matter effects that
could allow us to determine the mass hierarchy, even at extremely small 0,35, where
long baseline oscillation experiments may be ineffective. We also find a SN progenitor
dependence of the neutrino signal, which may be interesting for astrophysics. Finally
we show that these nonlinear effects can drastically change the expected flux of
DSNB neutrinos. We believe that these results will be useful for neutrino physics

and SN astrophysics.



Chapter 2

Formalism for Dense Neutrinos

The purpose of this chapter is to present a treatment for the flavor evolution of
free-streaming neutrinos emitted from a given source. We show that even for non-
spherical sources, the flavor evolution is similar to a spherical source. We then
specialize to a spherical source emitting neutrinos isotropically from its surface. the
results in this chapter are based on the papers: B. Dasgupta, A. Dighe, A. Mirizzi
and G. G. Raffelt, “Collective neutrino oscillations in non-spherical geometry,”
Physical Review D 78 (2008) 033014, [arXiv:0805.3300 [hep-ph]] and B. Dasgupta
and A. Dighe, “Collective three-flavor oscillations of supernova neutrinos,” Physical

Review D 77, 113002 (2008), [arXiv:0712.3798 [hep-ph]].

2.1 General framework

Our framework for SN neutrinos is constructed in a modified flavor basis (ve, v,, 1)
defined such that
(Ve vo )" = R£3(923)(Ve v vt (2.1)

where R;?) is the rotation matrix with an argument 6,3 that explicitly removes the

1

dependence on the mixing angle 653 . We denote a neutrino of momentum p at

! This basis has also been denoted in the literature as (ve, v/, ;) [34]. This is motivated by the
observation that we observe v, and 7, at our detectors, whose survival probability is independent
of fo3 if the initial fluxes are identical in the u and 7 flavors.

15
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time ¢ at position r by v(p,r,t). The density matrix for n,(p, r,?) neutrinos with
momenta between p and p+dp at any position between r and r+ dr may be written

as

Prors (DT 1) = MZ\u(p,r,t>><u<p,r,t>|ag, (2.2)

where «, = e, x,y are the flavor indices, and the summation is over all n,(p,r,t)
neutrinos. Note that the density matrix is normalized to have unit trace, but the
neutrino density itself is n, (p,r,t), which typically falls off as 1/r? from the source.

The number density of neutrinos with flavor « is obtained through

N, (P, 1, t) = n,(p, 1, t) puow. (P, T, 1) - (2.3)

If af and a,, are the creation and annihilation operators of a neutrino in the flavor
eigenstate v, we have p,,.,(p) o (a:f,ﬁa,,a) so that the diagonal entries p,,,, (P, T, )
are the usual occupation numbers (expectation values of number operators), whereas
the off-diagonal elements encode the phase relations that allow one to follow flavor
oscillations. Such a description assumes that higher-order correlations beyond field

bilinears play no role, probably a good approximation for neutrinos produced from

essentially thermal sources such as the early-universe plasma or a SN core.

Antineutrinos are described in an analogous way by py,.,(p,r,t) = (a_a,,). Note
that we always use overbars to characterize antiparticle quantities. The order
of flavor indices was deliberately interchanged on the r.h.s. so that the matrices

p(p,r,t) and p(p,r,t) have identical equations of motion [53].

The effective Hamiltonian in the modified flavor basis for neutrinos v(p,r,t) of

energy F ~ p = |p| in vacuum is

Hoyaelp) = UMPU/2p (2.4)
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where the masses and the mixing matrix are parameterized as

Diag<mlam27m3) ; (25)
U = Rly(023)Ros(03) Ris(613) Riz(012) | (2.6)

with R;; being the rotation matrices in the 4-j plane. In this work, we take the
value of the C'P-violating phase in neutrino sector to be zero. Now H,..(p) may be

explicitly written as

2
813 0 C13513

Am?
13
Hvac(])) = 2p 0 0 0
2
C13513 0 013
2,82 C12C13S —c13582,5
A 9 13°12 1213212 13°192°13
m
12 9
+ 2p C12€13512 (&P —C12512513 ’ (2-7)
_ 2 o 2 .2
C135712513 C12512513 5125713

where Am;; = m? —m; and other symbols have their usual meanings. In matter,

neutrinos feel the MSW potential due to charged leptons 2
V(r,t) = V2Gp n.-(r,t) Diag(1,0,0) (2.8)

that adds to the Hamiltonian, where n.-(r) is the net electron number density at r.
The effective Hamiltonian also includes the effects of neutrino-neutrino interactions,

which to the leading order in G depend only on forward scattering and contribute

52, 53, 54]

Holp.r.0) = V3G [ darpe (m(q, r (T £) — iy (s (T, t>) (29

where dq is short-hand for d®q/(27®). The interaction strength is dependent on

the angular separation of the momenta of the interacting particles, and is given by

2We assume that the density of e, u* and 7% is negligible, and that v, and v, feel
approximately identical potentials, which have been taken to be zero by convention. An analysis
of nonlinear effects including a p — 7 potential has recently been carried out [77].
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Kpq = 1 — cosOpq, Where 04 is the angle between p and q. Writing the velocity

v(p,r,t) = dr/dt, we express cosfpq as v(p,r,t)-v(q,r,t).

The equation of motion for the density matrix is

d , 0
PP rt) = =il H(p,r,1), p(p.x,0) | + Zp(p.1,1) . (2.10)

In the steady state (no explicit time dependence in the Hamiltonian and initial
conditions) we can drop the time dependence in the problem. The total derivative
with time can be expanded then simply as partial derivatives w.r.t p and r. Ignoring

external forces (terms depending on dp/dt) we have the equations of motion for
p(p,r) and p(p,r) as [98]
VP hplpx) = =i+ Hu) £ V) o), p)] L (210)

v(p.1) - Bep(p.) =—{—mm@+vm+mmnmmnﬂ. (2.12)

The effect of ordinary matter can be “rotated away” by working in the interaction
picture [70, 72]. We employ an operator O(r) under which a matrix A transforms
to

A" (1) = O(r)AO~!(r) , (2.13)

where
Or) = exp (Z /0 ) dr’V(r’)) | (2.14)

This choice simplifies the equations of motion by removing the matter term, giving

us
v(p,r) - Op™(p,r) = —il+Hf,ZZ(p,r)+Hiﬁt(p,r),pi"t(p,r)], (2.15)
v(p,1)- 0p™(p,r) = —i[—HiZﬁ(p,r)+Hiﬁt(p,r),ﬁmt(p,r)}- (2.16)

The transformation by O(r) leaves diagonal entries of p(p,r), p(p,r), Hyae(p) and
H,,(p,r) unchanged, but the off-diagonal entries become r-dependent. For example,

if V(r) varies adiabatically and only in the radial direction, the vacuum Hamiltonian
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changes according to Eq. (2.13) as

(ir)?

2!

HEL0.7) = a0 ir | V) o) |+ V0. [V Hoa)| - 210

We know that V(r) is a diagonal matrix, so only the off-diagonal elements of
Hy(p) are affected by the transformation. The final observables we are going to be
interested in, the number fluxes of neutrino flavors, involve only diagonal elements
of the density matrix [see Eq. (2.3)], so the interaction basis is well suited for our

purposes.

2.2 Effects of source geometry

The nonlinear equations of motion Eq. (2.11) simplify considerably if self-maintained
coherence occurs in a dense neutrino gas and all modes can be assumed to evolve
in the same way. For this section we restrict ourselves to a source radiating only
neutrinos and with no matter background, although an analogous argument may be

easily constructed in the general case.

Our demand of self-maintained coherence is defined by

p(p;t) = P(r) f(p,r). (2.18)

Here, f(p,r) = Tr(p(p,r)) is a scalar occupation number density, summed over all
flavors, while for N flavors P(r) is a N x N matrix normalized as Tr(P(r)) = 1,

which contains the flavor information. We define

v(r _ Jdpv(p.r) f(p,T)
i) = [dp f(p.r)

(2.19)

as the momentum average of v(p,r) at location r with respect to the distribution
function f(p,r). The angle-brackets will mean suitable momentum averages as

above. Now, we find the equations of motion for P(r) by averaging Eq. (2.11) over
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all momenta to get

v®) oy plr) = —i [H*"(r), P(r)], (2.20)

where

_ UM?U? fdpp—l f(p,r) _ UM2U?t <p_1>
2 [fapve) flp.r)] 2 [v)l

Eq. (2.20) is the equation of motion in the coherent approximation, with H"(r) as

Hh(r) (2.21)

the synchronized matrix of oscillation frequencies. The nonlinear terms vanish since
the relevant commutator vanishes on integrating over all momenta. Eq. (2.20) is a
partial differential equation for the matrix P,.. It can be reduced to a set of ordinary

differential equations

dr v(r)

& vl 22
dP(I') _ : coh

o = i [H"(r), P(r)], (2.23)

where s is a parameter along the “characteristic line,” or “streamline,” defined by
Eq. (2.22). Since (v(r)) is unique at each location, the streamlines do not intersect
each other. Along each streamline, the differential equation Eq. (2.23), for the
matrix P(r) is a set of linear coupled ordinary differential equations which can be
solved easily and uniquely, given the boundary conditions. This is true for arbitrary

source geometries, and one only needs to calculate (v(r)) relevant to the problem.

Now, calculating (v(r)) is a purely geometrical problem. One merely needs to find

the average velocity vector at each point in space, for a given convex source. For a

2
1+@/1—@]f. (2.24)
T

which tends to 7 for r > ro. This tells us that for spherically symmetric problems

spherical source of radius ry, we find

(V) =5

the evolution is radial, i.e. the streamlines are radial and the dependence on (v(r))
can be safely ignored at large r. For non-spherical sources one chooses a coordinate

system such that (v(r)) is always along one of the axes.
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2.3 Spherically symmetric and isotropic source

The interaction term H,, in Eq. (2.9) depends on 6,4, i.e. the angle between
the momenta of interacting neutrinos. Thus while performing the angular integrals
therein, the dependence of the neutrino flux on all angular variables must be taken
into account. This makes the problem quite complicated, and an approximate
treatment is needed in order to gain useful insights. Two levels of approximation
have been considered in literature, viz. multi-angle and single-angle. In the multi-
angle approximation, azimuthal symmetry about the axis defined by the source and
observer is usually assumed, but not complete spherical symmetry. This essentially
captures the effects of correlations between trajectories with different initial launch-
ing angles. The effects of such correlations can have interesting consequences which
have been explored in detail [72, 73, 75, 76]. In the single-angle approximation, it is
assumed that the flavor evolution does not significantly depend on any of the angular
coordinates (i.e. the evolution is spherically symmetric), and thus we can integrate
over all angular degrees of freedom trivially. One must then choose a representative

value for cos @, which we take to be 1/2.

We assume half-isotropic emission from a source of radius g, as defined in [75], and

write

m(p.r) = ny(p,r) =mn,(p,mo) 1o/7" . (2.25)

p(p,;r) = pp,7) . (2.26)

In the steady state, the fluxes of neutrinos and antineutrinos can be written as

o, = /dp 2mp? 4mry ny,(p,To) (2.27)

(I),j = /dp 27Tp2 47TT(2] ﬁu<p7 TO) ) <228)

the total flux being ® = &, + ;.

A further “unification” in the notation for neutrinos and antineutrinos is possible

by noting that their equations of motion, i.e. Eqgs. (2.11) and (2.12), differ only in
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the sign of H,q.(p). This suggests a change of variables from p to
w = |Amis|/(2p) . (2.29)
Using the same convention as [62], we define for neutrinos
ny(w,r) = ny(pw), ), plw,r)=p(pw), r), (2.30)
and for antineutrinos
ny(—w,r) = ( p(w), r),  pl=w,r)=p(pw), r). (2.31)

The negative values of w thus correspond to antineutrinos. Then we need to solve
only for p(w, ), albeit at the cost of extending the domain of w to both positive and

negative values.

With this reparametrization the vacuum Hamiltonian H,..(p) is now written as

Hyae(w, h), where

Ami,,
— = 4+1 2.32
A (2:32)

encoding normal or inverted mass hierarchy. The H,,(p,r) term in Eq. (2.9)
simplifies to *

H,,(r) = p(r) /OO dw f(w) p(w,r) sgn(w) . (2.33)

[e o]

in terms of the distribution function

2 13..2,.2
flw) = LAmalTry (2.34)

d w

normalized as [°._dw f(w) = 1, and the neutrino potential

pu(r) = po g(r) - (2.35)

3 Note that H,,(p,r) depended on p only through the direction of p. This dependence no
longer survives in the single-angle approximation.
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Here pg is the neutrino potential at the neutrinosphere:

_ 3V2Gp®

= 2.36
1287w4r? (2:36)

and the “geometric dilution factor” g(r) is given by

2 1
g

3r2 1—(ro/r)2 cos lp=1/2
42 / rd g

- 20 (q_ 0 _ 10} 2.37
3r2 < r2  A4r? ( )

The geometric dilution factor equals unity for » = rq, whereas at large rq, it decreases

g(r) d(cosby) (1 — cosfqycosby)

as 1/r%. The decrease of neutrino densities from a finite source accounts for a factor
of 1/r% whereas the additional dilution factor of approximately 1/r? arises from
the integral in Eq. (2.37), due to the decreasing angle subtended by the source and
reduced collinearity, which are encoded in the limits and the integrand respectively

[69]. Note that the exact numerical factors depend on the choice of cos 6.

The total flux ® remains conserved as long as there is no explicit temporal variation
of the overall luminosity. We work in the steady state approximation and assume the
luminosity to be constant in time. Slow variations in it may be taken into account
by including an additional time dependent factor. Note that f(w) is independent of
r, which embodies the fact that the normalized neutrino spectrum does not change.

Using Eq. (2.3), we can also write the flavor dependent w-spectra f, (w,r) as

fra(w, ) = F(W)prave (@, T) - (2.38)

Note that f, (w,r) contains the spectra of both v, and 7., and depends on r only
through p,.,. (w,r). It would be a constant on the trajectory if there were no flavor

evolution of p,,,, (w, ). For later use, we define the energy integrated neutrino fluxes
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for each flavor as

0.() = @ [ do o), (2.39)
®, = @, (r) + 2, (r) + Py, (r) (2.40)
o, (r) = (ID/ dw f,, (w,r) , (2.41)
B, = By (r)+ Dy (1) + By, (1) . (2.42)

With these approximations, the problem is reduced to an ordinary one dimensional
problem along the radial direction. We can also drop the dependence on (v(r))
because it is significantly different from 1, only very close to the source. We denote
the derivative with respect to r using a “dot”, and using Eqgs. (2.11) and (2.12),

arrive at the single-angle equations of motion

plw,r) = —i| + Hygelw, h) + V(r) + Hy, (1), plw, )| . (2.43)

We have thus used the spherical symmetry of the problem, and the simple energy
dependence, to rephrase the equations of motion in a somewhat simpler form. This
single-angle approximation is probably crude, but it has been shown in numerical
simulations (for two flavors) that this approximation seems to work reasonably well
[76]. It also seems that the multi-angle effects are suppressed when the neutrino
and antineutrino spectra are not identical [75]. We assume the above results to hold
true for three flavors as well, and ignore multi-angle effects in this work. Thus, for
an analytical understanding of various flavor conversion phenomena associated with
this system, we confine our discussion to the steady-state single-angle half-isotropic

approximation that we have outlined above.
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Nonlinear Neutrino Oscillations

In this chapter we rewrite the equations for flavor evolution, which end up resembling
those of a classical spinning top (or more precisely a gyroscope). This allows us
to recover results already known for two-flavors, and to investigate the effect of
three-flavor mixing. We solve the equations of motion and end the chapter with
a classification of the various linear and nonlinear flavor conversion mechanisms.
The results in this chapter are based on the papers: B. Dasgupta and A. Dighe,
“Collective three-flavor oscillations of supernova neutrinos,” Physical Review D 77,
113002 (2008), [arXiv:0712.3798 [hep-ph]] and B. Dasgupta, A. Dighe, A. Mirizzi
and G. G. Raffelt, “Spectral split in prompt supernova neutrino burst: Analytic three-
flavor treatment,” Physical Review D 77 (2008) 113007, [arXiv:0801.1660 [hep-ph]].

3.1 Bloch vector notation

We have a bunch of equations involving 3 x 3 matrices. But all components of these
matrices are not independent. These matrices are all hermitian, and it is better
to get rid of the redundant degrees of freedom. It is thus useful to re-express the
density matrices and the Hamiltonian as Bloch vectors. The idea, analogous to the
two-flavor case, is to express the matrices in a basis of hermitian matrices, and to
study the motion of the vectors constructed out of the expansion coefficients (which

are called the Bloch vectors). In our problem, we choose the basis consisting of the

25
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3x3 identity matrix I, and the 8 Gell-Mann matrices A, given by

010 0 — 0 1 0 O

A = 1 00|,MN=|¢i 0 0|,A=]0 -1 0],
000 0O 0 O 0 0 O
0 0 1 0 0 —2 0 00

Ay = 00O0|,A%=[0001],%=|00T1]/,
1 00 1 0 0 01 0
00 0 1 0 O

1

7 7 8 \/g ( )

0 ¢+ O 0 0 -2
which satisfy the SU(3) Lie algebra
[AmAb] = ifabc Ac s (32)

where a, b, ¢ are integers from 1 to 8. Note that the normalization for the matrices

is chosen such that

TI"(AaAb) = 25ab . (33)

The structure constants f,,. are antisymmetric under exchange of any two indices

and are specified by

f123:2; f1477f1657f2467f2577f3457f376:1 ) f6787f458:\/§' (34)

Note that basis of traceless matrices A, can be expressed as a semi-direct sum of
K — {A17A27A37A8} and Q - {A47A57A67A7} ) (35)
ie. for K, € K and @, € @Q we have

[KaaQb] eK 9 [Qaa@b] eK and [QaaKb] € Q . (36)
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o | N Type I1I 2/V3 Type IV 2/V3 A

< ) )
n - Fois e 20 e (
i |-2/v3 / i |-2/v3 f\
2/V3 2/V3 kj 2/V3
Ao =322

-2/V3 2/V3 ~2/V3

Xi € {1, 22, A3}, A5 = Mg Ai € {1, As; X6, A7) A = A3 Ai € {4, A5, A6, Ark A = Ag Other combinations

Figure 3.1: The shape of the Bloch-ball for a vector A\;&;. The figure has been taken
from [99].

In fact this is not the only choice of K and Q) that has this property. In addition to

the decomposition

K = {A1, Ay, Az, Ag} and QY = {A4, A5, Ag, A}, (3.7)

as above, we could also choose

Key = {A3, A47 A57 A8} and Qey = {A17 A27 A67 A7} or (38)
K™ = {A3,A¢, A7, As} and o= {A1, Mg, Ag, A5} (3.9)

which satisfy the conditions in Eq. (3.6). The meaning of the superscripts (ex, ey, xy)

on K and @ will become clear later.

Using the basis matrices I and A,, we now express any 3 X 3 hermitian matrix X

as a vector X in the SU(3) generator space (with unit vectors €;) as

1 1
X=3Xol+5X-A. (3.10)

We call X the Bloch vector corresponding to the matrix X. The vector X must
lie completely within an eight-dimensional compact volume, called the Bloch ball,
whose various two-dimensional sections are shown in Fig. 3.1. We say that the vector
X is contained in K (K®, K*) if the matrix X can be expressed solely as a linear

combination of A, € K (K%, K*).

We reparameterize our equations using Eq. (3.10), and define the Bloch vectors
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e8
eX dy L\\ ee
% - e
o ’
ey

Figure 3.2: The projection of a polarization vector representing a neutrino P on the
es—eg plane.

corresponding to the density matrices as
1 1
plw,r) = 3 Po(w,r) I + 5 P(w,r) A . (3.11)

Note that A is an eight-vector of 3 x 3 matrices. The scalar Po(w,r) and the
polarization vector P(w,r) encode the flavor content of neutrinos of energy p =
|Am2,]/(2w) at a distance r for w > 0. The negative values of w encode the same
information for antineutrinos. Since p(w,r) has been normalized to have unit trace
by definition, Py(w, ) is equal to one. We will therefore not worry about the zeroth
component of the polarization vector henceforth. For a pure state, P(w,r) lies on
the boundary of the shaded region in Fig. 3.1, and has the magnitude 2//3. For
a mixed state, the magnitude of P(w,r) is smaller and the vector lies within the

shaded region.

We assume that all neutrinos are produced as flavor eigenstates, i.e. the primary flux
consists of n,_(p, ) and n,,, (p, o) with energy p. The initial density matrix p(p, ro)
is therefore Diag( n,.(p, 7o), 7, (P,70), 0, (P, 70) |, and similarly for antineutrinos.
The initial polarization vector may be written as

P(w, 1) = foo(w,m0) = fu,(w,m0) &5 + fo.(w) + fl;;(gw;(;)nyy(w’TO) . (3.12)

fw)
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The polarization vector P(w, 1), when projected onto the es—eg plane, must lie within
the triangle in Fig. 3.2, where we show a representative P(w,r) projected on the

es—eg plane. The pure electron flavor is represented by

~

=65+ -2 | (3.13)

V3

The v, or v, content with energy p at position r is given by

_nye(p,r) _fue(wvr)_l P'ee_ de
Preve (P, T) = ) — f@) "3tz =& (3.14)

The projection of P on &, is thus related to p, .. (p,7) = fo.(w,7)/f(w) as above.
The same quantity can be easily visualized from the figure as d./v/3, where d, is
the distance of the tip of P from the side of the triangle that is perpendicular to
€. (as shown in the figure). The number of v, and v, are also similarly calculated.
Negative values of w encode the same information for the antineutrinos. This gives
a simple pictorial way to represent the flavor content of the ensemble by plotting

the tip of the projection of P(w,r) on the e;—eg plane. !

For the mass term in the Hamiltonian, we have

1 1
Hyge(w,h) = hw (g Bol+5B- A) : (3.15)

where
_ . A 2 2 2 2 A
hB = eci3s8in260,5 & + (313 —¢e(cly — 013512)) és

+(1 — 68%2) sin 2013 é4 — €513 sin 2012 é(;

+<(—2 +€)(3ct; — 1) + 3es?y(2¢3, — 1))/(2\/5) és . (3.16)

Note that w for neutrinos is always positive in this convention, and the negative

sign of Am3; for inverted hierarchy is absorbed into B. We make use of the the

INote that probability conservation in this representation corresponds to the theorem that the
sum of the lengths of perpendiculars dropped from any point inside an equilateral triangle to the
three sides is a constant.
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smallness of the ratio of the two mass square differences, defined as
e = Am3,/Am?, (3.17)

to account for effects that arise from the mixing of the third flavor. The sign of € is
positive for normal mass hierarchy (Am?2; > 0), and negative otherwise. This, along
with the overall sign due to h, guarantees that the contributions from Am?, always

have the same sign. Note that By, B5, B; vanish in the absence of C'P-violation.

The MSW potential defined in Eq. (2.8) may be represented as

Vi) = A (% Lo I+ % L. A) | (3.18)

where A(r) = v/2Gr n.-(r). The vector L parameterizes the effect of background
electrons, and is given by

L=é;+és/V3. (3.19)

The H,,(r) term defined in Eq. (2.33) can also be simply written as

Ho(r) = ulr) (% Do I + % D(r) - A) | (3.20)

where D(r) is defined as

D(r) = /dw f(w) P(w,r) sgn(w) . (3.21)

In the next section, we shall express the evolution equation, i.e. Eq. (2.43) in terms

of the Bloch vectors P(w,r), B(w, h),L and D(r).
3.2 Generalized gyroscope equations
We have expressed our problem in terms of the eight-dimensional Bloch vectors, and

now we shall see that the equations of motion formally resemble the equations of

a gyroscope. To make this apparent, we define x as a generalized “cross product”



Nonlinear Neutrino Oscillations 31

[100] with fu. as the structure constants, instead of the usual €, that appears in

the two-flavor approximation, e.g.

8
BxP=)> fuBlPé. (3.22)

a,b=1
This makes it possible to write the equations of motion, i.e. Eq. (2.43), compactly

as

P(w,r) = (wB + A(r)L + ,u(T)D(r)) X Plw,7) =H(w,r) x P(w,r), (3.23)

where P(w,r), B, L, D(r) are defined in Egs. (3.11), (3.16), (3.19) and (3.21)
respectively. The couplings w, u(r) and A(r) are defined in Egs. (2.29), (2.37) and
(3.18) respectively. Equation (3.23) resembles the equation of a spin in an external
magnetic field, or equivalently, that of a gyroscope. We must remember that this
similarity is purely formal, because unlike in the two-flavor case, we cannot write
an arbitrary Bloch vector as a linear combination of two Bloch vectors and their
cross product. We shall show in Sec. 3.3 that under certain approximations these

generalized gyroscope equations can be given a geometrical interpretation.

The effects of the matter term A(r)L in Eq. (3.23) can be rotated away by going
to the interaction frame as described in Eq. (2.13), where a matrix A becomes
A" = OAO~!. In order to determine the Bloch vector corresponding to A™, we

equate

Ao, = Adda
?H; 5= 04071 (3.24)

Multiplying both sides by A, and taking trace, we get
At = Tr(A,OAO™Y) | (3.25)

where we have used Tr(A,Ay) = 204. In particular, the Bloch vector B™* may be
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written using Eqs. (2.14) and (3.25) as

B™(r) = Bjcos((r) & + Bysin((r) é + Bs é;

—|—B4 COSC(T‘) é4 + B4 SiHC(T’) é5 + B6 é6 + B7 é7 + Bg ég s (326)

where ((r) = [J V(r')dr’. In dense matter, Bi"(r) oscillates rapidly with the
frequency ~ V(r), mimicking a suppression in the relevant mixing angles as in

the two-flavor case [60].

We also define the “signed” and “unsigned” n'™ moments (with n > 0) of P(w,r) as

D" (r) = /dw w" f(w) P(w,r) sgn(w) , (3.27)
SM(p) = / o W F(0) Plw,7) (3.28)

Note that D© is same as D, and we will therefore refer to S(©) as S. The evolution

of these moments are governed by

D™ (r) = Bx DV () + (A(r)L + u(r)D(r)) x DM (r) (3.29)

SMW(r) = BxS™() 4 (A(r)L + M(T)D(r)) x 8™ (r) . (3.30)

We see that the higher moments turn up in equations of motion of the lower
moments. If we take the dot product of Eq. (3.29) with D™ (r), and of Eq. (3.30)
with SM(r), we get

8D = D(r)-Bx D),

o8™ ()2 = 8™ (). B x St () (3.31)

The above dependence of the moments on 7 implies that there is likely to be a
redistribution of flavor as a function of w. It will be interesting to investigate if
these moment equations can be used to predict the nature of the redistribution of

flavor spectra.
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3.3 Heavy-Light factorization of dynamics

The three-flavor dynamics in the traditional matter-driven scenario can be factorized
into the so-called “heavy”(H) and “light” (L) MSW resonances that occur at densi-
ties corresponding to Am2,, ~ Ami,; and AmZ ~ Am3, respectively. Appropriate
combination of the effective two-flavor dynamics in these two sectors approximates
the three-flavor result reasonably well. We now proceed to illustrate a similar
simplification for nonlinear effects as well. Let us first introduce the notion of
“heavy” and “light” subspaces of the Bloch-sphere. In the K-Q decomposition
shown in Eq. (3.8), the vectors contained in K are termed “heavy” (written with
superscript H) whereas those contained in Q% are termed “light” (written with

superscript L). A general vector X may be decomposed as
X = X7+ Xb. (3.32)
In particular, B in Eq. (3.16) may be expressed as B = B + B, with

hBH = <5%3 —e(cd, — 0%33%2)) &3 + (1 — esy)sin 203 &

+(<—2 T3 — 1) + Besy (2%, — 1))/(2@ |

hBL = €C13 sin 2612 é1 — €513 sin 2612 é6 . (333)

The component B¥ appears primarily due to Am?;, and the other component B
vanishes if € = 0. Note that for two-flavors, or equivalently in the ¢ = 0 limit, B is
completely contained in K®. Now, note the following structure in the equations of

motion of a polarization vector:

PA(w,r) = H(w,r) x PA(w,r) + H (w,7) x PL(w,r) , (3.34)

Plw,r) = HYw,r)x P (w,r)+HY(w,r) x PX(w,r) . (3.35)

It is clear from the above set of equations that if ¢ = 0 and one begins with P

contained in K%, then P always remains in K%, i.e. PX(w,r) = 0 identically. To
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investigate this case closely, we write Eq. (3.34) for each component of P as ?

P; = H,P;—H;P,,

P4 = H5P3 — H3P5 —|— \/g(Hg;Pg — H8P5) 5

_OJ
o
3

P5 = H3P4 — H4P3 —|— \/§(ng4 — H4P8) 5

@
o
%0

Py = /3(H,P;—HsP,).

Note that Pg = v/3 P5. This suggests that we could rotate our coordinates in the
es—eg plane by —27/3, so that ﬁg in the rotated frame becomes a constant of motion.
While going to the rotated frame, the components X3 and Xg of any Bloch vector
X transform as

Xs | _ —1/2 —/3/2 X | (3.40)

Xy V3/2 —1/2 X3

The other components remain unchanged.

This leads to the following simplified equations of motion for the two-flavor case:

Py = —2(H,Ps—HsP.), (3.41)
Py — —2(HsPy — HsPs), (3.42)
Py — —2(HsPy — HyPy) (3.43)
Ps = 0. (3.44)

This is the two-flavor limit, where the state v, does not participate in the evolution.
This is a consequence of all the polarization vectors initially being contained in K.

The rotated “tilde” frame can therefore be called as the “e — y” frame.

The Egs. (3.41), (3.42) and (3.43) can be simply written as

P® = HY x P | (3.45)

where the “x” can now be taken to be the usual cross product in a three-dimensional

2In the following sections, the dependence of the Bloch vectors and the parameters on w and
r is implicit.
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space spanned by {e5’, e4, e5}. This clearly exhibits the “gyration” of P about H,
while the component of P along eg” remains constant. The projection of P changes
only along e5”, which corresponds to v, < v, flavor conversions. The problem is thus
reduced to the two-flavor limit, for which analytical solutions have been discussed

in literature [59, 60, 61, 62, 63].

In the two-flavor limit, it is observed that there are three qualitatively different
kinds of motion of the polarization vector in the flavor space. The most familiar
case is oscillations in vacuum/matter, where the neutrino-antineutrino density is
small (1 < w) and each P(w) precesses about B with frequency w. The other
extreme is when the neutrino-antineutrino density is very large (1 > w). In such
a situation, all P(w) remain tightly bound together and precess with the average w
of the ensemble, giving rise to synchronized oscillations. The intermediate regime
(n 2 w) is when the P(w) remain bound together to a large extent, but have a
tendency to relax to the state that has the lowest energy. The system is analogous to
a pendulum/gyroscope that tries to relax to its vertically downward state, whatever

state one might start in. This motion is called bipolar oscillation.

The motion changes qualitatively and quantitatively with the inclusion of the third
flavor. There are two kinds of contribution due to the inclusion of the third flavor.
First, we have some extra contributions to B that depend on €, which changes the
effective values of w and #;3. These do not change the motion qualitatively. The
second type of contribution is more interesting. It is due to the excursions of the
polarization vectors into the @ subspace under the influence of B¥. In particular,
the length of P¥ is not preserved anymore. To see this clearly, we take the dot

product of P with Eq. (3.34) and that of P* with Eq. (3.35) to get
P12/2 = —|PE?/2 = PP H! x PE . (3.46)

We can clearly see that |P#|, which was a conserved quantity in the two-flavor case,
no longer remains so. The non-conservation is proportional to |[HY| and |P%|, both
of which go to zero in the two-flavor limit. The addition of the third flavor makes

the motion of the projection of P in the es—eg plane fairly complicated in general,
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Figure 3.3: Useful coordinate choices on es—eg plane.

and we shall study it in some interesting regimes in Sec. 3.5.

3.4 Three-flavor dynamics

In this section we extend the method presented in the last section, to include the
leading corrections due to the mixing of the third flavor. Let us illustrate our
prescription in the vacuum limit, where the matter effects as well as the nonlinear
effects are neglected. The prescription will later be easily generalized to finite matter

densities and significant neutrino-neutrino interactions.

From Eq. (3.16), the Bloch vector B may be decomposed as

wB = hwBW + hewB® + hews 3B (3.47)
with
BY = 5% 63 —2(3c% —1)/(2V3) és + (1 — es,) sin 203 &, (3.48)
B® = (&, — Zys) és+ (3% —1)/(2V3) és + ci3sin 2015 &, (3.49)
B(g) = 3813(20%2 - 1)/(2\/5) ég — sin 2012 é6 . (350)

Note that BM lies completely in K¢, B® in K, and B® in K*v.
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In Fig. 3.3, we show three coordinate frames e — x,e — y and x — y in the e;—eg
plane. These frames are defined such that, if P is the projection of P in the e3—eg
plane, the components BY B® B® in Eq. (3.50) separately cause P to move
along e5’, e5”, e5” respectively. In order to reduce the motions due to B, B B®)

separately to two flavor problems as in Sec. 3.3, we write
BY=RBY, B*=B®  BY=RBY, (3.51)

where R is the rotation matrix in Eq. (3.40) that rotates the X3 and Xg components
of a Bloch vector in the es—eg plane by —27/3. The vectors B¢, B** B*¥ are then

simply BM, B® B®) in the frames e — y, e — x, x — y respectively.

We can then write Eq. (3.47) as
wB = w¥R™" BY 4 w*B*“ 4+ w"R > BY , (3.52)
with the “frequencies” defined as
w = hw w® = hew w™ = hewsiz sin 261 | (3.53)
and the “magnetic fields” as

B = cos20i5 &5+ (1 —es,)sin 26,5 67 — (1 — 3s5%)/(V/3) és (3.54)
B = —(c]y — Ci353,) €3 + c13sin 2015 65 + (3c3; — 1)/(2\/5) és, (3.55)
B* = —éiy — \/5813 COS 2012/(4 sin 2012) ég . (356)

The vectors ey, e1, eg are the directions transverse to the es—eg plane that are relevant
in the three frames, and can be written as e}, €%, e’ respectively. The B®’ are
normalized such that |BS®|2 + |B?|2 = 1 4 O(e, s2;). The separate motion due to
each B*P is then a precession about Bj Pes + Bﬁ‘_ﬁ e, with a frequency w®?, where

the half-angle of the cone is given by tan 8% = |BS”/BS”|.

The net motion of the polarization vector may be interpreted as the combination

of two-flavor precessions about e’, e5” and €7’ respectively. It can immediately be
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seen from Eq. (3.53) that
|w| > W] > W™, (3.57)

i.e. the precession frequencies are hierarchical. Therefore, the motion due to slower
frequencies may be neglected over short time scales. More precisely, if we coarse-
grain the equation of motion Eq. (3.23) in r over scales corresponding to w®, the
effects of w® and w™ are negligible. The slowest variation in the solution is due
to w®, which modulates the faster motion due to w®, which in turn modulates the

motion at still shorter scales due to w®.

Let us denote the evolution of P(r) under the action of B%, B¢ B by the
operators S¥(r), S“(r), S™(r) respectively. As long as the condition in Eq. (3.57)

is valid, we can write
P(r) =S%(r) S*(r) S™(r) P(0) , (3.58)
where the evolution operators are of the form

v 0 p,r) 0
sy = Rt [ MW 00 o (3.59)

S“(r) = , (3.60)

S¥(r) = R R . (3.61)

Here 7n(w®?, 0%, 1, 7) are the evolution functions that can be calculated in a two-
flavor approximation using the results in previous literature. In general, the fre-
quencies of these evolution functions are determined by w®’s and the amplitudes are
determined by the effective mixing angle §*’s. Each evolution operator S takes the
state P to the respective a— 3 frame in which Pg‘ﬁ stays constant and Pg‘ﬁ undergoes
precession, and brings P back to the es—eg frame after precession. Note that the
matrices S* are not unitary. The order in which they are operated should be such

that the slower oscillations act like an amplitude modulation for the faster ones.
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It is easy to calculate p,,,, using Eq. (3.14) as

Pir)-ee. 1 1 ( 3 1 ) (362

1
v (1) = = + 2%~ [ _Y2pev(yy 4 _pg
pee<,r) 3_'_ 2 3+\/§( 2 3<T)+28<T)
where P(r) is given by Eq. (3.58), and P5’, Pg are components along €5’ and eg”
respectively. If neglect effects of the slowest frequency w®?, the expressions for P5’(r)
and Pg’(r) may be written as

ng <T> = W(Weya eey’,u’ T) <_%n(wemv 961’7 M7T>P3<O) - §P8<0)> ’ (363)

ng (T) = (‘i_?n(wemv eem’ M7T>P3<O) o %PEB(O)) : (364)

In the presence of ordinary matter and when the nonlinear effects may be neglected,

the same prescription stays valid, simply with the replacements
€ — cos((r) e +sin((r) e, €4 — cos((r)eés+sinl(r) e; (3.65)

with ¢(r) = [; V(r')dr’. It may be seen from Eq. (3.26) that these replacements
take B to B, so that the effect of MSW is taken into account by going to the
interaction frame. As observed in Sec. 3.2, fast oscillations with a frequency ~ V' (r)
will average out the sinusoidal terms, thus decreasing the contribution from the

transverse components of B8,

The above solution works even when the nonlinear effects dominate. The nonlinear
potential H,,(r) in Eq. (2.43) is independent of energy, therefore neutrinos of all
energies precess with a common frequency in all the two-flavor subspaces. The
motion is therefore similar to the vacuum case discussed above, with the replacement
w — (w) as given in Sec. 3.5.2. We have thus completed our program of expressing
three-flavor effects purely in terms of two-flavor effects. The r-dependent functions
n(r) are known analytically for oscillations in vacuum and for synchronized oscilla-
tions, where we can explicitly check our ansatz. In the case of bipolar oscillations,

the situation is more complicated since these are not sinusoidal oscillations, rather
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P remains almost static for a period of time and swings through the lowest energy
state in a rapid burst. As a result, the fast- or slow-ness of bipolar oscillations
as compared to the other precessions is time dependent. We therefore can obtain
a qualitative understanding of bipolar oscillations in the three neutrino framework,
but only a heuristic form of the analytic solution. We provide some explicit solutions

for n(r) in the next section.

3.5 Flavor conversion mechanisms

For two flavors, one can obtain exact/approximate analytical solutions to the equa-
tions of motion for the limiting values of matter density (A(r)) and neutrino density
(u(r)). We showed in Sec. 3.4 that the three-flavor case can be thought to be a
superposition of two two-flavor evolutions. In this section we illustrate that explicitly

using some simple examples.

For the numerical evaluations in this section, we fix |Am2,_ | = 2.5 x 107 eV? and
012 = 0.6. We also choose a box-spectrum for the the neutrino flux i.e. f(w) is
a constant for w corresponding to the energy range F = (1-51) MeV, and zero
elsewhere. We use the publicly available Sundials CVODE package [101] to solve

the equations.

3.5.1 Vacuum and MSW oscillations

We start with looking at neutrino oscillations in vacuum/matter, with no nonlinear
effects. Although this situation has been analyzed in literature in great detail,
we illustrate it here in order to familiarize the reader with the analysis in terms
of P, Pg¥ and the “es—eg” triangle. This triangle, shown in Fig. 3.4, helps in
understanding the three-neutrino features of flavor conversions. The projection of
P on the es—eg plane represents the flavor content, the allowed region being an
equilateral triangle. The three vertices of the triangle represent the three states v,,
v, and v, (anticlockwise, from top right). States that lie on the edges connecting

them are admixtures of only those two flavors. The interior of the triangle represents
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r(km)

Figure 3.4: Neutrino oscillations for £ = 20.0 MeV and 29.6 MeV (thin and thick
lines respectively). To emphasize the nature the oscillations, we choose ¢ = 1/5.1
and 613 = 0.2. Oscillations in vacuum and matter are shown by dotted (blue)
and undotted (red) lines respectively. For matter, we choose normal hierarchy and
A=0.3km .

states that are admixtures of all three flavors. Quantitatively, for any point on the

triangle, the fraction of the neutrinos in flavor « is proportional to its distance from

the edge opposite to the v, vertex, as shown in Eq. (3.14).

In Fig. 3.4, we show the quantities P53, Pg¥ and p,_,, as functions of the radial
coordinate r. For illustration, we start with a pure v, flavor, which corresponds to

(Ps¥, Pg¥) = (—1,1/4/3). The following observations may be made from the figure.

e The oscillation frequencies depend on the neutrino energy. However in the
triangle diagram, the locus of P for all energies is identical for oscillations in
vacuum (therefore, the thin and thick lines overlap). Different energies travel
along this orbit at different, but constant speeds proportional to 1/E. In
matter, the mixing angle begins to depend on the energy and thus the orbits

are different for different energies.

e The flavor evolution has two main frequency components, The fast oscillations

with frequency w = Am?2_ /(2p) and the slower ones with frequency ew =

Amz,/(2p).
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e If w and ew were commensurate, the orbits in the triangle would be closed

curves. However, that is a fine-tuned situation. In general, if € is not rational,
the orbits do not close, but drift parallel to themselves periodically. Indeed,

the orbits are analogous to the well-known Lissajous figures.

PgY only has slow modes corresponding to the frequency ew. These slow
oscillations modulate the amplitude of the upper envelope of |P5’| because
the maximum value that |P5Y| can take is reduced when Pg” deviates from its
maximum value of 1/v/3. The above can be clearly seen from the triangle

diagram.

P2 oscillations involve both frequencies, w and ew. The maximum deviation
of P§¥ from unity is governed by the amplitude of modulation of its upper
envelop (which depends on sin?26;3) and the amplitude of faster oscillations

superimposed on it (which depends on sin”26;5).

In the two-flavor limit we ignore the mixing with v,, and as a result Pg” remains
constant. In the triangle, this corresponds to the motion being confined to a
line parallel to the e’ axis. Indeed, the effect of the third flavor is to extend
the motion of P to the entire triangle, as opposed to only along a line. The

deviation of P from this line quantifies the extent of three-flavor effects.

The amplitude of oscillations can be read off from the triangle as the ex-
tent of the orbit along the v.-v, edge (2 sin?26;3) and along the v,v, edge
(2 sin2 2912).

In the presence of matter, mixing angles are suppressed or enhanced depending
on the energy and matter density. For A\ ~ ew, the MSW resonance occurs, and
the effective mixing angle becomes almost maximal, as it happens for the low
energy mode shown in the figure. At A > ew, the state v, decouples because
of the suppression of the mixing angle in matter, making this an effectively
two-flavor v, <> v, problem. The oscillations in Pg¥ have vanishing amplitude

and the motion in the triangle is restricted to the v.-v, edge.
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e At even larger matter densities, A > w, the amplitude of v, < v, oscillations,
which is the amplitude of P5 oscillations, starts decreasing and the motion in
the triangle becomes more and more confined to be near the v, vertex as in

the case of the high energy mode shown in the figure.

All the above features may be understood analytically through Egs. (3.62)-(3.64)

and the two-flavor evolution functions

h
nw, 0% u—0,r) = 1—2sin”26;3sin’ (%) ; (3.66)

h
(w0 u— 0,r) = 1—2sin*26;,sin’ ( e;ur) : (3.67)

The above expressions are approximate, since we ignore the slowest frequency modes
(depending on w™¥) and assume complete factorization. We find however, that these

expressions agree with the numerical solution reasonably well .

In the case of finite but constant matter density, we use the angles #*° and frequen-
cies w®” in matter, both of which are energy dependent. Note that the amplitudes
in this case are proportional to 2sin? 26*% in matter and can be maximal (spanning

a full edge of the triangle) when there is an MSW resonance.

When the matter density encountered by the neutrino varies such that neutrinos
pass through an MSW resonance, they undergo flavor transitions with adiabaticities
depending on their energy, the relevant mixing angle and the matter profile. In the
limit of a small mixing angle, a completely adiabatic H resonance is represented by
a reflection of the neutrino state about eg” in the e;—eg triangle. A non-adiabatic H
resonance corresponds to a state that tries to move towards this reflected point, but
does not completely succeed. Passage through the L resonance similarly corresponds

to a reflection about eg”.
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Figure 3.5: Synchronized oscillations for neutrinos of £ = 20.0 MeV and 29.6 MeV,
which overlap completely. We choose € = 1/5 to emphasize the nature of oscillations,
615 = 0.2 and p = 100 km ™. Oscillations in vacuum and matter are shown by dotted
(blue) and undotted (red) lines respectively. For matter, we choose normal hierarchy
and A = 0.5 km™'. Note that the orbits on the triangle are the same for different
energies.

3.5.2 Synchronized oscillations

At extremely large neutrino densities, it is expected that neutrinos of all energies
oscillate synchronously ® with a common frequency (w**) about B*?, given in the

two-flavor case by [94, 95]

o8 D.pPO
apy Y 22 3.68
w0) = - 2 (3.68)
where D’s are the moments defined in Eq. (3.28). The frequency (w*?) crucially
depends on the neutrino energy spectrum. The box-spectrum that we have chosen

corresponds to (w®) ~ 0.49 km~!. In Fig. 3.5 we show P5’, Pg” and p,,,. as functions

of the radial coordinate r for synchronized neutrino oscillations.

The following observations may be made from the figure:

e The observations in Sec. 3.5.1 remain true, except that neutrinos of all energies

oscillate with a common frequency in vacuum in the two flavor limits of each

3It has been shown in [102] that the synchronization is not perfect for “non-trivial” initial
spectra, and one can get self-induced parametric resonance.
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of the o — (3 subspaces. The response of all neutrinos to the neutrino-neutrino

potential is thus identical.

e Even in the presence of matter, the synchronized oscillation amplitude is

independent of energy, unlike what happens for non-nonlinear oscillations.

e The amplitude of the slower oscillations is almost maximal because, in the

chosen example, A ~ e(w).

e The orbits drift periodically, even if w and ew are commensurate, because (w)
and (ew) are not commensurate in general. This is due to corrections to Eq.

(3.68) arising out of incomplete synchronization.

The above observations are explained analytically along the same lines as the vac-

uum/MSW case. The two-flavor evolution functions are given by

w0 > wv, r) = 1—2sin*(20;3) sin® (h(;u)'r) ; (3.69)
h
,’7(u_)eaz7 ee$’ 1 > wex, 7’) = 1-2 Sin2<2612> Sin2 ( 6<;>T) . (370)

In the plots we see that fast oscillations have wavelength 27/w ~ 12 km. This

matches the value of (w®) calculated from Eq. (3.68).

In the presence of a finite matter density, the MSW potential \ also takes an effective

average value given by [94, 95]

D-S

A)=A . 3.71
N = 15 (371)
Naturally, the mixing angle is also the same for all energies, since
in? 20
sin?(20°%) = = (3.72)

((N)/(we#) — cos 20°9)2 + sin® 202

Thus not only the frequency, but also the amplitude of oscillations is universal
in the synchronized limit. The MSW resonance is collective, occurring with the

same adiabaticity for all neutrinos/antineutrinos at the same A when the relevant
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condition is met, as was shown in the two-flavor case [94, 95, 96]. The factorization

shown in Sec. 3.3 allows the result to be extended to the three-flavor situation.

3.5.3 Bipolar Oscillations

When the hierarchy is inverted and there are comparable numbers of neutrinos and
antineutrinos in the system, i.e. u|D| ~ w|B|, the influence of the w and p terms
in the equations of motion depends crucially on the relative orientation of D, B and

the magnitude of D itself. This subtle interplay gives rise to bipolar oscillations.

Many of the notions about bipolar oscillations in the two-flavor formalism [60, 61]
remain valid with three flavors, since they do not depend on the number of flavors,
or equivalently, on the dimensionality of the Bloch vectors. The system is best
understood in terms of the “pendulum vector” Q defined in the interaction picture
as [60, 61]
w
Q=S--B, (3.73)
1

in terms of which the equations of motion are

Q = MDXQ—%B, (3.74)
D = wBxQ. (3.75)

The absence of A\(r) is deceptive. The B contains A, and in principle that could be

important, but it turns out that the dependence on in is only logarithmic.

The antisymmetry of the generalized cross product in Eq. (3.22) implies that even

in the case of three flavors, |Q|* and D - B are conserved for large p.

In the two-flavor case, the motion can be understood in terms of a spherical pen-
dulum [60, 61], with the total energy given by wB - Q + u|D|?/2. Starting with
v, and 7., for normal hierarchy, the pendulum is stable and executes only small
oscillations, because Q points in the direction of B already. For inverted hierarchy;,
however, Q behaves like an inverted pendulum, which tries to relax to its stable

position. The polarization vectors then remain almost static, but periodically dip to
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r(km)

Figure 3.6: Bipolar oscillations at small A for neutrinos (dotted, blue) and 20%
fewer antineutrinos (undotted, pink) of different energies, which almost overlap. We
choose inverted hierarchy, |e| = 1/30, 613 = 0.01,x = 10 km ' and A = 0.001 km™".
Note that the plots are the same for different energies, because of strong collective
behavior.

the configuration with the lowest potential energy B-Q. Thus for inverted hierarchy;,
one can have a large flavor swap during the dip. The duration between successive
dips is given by 7% ~ \/m with logarithmic corrections depending on 6 and
A. Since g > w, individual P remain bound to each other, and therefore behave

identically to Q.

Addition of a third flavor may change the behavior significantly, as we show in
Figs. 3.6 and 3.7 for two extreme values of \. We consider the case of inverted
hierarchy, and a box-spectrum of energies £ = (1-51) MeV with the number of
antineutrinos as (1 — «) times the number of neutrinos, with o = 0.2. Given that
the hierarchy in the solar sector is normal, we expect bipolar effect only in the e —y
subspace, combined with usual neutrino oscillations in the e — x subspace. The

following observations may be made from the figures:

e The evolution of both P5¥ and Pg¥ consists of a series of bipolar “kinks” as in
the two-flavor case [60, 61], modulated by an envelope with the frequency (w®”).
The evolutions for neutrinos and antineutrinos closely follow one another,

which is expected from the conservation of B - D.
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Figure 3.7: Bipolar oscillations at large A for neutrinos (dotted, blue) and
antineutrinos (undotted, pink) of different energies, which almost overlap. We
choose inverted hierarchy, |¢| = 1/30, 13 = 0.01, 4 = 10 km™' and A = 0.3 km™".
Note that the plots are the same for different energies, because of strong collective
behavior.

e Significant three-flavor effects are present for small A, since the whole triangle
is seen to be filled with oscillations, forming a “petal structure” (Fig. 3.6). It
may be interpreted as a combination of slow v, < v, oscillations and bipolar

oscillations that tend to take the state towards v, in periodic bursts.

e The extent of motion towards v, depends mainly on the asymmetry o, whereas

that towards v, depends on sin® 26;s.

e For large A (Fig. 3.7), the oscillations in the e — x sector are suppressed since
the effective mixing angle 015 in matter becomes small. The amplitude of the

bipolar motion is however not affected substantially.

Bipolar oscillations (even in the two-flavor limit) do not have a sinusoidal form,
hence they are not associated with a fixed frequency. They may be looked upon
as a combination of a low frequency (during the time that the v, component is
stationary, which we shall call the A phase) and a high frequency (the sudden dip
towards v, which we shall call the B phase). Therefore, our prescription in Sec. 3.4
has to be applied with care. Note that the order of evolution matrices in Eq. (3.61)

is supposed to be in the decreasing order of frequencies. Even if we neglect the
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slow evolution due to B*Y, strictly speaking during the A phase, one should use the
order S“’S% and during the B phase, the order should be S¥S. However, we find
numerically that the evolution S**S% closely matches the three-flavor solution over
the complete evolution. This therefore may be taken to be the heuristic solution for

the bipolar oscillations in the three-flavor case.

We have not considered normal hierarchy, in which we expect that starting with v,
we’ll have a stable system that will not undergo bipolar oscillations, whereas starting

with v, or v,, we’ll have independent bipolar oscillations towards .

3.5.4 Spectral splitting

As a system of neutrinos and antineutrinos transits from the nonlinear regime (p >
w) to vacuum (p ~ 0), the polarization vectors P keep trying to align with H in the
adiabatic approximation. Due to the conservation of B - D, as shown in Sec. 3.5.3,
this alignment is not possible for all P. The way the system aligns maximally
while still obeying the constraint, is to align only a part of the spectrum, while
anti-aligning some parts. This causes sharp changes in the final spectrum, that are

called spectral splits.

In general, we do not know how to predict the final spectrum accurately. We shall
therefore confine ourselves to the situations where there is only one spectral split,
thus one can predict the final spectra just on the basis of conservation laws. The
dynamics of spectral splitting are not clear, except when adiabaticity predicts a

single split [62, 63].

It is simpler to understand this phenomenon in the instantaneous mass basis. i.e.
the interaction picture in mass basis. In the chosen basis, B = B 4-eB’, where B
is along eg and B’ is along e;. The equation of motion for the global polarization

vector 1s

D = (B + eB*) x M, (3.76)

where the “magnetic moment” of the system is M = [ dw f(w)wP(w). In the mass
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basis this is

D:—(%eg+€eg) x M. (3.77)

The vector on the r.h.s. is orthogonal to both e; and eg. The reason is that f,33 =0
fora =1,...,8 and for all permutations of the indices. As a consequence, the vector
D has no e; or eg component so that Dy = 0 and Ds = 0. In a general basis this
implies

0,(D-B¥)=0 and 0,(D-B*) =0. (3.78)

This is the equivalent of “flavor-lepton number conservation” 9,(D - B) = 0 in the
two-flavor context [60, 61, 62, 63]. In other words, in the three-flavor context we

have two flavor-lepton numbers that are separately conserved.

We now explain the factorization of the two spectral splits [79, 80]. The first split
to develop is driven by the atmospheric mass difference and thus can be called the
H split. Asin [62, 63] we go to a rotating frame, at first rotating around the B#
direction with the frequency w*. The single-mode Hamiltonians in this co-rotating
frame are

H~ (w—w!)B"+uP, (3.79)

neglecting for now the much smaller term ewB%. This is justified because, when
i 2 w (and thus g > ew), the ensemble of neutrinos is in a regime where we expect
spectral splitting along eg and synchronized oscillations along esz.Flavor conversion
is thus driven primarily by B¥, while B gives sub-leading corrections due to
the synchronized oscillations. Similarly, when p ~ ew, flavor conversion proceeds
efficiently via a spectral split along e; and is driven by B, while B¥ drives vacuum

oscillations along eg.

Now, as p adiabatically goes to zero, the co-rotation frequency wf approaches the
final split frequency w” and the modes with w > wf will orient themselves along
B those with w < w! in the —B* direction. The value of w¥ is fixed by the

conservation of Ps. Since the evolution associated with B has saturated, we can
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next go into a frame rotating around B where
H~r (w—-w!)B"+uP (3.80)

and repeat the analogous argument.

A crucial requirement for the splits to develop is the preparation of the system for
the split by the generation of components of P that are transverse to B. Bipolar
oscillations do this easily for inverted hierarchy, independent of matter effects. For
the normal hierarchy, this may be achieved by MSW conversions, should they occur
before the nonlinear effects end. These two kinds of splits are called “Bipolar-
prepared” and “MSW-prepared” spectral splits respectively. We illustrate each of

these in the following.

Bipolar-prepared spectral splits

For illustrating bipolar oscillation initiated splits, we choose two situations, with
large and small A (Fig. 3.8 and 3.9 respectively) and the hierarchy is taken to be
inverted. We take box-like initial spectra f(w) for v, and 7, energies and the flux

asymmetry a = 0.33. We observe the following from the figures:

e For large A, there is only a single split for neutrinos, which can be seen in P5.
The split is not visible in the triangle since the neutrinos are confined to the
ve—v, edge. However, the low energy neutrinos move towards v, and the high

energy ones towards v,.

e for small A\, the split is not only in P5¥ but also in PgY. There also are
oscillations with large amplitudes. Some neutrino states drift towards and

ultimately reach v,, while the others keep oscillating between v, and v,.

The above observations can be understood as follows. For large A, the solar mixing
angle is suppressed and hence the problem reduces essentially to a two-flavor one in
the e — y subspace. Thus, the split is only in P§Y. The split happens in neutrinos

since there are more neutrinos than antineutrinos at any given energy. For small A,
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Figure 3.8: Spectral splits at large A for neutrinos (dotted) and 33% fewer
antineutrinos (undotted) with energies £ = (1-51) MeV. In the p,,_,. plot, the energy
of neutrinos (antineutrinos) increases (decreases) top downwards. The energies (in
MeV) of the modes, shown in the figure, are 1.0 (Red), 1.5 (Blue), 3.5 (Green),
12.5 (Pink) and 32.0 (Grey). We take inverted hierarchy, |e¢| = 1/30, 6;5 = 0.01,
p=10° (50/r(km))* km™' and A = 10 km™"'. In the es3-eg triangle, the evolution is
always along the v.-v, edge.

90 7
r(km)

Figure 3.9: Spectral splits at small A for neutrinos (dotted) and 33% fewer
antineutrinos (undotted) with energies £ = (1-51) MeV. The conventions for lines
is the same as that in Fig. 3.8. We take inverted hierarchy, ¢ = 1/30, 613 = 0.01
p=10° (50/r(km))* km™' and A = 0.1 km™'. In the ez—eg triangle, we show only
some of the representative energies that have different behaviors.
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in addition to the above split, there are large v, < v, oscillations, which give rise
to a split that is observable also in Pg”, which was absent for large A. In either case,
the position of the split can be determined from the conservation of B - D after the

split.

MSW-prepared spectral splits

Spectral splits can also be prepared by MSW effects. We consider a situation where
the system passes the two MSW level crossings before the neutrino-neutrino inter-
actions become small. The subsequent evolution to the point where the neutrino-
neutrino interaction becomes negligible will then produce spectral splits. We can
follow the two-flavor treatment almost step by step because the present three-flavor
system is simplified by the mass-gap hierarchy ¢ ~ 1/30 < 1. While the two
conserved flavor-lepton numbers present in the three flavor case lead to two spectral

splits, these will occur in sequence and their dynamics factorizes in practice.

To illustrate the dynamics of the split we consider an explicit example with only
neutrinos, so that D = [ dwf(w)P(w), and an initial “box spectrum” for f(w), of

the form

2wg) 7! 0<w< 2w
Pee(w) = (20) for — 0. (3.81)

0 otherwise

At high densities pe.(w) coincides with ps3(w) in normal hierarchy and with pas(w) in
inverted hierarchy. After the MSW crossings the spectrum is still of box-like because
the assumed strong neutrino-neutrino interaction ensures the same semi-adiabatic
for all energies. However, P now has transverse components generated due to MSW
crossing. Note that after the MSW transitions we neglect ordinary matter so that

the propagation eigenstates are identical with the mass eigenstates and p = p.

The situation can be visualized in terms of the es—eg triangle diagram shown in
Fig. 3.10 (left panel). Each point in the interior and on the boundary of the triangle
represents the projection of the polarization vector P in the es—eg plane. For
normal hierarchy, neutrinos from the v, burst start in the state v, ~ v3, where

by “tilde”, we represent the instantaneous mass eigenstates. The H crossing shifts
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Figure 3.10: Projection of the polarization vectors P(w) on the e3-eg plane for our
box-example. The vertices of the triangle represent instantaneous mass eigenstates.
The MSW transitions, prepare the system and place it at the point A in the interior
of the triangle (See the text for details.).

the neutrino state from the 73 vertex towards the 7, state, but only partially, due
to the semiadiabatic nature of the transition. After that crossing, all neutrinos find
themselves at the point A’ inside the triangle. The L crossing further transports
the state along a line parallel to the vo—; edge towards 71, again only partly due to
the semiadiabaticity. Before the split, all the neutrinos are thus at a point A in the

interior of the triangle.

The H split takes the w > w! modes towards the i3 state (P3 = 0,Pg = —2/+/3)
and the modes w < wf towards some combination of 7y and 75, while conserving the
total P3 and Pg. Since € < 1, the H and L splits are well separated and the high-w
modes reach the 73 vertex, i.e. the H split saturates, before the L split begins. The
low-w modes propagating towards the Py = 1/4/3 line encounter the L split that
tends to take the w > w’ modes towards 7, (P3 = —1,Pg = 1/4/3) and the w < w’
modes towards 7; (P3 = 1,Pg = 1/v/3). In the adiabatic limit, i.e. given sufficient
time to propagate from p — oo to u — 0, the H and L splits result in all neutrinos

reaching one of the three vertices of the es—eg triangle.

Using the conservation law for P3 and Pg of one can evaluate the split frequencies

wH and wr. For w < w! we have Py — 1/4/3, while for w > w!’ they reach —2/+/3.
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In the limit of perfect adiabaticity, the conservation of Pg implies

1 s l wn — WS
2WQP8(O) = %WH - \/g (2 0 H) s (382)

where P? is the common value of Pg before the split begins. For this example,

PY = —0.50, leading to w!’ = 0.76 wy.

When the H split saturates, all modes with w > w? have Pg = —2/4/3, and hence
P3; = 0 due to the conservation of the norm of P. These modes have reached the
bottom vertex of the es—eg triangle and hence cannot split further due to the L
split. On the other hand, for modes with w < w! a second split in P3(w) happens.
These modes approach Pz = +1 for w < wl and P3 = —1 for w > w!’. Applying

the conservation law for P3 gives us
2woP3(0) = wj — (W —wl) . (3.83)

For this example P§ = —0.14 so that w’ = 0.24 wy.

For inverted hierarchy, the initial state here is 5. The nonadiabatic L crossing
takes the neutrino states partly towards ;. After the L crossing and before the
split, the neutrino state for all modes is along the ;-5 edge, at A as shown in
Fig. 3.10 (right panel), where Py = 1/4/3. Since all neutrinos already are in one
of the extreme values of Pg, the H split is inoperational. This corresponds to ps3

remaining in its MSW-prepared initial value of 0. The L split takes p;; — +1 for

L

S

w < wkand p;; — 0 for w > wk and vice versa for py. In the inverted hierarchy
we have an effective two-flavor case in the ;-5 subsector. This is a consequence
of the MSW-prepared initial condition. Initially P = 1/4/3. Applying now the
conservation of Pg we obtain w! = 2wy, i.e., the split occurs at the edge of the

box and thus is not visible. The conservation law for P3 and using in our case

PY = —0.38, one obtains w’ = 0.62 wy.

We show in Fig. 3.11 the mass-basis spectra of P35 and Pg. Thin lines are the
MSW-prepared initial spectra. Thick lines show the numerical final spectra. Dotted

lines show the adiabatic limiting behavior based on the lepton-number conservation
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Figure 3.11: The 3 and 8 components of P(w). Thin line: initial box spectrum.
Thick line: numerically evaluated final spectrum. Dotted line: analytical prediction
for final spectrum.

laws. Once more the agreement is striking. We have of course assumed complete
factorization of H and L splits, this requires the H split to saturate before the L
split begins to occur. Imperfect adiabaticity merely leads to a smoothening of the

splits which otherwise are sharp spectral steps.

3.5.5 Summarized results

We started with a general framework to calculate flavor evolution of nonlinearly
coupled neutrinos and antineutrinos. We showed how to reduce any source geometry
to a quasi-spherical source. We then worked out the three-flavor effects analytically,
and showed that there is a sense in which the full problem breaks apart into the
H and L sectors. We then generalized the known two-flavor results to explicitly
demonstrate the various flavor conversion mechanisms, wviz. vacuum oscillations,
MSW oscillations, synchronized oscillations, bipolar oscillations and spectral splits,
in the three-flavor case and confirmed numerically that our framework gives consis-

tent results. We shall apply this framework to SN neutrinos in the next chapter.
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Chapter 4

Flavor Conversions of Supernova

Neutrinos

In this chapter, we study the effect of nonlinear oscillations and their interplay
with subsequent MSW transitions inside an iron-core SN. We apply the formalism
developed in Chapter 3 and identify the regions of the star where different flavor
conversion mechanisms are at work. This allows us to predict the features in
the observable neutrino and antineutrino spectra. We present results for inverted
hierarchy, because nonlinear effects are not expected to play a significant part for
normal hierarchy !. These results are based on the paper: B. Dasgupta and A. Dighe,
“Collective three-flavor oscillations of supernova neutrinos,” Physical Review D 77,

113002 (2008), [arXiv:0712.3798 [hep-ph]].

4.1 Reference SN model

We define a reference SN model for our numerical study. Our input comprises of the

2

2w and Am2 and the mixing

neutrino parameters ( the mass-square differences Am
angles 013 and 615), the source geometry (parameterized by neutrinosphere radius
o), primary neutrino fluxes F, (parameterized by the number flux ®,_, the average

energy (E,, ), and the pinching &, ), initial flavor state (encoded into P°(w)), MSW

'However, during the neutronization burst phase of an O-Ne-Mg SN, this need not be true.

o7
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potential (denoted as \(r)) and the neutrino potential (denoted as p(r)). With these
inputs, we can analytically predict P(w) at the end of nonlinear evolution. Then
we take the MSW crossings into account and write down the neutrino fluxes F2*

arriving at Earth.

4.1.1 Neutrino masses and mixings

We take |Am2,,| = 2.5 x 1073 eV?, |e| = |Am2 /AmZ,,,| = 1/30, 612 = 0.6, and two

atm atm

representative values of 03, viz. 013 = 0.001(small) and 0.1(large).

4.1.2 SN geometry and fluxes

The SN model is defined by the following choice for the emission geometry, initial
flavor dependent spectra and fluxes, the neutrino potential and the matter density
profile. 'We would like to emphasize that these choices are canonical and more
importantly, the specific value of the luminosity or the spatial dependence of the
neutrino potential does not affect results significantly. Any large initial value of
(such that it exceeds w) and its slow decrease with r gives almost identical results.
In other words, the results are not fine-tuned. However, the results would depend
on the flavor spectra and the matter density profile, as these determine the initial

conditions, the neutrino potential and the effective mixing parameters.

Emission geometry

Neutrinos with different energies and flavors start freestreaming at different r, but
flavor evolution does not start until much later. Thus the radius of the neutri-
nosphere r( is used only to set the initial conditions. We therefore use the “bulb-
model” of neutrino emission from the SN as discussed in [72] with a nominal
neutrinosphere at rg = 10 km. We assume steady-state half-isotropic emission
from the neutrinosphere. This completely defines the kinematics of all neutrinos

and antineutrinos emitted from the SN.
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Initial fluxes and spectra

We now define the flavor composition of the SN neutrinos. The flavor-dependent

primary neutrino spectra at ro are parameterized as [24]

P () =, <<EEM>)% R | RECE)

where N(£) = (1 + &)'*¢/T(1 + £). This spectrum is normalized such that

/ dE,, F, (E,)=®,, (4.2)
0

and has the average energy (E,, ).

The above parameterization has the advantage that the spectra can be analytically

integrated, including the effects of spectral pinching through &,.

The number flux @, is given by ¢, = L, /(F,, ), where L, is the luminosity in

the flavor v,.

We assume the above parameters to be

L, = 15x10"ergs/sec, &, =3

(B,) = 10MeV, (E;)=15MeV, (B, 5. )=20MeV. (4.3)

This choice reflects the hierarchy of number fluxes found in typical supernova models
[23, 24]

q)l/e > (I)De > q)l/z — q)ljz — ®Vy — @f, (44)

-
This scenario has been extensively studied analytically as well as numerically, and
gives straightforward predictions for neutrino flavor conversions. Although it is not
obvious that this hierarchy is maintained at late times, in the following we will
assume it as our benchmark. We must remark that qualitatively different primary
neutrino spectra and/or yet undiscovered flavor effects may yield different predic-

tions for flavor conversion and the analysis will have to be repeated appropriately.
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4.1.3 Neutrino potential and matter density profile
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Figure 4.1: The profiles of A(r) and u(r) for the SN model chosen in this section,
along with the bands for the MSW resonances H and L. Also indicated are the
terminal values of r where synchronized /bipolar oscillations for the e —y and e — x
flavors take place.

Neutrino potential

The neutrino potential for r > rq for the choice of parameters in Eq. (4.3) is given
by
p(r) = 0.45 x 10° g(r) km™ | (4.5)

where ¢(r) is given in Eq. (2.37).

Matter potential

We choose the shock-wave simulation inspired density profile that corresponds to 2
A(r) =1.84 x 10%/r?** km™" . (4.6)

The profiles of A(r) and u(r) are shown in Fig. 4.1.

2This is the same as the one used in [41] at t=4 sec.
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4.2 Flavor conversions inside a supernova

Let’s recall that £ ~ p = |Am2,|/(2w), we can rewrite the above information in
terms of w, if desired. Combining Eq. (3.12) with the definitions of moments in
(3.28), allows us to calculate the values of D(rq), S(rg) and D™ (r) for the above

spectrum as

o (Bo) = (BB 1
Do) = T 3B + (B 4(E) + (Bor)) & = 11 (4.7
o <<Eue> + <El7.—;>) <E1/z> _2<EV6><E76> . 2
S00) = B T (Bo)) (Bor) + U B W By S~ 11 % (48)
b 2Am (B4 B 2B L
DW(ry) = ; D B TA/(E ) e. =0.215 e, km™' (4.9)

Using the above expressions, (w) = D - D® /|D|? is calculated to be
(W) =237km™" (4.10)

which allows us to write (w®) = (w) and (wW*) = €(w) in terms of (w), as per Eq.
(3.68). This sets the “scale” for the problem. When p > (w), we have synchronized
oscillations, when p > (w) we have bipolar oscillations, as 1 becomes less than (w)
spectral splits develop. Then as A = w, we have the MSW resonances. All of these
happen for both the H (v.-v,) and the L (v.-v,) sector. Knowing p(r) and A(r) we

can predict the radii r at which various flavor conversions take place.

We expect synchronized oscillations in the region where p > 4(w®) S3¥ / (D5Y)? ~
208 km~" [76], which corresponds to r¢%, ~ 30 km in our example. In the further
region till p ~ (w¥) /D5 ~ 26 km~" [76], which corresponds to 7,/ = 49 km,
Ve < 1, bipolar oscillations are expected. Beyond this region the spectral split in
the e — y sector should develop, and subsequently MSW resonances should take

place, which would be either completely adiabatic (large #13) or completely non-

adiabatic (small 0;3) for the values of 6,3 we consider.Similarly we calculate for the

EeET

e — x flavors, the relevant values of rg7,

~ 68 km and 7}, ~ 114 km for approximate
boundaries of synchronized and bipolar oscillations in the e — x sector. However, no

bipolar oscillations take place in the e —x sector since the corresponding hierarchy is
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Figure 4.2: The flavor evolution of representative energy modes of v,(dotted) and 7,
(undotted) for the density profile in Fig. 4.1, with 613 = 0.001. In the p,,,, plot, the
energy of neutrinos as well as antineutrinos increases top downwards. The energies
(in MeV) of the modes, shown in the figure, are 2.5 (Red), 3.6 (Blue), 9.4 (Green),
13.3 (Pink) and 50.0 (Grey). In the triangle plot, the bold line passing through v,
is where all the neutrino and antineutrino states initially lie.

normal. In Fig. 4.1, we show the positions corresponding to r¢%,, vy, rér, and 757 .

4.2.1 Small 60,3

Fig. 4.2 shows the flavor evolutions in terms of P5¥, Pg¥ and the e;—eg triangle for

neutrinos as well as antineutrinos, for 6;3 = 0.001. This small value of #;3 ensures
that the MSW resonance H in antineutrinos is nonadiabatic, so that the effects of
this resonance are not felt. One can then cleanly identify the nonlinear effects. We

make the following observations and interpretations based on the figure:

e All the neutrinos and antineutrinos initially lie on a line passing through v,
in the es—eg triangle. This is because the initial conditions are taken to be

symmetric in v, and v,.

e The flavor evolution starts only at » = 40 km, which is slightly beyond ¢

syn*

Before this point, the oscillations are synchronized, with a vanishing ampli-

tude since A > (w®).
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e Between r = 40 and 60 km, v, < v, bipolar oscillations are observed as rapid

ey

dips in P5Y, and consequently in p,,,.. These oscillations vanish when r > Thip:

e Around r &~ 60 km, a spectral split develops in neutrinos along P5’. The
spectral split tends to keep the low energy neutrinos at their original position,
while taking the high energy neutrinos as well as almost all antineutrinos

towards P§* = 0. 3

e Between r =~ 100 — 1000 km, antineutrinos of different energies undergo the H
resonance. However the resonance is highly nonadiabatic and does not cause

any flavor conversion.

e At r = 1000 km and beyond, the effects of the MSW resonance L come into
play, resulting in v, < v, conversion. Since the high energy neutrinos are
already close to P§* = 0, there is effectively no flavor conversion. However
the low energy neutrinos tend to convert to v,, which is seen as a movement

parallel to the v.—1, edge in the e3—eg triangle.

e Since all the flavor conversions can be understood as a net effect of two-
flavor phenomena taking place in well-separated regions in the star, the flavor
transitions in the es—eg triangle are always parallel to the v.-v, edge or v.—v,

edge.

Thus, for a small 63, the nonlinear effects can be clearly identified, whereas the
effects due to the H resonance are absent. We calculate the flavor evolution till
r = 5000 km. The nonlinear effects have almost vanished by this time. Further
MSW resonances due to the shock wave [21, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44],
as well as possible effects of stochastic density fluctuations or turbulence [45, 46, 47]
will govern flavor conversions here onwards. Our calculations thus provide initial

conditions for neutrino spectra at this point.

In Fig. 4.3, we show the neutrino and antineutrino spectra at r = 5000 km. We

see that v, with £ > 7 MeV convert almost completely to v, due to the spectral

3 There seems to be a spectral split in antineutrinos as well, at very low energies. This is
similar to the observation in [76], and may be the effect of multiple-crossing of the spectra.
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Figure 4.3: Neutrino and antineutrino spectra at r = 5000 km for #;5 = 0.001. The
e, x and y flavors are shown in red(solid), green(dashes) and blue(dots). The thin
lines/dashes/dots are for initial spectra and thick ones for the final spectra. The v,
and v, spectra get swapped for F > 7 MeV, whereas the lower energy v, spectrum
partially mixes with v,. In the antineutrino sector, the 7, and 7, spectra are almost
completely swapped, while the 7, spectrum remains unaffected.

split, whereas lower energy v, convert partially to v, at the L resonance. In the
antineutrino sector, the 7, and 7, spectra are almost all completely swapped due to

the spectral split, while the v, spectrum remains unaffected.

4.2.2 Large 63

At large 0,3 values, the H resonance at r ~ 100-1000 km is adiabatic, and causes
significant flavor conversions in antineutrinos. In Fig. 4.4, we show the flavor
evolution for 613 = 0.1. While the signatures of synchronized and bipolar oscillations
as well as the spectral split remain identical to the #;3 = 0.001 case, the H resonance
can be seen to change the antineutrino picture substantially. The conversions in the
neutrino sector, on the other hand, are identical to the small 63 case. The following

observations can be made from the figure.

e The spectral split gives rise to a complete v, conversion, which takes

antineutrinos to P§* =

e The H resonance again swaps the .7, spectra, thus undoing the earlier effect
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r(km)

Figure 4.4: The flavor evolution of same representative energy modes of v, (dotted)
and 7, (undotted) for the density profile in Fig. 4.1, with ;3 = 0.1. The convention
for the lines is the same as in Fig. 4.2.

of the spectral split. This takes the antineutrinos back to their starting position

in the triangle.

e Antineutrinos are now not on the P§* = 0 line as in the small 6,5 case. As
a result, the large value of 0,5 causes substantial 7., conversion as the

neutrinos emerge from the L resonance region.

The neutrino and antineutrino spectra at » = 5000 km are shown in Fig. 4.5. We
see that the neutrino spectra have the same characteristics as for small #;3. In the
antineutrino sector, complete v, spectral split and the reconversion at the H
resonance cancel each other, whereas the large value of 6, partially mixes the v.—,

spectra.

The value of #,3 thus affects the v, spectra substantially. At larger 6,5 values, where
the H resonance is more adiabatic, the v, spectrum is softer. The v, spectrum is

also affected at large 0,3, as opposed to the small 6,5 case.
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Figure 4.5: Neutrino and antineutrino spectra at » = 5000 km for 6,3 = 0.1. The
e, x and y flavors are shown in red(solid), green(dashes) and blue(dots). The thin
lines/dashes/dots are for initial spectra and thick ones for the final spectra. The v,
and v, spectra get swapped for F > 7 MeV, whereas the lower energy v, spectrum
partially mixes with v,. In the antineutrino sector, the 7, and v, spectra are partially
mixed, while the 7, spectrum remains unaffected.

4.2.3 Summarized results

It is thus clear that the neutrino fluxes that reach Earth from a SN, are very different
from the primary fluxes, even if MSW effects are unimportant. The nonlinear effects
can themselves cause large flavor conversions. In particular for inverted hierarchy,
we learn that the v, and v, spectra are exchanged above a certain split-energy £, due
to nonlinear effects. For antineutrinos the swap occurs over the complete spectrum.
In the normal hierarchy, nonlinear effects do not have a significant effect. The MSW
conversions cause further flavor conversions, and while the conversion probabilities
have not changed from the traditional expectation, the primary fluxes entering the
resonances are now vastly different. This leads to different flavor composition of
the fluxes of neutrinos and antineutrinos arriving on Earth, than was traditionally

expected.

These fluxes can be calculated using our understanding of nonlinear effects and
the level-crossing diagrams. At the detectors on Earth one is typically sensitive to
the v, and/or 7, flux, and so we summarize the expectations for these fluxes in

Tables 4.1 and 4.2. The expressions in the table describe all the features of v, and
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v, spectra in Figs. 4.3 and 4.5.We have taken the L resonance to be adiabatic. In
the case of multiple H resonances, as may occur during the shock wave propagation
or turbulence, Py may be taken to be the effective jump probability (it may have
a nontrivial dependence on energy and time). Note that Earth matter effects are

Obs . . . . .
present only when Y 5, 15 @ nontrivial combination of F,, 5. and F,_ ., /s, 5,-

Normal hierarchy

Fobs = &2, (PyF,, + (1 - Py)F,,) + ¢, F,,

obs __ 2 2
Fae = 19 Fy, + 812 F5,

Table 4.1: Neutrino and antineutrino fluxes in normal hierarchy arriving on Earth
from a SN.

Inverted hierarchy

Jrobs _ sy, + b Fy, (B < E.)
e 8%2Fl’y +ciyFy, (B> E)

Febs = st + 2y (1 — Py)Fy, + Puky,)

Table 4.2: Neutrino and antineutrino fluxes in inverted hierarchy arriving on Earth
from a SN.

These are the observable fluxes in terms of the primary fluxes for the scenario that
we have considered. If the initial fluxes have the same ordering as in Eq. (1.16) but
with slightly changed parameters, the outcome would be similar. However, if the
initial fluxes have a different ordering, or if the nonlinear evolution is nonadiabatic

the situation is likely to be different.






Chapter 5

Signatures of Nonlinear Supernova

Neutrino Oscillations

The nonlinear flavor oscillations of SN neutrinos leave distinctive imprints on the
neutrino spectra observable on Earth. In this chapter we discuss some possible
outcomes for neutrino physics and astrophysics based on the papers: B. Dasgupta,
A. Dighe and A. Mirizzi, “Identifying neutrino mass hierarchy at extremely small 013
through Earth matter effects in a supernova signal,” Physical Review Letters 101
(2008) 171801, [arXiv:0802.1481 [hep-ph]|] and B. Dasgupta, A. Dighe, A. Mirizzi
and G. G. Raffelt, “Spectral split in prompt supernova neutrino burst: Analytic three-
flavor treatment,” Physical Review D 77 (2008) 113007, [arXiv:0801.1660 [hep-ph]]

respectively.

5.1 Determination of mass hierarchy using Earth

matter effects

We have seen in the previous chapter that nonlinear effects have different outcomes
for normal and inverted hierarchy. As a consequence, neutrino fluxes which are
further processed by MSW matter effects are significantly different for the two

hierarchies, even at extremely small 6,3 values. This sensitivity presents a novel
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possibility to determine the mass hierarchy at small ;5. We propose a new method
for determining the neutrino mass hierarchy, which works for extremely small values

of #,3 using this possibility.
As before, we assume the hierarchy of number fluxes [23, 24]

¢Ve>¢ﬁe>¢l/x:©9x:©V :©9 .

Y Y

(5.1)

Although it is not obvious that this hierarchy is maintained at late times, in the
following we will assume it as our benchmark. We remark again that qualitatively
different primary neutrino spectra and/or yet undiscovered flavor effects may yield
different predictions for flavor conversion and the analysis will have to be repeated

appropriately.

We concentrate on the v, spectra observable through inverse beta decay reactions
U, +p— n+ et at water Cherenkov detectors. In inverted hierarchy, MSW matter
effects in SN envelope are characterized in terms of the level-crossing probability
Py [34, 103] of antineutrinos, which is in general a function of the neutrino energy
and 5. In the following, we consider two extreme limits, Py ~ 0 when sin® 6,3 e

1073 (“large”), and Py ~ 1 when sin? ;3 < 107> (“small”).

While propagating through the Earth, the 7, and 7, spectra partially mix. The
neutrino fluxes F°* at the Earth surface for normal hierarchy, as well as for inverted

hierarchy with large 6,3, are given in terms of the the primary fluxes F), by

b 2 .2
F” = cos® 012k, +sin” 01515,

Fgfs = sin?65F,, + cos® 015 Fy, . (5.2)

For inverted hierarchy with small 6,3, we have

F2% = cos® 015 Fy, + sin® 01, F2 ~ F?

ngs — sin? 912F,;y + cos? 012F;, ~ Iy, . (5.3)
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Earth effect can be taken into account by just mapping cos? 65 — P(; — 77,) and
sin? 615 — 1— P(v; — 7,), where P(p; — 1,) is the probability that a state entering

the Earth as mass eigenstate v, is detected as v, at the detector.

From Egs. (5.2) and (5.3), one expects to observe Earth matter effect in normal
hierarchy independently of 6,3, while in inverted hierarchy it is expected only at
large 615. For small 6,3 and inverted hierarchy, the 7, spectrum arriving at the Earth
is identical to the v, spectrum arriving at the Earth, so any oscillation effect among
them is unobservable. This implies that if next generation neutrino experiments
bound 6,3 to be small, from the (non)observation of Earth matter effect we could

identify the neutrino mass hierarchy.

A strategy to observe Earth matter signatures in neutrino oscillations is to compare
the signal at two detectors. The difference between the v, flux F;: at a shadowed
detector and the v, flux Fﬂlj at a detector that is not shadowed by the Earth can be
written as

AF =F} —FP = fo(Fy. — Fy,) (5.4)

for normal hierarchy as well as for inverted hierarchy with large 6,3. Here fios =
P(y — 1,)—cos? 015 is the Earth regeneration factor. In inverted hierarchy for small
013, we get AF = 0. If the v trajectories cross only the Earth mantle, characterized

by an approximately constant density, freg is simply given by [104]

- ~ AmZ L
freg = —sin 2012 Sin(2012 - 2012) Sin2 ( QHEC? ) 5 (55)

where 6}, is the effective value of the antineutrino mixing angle 6, in matter, Am2
is the solar mass squared difference in matter, and L is the path length in Earth.

In Earth matter, we have sin 2055 > 0 and sin(29~12 — 2015) < 0, which tells us that
freg > 0.

The flavor dependent primary neutrino spectra F, (FE) in terms of (E), 1is the

average energy for the different neutrino species, and ¢, is the spectral pinching
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Figure 5.1: Plot of the ratio R defined in Eq. 5.7, as a function of the observable
positron energy for normal hierarchy (left panel) and inverted hierarchy (right
panel), with sin?6;3 < 1075, For sin?6;3 > 1073, the ratio R will be identical

~Y ~Y

to the left panel for either hierarchy.

parameter. The neutrino flux at the neutrinosphere can then be estimated to be

L,,
<EVa>

Fua = fua<E) ) (56>

where L, is the luminosity in the ,_ flavor and f,_ (FE) is the distribution function
in Eq.(4.1). All SN models robustly predict (Ej,) < (Ey,) = (Ej,), as well as
Save ~ ay, R oy, This implies that the sign of (FY) —F}) ) is positive at low energies

(before the crossing of the v, and v, spectra) and negative at higher energies.

The net result is that when we compare the antineutrino fluxes between a shadowed
and an unshadowed detector, we will have AF > 0 at low energies and AF < 0 at
high energies in the case of normal mass hierarchy, or in inverted mass hierarchy
with large #13. In inverted hierarchy with small 63, one expects a AF compatible

with zero.

To illustrate the above, we consider a galactic supernova explosion at a distance
of 10 kpc, with luminosities Ly, = Ly, = 0.8L;, and total emitted energy E, =
3 x 10° erg. We also choose (E; ) = 15 MeV, (E;) = (E;) = 18 MeV, and
Vo = 3, inspired by the results of the Garching simulations [24, 105]. We analyze
the detection of the above signal using two large water Cherenkov detectors A and B
of fiducial mass 0.4 megaton each, as proposed for upcoming experiments [106, 107,

108]. We compare the number of events in detector A, where neutrinos arrive after
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traversing L = 8000 km in Earth mantle with an approximately constant density
p = 4.5 g/cm?, with another detector B for which the supernova is not shadowed
by the Earth (L = 0). The reference values for features of the detectors, e.g.,
energy resolution and interaction cross sections, are the same as in [42]. We choose
Amé = 8 x 107° eV? and sin®#;, = 0.29 as the oscillation parameters relevant for

the Earth matter effect.

We define

as the difference between the number of 7. events at the shadowed detector and
the unshadowed detector, normalized to the number of events at the unshadowed
detector. In Fig. 5.1, we plot the ratio R as a function of the measured positron
energy F,os for v, in normal hierarchy (left panel) and inverted hierarchy (right
panel) for sin?#;3 < 107°. The error bars show the statistical error in R. In the

other extreme case of sin®f;5 > 1073, both the normal and inverted hierarchy would

correspond to the left panel.

Let us consider the scenario where 63 is known to be small. From the figure,
in normal hierarchy the ratio R is positive for E,,s S 25 MeV and negative at
higher energy. The low energy spectrum is dominated by statistical error, but for
E,os 2 30 MeV the depletion of the signal with respect to the unshadowed detector
is clearly visible, with |R| 2 5%. On the other hand, in inverted hierarchy we
find R = 0. The difference in the predictions of two hierarchies is significant and
should be observable. Primary spectra taken from Livermore simulations [23], which
predict a larger difference between v, and v, average energies, would show a more
pronounced FEarth effect. We emphasize that our method is based on a model

independent signature which does not rely on fitting or extracting any parameters.

The comparison of the neutrino signal in two detectors is also possible using only a
single megaton class water Cherenkov detector together with the km? ice Cherenkov
detector IceCube at the South Pole [109]. Even though IceCube cannot reconstruct
the neutrino spectrum at SN energies, the ratio of luminosities at these two detectors

can be determined rather accurately, which will show about 5% time variation if
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Earth effect is indeed present [36]. Moreover, if a large scintillator detector [106] is
built, its superior energy resolution would allow the observation of the modulations
induced by the earth effect in the spectrum, without the need to compare the signal

with another unshadowed detector [37].

The swap of the v spectra due to nonlinear effects does not depend on the exact
neutrino density profile as long as the propagation is adiabatic [62], whose validity we
have checked for typical SN profiles and 6,3 as low as 107!°. Decoherence effects are
highly suppressed due to the v.—7, flux asymmetry [75], and other multi-angle effects
also do not affect the net antineutrino conversions substantially [76]. Moreover, with
an extremely small 6,3, the detailed matter density profile near the H resonance
is immaterial, and the effects of density fluctuations or turbulence may safely be
ignored. Therefore, one can make the following statements: (i) Observation of Earth
matter effects cannot be explained in inverted hierarchy (ii) Nonobservation of Earth
matter effects cannot be explained in normal hierarchy (unless the primary fluxes
are almost identical). Our proposed method is thus quite robust, and would be able
to identify the mass hierarchy. It is not only competitive with the long baseline
strategy proposed in [110], but also offers an independent astrophysical resolution

to the hierarchy determination problem.

If 613 is known to be large, the hierarchy can be determined through a number of
other observables in the SN burst itself: signatures of SN shock-wave propagation
in the 7, signal [21, 42, 45], the v, signal during the neutronization burst [111],
or the direct, albeit extremely challenging, observation of the spectral split in v,
spectrum [84] at a large liquid Argon detector [112]. In fact the hierarchy may
even be identified at the long baseline experiments. However in such a scenario, the
Earth matter effects act as an evidence for nonlinear flavor conversions, thus giving
us confidence about our understanding of the processes happening in the core of the

star.
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Figure 5.2: Profile of the matter potential A and the effective neutrino potential
for an O-Ne-Mg core collapse SN [14, 113, 114, 115].

5.2 Progenitor dependence of SN neutronization

burst signal

An interesting new case is motivated by the class of O-Ne-Mg core-collapse su-
pernovae [14, 113, 114, 115]. Supernovae with the lowest progenitor masses of
(8—=10) My, encompassing perhaps 30% of all cases, collapse even before forming an
iron core. In state-of-the-art numerical simulations these supernovae explode even in
a spherically symmetric treatment, largely because their envelope mass is very small.
By the same token, the matter density profile above the core is very steep even at
the time of core bounce. In this case the H and L level crossings occur very close to
the neutrino sphere and may well lie deeply within the region where nonlinear effects
are important. This is illustrated in Fig. 5.2 where we show A(r) = v/2Gpn.(r) of
an O-Ne-Mg core progenitor star [14, 113, 114]. We also show wf = (Am2, /2FE)
and w” = (Am?2 /2E) as horizontal lines, where the average is over the Fermi-Dirac

spectrum of neutrino energies described below. The intersection of A(r) with these

lines indicates the locations of the H and L level crossings.

In Fig. 5.2 we also show the effective neutrino potential i = v/2GrF,, (1 — cos ) esr,
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Normal hierarchy Inverted hierarchy
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Figure 5.3: Mass eigenstate fractions P;; as well as the v, survival probabilities far
away from the star, numerically computed using the SN model of Fig. 5.2 and an
initial flux of pure v..

where 6 is the angle between different neutrino trajectories and (...).ss stands for

4

a suitable average. At large distances, u scales approximately as r~*. nonlinear

neutrino effects driven by Am2,, are important for u(r) 2 wy and driven by Amg

m

for p(r) 2 wr.

Duan et al. [86] have shown that in this case the interplay of ordinary MSW
conversions with nonlinear oscillations leads to interesting effects. We start with a
pure v, flux with a Fermi-Dirac spectrum ((E,,) = 11 MeV, degeneracy parameter
n = 3), and numerically calculate the mass eigenstate fractions P;; and the v, survival
probabilities P,. far away from the star, as shown in Fig. 5.3. Our results are in
qualitative agreement with Fig. 2 of [86]. However, our P.. is constructed as an
incoherent sum of the mass fractions, thus representing the physical situation far
away from the star, where the oscillatory features seen in Duan et al.’s P.. have

disappeared.

In inverted hierarchy, one observes that the neutrinos emerging from the star are in
the 15 state at low energies and in the v, state at high energies, with the transition

taking place around E = 12 MeV. This results in a step function in energy for P,..
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In the normal hierarchy, the neutrinos emerging from the star are in v; state for
E Z 17 MeV, in v, state for 1I5MeV < E < 17 MeV, and in the v3 state for
E < 15 MeV. The bump seen around 5 MeV is due to an abrupt change in the
matter density profile used for the computation (see [86] for details), and we do not
address it here. The transition at E ~ 15 MeV is rather sharp, however the one at
E ~ 17 MeV is not as abrupt. This results in a two-step function for P,., with the
step at ' ~ 17 MeV somewhat smoothened out.

This is an example of a “MSW prepared spectral split” as shown in Sec. 3.5.4, i.e
first the synchronized MSW resonances take place and generate off-diagonal terms
in the density matrix, and then the splits develop in the usual way. In a three-flavor
treatment, the step-like feature actually consists of two narrowly spaced splits for

the normal hierarchy and a single split for the inverted hierarchy.

Normal hierarchy Inverted hierarchy
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Figure 5.4: Initial (thin) and final (thick) spectrum for a Fermi-Dirac distribution
with the typical parameters. The numerical final spectrum is for our toy-model
supernova where the MSW crossings and spectral-split region are far separated.
Dotted curves represent the survival probability P.. for electron neutrinos.

In Fig. 5.3 we show the above-mentioned features of the neutrino spectrum for the
neutronization burst of a O-Ne-Mg supernova. This signal is quite different from
the neutronization burst signal expected from an iron-core supernova, where there

are no such splits in the neutrino spectrum in either hierarchy.

To detect this signal one needs a detector that is sensitive to v., e.g. liquid Argon
detectors. With detectors at present, we do not have enough events to identify
the spectra, and the only difference would manifest in the form of a depletion of

the number of events even for both normal and inverted hierarchy. This signal is
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degenerate with the signal from an iron core supernova for normal hierarchy and
large 6:3, where v, undergo an adiabatic MSW resonance leading to a flux depletion.

his is ground for dangerous confusion.

However, if we have a larger detector that gathers enough events and has enough
energy resolution to be able to see the splits, we speculate that this may be useful
for distinguishing the supernova progenitor using neutrinos and allow for better

characterization of different types of supernovae.
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Impact on the Diffuse Supernova

Neutrino Background

In this chapter, we look at the impact of nonlinear oscillations on the flux of neutrinos
from all past SN. We find that depending on the hierarchy and the mixing scenario
the fluxes can change by up to 50% due to nonlinear effects alone. Although there
are large astrophysical uncertainties, this strong dependence can in principle be
very useful to rule out some scenarios if we measure the diffuse supernova neutrino
background flux. This chapter is based on the paper: S. Chakraborty, S. Choubey,
B. Dasgupta and K. Kar, “Effect of Collective Flavor Oscillations on the Diffuse
Supernova Neutrino Background,” Journal of Cosmology and Astroparticle Physics

09 (2008) 013, [arXiv:0805.3131 [hep-ph]].”

6.1 Diffuse SN neutrino background

Supernovae are relatively rare events in our galaxy. It is estimated that in galaxies
similar to ours they occur at a rate of about 1 to 3 per century [27], which prompts
consideration of the alternative strategy to detect neutrinos from supernovae that
are further away. Neutrinos accumulated in the Universe from all the SN explo-
sions in the past and present epoch form a cosmic background, known as the

diffuse supernova neutrino background (DSNB) or supernova relic neutrinos [29, 30].
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The expected flux of these DSNB neutrinos depends mainly on the SN rate and

the“typical” flavor dependent flux of neutrinos from supernovae.

Estimation of the DSNB flux has been performed in previous literature [116], fo-
cussing on DSNB detection via v, scattering off protons at water Cherenkov detectors
[117] and large liquid scintillator detectors [118]. On the other hand, v. detection
has been considered at a liquid argon detector [119] and at Sudbury Neutrino Ob-
servatory (SNO) [120, 121]. In [122], authors have performed a detailed comparative
study of v, detection in different future large scale observatories — by interaction of
v, on oxygen in water Cherenkov detectors, on carbon in liquid scintillator detectors
and on argon in liquid argon detectors. Experimentally, the best upper limits at 90
% C.L. of 6.8 x 10* v, ecm™2?s™! (25 MeV < E,, < 50 MeV) and 1.2 7, cm 257!
(Ep, > 19.3 MeV) come from the Liquid Scintillation Detector (LSD) [123] and
the Super-Kamiokande (SK) detectors [32] respectively. However, stronger bounds
can be placed on these fluxes, albeit using somewhat indirect arguments [121, 124].
Some of the theoretical estimates of the DSNB fluxes predict event-rates for v, that
are tantalizingly close to detection, e.g., the observational upper limit set by the SK
collaboration [32]. The prospects for discovery thus seem promising if a large water
Cherenkov detector like SK is loaded with 0.02% GdCl; [125] or if one or more of

the proposed next generation detectors become available.

With the inclusion of nonlinear effects, the observable spectra gets modified. The
expected DSNB flux in the case of inverted hierarchy turns out to be quite different
from those contained in previous works that disregarded nonlinear effects. Thus the

prospects of DSNB detection at antineutrino and/or neutrino detectors are changed.

6.2 Estimation of DSNB flux

The total differential DSNB flux arriving at terrestrial detectors, expressed as the
number of neutrinos of flavor v, arriving per unit area per unit time per unit energy,

due to all supernovae in the Universe up to a maximum redshift z,,,, (assumed to
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be 7 for the numerical analysis), is

1
=

dz
V QT+ 2+Qy)

/0 " Ren(2) Fo (14 2)E) (6.1)

Here F),_ is the neutrino spectra emitted by a SN, E,_is the neutrino energy at
Earth and Rgx(z) is the SN rate per comoving volume at redshift z. Note that the
factor (1+ z) in the neutrino spectrum F,_((1+ 2)E,,) incorporates the redshift of
the energy spectrum. The cosmological parameters are assumed to be given by the

standard A-CDM cosmology, we have
O =0.3: Qy=0.7and Hy = 70 hyo km s~ Mpc™' . (6.2)

Therefore, we only need to know the SN rate Rgy(z) and the differential flux of
neutrinos F,(F,), from a typical core-collapse event to calculate the DSNB flux at

Earth.

The SN rate Rgn(z) is related to Rgr(z), through the initial mass function p(m),
which describes the differential mass distribution of stars at formation [116, 126].
We assume that all stars that are more massive than 8M, give rise to core-collapse
events and die on a timescale much shorter than the Hubble time, and that the
initial mass function p(m) is independent of redshift. This allows us to relate the

star formation rate Rgp(2) to the cosmic SN rate Rgn(2) as

125M
s, | plm)dm

Rsn(2) = Rsr(2) MG ymdm (6.3)
1Mo

For our estimates, we use the initial mass function from [127], i.e

m~21 (m > 0.5Mp)
p(m) oc { (6.4)

m~10 (0.1M <m < 0.5Mp)

Putting the above expression into Eq. (6.3) we find

Rsn(2) = 0.0132 Rgp(2) M. (6.5)
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It should be noted that the factor connecting Rgy and Rgp is quite insensitive to

the upper limit of the integrations in Eq. (6.3).

Recent careful studies on different indicators of the cosmic star formation rate have
been used to calculate the Rgpr and its normalization. We use the cosmic star
formation rate per comoving volume, Rgp, from the concordance model advocated

in [128, 129], which is given by

(14 2)34 2 <0.97
Rsp(z) x $ (142)702 097 <2 <448 , (6.6)
(1+2)""8 448 < z
with the normalization
Rsr(0) = 0.0197 Mgyyr~'Mpc ™2 . (6.7)

This model satisfies the experimental upper limit on DSNB set by SK [32], and is

known as the concordance model [126].

We do not know the typical SN neutrino flux accurately, so to estimate the impact of
nonlinear effects, we consider an initial spectra with luminosities Ly, = Ly, = 0.5L;,
and L,, = L,, = 0.625L;, and total emitted energy E, = 3 x 10° erg. We also
choose (E),, =12, (E);, = 15 MeV, (E)p, ., = (E)5,, = 18 MeV and a = 3.

6.3 Expected event rate at detectors

An array of existing and planned detectors could observe the DSNB neutrinos. We
consider in particular water Cherenkov detectors (Super-K, Hyper-K) for the an-
tineutrinos. We also consider their enhanced versions with Gadolinium enrichment,
leading to efficient neutron tagging and background rejection. We use the standard
energy-cuts used for the analysis, so as to avoid the solar neutrinos below 10 MeV
and the atmospheric neutrinos above 20 MeV. For detecting the v, DSNB, the best

option seems to a reasonably large Liquid argon detector. We show the expected
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Figure 6.1: Number of expected events as a function of the jump probability Py
between the mass eigenstates 1, and v3. Black lines are for normal hierarchy and
blue dashed lines for inverted hierarchy. The yellow dashed dotted lines show the
case for inverted hierarchy without the nonlinear collective effects (WOC). The label
“Gd” denotes availability of Gadolinium tagging in the detector.

event rates in Fig. 6.1.

We find that the event rate can be different from previous estimates (WOC) by up
to 50%, and depends on the value of #13. It is generically true for any choice of
primary fluxes. This result will have impact on models of stellar evolution if the
DSNB gets detected. In particular, knowing 6,3 and hierarchy, we will be able to
put experimental constraints that those models must satisfy. Again, we remind that
this result is only indicative, and the analysis will have to be repeated appropriately
for different initial spectra. This is particularly an issue here because the different

supernovae will not all have the same spectrum in general.
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Chapter 7

Conclusions

Neutrinos streaming from powerful astrophysical sources such as SN are so dense
near the source that they must show nonlinear flavor oscillations induced by the
neutrino-neutrino forward scaterring. Numerical simulations reveal a rich variety of
phenomena, some of which have been explained with simple analytic models. In this

thesis we explore various formal and phenomenological aspects of these phenomena.

Numerical simulations thus far have been restricted to homogeneous gases evolving
in time or to sources with exact spherical symmetry. More general geometries
are numerically much more demanding and have not yet been studied in great
detail. Therefore, we have studied what might be expected under the assumption
that the multi-angle instability plays no role and that the neutrino ensemble is
largely characterized by self-maintained coherence. In this case one is led to a
unique formulation of the nonlinear equations of motion that imply that nonlinear
flavor oscillations should be thought of as a one-dimensional phenomenon along the
streamlines of the underlying neutrino flux. Close to the source these streamlines
are usually curved even though, of course, the underlying neutrino trajectories are
straight. (We have neglected the gravitational bending of trajectories.) Therefore,
even if the neutrino stream has no global symmetries, the nonlinear oscillation

problem is relatively simple.

We have used the concept of “self-maintained coherence” that applies when the neu-

trino gas is dense, i.e., when a typical neutrino-neutrino interaction energy p is large
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compared to a typical vacuum oscillation frequency (w) = (Am?/2FE). The neutrino
ensemble in this case evolves along a streamline as one unit that can be thought if
as being one-dimensional. All neutrino and anti-neutrino polarization vectors point
essentially in the same direction in flavor space, the pendulum direction, allowing
for the simplifications that lead to our nonlinear equations. We have provided a
prescription for defining the effective neutrino-neutrino interaction strength p that

works for general source geometries.

We have developed a formalism to analyze neutrino flavor conversion effects in the
full three-flavor framework. It employs the Bloch vector representation for 3 x
3 density matrices, and naturally generalizes the spin-precession analogy to three
flavors. In particular, it is capable of describing three-flavor nonlinear neutrino
conversion effects inside a core collapse supernova, like synchronized oscillations,
bipolar oscillations and spectral split, which have till now been analytically studied

mostly in the two-flavor limit.

We explicitly extend the earlier two-flavor analysis of neutrino flavor conversions
inside the SN, which includes neutrino-neutrino interactions, to three flavors, where
we neglect the CP violation in the neutrino sector. We use the modified flavor basis
(Ve, Vg, 1), which is rotated from the flavor basis (v, v, v-) so as to get rid of the
mixing angle #53. We also work in the steady state approximation so that there
is no explicit time dependence in the density matrix, assume spherical symmetry
and half-isotropic neutrino source, and employ the single-angle approximation that
has been shown to be valid in the two-flavor case. This leads to the equations of a
gyroscope in eight dimensions, similar to the three dimensional gyroscope equations

in the two-flavor case.

In the three-flavor formalism, the density matrix is represented by an eight-dimensional
Bloch vector P. However, the flavor content is determined only by the two compo-
nents P3 and Pg of P after evolution. Motivated by this observation, we propose
the “es—eg” triangle diagram to represent the flavor content of any neutrino state
by the projection of P on the es—eg plane, which we have termed P. This not only

allows us to visualize the three-flavor transformations in a convenient way, but also
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allows us to quantify the extent of three-flavor effects over and above the two-flavor

results.

A “heavy-light” factorization holds in the three-flavor treatment for certain initial
conditions, so that the three-flavor results may be understood as the two-flavor

results with Am?, modified with terms that depend on Am2. Indeed, in certain

atm
situations, the three-flavor neutrino conversions may be factorized into three two-
flavor oscillations with hierarchical frequencies. In such cases, the three-flavor
conversion probabilities may be constructed from two-flavor results by considering

the modulation of higher frequency modes by lower frequency modes.

We have compared our analytic results with the numerical ones for simple cases of an
initial pure v, state, constant matter densities and no nonlinear effects, as well as for
synchronized oscillations, and have found a good agreement even when we ignore the
modulation due to the lowest frequency. The additional effect of the third neutrino
in these cases is limited to the excursions of the orbit of P towards v,. In the absence
of nonlinear effects, though the evolution of all energies is different, the orbit of P can
be seen to be an energy-independent quantity. In the synchronized case, neutrinos of
all energies are seen to oscillate with a common frequency, and even undergo MSW

resonances at the same matter density and with the same adiabaticity.

In the case of bipolar oscillations, the addition of the third neutrino changes the
situation significantly. The analytical results are not so easy to obtain, however
the numerical results for an inverted hierarchy show a “petal” pattern in the es—eg
triangle, which can be explained by the combination of v. < v, bipolar oscillations
and v, < v, sinusoidal oscillations. The value of the MSW potential also plays an
important role in determining the extent of the effect of the third flavor. This needs

to be explored in more detail.

The spectral split occurs in neutrinos in the inverted hierarchy when one starts
with v, owing to the unstable position of the eight-dimensional gyroscope in this
case. The v, above a certain energy, and almost all 7., completely convert to v, and
v, respectively. There are no additional split effects from the introduction of the

third flavor since the hierarchy in the solar sector is normal. This, however, could
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change if neutrinos are not in a pure v, state as they enter the bipolar region. This
is indeed the case sometimes for the MSW prepared spectral splits, in which one
gets two spectral splits. The dynamics of the two spectral splits can be understood
in terms of the motion of the neutrino state in the es—eg triangle diagram, which
can explain many of the features of neutrino evolution qualitatively. The number
of possible splits can be deduced by the location of the neutrino state inside the
triangle after passing through the two MSW resonances. We have also shown how
the positions of the splits can be calculated accurately given the initial neutrino
spectra, and calculated the v, survival probability analytically, that matches the

numerical computations.

We have simulated the neutrino flavor conversions numerically by taking a realistic
density profile for the iron core SN, and have shown the flavor conversions for
inverted hierarchy and two 6,3 values in the cooling phase. In such a scenario,
it is easily possible to identify regions where different nonlinear as well as MSW
effects dominate. We are able to predict the regions in which these effects take
place, and our three-flavor formalism can explain the features of flavor conversions
therein. We also point out an interplay between the nonlinear and MSW effects. For
example, the H resonance cancels the effect of the spectral split for antineutrinos,
whereas the spectral split makes the L resonance irrelevant for neutrinos above the
split energy. If the hierarchy were normal, the nonlinear effects would be effectively
absent in the cooling phase. These results give us an overall understanding of flavor

conversion in SN.

Determination of the leptonic mixing angle #;3 and the neutrino mass hierarchy
represent two of the next frontiers of neutrino physics. We have proposed a new
possibility for identifying the neutrino mass hierarchy that works for extremely
small values of 6,3, far beyond the sensitivity of current and future terrestrial
neutrino experiments. The sensitivity of supernova neutrino oscillations to the mass
hierarchy, for incredibly small values of 6,3, is a consequence of the nonlinear neutrino
oscillations that take place near the supernova core. These effects interchange the

initial 7, and 7, spectra in the inverted hierarchy, which are then further processed by
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MSW effects in the SN envelope. This spectral swap can be revealed by comparing
the event rate at a shadowed detector with that at an unshadowed detector. If
neutrino oscillation experiments fail to determine the mass hierarchy, then this
proposed method could represent the last hope to resolve this issue, provided that
large water Cherenkov detectors are available at the time of the next galactic SN
explosion. This perspective should be considered when choosing optimal detector

locations for upcoming large neutrino detectors [130].

We study the prompt v, burst in an O-Ne-Mg core collapse SN. Here, the matter
density profile is so steep that the sequence between MSW crossings and nonlin-
ear neutrino oscillations is reversed from what would be expected in a traditional

iron-core SN. The three-flavor evolution of a v, burst dictates that the system

2

atm

first undergoes two MSW level crossings driven by AmZ, and Am2, respectively,
and then undergoes spectral splits by the adiabatically decreasing strength of the
neutrino-neutrino interaction. Thus we show that the nonlinear effects depends on
the progenitor at early times, which could be both a boon or a bane, depending on

our detector capabilities.

Observation of the diffuse supernova neutrino background is another cherished goal
of the neutrino astrophysicists. Large number of DSNB events are expected in the
next generation detectors and therefore, it should be possible to observe DSNB 7, in
the future. nonlinear effects inside SN significantly change the predicted number of
DSNB events if the hierarchy is inverted. We point out that the prediction for the
DSNB flux should thus be revised by taking into account these effects. Conversely,
if the DSNB is observed, one will have to account for nonlinear effects while placing

bounds on various parameters.

We believe that these results will contribute towards a better understanding of the

neutrino masses and mixing, as well as supernova astrophysics and cosmology.
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