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Synopsis

Introduction

Quantum Chromodynamics (QCD) is widely believed to be the underlying physical

theory of strong interactions with quarks and gluons as its elementary degrees of

freedom. The theory is asymptotically free [1]. The strength of interaction between

the quarks and gluons decreases with increasing momentum transfer. However, a sin-

gle isolated quark or gluon has never been observed despite numerous experimental

efforts [2]. Experimentally observed hadrons are bound states of quarks and glu-

ons. Unlike the case of the hydrogen atom, where the binding energy is only about

10−8 times the mass of the bound state, most of the mass of any hadron arises from

the strong interactions between quarks and gluons. The binding energy accounts for

nearly 99% of the proton’s total mass. Perturbation theory therefore seems inappli-

cable, and non-perturbative methods are needed to study this theory. Lattice QCD is

the only reliable non-perturbative formulation of QCD that allows a systematic and

precise study at all energy scales. Lattice QCD has been successful in the ab-initio

calculation of the masses of all the light hadrons. It is being increasingly used to

make predictions [3] about decay constants, running coupling, heavier hadrons, ex-

cited states, resonances and flavour physics. It seems therefore a good idea to test

QCD in new conditions such as extreme temperatures and density.

Quantum field theory (QFT) at finite temperature and density is studied using

the grand-canonical partition function:

Z = Tre−β(H−µN) (1)

where H is the Hamiltonian of the theory, β is the inverse temperature and µ is the

chemical potential conjugate to some conserved charge N . Since the lattice formula-

tion of a QFT is made on a discrete space-time lattice with spacing a [4], the spatial

volume of the lattice is V = (Nsa)
3 and the temperature is T = 1/Nta = 1/β, where

iii
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Ns and Nt are the number of sites in the spatial and temporal directions respectively.

Quark fields are defined on the sites, while the gauge fields are defined as SU(3)

matrix valued fields on the links joining the sites.

Describing the fermions on the lattice is complicated by the fermion doubling

problem, because of which one gets 16 flavours of fermions in the continuum for a

single Dirac field on the lattice. This is a direct consequence of the no-go theorem by

Nielsen-Ninomiya [5]. There are different ways of get rid of the problem, each with its

own advantages and disadvantages. Staggered fermions are extensively used to study

the chiral transition in QCD. This formulation of fermions preserves an exact U(1)

× U(1) chiral symmetry of the full theory, and an order parameter can be defined to

characterize the chiral transition.

The lattice thermodynamics of QCD predict that quarks and gluons get deconfined

to form Quark-Gluon plasma (QGP) at high temperatures [6]. QGP may have existed

in the early universe few µ-seconds after the Big Bang, which eventually made the

transition into the hadronic phase as the temperature went down. There is a global

effort to re-create similar extreme conditions using heavy ion collisions in laboratories

around the world [7] to understand the physics of this transition. It is therefore

important to study the properties of this matter theoretically in as much detail as

possible in order to assist the experimental studies.

In this thesis, we will present our work on the following problems to gain some

insight into the nature and properties of the medium created in heavy-ion collision

experiments. In order to investigate the chiral symmetry properties of the medium,

we have used the spatial correlation functions of mesons in different quantum number

channels. We find that at temperatures above 1.33 Tc (where Tc is the cross-over

temperature) chiral symmetry gets restored [8]. In the second problem, we have com-

puted the thermalization time of heavy quarks in a gluon plasma. This quantity has

been inferred for the charm quark from these experiments. Experimentally, it seems

that both the light and the heavy quarks thermalize at the same rate whereas the

weak coupling methods show the thermalization rate of a heavy quark is suppressed

relative that of a light quark by the heavy quark mass. Therefore, it is important

to check if a non-perturbative evaluation yields results comparable with experiments.

Our results are closer to the estimates supported by experiments than those of the

weak coupling methods [9]. In the third and fourth chapters, we will focus on QCD

matter at finite density.

Strongly interacting matter at finite densities may be produced in the low energy

runs in RHIC and in the experiments at the proposed FAIR (Facilities for Anti-

proton and Ion Research). QCD with 2+1 flavours, at low temperatures and high
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densities is expected to have different phases, such as the colour superconducting

phase. Increasing the temperature at large densities, it is again expected to go the

QGP phase. Studies using simpler models at low temperatures suggest that these

phases are separated from the hadronic phase by a first order phase transition [10].

Thus, there exists a line of first order transitions, beginning from the T = 0 axis

which ends in a second order critical point in the (T, µ) plane [11], and continues to

the µ = 0 axis as a crossover. The experiments will aim at a precise determination of

the critical point and will also study signals of other possible phases at larger densities.

The existence of the critical point has been the subject of recent lattice investigations

[12]. These studies mostly use the staggered fermion formulation. However, the spin

and the flavour degrees of freedom get mixed in this formulation at finite lattice

spacings. This is a disadvantage, since the location and the existence of the critical

point depends on the number of fermion flavours. It is therefore desirable to use

fermions which have unambiguous flavour identification on the lattice as well as exact

chiral symmetry. The overlap fermion operator [13] satisfies these properties, although

at the expense of being non-local making the corresponding calculations expensive.

Due to this non-locality, the inclusion of chemical potential is non-trivial. A proposal

for this was formulated in [14]. We will investigate the thermodynamics of the free

fermion theory at finite chemical potential with this method and show that it has

the correct continuum limit for the thermodynamic quantities . It was also seen that

this formulation at finite µ does not respect chiral symmetry [15]. Simulations of

QCD at finite density are also affected by the sign problem. This arises because, the

determinant of the Dirac operator which is a part of the probability measure becomes

complex at finite µ hindering the use of Monte-Carlo simulations. Reformulating the

theory in terms of other degrees of freedom can remove the sign problem. In the last

chapter, we study such a procedure for the non-linear O(2)-sigma model at finite µ.

The phase diagram of this theory is then investigated using the worm algorithm [16].

Screening Correlators
Correlation functions are useful probes to study the nature of the medium. At zero

temperatures they are routinely used to calculate the masses of particles in various

quantum number channels. At finite temperatures, the Debye mass of the quantum

electrodynamics (QED) plasma can be obtained from the spatial correlation functions

of the electric field. We can also study the symmetries broken or restored in a medium

by studying the spatial correlation functions of different particles in the same quantum

number channel(s). To understand the chiral symmetry restoration patterns in 2-
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flavour QCD, screening correlators of all the eight possible local mesons were studied.

At T = 0, they correspond to the Goldstone-pion (PS), the scalar (S; or the a0 meson)

and three components each of the vector (V) and the axial-vector (AV) mesons. At

finite temperature, the symmetries of the slice (x, y, t) orthogonal to the direction of

propagation is no longer cubic and the group theoretic classification of the mesons

are different. It turns out [17] that the PS/S , Vx + Vy(V s), AVx + AVy(AV s), Vt,

AVt all lie in the same representation but do not mix under the symmetries of the

(x, y, t) slice. Hence, correlators in each of these quantum number channels need to

be studied separately. Vx −Vy and AVx −AVy lie in another representation; but were

found to be identically zero for all-z in previous studies [18] as well as in our study.

We have investigated these correlation functions as a function of temperature

from 0.89-1.92 Tc, spanning both the hadronic and the QGP phase, on a lattice with

a cut-off a = 1/(6T ). In the theory with finite quark mass, Tc is the cross-over

temperature. If the chiral symmetry is restored, a degeneracy is expected in the

correlation functions in a given quantum number channel.

Screening masses are extracted from the long distance behaviour of the correlation

functions. For the staggered fermions, there is a contribution to the correlation func-

tion from a parity partner of the lightest natural parity meson in a given quantum

number channel. The correlation functions are parameterized as:

C(z) = A1( e−µ1z + e−µ1(Nz−z) ) + (−1)zA2( e−µ2z + e−µ2(Nz−z) ) (2)

where µ1 and µ2 are the screening masses of the lightest natural parity meson appro-

priate to the operator used and its opposite parity partner. These screening masses

are determined by minimizing the correlated-χ2.

In fig 1 we plot the lowest screening mass in each channel as a function of T/Tc.

Above Tc, we plotted only the S/PS and Vt/AVt channels. The lowest Vs/AVs masses

are slightly larger, but consistent with Vt/AVt at the 2-σ level. µPS/T increases

monotonically with T whereas µS/T dips near Tc. Note also that µV t/T may approach

its ideal gas value from above, becoming consistent with the limit already at around Tc.

However µS/T remains about 20% below this limit even at the highest temperature

we explored. The PS and S screening masses become identical only after 1.33 Tc.

We expect this late restoration of chiral symmetry in the PS/S channels is due to

the finiteness of the pion mass. Even though at high temperatures µ ∝ T ; above

Tc, they could in general be a function of mπ/T . Qualitatively, chiral symmetry gets

restored at temperatures where this function goes to unity. Similar patterns are also

observed in the correlation function directly. The PS/S correlation functions exhibit
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Figure 1: Screening masses of various mesons as a function of T/Tc

degeneracy after 1.33 Tc. Between Tc and 1.33 Tc, in the Vs and Vt channels, there is

a degeneracy in the long distance part of the correlation functions, but they differ at

short distances. The long distance part shows degeneracy only above 1.33 Tc.

To test the robustness of the observations, the continuum limit was investigated

using these results, and those obtained from an earlier computation at a lattice spacing

a = 1/(4T ) [18]. At 1.5 and 2 Tc, we checked whether the values of the screening

masses are consistent with a 1/N2
t correction from the free field limit. This was

true for the V/AV channel, but not in the PS/S channel. It is possible that the

weak-coupling results emerge at even smaller lattice spacings.

Diffusion Coefficient of the Gluon plasma
The transport coefficients of the medium created by heavy-ion collisions are inferred

from the measurements of the produced particle spectra and the symmetry of their

flow. It appears that the heavy charm quarks thermalize as fast as the light quarks

[19]. This is quite in contrast to that expected from weak coupling methods, which

estimate the thermalization rate of heavy quarks to be suppressed by a factor of

∼ T/M with respect to that of the light quarks, where T is the temperature of

the medium and M is the mass of the heavy quark [20]. A non-perturbative lattice

computation could be important for a comparison with experiments.

It was realized by [21, 22] that non-relativistic QCD can be used to describe the

quark whose mass is much greater than the temperature of the medium. The motion

of the heavy quark in the quark-gluon plasma can be treated as in Brownian motion;
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and its momentum evolves according to the Langevin equation:

dp

dt
= ξ(t) − ηDp; 〈ξ(t)ξ(t′)〉 = κδ(t− t′) (3)

where ξ(t) is the random (in time) force acting on the heavy quark; ηD is the

momentum drag coefficient that slows down the motion of the heavy quark; and

hence a property of the medium. κ is the strength of the stochastic interaction and

also depends on the medium. The solution of this equation determines the motion

of the heavy quark, and hence give us valuable information about the nature of the

medium.

In terms of the quark fields, the heavy quark current is given by Jµ = ψ̄γµψ; and

the following expression needs to be evaluated:

κ(M) ≡ lim
ω→0

M2ω2

3Tχ

∑

i

2Tρii(ω)

ω
; ρµν(ω) =

∫ ∞

−∞
dteıωt

∫

d3x

〈

1

2
[Jµ(x), Jν(0)]

〉

(4)

This is the direct analogue of κ introduced in eqn 3 and χ is the number density of

heavy quarks.

On expanding in powers of 1/M , the leading term in this expansion is independent

of M. Further simplification is achieved in the static heavy quark limit, where the

fermion propagators can be replaced by Wilson lines in the temporal direction. A

temporal Wilson line, U(~x, τi, τf ), is the product of the gauge links along the temporal

direction from τi to τf : U(~x, τi, τf ) =
∏τ=τf

τ=τi
Uτ (~x, τ). When the Wilson line goes

around the entire τ - direction, it’s trace is called the Polyakov loop. In terms of the

Wilson lines and Polyakov loops, the following gauge-invariant temporal correlation

function of the chromo-electric field (Ei) needs to be evaluated:

GE(τ) = −1

3

3
∑

i=1

〈

Re Tr
[

U(β, τ)gEi(τ,~0)U(τ, 0)gEi(0,~0)
]〉

〈Re Tr[U(β, 0)]〉 (5)

The explicit dependence on ~x is suppressed since we average over all ~x. From

this correlation function, the diffusion coefficient κ is obtained by calculating the

corresponding spectral function ρ(ω) and examining its low-ω behaviour:

GE(τ) =

∫ ∞

0

dω

π
ρ(ω)

cosh(β
2
− τ)ω

sinh βω
2

; κ = lim
ω→0

2T

ω
ρ(ω) (6)

Employing the value of the heavy quark mass, the drag coefficient ηD = κ/2MT , can
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Figure 2: (Left) The relaxation time of the charm quark calculated in pure gauge
theory. Upon changing the perturbative renormalization scale by a factor of two, the
estimated value changes by about 15 %. The stars are indicative of the thermaliza-
tion times (τ0) at different initial temperatures (T0) estimated for the light partons
to explain the flow of light hardons seen in experiments [24]. However, values of
thermalization time varying from 0.3 - 0.8 fm are used in the literature. (Right) An
perturbative estimate for the thermalization time of the charm and bottom quarks
[26]
.

be calculated from the dimensionless diffusion coefficient κ/T 3. The thermalization

time is inverse of the drag coefficient.

The dimensionless correlation functions GE(τ)/T 4 at the same gauge coupling g2

as a function of τT fall on the same curve. This behaviour suggests the absence of any

non-trivial change in the diffusion coefficient in the temperature regime from 1.5 Tc to

3 Tc. This statement is independent of any renormalization scheme chosen to relate

the actual value of diffusion coefficient with the experimentally observed value, since it

is known [23] that the relevant renormalization constants for this correlation function

depend only on the gauge coupling; and hence common to all these correlators. This

implies that ηD has a behaviour proportional to the square of the temperature; and

hence the thermalization time should fall as the inverse square of temperature from

the RHIC measurement to the value measured at ALICE. Significant finite volume

effects are absent in these correlation functions.

In order to convert the lattice estimate into a physical value, we have renormal-

ized the Wilson lines in the correlation functions non-perturbatively [25], while a

perturbative estimate was used for the chromo-electric fields [23]. In converting our

estimates of κ/T 3 to τR for the charm quark, we have employed the following scales:

Tc= 170 MeV and M = 1.3 GeV. This estimate of the physical scale assumes that
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the effect of inclusion of light fermions can be absorbed in a redefinition of Tc. Our

results shown in left panel of fig 2 indicate much smaller relaxation time than the per-

turbative results shown in the right panel of fig 2, roughly by an order of magnitude.

These results imply that heavy quarks can thermalize rapidly while interacting with a

thermalized medium of quarks and gluons. This could explain the similar magnitude

of flows seen for the heavy and the light hadrons in the experiments [24].

Overlap operator with chemical potential
The overlap operator is very useful for the lattice study of the QCD critical point since

it allows an exact chiral symmetry as well as permits unique spin flavour identification

of the lattice operators with the physical states in the continuum theory. In this

chapter, we have studied the chiral properties of the overlap Dirac operator at finite

densities. We have also investigated the approach to the continuum limit of the

thermodynamic quantities both analytically and numerically for a system of ideal

overlap quarks [15]. This work was done in collaboration with Sayantan Sharma, and

we will only report the analytic investigations with finite chemical potential in this

synopsis.

At zero chemical potential the overlap Dirac operator has the following form for

massless fermions:

Dov = 1 + γ5sgn(γ5DW ) (7)

where sgn denotes the matrix sign function and DW is the standard Wilson-Dirac

operator on the lattice but with a negative mass term M ∈ (0, 2) and is given as:

DW (x, y) = (3 +
a

a4

−M)δx,y −
a

a4

[

U †
4(x− 4̂)δx−4̂,y

1 + γ4

2
+

1 − γ4

2
U4(x)δx+4̂,y

]

−
3
∑

i=1

[

U †
i (x− î)δx−î,y

1 + γi

2
+

1 − γi

2
Ui(x)δx+î,y

]

(8)

For a diagonalizable matrix, A = UΛU−1, where Λ is the corresponding diagonal

matrix; the sign function is defined as [27] : sgn(A) = U sign(Re Λ) U−1. If the

matrix is non-diagonalizable, then one needs resort to block diagonalization. This

non-locality of the operator is manifested through the implementation of the sign

function.

The chemical potential is usually introduced as the Lagrange multiplier for the

conserved number operator. For local fermion actions, such as the Wilson and stag-

gered fermions, this method gives rise to unphysical µ2 divergences in the continuum
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limit at T → 0. This does not happen when µ is introduced as the fourth component

of a constant imaginary vector potential [28]. A further generalization involves the

use of functions K(µ̂) and L(µ̂) in place of exp(µ̂) and exp(−µ̂) (µ̂ = µa4) where

K(µ̂) = 1 + µ̂ + O(µ̂2) and L(µ̂) = 1 − µ̂ + O(µ̂2). The quadratic divergences are

avoided if K(µ̂) ·L(µ̂) = 1 [29]. Note that γ5DW which was Hermitian at zero µ, now

becomes non-Hermitian.

This procedure is non-trivial for the overlap operator due to its non-locality [30].

Instead, an inspired guess was used in [14] to formulate a form that has the correct

continuum limit. It was suggested that DW (µ = 0) −→ DW (µ) by multiplying factors

exp(µa4) and exp(−µa4) to the links U4 and U †
4 respectively in eq.(8). Since γ5DW (µ)

becomes non-Hermitian, and its eigenvalues complex, the usual definition of the sign

function needs to be extended. The natural choice [14] is to use the sign function

for the real part of the eigenvalues. This however, leaves the case of the imaginary

eigenvalues undefined.

In this work we have carried out an analytic investigation of the problem. We

introduce the chemical potential as in [29] in terms of functions K(µ̂) and L(µ̂).

Since this is a free theory, we can diagonalize the operator exactly in the Fourier

space and obtain analytical expression for the energy density, pressure and number

density. The expressions involve a summation over the discrete momenta and the

Matsubara frequencies. The summation over the latter are done using the contour

integral technique.

Our analytic calculations require thatK(µ̂).L(µ̂) = 1 be satisfied to avoid spurious

µ2/a2 divergences in the continuum limit in the case of the overlap operator as well.

Numerically, this result was already verified in [31]. This shows that the non-locality

of the operator does not survive the continuum limit. Further, we need to satisfy the

condition K(µ̂) − L(µ̂) = 2µ̂ + O(µ̂2) to obtain the correct continuum limit of the

thermodynamic quantities.

On the lattice, at finite temperature and density, we get the following expression

for the energy density:

ǫa4 =
2

N3

∑

pj

[ √
f√

1 + f

1

e(sinh−1 √f−µ̂)NT + 1
+

√
f√

1 + f

1

e(sinh−1 √f+µ̂)NT + 1
+ ǫ3µ + ǫ4µ

]

(9)

where f =
∑3

j=1 sin2(apj) and the last two terms are certain line integrals that vanish

in the continuum limit. This is the standard expression for the lattice energy density
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which reduces to the usual result in the continuum:

ǫ =
2

(2π)3

∫

E
∏3

j=1 dpj

1 + e
E+µ

T

+
2

(2π)3

∫

E
∏3

j=1 dpj

1 + e
E−µ

T

(10)

The equation of state ǫ = 3P holds in the presence of finite µ on discrete lattices.

Our numerical investigations were mostly aimed at determining the values of Nt

and M at which the continuum limit is approximated. We found that this limit

is achieved for Nt ≥ 12 for all M ; with the 1.5 < M < 1.6 region displaying the

smallest deviations. We have also found that the exact chiral symmetry properties of

the overlap operator are lost at finite µ. These will be reported in detail in the thesis

of Sayantan Sharma.

Chemical Potential and the sign problem
Lattice investigations at finite density are also hindered by the sign problem. At finite

µ, the Dirac operators lose their Hermiticity properties. We have seen this explicitly

for the Wilson-Dirac operator in the last chapter. This makes the fermion action

complex, in general. Therefore, in a Monte-Carlo evaluation, it’s interpretation as

a probability measure fails. Numerically, while calculating the expectation value of

any operator, large cancellations take place with a rapid loss of signal-to-noise ratio.

Several methods have been experimented with [12] to get rid of this problem, with

limited success.

A recent progress in this field has been the revival of an idea tried and tested

(rather unsuccessfully) about two decades back. This consists of reformulating theo-

ries afflicted by the sign problem in terms of other field variables in certain parameter

regimes. QCD with staggered fermions at finite µ in the strong coupling regime

(g2 → ∞) is one such example [32]. In this case, the theory can be rewritten as a

configuration of colour-singlet mesons and baryons. The relatively recent introduc-

tion of the “worm” algorithm [33] has brought about an renewed interest in the study

of these reformulations. Indeed, if this is achieved for full QCD, it could be of use

in the theoretical investigations of other phases at finite densities. It could also be

employed to cross-check the current results for the critical point by doing simulations

at finite µ. In this part, we will discuss the O(2) non-linear sigma model which has

the same type of sign problem as QCD; and discuss how such a reformulation and

the worm algorithm has helped in determining a large part of the phase diagram [16]

at finite µ in 3-dimensions.

This theory, also known as the XY model in condensed-matter literature, consists
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of U(1) spins of unit magnitude with ferromagnetic nearest neighbour interactions.

The action of the model is:

S = −β
2

∑

~x,α

(

expı(φ~x+α−φ~x)−µδα,t + exp−ı(φ~x+α−φ~x)+µδα,t
)

(11)

and has the property: S∗(µ) = S(−µ∗), which is the same as that of the fermionic

part of the QCD action.

This theory can be formulated using the (Noether) current variables in terms of

which the partition function Z is explicitly positive definite:

Z =
∑

[k]

∏

x

{

Ikx,α(β)eµδα,tkx,α

}

δ
(

∑

α

(kx,α − kx−α,α)
)

, (12)

where the bond variables kx,α describe “world-lines” or “current” of particles moving

from lattice site x to the site x+ α̂ and take integer values. Ik is the modified Bessel

function of the first kind. The global U(1) symmetry of the model is manifest in the

local (Noether) current conservation relation represented by the delta function. We

have used the worm algorithm to simulate this model.

At zero µ, the model has a second order phase transition at βc = 0.45421 [34]

going from a symmetric phase at low-β to a broken (superfluid) phase at large-β. We

expect that at finite value µ, there is a line of second order transitions, specified by

βc, µc, between the superfluid and the normal phase. Non-trivial finite size effects in

physical quantities, such as the number density ρ(µ) were observed. These could be

explained by assuming that the energy levels cross each other in a finite volume as the

chemical potential varies. As the µ is increased the average particle number changes

from N to N + 1 at µN
c . By measuring the difference in energy, we have concluded

that it costs energy to add an extra particle to the system, indicative of a repulsive

interaction.

We have used universality arguments to determine the nature of the transition.

For a second order transition, close to the critical chemical potential where the density

can be made arbitrarily small, universal features emerge. It is known that, when the

particles have a purely repulsive interaction, the ground state energy of N particles

is always less than the corresponding energy of N + 1 particles [35]. Based on our

results, this scenario seems to be valid in the current model. Thus, we conclude

that at µ = µ
(0)
c in the thermodynamic limit, there is a second order transition to a

superfluid phase.

In the symmetric phase, the low energy physics contains massive bosons with

repulsive interactions. The quantity µ
(0)
c is simply the mass of the particle M(L) at
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Figure 3: The phase diagram in the β vs. µ plane.

a finite L. The infinite volume mass can thus be obtained from:

M = lim
L→∞

µ(0)
c . (13)

We can reverse this argument and obtain µ
(0)
c in the thermodynamic limit by sim-

ply measuring the mass of the particle at µ = 0. Indeed, this result is not general and

is valid only in the present study where there is clear evidence that the particles repel

each other. The infinite volume extrapolation for the ground state works out very

well, but the excited states have non-trivial dependences on 1/L, which we did not

study in detail. In the superfluid phase the U(1) particle number symmetry is spon-

taneously broken, and there is a Goldstone boson in the spectrum. The low energy

spectrum at finite volumes is expected to be governed by O(2) chiral perturbation

theory. Once again, we find that higher order corrections in 1/L are important to

explain the infinite volume extrapolation.

While the complete phase diagram requires more work, our results above allow

us to compute the location of the transition line between the normal phase and the

superfluid phase. In particular the value of µ
(0)
c as a function of β determines this

line. The second order phase boundary between the different phases is sketched in

Fig.3. In principle there could be other interesting phases at larger values of µ which

we cannot rule out based on the current work. Since the particles have a repulsive
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interaction, there could a (super) solid phase at larger values of µ where the lattice

structure becomes important. These transitions can also be studied efficiently with

the worm algorithm. We have not studied this, but have speculated the possibility of

a solid phase in Fig. 3.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the theory of strong interactions just as Quan-

tum Electrodynamics (QED) is the theory of electromagnetic interactions of matter.

QCD is a non-abelian gauge theory, where the gauge group is SU(3). This theory is

formulated in terms of quarks and gluons, which are the elementary degrees of free-

dom. The quarks and gluons carry colour charges, analogous to the electric charges

carried by the electron and proton. Unlike photons, the gluons carry colour charges.

QCD is asymptotically free [1], which means that the strength of interactions

between the quarks and gluons is smaller for processes which involve large momen-

tum transfer. Thus, perturbation theory can be used to study scattering problems

in high-energy collider experiments. Despite numerous experimental efforts, isolated

quarks and gluons however have not been seen [2]. This experimental fact lead to the

hypothesis of confinement [3], which states that the quarks and gluons are perma-

nently confined inside hadrons. The observed hadrons are colour-singlet bound states

of quarks and gluons which occur in the physical spectrum at normal conditions of

temperature and density. These bound states cannot be treated in perturbation the-

ory. In the case of hydrogen atom, the binding energy for the constituent electron

and proton is only about 13 eV, which is very small compared to their rest masses.

On the other hand, the binding energy of the proton almost accounts for 99 % of

the total mass. This is a clear indication of the large strength of the coupling and

therefore show the inadequacy of the usual weak coupling methods.

A similar requirement for non-perturbative methods also seems to be essential to

shed light on the interesting questions on matter at finite temperature and density.

Asymptotic freedom leads to the expectation that at very large temperature and

density, the equation of state of strongly interacting matter can be computed pertur-

batively, with the leading term corresponding to an ideal relativistic gas of quarks

and gluons. Since then, a lot of work has been done using perturbative techniques

1



2 1. INTRODUCTION

[4]. Unfortunately, the finite temperature perturbation theory breaks down due to

the severe infra-red problems of QCD [5]. Moreover, in the interesting regions around

the phase-transitions, the coupling is large and non-perturbative methods are called

for. This leaves out many of the interesting questions from the regime of validity of

perturbation theory. For example, the study of the medium that existed in the early

universe, about 10-20 µ-seconds after the Big Bang or the nature of the transition

that led to the formation of hadrons as this medium expanded and cooled. There is

a worldwide experimental programme underway to study the nature and the proper-

ties of this transition. Heavy-ion collisions are used in experimental facilities such as

the Relativistic Heavy Ion Collider (RHIC) in the Brookhaven National Laboratory

(BNL), New York and the Large Hadron Collider (LHC) in European Centre for Nu-

clear Research (CERN), Geneva in an attempt to create such extreme temperatures

and study the properties of the medium. It is therefore important to make theoretical

investigations in details and to check the predictions of QCD against the data from

these experiments.

QCD at zero temperature but large chemical potential is expected to have inter-

esting phases such as the colour superconducting phase [6]. Calculations in models

that have the same symmetries as QCD with 2+1 flavours of fermions, suggest that

there is a line of first order phase transitions starting from (T = 0, µc1) which ends at

a critical point at (Tc, µc) [7], leading to a cross-over at the µ = 0 axis. The location of

this critical point in the (T, µ) phase diagram is an important problem that demands

a non-perturbative method for its precise calculation. Strongly interacting matter at

finite densities is expected to be produced in low energy runs at RHIC and in the

experiments at the proposed FAIR (Facilities for Anti-Proton and Ion Research) at

GSI, Darmstadt. These experiments will look for signals to detect the QCD-critical

point (CEP) in the (T, µ) plane as well as the presence of other interesting phases that

may exist at higher densities. QCD at finite densities is also needed to understand

the conditions existing inside compact stellar objects, such as neutron stars, where

the density can be as high as 1016 − 1017g/cm3.

Lattice QCD is widely regarded as the robust method to perform reliable, precise

and systematic calculations for the problems involving strongly interacting matter.

Lattice QCD is a useful way of regularizing continuum QCD, which is otherwise

plagued by ultraviolet(UV) divergences. The theory is formulated on a discrete space-

time lattice with the lattice spacing acting as the UV regulator. Analytic treatment

is possible in the limit g2 → 0 which is the usual weak coupling regime. For the

theory defined on the lattice, analytic calculations can also be done in the strong

coupling limit. However, it is not clear how to take continuum limit of those results.
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Figure 1.1: A schematic phase diagram of QCD with 2+1 flavours

Non-perturbative predictions of the theory are obtained by numerical simulations

with Monte-Carlo methods [8]. In order to obtain reliable continuum results, the

grid of the lattice needs to be fine (the a → 0 limit) and the volume needs to be

large such that the thermodynamic limit is reached. A significant advantage of this

approach is that it involves no arbitrary assumptions or parameters as an input. Zero

temperature calculations when compared with the experimentally measured values fix

the bare parameters. Thus, starting from basic principles, the theory can be studied

non-perturbatively.

Lattice QCD has been successful in the ab-initio calculation of the masses of

all the light hadrons. It is being increasingly used [9] to make predictions about

decay constants, running coupling, heavier hadrons, excited states, resonances and

flavour physics. Lattice QCD has also been extensively used in investigations at

finite temperature and density [10]. It has been used to obtain information about the

thermodynamic and screening properties of the high temperature medium, the QCD

equation of state at zero and small densities, the nature of the transition between low

temperature and high temperature phases for different number of fermion flavours

and the location of the CEP in the (T, µB) phase diagram. Recently, there have been

efforts to calculate the transport coefficients of the medium that is expected to be

produced in the heavy-ion collisions using the tools of lattice QCD.
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1.1 Continuum QCD: Symmetries and Order Pa-

rameters

Thermodynamics of a many particle system can be obtained from its grand-canonical

partition function Z
Z = Tr e−β(H−µN), (1.1)

where H is the Hamiltonian of the theory and β = 1/T is the inverse temperature.

µ is the chemical potential that couples to the conserved number N (for example

baryon number). For QCD, which is formulated in terms of the quark (ψ) and the

gluon (Aµ) fields, Z can be written down as path integral [11]

Z =

∫

bc

DψDψ̄DAµexp

[

−
∫ β

0

dτ

∫

d3xL
]

, (1.2)

where L is the Lagrangian and τ is the Euclidean time. In terms of the quark and

gluon fields, the Lagrangian is

LQCD =
1

4
TrFµνFµν +

Nf
∑

f=1

{ψ̄f ( /D +mf )ψf − µf ψ̄fγ0ψf}, (1.3)

where Fµν is the field strength tensor F c
µν = ∂µA

c
ν−∂νA

c
µ+gfabcA

a
µA

b
ν , Tr denotes sum

over the colour index and /D is the covariant derivative. µf and mf are the chemical

potential and quark mass of the fermion flavour f . The ’bc’ in Eqn 1.2 denotes the

boundary conditions on the quark and gluon fields, which arise due to the trace in

Eqn 1.1:

Aν(x, 0) = Aν(x, 1/T ), (1.4)

ψ(x, 0) = −ψ(x, 1/T ), (1.5)

ψ̄(x, 0) = −ψ̄(x, 1/T ), ∀x, ν. (1.6)

QCD has global symmetries in the limits of infinite and vanishing quark mass.

They can be utilized to obtain some ideas about the nature of possible phases. Fur-

ther, effective models can be written down and analyzed in the standard Landau-

Ginzburg paradigm in the theory of phase transitions. The order parameters corre-

sponding to these symmetries are useful in locating the phase transitions, and are

extensively used in numerical simulations. Since we are interested in studying QCD

at finite temperature, it is useful to discuss the nature of the any new phase that may
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arise at high temperature.

The low temperature phase at zero densities consist of the familiar colour-singlet

states such as the mesons and the baryons. The phase at high temperatures is qual-

itatively different from the one at low temperatures. At temperatures several times

larger than the transition temperature, the quarks and gluons no longer remain con-

fined within the hadrons; they can get delocalized over large distances and exhibit

screening. The resulting medium is known as the Quark Gluon Plasma (QGP) [12].

Lattice QCD studies provided the first convincing results of this transition.

The QCD action with Nf flavours of fermions have an exact SUL(Nf )×SUR(Nf )×
UA(1) × UB(1) symmetry in the limit of vanishing quark mass. On quantization, the

UA(1) symmetry is broken. The UB(1) is an exact symmetry of the action corre-

sponding to baryon number. At low temperatures, the SUL(Nf ) × SUR(Nf ) chiral

symmetry is spontaneously broken to the sub-group SU(Nf ). The order parameter

that can test whether the vacuum respects chiral symmetry or not, is 〈ψ̄fψf〉, called

the chiral condensate. Lattice studies show that at low temperatures, the expectation

value of this operator is non-zero, and the chiral symmetry is spontaneously broken,

giving rise to nearly massless pions but heavy nucleons. Furthermore, as the temper-

ature is raised, the chiral condensate vanishes beyond a certain temperature Tχ, and

the chiral symmetry gets restored.

In the limit of infinite quark mass, only the contributions from the gluons matter.

In this limit, the theory is the pure SU(3) gauge theory, sometimes referred to as

Quenched QCD in the literature. Due to the boundary conditions on the gauge

fields, the gauge transformations (see eq. 1.10) are also subject to periodic boundary

conditions in 1/T : V (x, 0) = V (x, 1/T ). In quenched QCD , the following extra

global transformations are also allowed: V (x, 0) = zV (x, 1/T ), where z ∈ Z(3), the

centre of the gauge group. The action is invariant under this transformation. The

corresponding order parameter is the Polyakov loop L(x) = 1
3
Tr
∏Nt

τ=1 U4(x, τ), whose

expectation value indicates whether the vacuum respects the symmetry or not. Under

the above global Z(3) transformation, L(x) → zL(x). If the symmetry is respected,

then 〈L〉 should vanish, whereas a non-zero value indicates that it is spontaneously

broken. It can be shown [13] that 〈L〉 is related to the free energy of a static quark

in gluonic medium at a temperature T :

|〈L〉| ∼ exp(−FQ(T )/T ) (1.7)

Lattice studies show that at very small temperatures, 〈L〉 = 0. Thus, one expects

that FQ = ∞ in this phase, implying confinement of colour non-singlet states into
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colour singlet objects. This is the usual hadronic phase we are familiar with. Further,

it is seen that as the temperature is raised, the symmetry is broken at some temper-

ature Td and 〈L〉 6= 0, implying that isolated quarks can exist. This is a signature of

deconfinement.

For real QCD with 2 light quarks and a heavier quark, none of the above two

symmetries are exact. The presence of quarks causes the Z(3) symmetry to break

explicitly. Further, a mass term like mψ̄ψ explicitly breaks the SU(Nf ) × SU(Nf )

symmetry to SU(Nf ). In an effective action picture, either of the symmetry breaking

terms is analogous to the presence of a external magnetic field for spin systems. This

has the effect of decreasing the strength of first order transitions, and converting

the second order transitions into cross-over. Even then, the order parameters are

useful indicators of these transitions, since they usually show a rapid change near the

cross-over temperature. The corresponding susceptibilities are therefore usually used

to determine the chiral transition temperature, Tχ and the deconfinement transition

temperature Td. Current calculations with improved staggered fermions at physical

pion and kaon masses indicate that both these transitions occur in the range 150 - 170

MeV [14]. Indeed, there are other thermodynamic features of this transition. There

is a rapid rise in energy density (and a slower rise in pressure) as the temperature is

raised above the quark-hadron transition temperature.

1.2 Basics of Lattice QCD at finite temperature

and density

Numerical lattice QCD aims at an evaluation of the expectation values of physical

quantities starting from the Eqn. 1.2. The path integral in Eqn. 1.2 is ill-defined

and needs to be regulated. A way of regulating Eqn. 1.2 that can satisfy the gauge

invariance is to discretize the space and time [15]. Analogous to the evaluation of a

simple integral as the limit of a sum, the complicated path-integral in Eqn 1.2 can

then be performed. To preserve internal symmetries of the theory, such as gauge

invariance, it is convenient to introduce the hypercubic space-time lattice. Thus, for

a N3
s ×Nt lattice, the volume and the temperature is expressed in terms of the lattice

spacing a:

V = (Nsas)
3, T =

1

Nta
. (1.8)

Defining the gauge fields and the quark fields on the lattice, the path integral is

reduced to a multidimensional integral with a very large dimensionality. Moreover,

the lattice spacing acts as an ultra-violet cut-off and provides a regularization scheme
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necessary for the quantum field theory.

The lattice formulation defines the quark and the anti-quark fields ψ(x), ψ̄(x) on

the lattice sites x = (x0, x1, x2, x3) and they carry the colour, flavour and spin indices.

They are Grassman variables and satisfy the usual anti-commuting properties:

{ψ̄(x), ψ(y)} ≡ ψ̄(x)ψ(y) + ψ(y)ψ̄(x) = 0,

{ψ(x), ψ(y)} = 0, ∀x, y. (1.9)

The SU(3) matrix-valued gauge fields, Uµ(x) are defined on the links connecting the

lattice sites x to x + µ̂, where µ̂ is the unit vector along the µ-th direction. Even

though the lattice formulation explicitly breaks Lorentz invariance (which is restored

only in the a → 0 limit), gauge invariance is exactly maintained at all finite lattice

spacings. For a local gauge transformation V (x) ∈ SU(3) the quark and the gluon

fields have the following transformation properties:

ψ(x) → ψ′(x) = V (x)ψ(x),

Uµ(x) → U ′
µ(x) = V (x)Uµ(x)V †(x+ µ). (1.10)

The construction of gauge invariant actions need the trace of closed loops. The

smallest of these loops are called plaquettes: Uµν and these are used to define the

standard gluon action SG [15]:

Uµν(x) = Tr(Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν(x)),

SG =
6

g2

∑

x,µ<ν

(1 − 1

3
ReUµν(x)) (1.11)

The SU(3) link field Uµ(x) is related to the colour vector potential field Ac
µλc through

Uµ(x) = exp(igaAc
µ(x)λc) where λc for c = 1, 2, 3, · · · , 8 are the eight generators of

the SU(3) group and g is the gauge coupling constant. In the continuum limit a→ 0,

the link fields can be expanded in powers of a, and the Wilson action becomes

SG =

∫ β

0

dτ

∫

d3x
1

4
(F c

µν)
2 + O(a2). (1.12)

The fermionic part of the QCD action is generically written as

SF =
∑

m,n

ψ̄mDm,nψn, (1.13)

where Dm,n is Dirac operator. The Dirac operator is γ5-Hermitian, which means that
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D† = γ5Dγ5. This property is of great use when dealing with numerical simulations

with fermions. Usually the fermions fields are integrated out in the expression for the

partition function. This gives the determinant of the Dirac operator in the expression

for the path integral

Z =

∫

∏

x,µ̂

dUµ
x exp(−SG) det D, (1.14)

where flavour index is kept implicit in the Dirac operator. The expectation value of

an operator O is calculated using

〈O〉 =
1

Z

∫

bc

dUµ
x O exp (−SG(Uµ

x )) det D (1.15)

The γ5-Hermiticity of the Dirac operator implies that the fermion determinant is

real. For even Nf , this makes Monte-Carlo estimates of expectation values of the

operators feasible since exp (−SG(Uµ
x )) det D is explicitly positive definite and can

be interpreted as the probability weight for performing the integrals.

The naive discretization of the fermion action in QCD is not suitable because of

the doubling problem [8]. The lattice propagator for the naive Dirac fermions is

S(p) =
−iγµ sin(pµa) +ma
∑

µ sin2(pµa) +m2a2
. (1.16)

The lattice momenta pµ range between −π/a to π/a. In the continuum limit, the

propagator is dominated by contributions from ap = (0, 0, 0, 0) as well as from the

edges of the Brillouin zone ap = (π, 0, 0, 0), (0, π, 0, 0), · · · , (π, π, π, π). This causes

the appearance of extra doubler states in the spectrum from the edges of the Brillouin

zone. Starting from a single Dirac field on the lattice, gives rise to 16 fermion flavours

in 4 dimensions in the continuum. This doubling problem is the essence of the no-

go theorem of Nielsen and Ninomiya [16], which states that for a fermion action

that respects hermiticity, locality, translational invariance and has chiral symmetry,

doubling is inevitable.

Wilson fermions break chiral symmetry explicitly by having momentum depen-

dent mass for the doubler states that goes to infinity in the continuum limit; thus

decoupling the doubler states from the spectrum in the continuum [15]. The action
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for the Wilson fermions is

SWilson
F =

1

2a

∑

n,µ

[

ψ̄nγµUµ(n)ψn+µ − ψ̄nγµUµ(n− µ)†ψn−µ

]

+m
∑

n

ψ̄nψn

− r

2a

∑

n,µ

ψ̄n (ψn+µ + ψn−µ − 2ψn) . (1.17)

The last term in Eqn 1.17 contributes to the mass of the doubler states. Even for

m = 0, the last term breaks chiral symmetry. This makes the Wilson fermions

unsuited for the study of chiral symmetry restoration at high temperatures. However,

the Wilson fermions do have the advantage of a clear definition of flavours and spin

on the lattice.

The staggered formulation [17] overcomes the doubling problem by distributing the

fermionic degrees of freedom over the lattice such that the effective lattice spacing for

each type of quark is doubled. The advantage of this formulation is that it preserves

an exact U(1) × U(1) chiral symmetry for all lattice spacings. This makes it useful

in the study of problems related to chiral symmetry. The staggered fermion action

has the following form:

S =
1

2a

∑

n,µ

χ̄nαµ(n)
[

Uµ(n)χn+µ − U †
µ(n− µ)χn−µ

]

+m
∑

n

χ̄nχn, (1.18)

αµ(n) = (−1)n0+n1+···+nµ−1 . (1.19)

Here χ and χ̄ are the single component spinors. The main disadvantage of the stag-

gered fermion formulation is that “flavour” is not a well defined concept.

The Overlap operator [18] has much better chiral properties. It can be defined in

terms of the Wilson-Dirac operator (DW ) as:

D =
1

a
(1 − sgn(1 − aDW )), (1.20)

where DW is the Wilson-Dirac operator of the Wilson fermions in Eqn. 1.17 and

sgn is the matrix sign function. This operator has a form of chiral invariance on the

lattice: the following transformation [19]

δψ = αγ5(1 − 1

2
aD)ψ, δψ̄ = αψ̄(1 − 1

2
aD)γ5, (1.21)

leaves the fermion action invariant for all lattice spacings a. Note that in the con-

tinuum limit this reduces to the usual definition of chirality. This is interpreted as
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exact chiral symmetry for a 6= 0. It is important to note that the invariance of the

fermionic action with the overlap operator requires the overlap Dirac operator to

satisfy the Ginsparg-Wilson relation [20]: {γ5, D} = aDγ5D. The overlap operator

is clearly better suited than the staggered fermions to study problems pertaining to

chiral symmetry. However, the overlap operator is highly non-local, and hence it is

expensive to implement it in numerical simulations.

To investigate finite densities, the chemical potential is introduced as the variable

conjugate to the conserved number operator. The quark number is the conserved

charge of the U(1) global symmetry. The natural way to introduce µ is to construct the

number density for the lattice action [21, 22]. The lattice Noether current determined

in this way gives a current expressed by nearest neighbour terms. If the chemical

potential is introduced in this way, then temporal hopping terms become

1

2a

∑

x

[

ψ̄(x)(1 + aµ)(1 − γ4)U4(x)ψ(x+ 4̂) + ψ̄(x)(1 − aµ)(1 + γ4)U4(x− µ)†ψ(x− 4̂)
]

.

The calculation of the energy density and the number density in the presence of

µ gives rise to divergences proportional to a−2. In order to get rid of that, µ is

introduced as the imaginary fourth component of an abelian gauge field [21]. This

changes the µ dependence in the action to f(aµ) and g(aµ) multiplying the forward

and the backward hopping terms respectively. It was shown that the divergences are

removed with the condition f(aµ).g(aµ) = 1 [23]. The most common choice of these

functions in the literature are: f(aµ) = g(aµ)−1 = exp(aµ).

In the presence of a finite chemical potential, the Dirac operator loses its usual

hermiticity properties. Instead it satisfies the relation: γ5D(µ)γ5 = D†(−µ). This

relation, however, is not enough to guarantee the reality of the fermion determinant.

Instead, the fermion determinant satisfies the relation: det[D(µ)] = det[D(−µ∗)]∗.

Monte-Carlo simulations cannot be carried out since the fermionic determinant is

complex in general, and the theory is said to have a sign problem.

There are several methods in use in the literature to get around this problem [24]

• Imaginary chemical potential [25]: Using imaginary chemical potential makes

the fermion determinant positive definite, and therefore Monte-Carlo simula-

tions can be carried out as usual. However, the result needs to be analytically

continued to the real µ. The analytic continuation of set of numbers with

error-bars is a difficult problem, and usually involves unknown systematic un-

certainties.

• Reweighting [26]: In this method, the complex determinant is separated into
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a modulus and a phase, detD(µ) = |detD(µ)|exp(iφ), and the phase-quenched

ensemble (|det (D)|) is simulated. The expectation values are computed by

compounding the phase with the operator:

〈O〉 =
〈O exp(ıφ)〉|det (D)|
〈exp(ıφ)〉|det (D)|

(1.22)

For values of the chemical potential when the phase starts becoming large,

the expectation in the denominator vanishes and the measurements become

ill-defined.

• Taylor expansion [27]: This method tries to overcome the sign problem at high

temperatures by doing a Taylor expansion in µ
T
. For example, the pressure at

finite µ and large T , ∆P (T, µ) ≡ P (T, µ)−P (T, µ = 0), can be expanded about

µ/T = 0, in powers of µ/T :

∆P (T, µ)

T 4
=

∞
∑

k=1

c2k

(µ

T

)2k

; c2k =

〈

Tr

[

f

(

D−1,
∂D

∂µ

)]〉∣

∣

∣

∣

µ/T=0

(1.23)

where f is a polynomial of degree 2k of the indicated arguments. The coefficients

are calculated in the µ = 0 theory. An improved alternate version of this method

considers the expansion of the susceptibilities in terms of Taylor coefficients. A

disadvantage of this method is that a large number of Taylor coefficients may

be needed, making their computation very difficult.

• Complex Langevin : This method uses the techniques of stochastic quantization

[28] to compute the expectation values of the observables. This has not been

applied on full QCD with chemical potential yet. This method suffers from

convergence problems and instabilities in some of the simpler models it has

been tested.

• World-Line methods: It is known [29] that a sign problem present in a theory

formulated with one set of field variables might be eliminated if other degrees of

freedom are used. The world-line methods aim at this reformulation. Progress

in this method is rather slow, since this method is not generic and choosing the

right degrees of freedom for each theory requires a lot of insight. At present,

this has only been tried on simpler models.
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1.3 Outline of the thesis

In this thesis, I will present my research about the different aspects of non-perturbative

thermodynamics at finite temperature and density. In this section, I will discuss the

broad themes for each of the works chapter wise and outline the major results.

In the second chapter, the medium properties of QCD with 2-fermion flavours

will be studied. While the equation of state does give thermodynamic information

about the medium, more details are needed in order to understand the nature and

composition of the medium. Screening lengths are such quantities [30] which give

information about the spatial distance beyond which the effects of putting a test

hadron in the medium are screened. The screening lengths are extracted from the

exponential fall-off of the long distance part of the spatial correlation function. The

screening correlators are also important for studying the restoration of symmetries

of the medium. In particular, when the correlation lengths in two different quantum

number channels related by chiral symmetry transformation becomes identical, chiral

symmetry of the medium is restored.

Screening properties in a plasma have been extensively studied in the literature.

In the glue sector, the Debye screening length has been the object of many studies

and now seems to be quantitatively understood, both in non-perturbative lattice

studies [31] and in weak coupling theory at high temperatures [32]. Screening in other

quantum number channels in the glue sector has also been studied [33]. Screening in

colour singlet channels due to quark bilinear (meson-like) and trilinear (baryon-like)

currents [30] was understood as the first signal of deconfinement above the chiral

symmetry restoring temperature in QCD with dynamical quarks [34]. In Chapter 2, I

will study the pattern of chiral symmetry restoration in 2-flavour QCD with staggered

fermions across the quark-hadron transition [35]. I will use the screening masses of

the mesonic operators in various quantum number channels as a diagnostic of the

symmetry restoration of the medium.

Chapter 3 will be concerned with the calculation of a transport coefficient of

heavy quarks in the gluonic medium. While the screening masses provide a theoret-

ical understanding of the large scale composition of the strongly interacting matter

expected to be created in the heavy ion collision experiments it is difficult to relate to

experimental quantities. Other quantities can be calculated which allow for a com-

parison with experimental data. One such quantity is the thermalization time for

heavy quarks. This quantity has been inferred for the charm quark by the PHENIX

experiment at RHIC [36]. Experimentally, it seems that both the light and the heavy

quarks thermalize at the same rate [37]. This is quite in contrast to that expected
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from weak-coupling methods, which estimate the thermalization time of the heavy

quarks to be suppressed by a factor ∼ T/M to that of light quarks, where T is the

temperature of the medium and M is the mass of the heavy quark. It is suspected

that the effects of strong coupling might be important to make theoretical estimates

that compare favourably with experimental results. A calculation using AdS/CFT

methods estimate the value of the dimensionless diffusion coefficient to be about an

order of magnitude larger than the perturbative estimate [38, 39]. In Chapter 3,

I will present a non-perturbative computation of the thermalization time of heavy

quarks in a gluon medium from first principles [40]. I will subsequently show that the

results are closer to the estimates required by models which successfully explain the

experimental data than the predictions from weak coupling methods.

Most studies of QCD at finite temperature and density use staggered fermions, ei-

ther in their original version, or improved ones [8]. Since the symmetry group of these

fermions on the lattice is different from that of continuum QCD, it is more desirable

to use fermions with exact chiral symmetry and with the right flavour symmetries to

address the issues while working on relatively coarser lattices. The Overlap fermion

[18] is one such candidate. However, the non-locality of the overlap fermions makes

them very expensive to implement numerically. Moreover, it is the non-locality that

makes the construction of a conserved quark number non-trivial, which in turn, is

essential for the inclusion of the quark chemical potential. The lattice investigation

of the CEP in the T−µB plane of real-world QCD with two light quarks and a strange

quark, therefore requires a conceptually sound definition of the overlap operator with

a chemical potential. This is of significant importance, since the theoretical studies

greatly complement the current experimental searches for the CEP already underway

in the low-energy runs of RHIC. We have already discussed the procedure of including

the chemical potential in the fermion action. While this procedure is straightforward

to implement in the case of Wilson and Staggered fermions, it is non-trivial for the

case of overlap fermions, due to its non-locality. The existing formulation of overlap

fermions at finite µ employs an educated guess to include the chemical potential in

such a way that the correct continuum limit of the action is reproduced [41]. In

Chapter 4, I will present an analytical study of this formulation, and will show that

the correct expressions for the thermodynamic quantities, such as the energy density,

pressure and the equation of state is obtained [42]. I will also show that the conditions

needed to avoid the appearance of the spurious a−2 divergences in the expressions for

the energy density and the number density in continuum limit are the same as that

for the local fermions. However, it has been shown that in this formulation the exact

chiral symmetry of the overlap at µ = 0 is lost at finite µ [42].
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Even if the problem of proper inclusion of the chemical potential in the over-

lap operator is solved, a non-perturbative study at finite density would require the

elimination of the sign problem. Practical calculations using Taylor expansion and

reweighting methods can be done in the restricted parameter regime of large temper-

ature and small µ. The alternate methods of formulation of the theory have not yet

been successful in producing a sign problem free computational framework. There

has however been considerable success in the implementation of the these methods

to simpler bosonic and fermionic models, which share certain common features with

QCD. It is generally accepted that the experience with the simpler theories would

provide valuable insight, both physical and computational, to be of use in formulating

the more difficult case of full QCD. In Chapter 5, I will present a study of the non-

linear O(2)-sigma model, which has a similar sign problem at finite chemical potential

as that of QCD. The sign problem in this model can be eliminated by reformulat-

ing the theory in terms of conserved currents, and I will describe the computational

framework that has been adopted in explaining the phase diagram at finite density

and low temperature [43]. In fact, this is the only method that can be used to elimi-

nate the sign problem in this model and perform numerical simulations. Applications

of the complex Langevin method to this model found that the results converged to

wrong values. It was realized that complex Langevin dynamics was responsible for

the wrong convergence [44].
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Chapter 2

Screening correlators as QGP

probes

2.1 Introduction

A generic method to study the properties of a medium is to record the response of the

medium to external probes. One such probe is the screening length which indicates

the spatial distance beyond which the effects of putting a test hadron in the medium

is screened. Of particular interest is the longest screening length, ξ0, or its inverse, the

smallest screening mass, µ0 = 1/ξ0 [1]. For the QCD plasma with non-vanishing quark

masses, it is known that all fields are screened [1, 2]. Nevertheless, an understanding

of screening masses is of practical importance for the study of matter in high-energy

collisions. If ℓ is the smallest dimension of the fireball produced in heavy-ion collisions,

then thermodynamic properties become manifest only when ℓµ0 ≫ 1. In the other

limit, the system would be subject to finite size effects and the thermodynamic results

from lattice QCD calculations may not be directly applicable.

Screening properties in a plasma have been extensively studied in the literature.

In the glue sector, the Debye screening length has been the object of many stud-

ies both in non-perturbative lattice studies [3] and in weak coupling theory at high

temperatures [4]. Screening in other quantum number channels in the glue sector

has also been studied [5]. Screening in colour singlet channels due to quark bilin-

ear (meson-like) and trilinear (baryon-like) currents [1] was understood as the first

signal of deconfinement above the chiral symmetry restoring temperature in QCD

with dynamical quarks [6]. Analyticity arguments relate these hadron-like screening

masses in the low-temperature confined and chiral symmetry broken phase to the

(pole) masses and properties of the hadrons. This has implications for models of

19
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heavy-ion collisions such as the hadron resonance gas model.

Hadron-like screening masses have been studied previously in [7, 8]. In QCD with

light dynamical quarks they have been studied before using 2 flavours of staggered

quarks [9] and with 2+1 flavours of p4 improved quarks [10]. They have been studied

also with overlap valence quarks [11]. In all these studies the renormalized light

quark masses are almost equal, and nearly physical. It is known that while the

chiral symmetry restoration in the vector and axial-vector channels happens just

after Tc (the cross-over temperature of the theory), this restoration happens at higher

temperatures in the scalar and pseudo-scalar channels. The scalar and pseudo-scalar

screening lengths approach the free theory limit more slowly than the vector axial-

vector screening lengths.

In this work, we extend previous studies through the analysis of meson-like spatial

correlation functions in 2-flavour QCD with staggered quarks. This brings the state

of the art for dynamical staggered quarks into the regime of lattice spacings already

reached using quenched overlap quarks. We will discuss our studies of chiral sym-

metry restoration in the 2-flavour QCD using the screening masses and correlators

[12, 13]. We will present a detailed study of this hierarchical symmetry restoration

in the screening lengths of the various mesons and also locate the temperature at

which the scalar and pseudo-scalar screening lengths become identical using several

different diagnostics. We will describe our efforts to shed more light on the issue of

different symmetry restoration temperatures in different quantum number channels

by controlling the amount of explicit chiral symmetry breaking by tuning the quark

mass. We further checked for stability of the mesonic states and do not find any

signature of decay in the confined phase.

2.2 Formalism and Analysis details

A large part of this study uses decorrelated gauge configurations described in [14].

Two light flavours of staggered quarks were used with the bare quark mass tuned so

as to give mπ ≃ 230 MeV at zero temperature. The lattice spacing was a = 1/(6T ).

The Tc was identified through the peak of the Polyakov loop susceptibility. The lattice

sizes in the range 12 ≤ Ns ≤ 24 were used. The aspect ratio ζ = Ns/Nt was always

between 2 and 4. Most of our results are reported for the largest volumes, ζ = 4. A

detailed finite volume scaling study was performed at T = 0.94Tc with 4/3 ≤ ζ ≤ 5.

We have used at least 50 decorrelated configurations for our measurements.

The meson screening correlation functions are studied in one spatial directions
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with other spatial and temporal directions summed over and are given by—

Cγ
z =

1

V

〈

∑

x

Tr
[

G(x, z)G†(x, z)
]

φγ(x)

〉

(2.1)

where x stands for sites labelled by the triplet (x, y, t), V = NxNyNt, G(x, z) is the

inverse of the Dirac operator, i.e., the quark propagator from the origin to the point

(x, z), the angular brackets denote an average over gauge field configurations with the

correct weight, and the staggered phase factors φγ(x) pick out the quantum numbers,

γ, of the meson under study.

All eight possible local staggered mesons have been studied here. At T = 0

they would correspond to the flavour non-singlet scalar (S) (corresponding to the a0

meson), the Goldstone pion (PS), and three components each of the local vector meson

(V) and the axial vector (AV). Symmetry operations of the spatial slice interchange

the components of the V and AV, so the three components are expected to be identical

after averaging over gauge configurations.

Since we measure spatial direction correlators at finite temperature, the symme-

tries of the (x, y, t) slice orthogonal to the direction of propagation are not the same

as they would be in the corresponding zero temperature computation [15]. The S/PS

operators both lie in the trivial representation, called the A++
1 , of the spatial direction

transfer matrix. The sum of the x and y polarizations of the V/AV, and, separately,

the t polarization, also lie in the A++
1 representation. These six different kinds of

A++
1 operators do not mix under the symmetries of the (x, y, t) slice, and hence we

need separate notations for them. For the S/PS correlators it is economical to carry

on the T = 0 notation. For the sum of the x and y polarizations of the V we use the

notation Vs (and AVs for the sum in the AV sector) and for the t polarizations we use

the notation Vt and AVt. The difference of the x and y polarizations of the V/AV

lie in a non-trivial representation called the B++
1 . We use the notation VB and AVB

for these. These particular realizations of the B++
1 correlator have earlier been seen

to vanish [16].

We will use the S and PS susceptibilities [17] defined as

χPS =
∑

z

CPS
z , and χS =

∑

z

(−1)zCS
z . (2.2)

to demonstrate that at high temperatures the S/PS correlators are essentially domi-

nated by a single parity state.

The inversion of the Dirac operator was done using a conjugate gradient (CG)
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Figure 2.1: δ(ǫ), see eq. (2.3), as a function of the separation z for varying ǫ, with a
fixed value of ǫ′ = 10−5.

algorithm. The tolerance for stopping was chosen such that the residual vector had

squared norm less than ǫNtN
3
s . We investigated whether we had an acceptable stop-

ping criterion by monitoring

δ(ǫ) = 1 − CPS[ǫ]

CPS[ǫ′]
(2.3)

where CPS[ǫ] is the PS correlation function obtained when the stopping tolerance

parameter is ǫ. We chose a fixed ǫ′ = 10−5. Figure 2.1 shows δ computed on a

randomly chosen test configuration at T = 0.94Tc with ζ = 4. The configuration

to configuration variance of CPS is about 2–5% of the expectation value, so keeping

δ < 0.01 suffices. Clearly, the errors converge fast, and our choice of ǫ = 10−5 is seen

to be more than sufficient.

Each staggered correlation function may contain contributions from two parity

partners, and can be parameterized through the doubled-parity fit

C(z) = A1(e
−µ1z + e−µ1(Nz−z)) + (−1)zA2(e

−µ2z + e−µ2(Nz−z)), (2.4)

where µ1 and µ2 are the screening masses of the lightest natural parity meson appro-

priate for the operator used and its opposite parity partner.

Since measurements of the correlation function at different distances, z, are made

using the same gauge configurations, they are correlated, and the fit must take care
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of these correlations. Therefore, we used the definition of χ2

χ2 =
∑

zz′

[Cz − C(z)] Σ−1
zz′ [Cz′ − C(z′)] . (2.5)

Here z is the spatial separation, Cz are the measured expectation values of eq. (2.1),

the function C(z) is the 2-mass form of eq. (2.4), and Σzz′ is the covariance of Cz

and Cz′ . When Σzz′ is diagonal, the definition reduces to the more familiar one.

In actuality, the correlation coefficients are fairly high, so the matrix Σzz′ is nearly

singular. The inversion was done in Mathematica to an accuracy of O(10−10). The

errors in the inversion were therefore negligible compared to the statistical errors in

the measurements, σz, which were of the order of a few percent.

Local masses were used as a consistency check on the results obtained from fits.

Due to the even-odd oscillations for staggered fermions, we used the definition of [9]—

Cz+1

Cz−1

=
cosh[−m(z)(z + 1 −Nz/2)]

cosh[−m(z)(z − 1 −Nz/2)]
. (2.6)

Given the measurement on the left, the effective mass, m(z), can be extracted by

solving the equation and errors estimated by jack-knife. This differs from a procedure

where successive time slices are used for the modified correlator (−1)zCz [10].

In the chiral symmetry broken phase there is no particular relation between µ1,

µ2 and A1, A2 for different correlators. However, when chiral symmetry is restored,

the staggered phases give

CPS
z = (−1)zCS

z , CAV s
z = (−1)zCV s

z , CAV t
z = (−1)zCV t

z . (2.7)

This implies the relations

AV s
1 = AAV s

2 , µV s
1 = µAV s

2 and (V s↔ AV s), (2.8)

and similarly for the Vt and AVt or the S and PS channels. These relations are very

easily demonstrated by using the projections

C(±S)
z = CPS

z ±(−1)zCS
z , C(±V s)

z = CV s
z ±(−1)zCAV s

z , C(±V t)
z = CV t

z ±(−1)zCAV t
z .

(2.9)

If the correlators C
(−γ)
z vanish for all z then chiral symmetry is restored for the full

spectrum of excitations.
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2.3 Results

2.3.1 Thermal effects

The screening correlators at any non-zero temperature should be decomposed ac-

cording to the symmetry group of the finite temperature slice. At sufficiently low

temperature, however, one expects the Vt and Vs correlators to be nearly equal, and

the symmetries of the T = 0 problem to be realized approximately. We investigated

this by computing the ratios of the Vt and Vs correlators (normalized to be unity

at z = 0). The statistical analysis was performed using a bootstrap, since the dis-

tribution of the ratio is not expected to be Gaussian [14]. The results below Tc are

shown in Figure 2.2; the ratio is consistent with unity at all z. The normalization is

the value of the ratio of the correlators at z = 0. In Figure 2.2 we have plotted CV s
0

and CV t
0 as a function of T . Below Tc the two are equal within statistical errors. The

two facts taken together imply that the T = 0 symmetries remain good until rather

close to Tc. Quite abruptly, just above Tc this higher symmetry is broken, and the

symmetry of the finite temperature problem is obtained. Similar results are obtained

for the AVs and AVt. In view of this, in most of our subsequent analysis, we will

group the correlators below Tc into S, PS, V and AV. For T ≥ Tc we will continue to

use the decomposition into S, PS, Vs, Vt, AVs and AVt.
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Figure 2.2: The panel on the left shows Vs and Vt correlators at z = 0 as a function
of T/Tc. Note the abrupt lifting of the degeneracy at Tc. The panel on the right
shows the ratio of the Vs and Vt correlators as a function of z, normalized by their
values at z = 0. The data at T = 0.97Tc is displaced slightly to the right for clarity.

To examine whether the correlation functions exhibit chiral symmetry restoration

at any temperature, the most straightforward way is to plot C
(−γ)
z at each T and ask

whether it is consistent with zero at all z. In Figure 2.3 we show these quantities at

two temperatures above Tc. From the correlator C
(−S)
s we see that at T = 1.48Tc the

symmetry is clearly restored, whereas for T = 1.012Tc the symmetry is broken. The
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Figure 2.3: The chiral projections C
(−S)
z , C

(−V s)
z and C

(−V t)
z of eq. (2.9) at two tem-

peratures as computed on lattices with ζ = 4. The Vt channel shows chiral symmetry
is close to being restored immediately above Tc.
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correlator C
(−V s)
z is consistent with zero for zT > 1, but at distances less than 1/T

there is clear chiral symmetry breaking close to Tc. The correlator V
(−V t)
z most nearly

exhibits chiral symmetry restoration immediately above Tc, with only the value at

z = 0 being significantly non-zero. At higher temperatures all the C
(−γ)
z are consistent

with zero at all z, thereby indicating chiral symmetry restoration.

T/Tc χ2
S χ2

V s χ2
V t χ2

V B χ2
AV B

1.92 0.52 0.42 0.86 16.2 16.2
1.48 9.62 1.33 0.77 10.2 11.5
1.33 13.5 2.07 1.13 14.1 11.7
1.21 441 27 15 19.8 8.8
1.012 1429 107 40 6.2 12.1
1.00 878 125 56 19.0 9.1
0.99 3009 214 114 10.1 17.2
0.97 3013 440 212 14.0 9.2
0.94 746 188 92 28 14.9
0.92 936 348 141 15.0 14.5
0.89 539 101 80 21.3 18.8

Table 2.1: This table lists the values of χ2 at different temperature for tests of the
hypotheses that various correlators vanish. The number of degrees of freedom in
all these cases is 12, since there are 13 independent values of z on the lattices with
ζ = 4 with periodic boundary conditions. In order to rule out the hypothesis that a
correlator vanishes at the 99% CL, the value of χ2 should be more than 36.

In order to extend this analysis to all temperatures it is useful to introduce a less

local quantity,

χ2
γ =

∑

zz′

C(−γ)
z Σ−1

zz′C
(−γ)
z′ , (2.10)

where Σzz′ is the covariance matrix of the measurements of the correlator at different

distances. This is a measure of the likelihood that the correlators at all z are consistent

with zero, and hence that chiral symmetry is restored. Values of these variables are

collected in Table 2.1. Note that χ2
V t shows a distinct change at Tc, although it is

consistent with chiral symmetry restoration only at T = 1.21Tc. χV s also shows a

change at Tc, although it is less dramatic. From Figure 2.3 it would appear that

the change in χ2
V s at Tc is due to the long distance (z > 1/T ) correlation function

becoming consistent with zero, whereas the short distance (z ≤ 1/T ) part disappears

only at larger T . χ2
S, on the other hand, does not seem to undergo any significant

change at Tc and signals chiral symmetry restoration only at T = 1.33Tc. One sees

the difference in behaviour in Figure 2.3; the S/PS correlators, unlike the V/AV, do

not show any kind of effective long distance chiral symmetry restoration. This spatial
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structure has not been noticed before, and could be worth further investigation in

future.

The late restoration of chiral symmetry breaking can be understood from the fact

that the non-vanishing quark mass provides explicit chiral symmetry breaking. In the

chiral limit, there is a phase transition at Tc. In the high temperature phase there

is, effectively, a single scale, T , so the screening mass µ ∝ T . However, when there

is a non-vanishing bare quark mass, m, there is no phase transition at Tc but only a

cross-over. In the absence of a phase transition, the screening-mass could depend on

the mπ on a non-trivial way.

The projection of the local V and AV channel correlators on the B++
1 channel is

expected to vanish. This was demonstrated in [16, 9] with lattice spacing a = 1/(4T ).

Here we investigate the vanishing of these correlators at smaller lattice spacing using

a correlated χ2 definition similar to that above. In χ2
V B/AV B the factors of C−γ

z in eq.

(2.10) are replaced by the VB or AVB correlator. The results are collected in Table

2.1 and show that the VB and AVB correlators vanish.
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Figure 2.4: The ratio for susceptibilities of the pion to the scalar meson.

In Figure 2.4 we show the ratio of the PS and S susceptibilities (see eq. 2.2).

As expected, they become equal at T = 1.33Tc, which is the point where the two

correlators begin to satisfy eq. (2.7). At lower temperatures χPS is larger, essentially

because µPS is smaller than µS.
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Figure 2.5: The correlators C
(+γ)
z obtained at T = 1.92Tc with bare quark mass

m/T = 0.1. The lines show the result for free field theory computed with the same
quark mass.

The other projection, C
(+γ)
z , is non-zero at all temperatures. At high enough

temperature one might expect the whole correlation function to be described in a

weak-coupling theory. In Figure 2.5 we show the correlators at T = 1.92Tc. One

sees that the correlation function is far from the free field theory result, especially

the correlator C
(+S)
z ; indicating that even at this temperature the theory cannot be

treated as weakly interacting. This is consistent with previous observations on the

lattice [9, 10, 11].

2.3.2 Screening Masses

Figure 2.6 displays all four screening correlators at two temperatures, one each in the

hadron and the plasma phase, at T = 0.97Tc and T = 1.92Tc respectively. The V/AV

correlators show clear even-odd oscillations at both temperatures, whereas these stag-

gered artifacts are less clear in the S/PS correlators. This has clear implications for

the fits: the former always requires a doubled-parity fit of the form given in eq. (2.4),

whereas for the latter a single parity form may suffice.

In Table 2.2 we show that this is indeed correct. The PS channel can be fitted to

a single mass judging by the value of χ2/dof , and the fitted value does not change

significantly when a doubled-parity fit is performed. In fact, when a doubled-parity

fit is attempted to the data, the mass of the parity partner is ill-determined. In the
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V channel, on the other hand, the doubled-parity fit turns out to be indispensable.

In the AV channel the behaviour is similar to that in the V. In the S channel a single

mass suffices, although one needs a (−1)z factor multiplying the exponential to take

care of staggered oscillations. Only at the highest temperature were we able to extract

a second mass from the S/PS correlators. The table also shows that the fitted masses

are reasonably stable against changes in the fit range in both the PS and V channels.

We find similar results for all T .

Interestingly, although the covariance matrix is nearly singular (the smallest cor-

relation coefficient being about 0.8), the difference between the parameters extracted

using or neglecting the covariance matrix in the PS channel is marginal. The major

difference seems to be that the value of χ2 obtained when covariances are neglected

are clearly too small for the usual statistical interpretation.
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Figure 2.6: The correlators for all the mesons at representative temperatures in the
two phases on the lattice with ζ = 4. Note the absence of even-odd oscillations for
the S and PS correlators.

In Figure 2.7 we demonstrate that the fitted masses agree with the local mass

extracted from eq. (2.6). We draw attention to the fact that the local masses exhibit

a very well developed plateau, indicating that the correlation functions of fixed parity

can be well described by a single mass. The spatial structure of chiral symmetry

restoration shown in Figure 2.3 is visible also in the local masses at high temperature.

In Table 2.3 we collect the results for the fitted masses at all temperatures. We

checked in all cases that the local masses for z > 1/T were compatible with these fits.

For the V/AV correlators we also checked that if the fits were restricted to z ≤ 1/T

the fit results were generally different. Wherever doubled-parity fits are available, one

can look for chiral symmetry restoration by checking whether or not the relations of

eq. (2.8) are satisfied. Consistent with previous analysis, we find that this happens

only for T ≥ 1.33Tc in the S/PS channels. Surprisingly, the equalities of eq. (2.8)

hold in the V/AV channels, within statistical errors, from just above Tc.
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PS V
Uncorrelated single parity fit

Range 3–11 4–11 5–11 4–9 4–10
A 3.61(7) 3.59(6) 3.59(6)
m 0.401(2) 0.400(2) 0.400(2)

χ2/dof 0.24/7 0.01/6 0.01/5
Correlated single parity fit

A 3.64(18) 3.59(16) 3.58(16) 0.053(4) 0.053(3)
m 0.401(3) 0.400(3) 0.400(2) 0.484(7) 0.480(8)

χ2/dof 11.0/7 2.1/6 1.9/5 9.5/4 9.8/5
Correlated doubled-parity fit

4–11 5–11 6–11 2–11 1–10 3–9
A1 3.59(14) 3.59(12) 3.58(11) -0.67(4) -0.70(3) -0.55(5)
µ1 0.400(2) 0.400(2) 0.400(2) 1.18(3) 1.20(3) 1.14(3)
A2 0.02(6) 0.04(12) 3.1(*) 0.38(6) 0.49(4) 1.4(4)
µ2 0.9(*) 0.9(*) 1.5(*) 1.62(8) 1.71(5) 1.98(11)

χ2/dof 1.60/4 1.58/3 1.28/2 6.55/6 6.56/6 2.20/3

Table 2.2: Fits to PS and V Correlators at T = 0.97Tc on a lattice with ζ = 4. An
asterisk on a number indicates that the fit value is not determined reliably.
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In Figure 2.8 we plot the lowest screening mass in each channel as a function of

T/Tc. Above Tc we could plot three channels. To avoid clutter we plotted only the

S/PS and Vt/AVt channels. As one sees in Table 2.3, the lowest Vs/AVs masses are

slightly larger, but consistent with Vt/AVt at the 2-σ level. All the features discussed

are clearly visible here. Also visible is the fact that µPS/T increases monotonically

with T whereas µS/T dips near Tc. Note also that µV t/T may approach its ideal

gas value from above, becoming consistent with the limit already at T ≃ 2Tc. How-
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T/Tc PS S Vs AVs Vt AVt
1.92 µ1/T 4.93(3) 5.1(6) 6.5(1) 12.6(4) 9.4(3) 6.1(2)

µ2/T 5.1(7) 4.93(3) 12.8(4) 6.5(1) 6.1(2) 9.3(4)
χ2 15.8 16 9.2 9.3 7.4 7.2

1.48 µ1/T 4.44(4) 17(1) 6.8(1) 5.8(4) 8.9(4) 6.6(4)
µ2/T — 4.5(4) 5.6(4) 6.8(1) 6.6(4) 8.7(4)

χ2 8.1 1.8 5.2 5.3 9.6 9.2
1.33 µ1/T 4.15(2) 7.0(7) 6.7(2) 9.6(6) 8.7(3) 6.8(5)

µ2/T — 4.22(4) 8.7(5) 6.8(2) 6.6(6) 8.9(4)
χ2 31.8 9.2 11.4 11.3 6.0 7.7

1.21 µ1/T 3.31(7) — 6.5(2) 9.4(8) 8.1(4) 6.1(8)
µ2/T — 3.91(5) 15.0(6) 6.8(2) 6.8(8) 9.1(4)

χ2 18.2 6.3 5.4 12.5 2.2 3.8
1.012 µ1/T 2.65(4) 23(3) 6.9(3) 4.5(9) 6.4(5) 5.7(7)

µ2/T — 4.3(1) 4(2) 8.8(4) 5(1) 5.3(6)
χ2 21.2 7.4 5.2 2.1 1.0 2.8

1.00 µ1/T 2.54(3) — 5.9(3) 5.2(6) 7.9(4) 13(2)
µ2/T — 4.6(2) 9.8(9) 8.6(4) — 11.6(5)

χ2 11.9 7.0 6.1 4.6 3.2 7.8
PS S V AV

0.99 µ1/T 2.47(2) 5(1) 5.5(2) 6.4(5)
µ2/T — 4.6(2) 12(1) 6.0(4)

χ2 8.4 2.6 6.3 4.3
0.97 µ1/T 2.41(2) 4(1) 7.0(2) 7.0(3)

µ2/T — 5.2(1) 11(1) 7.7(3)
χ2 11.0 3.6 6.5 1.7

0.94 µ1/T 2.35(2) 4(2) 5.9(2) 4(1)
µ2/T — 5.2(2) — 14.4(3)

χ2 15.3 3.2 2.8 2.4
0.92 µ1/T 2.31(2) 5(1) 7.3(3) 7.3(7)

µ2/T — 5.7(2) — 10.0(7)
χ2 7.5 1.3 6.5 7.6

0.89 µ1/T 2.27(2) — 5.5(6) 7(1)
µ2/T — 4.9(4) 7(2) 5(1)

χ2 5.6 7.7 4.3 12.2

Table 2.3: Screening masses at different temperatures. The fit range was z/a=3–11
except for the S/PS at 1.92Tc, where the fit range was z/a=4–11 (the larger range
gave very large χ2 without appreciably changing the best fit values). Also note that
except at 1.92Tc, the PS fit was done with a single-parity fit form, and therefore
has two more degrees of freedom than the other channels. A dash indicates that
some mass could not be obtained because staggered oscillations were not visible. At
temperatures below Tc the analysis was performed on the V/AV channels.
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ever µS/T remains about 20% below this limit even at the highest temperature we

explored. We shall return to this point later when we discuss the continuum limit.

2.3.3 The role of explicit chiral symmetry breaking

In free field theory one has no pion and the explicit chiral symmetry breaking scale

is the quark mass. In this case one has

µ

T
= 2

√

π2 +
(m

T

)2

≃ 2π

[

1 +
1

2

( m

πT

)2
]

. (2.11)

Substituting the bare quark mass into this expression, it can be seen that the effect is

of the order of a few parts in 105, and hence negligible. However, it turns out that in

weak-coupling theory one has to insert in the above equation the thermal mass of the

quark [18]. Since this is gT/
√

3, and g is large near Tc [19], the effect can be significant.

Of course, when g is large, the weak-coupling theory is unlikely to be quantitatively

useful, and should be taken only as an indication that one must explore the quark

mass dependence of the chiral symmetry breaking seen in the screening masses.

Changing the quark mass involves in principle a completely new set of computa-
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tions. However, we have changed the valence quark mass (mval) without changing the

sea quark mass (msea) on the same configurations. We repeated our analysis above

Tc with mval chosen to be 2/3 and 1/3 of msea. Sample results are shown in Figure

2.9.

We find that a change in the valence quark mass has insignificant effect in the

V/AV channels (see, for example, the second panel of Figure 2.9). However, there

are statistically significant changes in the S/PS sector. Both the S and PS screening

mass increase with mval. The difference also increases, although the limiting value

for mval = 0 is finite. We find that

µS − µPS

T

∣

∣

∣

∣

T/Tc=1.21

= 0.46 ± 0.03 (for msea/Tc = 0.1, mval = 0). (2.12)

It is possible that decreasing msea in a future computation can lower this mass differ-

ence further. We note that µPS/T and µS/T both drop as the quark mass changes,

and move further away from the weak-coupling expectation.

In fact, the dependence of correlation functions on the bare quark mass can be

deeper than what was discussed above. We illustrate this in Figure 2.10, where local

masses in the PS channel are shown for several values of mval. It seems that with

decreasing mval the plateau in the local masses becomes less well developed; for the

smallest mval, in fact, a slight slope is visible.

2.3.4 The effect of finite volume

ζ PS S V AV
4/3 µ1 2.45(4) — 8.0(2) 4.3(6)

µ2 — 5.0(3) — 7.7(6)
2 µ1 2.41(2) — 6.8(3) 13.1(7)

µ2 — 5.5(2) 14.7(5) 9.2(5)
3 µ1 2.44(3) 6(1) 6.5(2) 8.0(3)

µ2 — 5.3(2) 6.4(8) 9.1(3)
4 µ1 2.35(2) 4(2) 6.4(3) 7.6(3)

µ2 — 5.2(2) 29(4) 9.4(2)
5 µ1 2.39(2) 4.2(-) 6.6(4) 8.1(5)

µ2 — 5.5(4) 9(1) 8.6(4)

Table 2.4: Screening mass estimates at T = 0.94Tc at fixed a = 1/(6T ) with changing
spatial volume (ζ/T )3.

Finite volume effects in the high temperature phase of QCD have been explored
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Figure 2.11: Screening masses in various channels as a function of ζ at T = 0.94Tc.
Note that there is nothing special about the S channel masses.

earlier [9] and are by now well understood. These effects are under control as long

as µPS is large compared to the inverse size of the smallest lattice dimension, i.e.,

T . Since we find µPS/T > 2.5 in the high temperature phase, we expect that finite

volume effects are under control for T > Tc.

In this work, we have studied these effects below Tc, on lattices with 4/3 ≤ ζ ≤ 5 at

T = 0.94Tc. As shown in Table 2.4 and Figure 2.11, finite volume effects are invisible

within statistical errors. Again, since µPS/T ≃ 2.3, this may not seem unexpected.

While such studies can have some bearing on decay widths at finite temperature,

much larger lattices and smaller quark masses and lattice spacings may be required

for those. For example, the scalar under study cannot decay into two pions, and must

have at least three pions in the final state. This is ruled out kinematically here.

However, since µS/µPS ≃ 2.2, one must ask whether the long-distance behaviour of

the S correlator is determined by a single scalar exchange or multi-particle exchanges

(this is the finite temperature analogue of particle decays, and we shall save space

by using the word decay). In the continuum theory, this non-isosinglet scalar cannot

decay into two pions. From this point of view, since µS/µPS ≃ 2.2 < 3, one could

expect that the scalar does not decay. However, with staggered quarks on a lattice,

there are spurious two pion states (taste multiplets) through which the scalar current

could be correlated [20]. The featureless behaviour of the volume dependence of the
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screening masses is indicative of a stable state.

2.3.5 The continuum limit

T/Tc a = 1/(4T ) a = 1/(6T )
S/PS Vt/AVt S/PS Vt/AVt

1.5 3.67 ± 0.02 5.44 ± 0.08 4.44 ± 0.04 6.6 ± 0.4
2.0 4.08 ± 0.01 5.72 ± 0.04 4.93 ± 0.03 6.1 ± 0.2

Table 2.5: The lattice spacing dependence of µ/T in various quantum number chan-
nels. The temperature scale is rounded off. Data for a = 1/(4T ) is taken from
[9].

In Table 2.5 we extract the values of the screening masses in units of temperature,

µ/T for two different temperatures in the chirally symmetric phase, at two different

lattice spacings. From two pieces of data in each case it is hard to construct a con-

tinuum extrapolation. However, we can test whether the extrapolation is consistent

with the expectation µ ≃ 2πT by attempting a fit to the form

µ

T

∣

∣

∣

Nt

= 2π +
s

N2
t

. (2.13)

It is possible to get reasonable fits in the V/AV channel, yielding

s =







−13 ± 2 (T = 1.5Tc)

−9.0 ± 0.2 (T = 2Tc)
(2.14)

This is consistent with previous results. However, in the S/PS case this procedure

fails to yield the expected result; the extrapolated screening length remains below

the ideal gas value. One cannot rule out the possibility that the weak-coupling result

emerges at even smaller lattice spacings.

We note however, that the screening of meson-like correlations in the weak cou-

pling theory occurs, not through the exchange of a single particle, but through mul-

tiparticle exchange. As a result, the zero-momentum correlator is not expected to be

strictly exponential, but to have some curvature. Such a curvature was actually seen

in computations in the quenched theory using staggered [21] and Wilson [8] quarks

using much smaller lattice spacings. An easily observed feature of such a curvature

is that local masses do not show a plateau, but change continuously with z. Such

behaviour was neither seen here (see Figure 2.7), nor with p4 improved quarks at the
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same renormalized quark mass [10]. However, as pointed out in Section 2.3.3, when

the quark mass is lowered such a feature could emerge.

2.4 Summary

We studied screening correlation functions and screening masses of meson-like probes

of strongly interacting matter, both in the low temperature hadron and high temper-

ature plasma phases. We used configurations described in [14]; these were generated

using two flavours of dynamical staggered quarks with masses tuned to give mπ ≃ 230

MeV. Most of the results come from lattice spacing a = 1/(6T ), although we have at-

tempted to check assumptions about the continuum limit using earlier measurements

with the same renormalized quark mass and lattice spacing a = 1/(4T ). We have

explicitly checked for finite volume effects, and found that these are negligible when

we take the aspect ratio ζ = 4.

We checked that the correlators at T < Tc effectively have the symmetries of

the T = 0 transfer matrix, and that there is a fairly abrupt transition at Tc to the

symmetries of the screening transfer matrix (see Figure 2.2). Although the QCD cross

over occurs at Tc, we found a lack of parity doubling in the spectrum of screening

masses up to a temperature of 1.33Tc (see, for example, Figure 2.4 and Table 2.1).

Interestingly, there turns out to be a lot of structure in this apparent breaking of

chiral symmetry above Tc. The V/AV correlators are equal to each other at distances

z > 1/T , and the chiral symmetry breaking in this sector is entirely a short distance

effect (see Figure 2.3). In the S/PS sector the non-degeneracy of the correlators

persists into the long distance regime.

Non-degeneracy of the S/PS correlators could also be due to UA(1) symmetry

breaking. This is suspected to persist well into the high temperature plasma phase

[22]. We tested what happens to the S/PS difference as the valence quark mass

is changed (see Figure 2.9). Our results imply that other physics effects can be

disentangled from the explicit symmetry breaking effect due to finite quark mass

only through computations with smaller quark masses.

We made the first study of hadron decays at finite temperature (below Tc) through

a systematic exploration of the volume dependence of screening masses. We found no

significant volume dependence (see, for example, Table 2.4 and Figure 2.11), indicat-

ing the stability of the scalar. As we discussed already, this study needs to be carried

out with smaller quark masses so that µS/µPS > 3, or at smaller lattice spacings, so

that taste violations are reduced.

We combined the analysis of this paper with data from an earlier source [9] in
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which the same renormalized quark masses were used to study screening at a coarser

lattice spacing, a = 1/(4T ) to explore the continuum limit. Being restricted to only

two values of the lattice spacing at each T , we ask whether the continuum limit

of screening masses is compatible with the ideal gas expectation, 2πT , in the high-

temperature phase. We find that it is, in the V/AV channels, but not in the S/PS

channels.

If the high temperature phase is deconfined, then correlations of static currents

with meson quantum numbers must be mediated by the exchange of a quark anti-

quark pair. The most straightforward signal of this is that the local masses do not

show a well-developed plateau. In most of our studies we did not see this. Only in a

study with rather small valence quark masses did we see a signal of such behaviour

(see Figure 2.10). Studies with lower sea quark masses in the future will be needed to

resolve the question of deconfinement above Tc in QCD with physical quark masses.
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Chapter 3

Diffusion constant of heavy quarks

in the gluon plasma

3.1 Introduction

The mass of both the charm and the bottom quarks are much heavier than the tem-

peratures attained in RHIC and in LHC experiments. This leads to the expectation

that these quarks are produced largely in pre-equilibriated state of the collision. This

provides an important probe for studying the early stages of the collision. Since the

energy loss mechanism for the heavy quarks is expected to be different from that of

the light quarks based on perturbative arguments, a comparative study of the energy

losses of heavy and light quark jets could provide a crucial insight into the mechanism

of energy loss of jets in quark gluon plasma.

For light quark jets, gluon radiation (“bremsstrahlung”) is expected to be the

leading mechanism for energy loss in medium [1]. But gluon bremsstrahlung is sup-

pressed for jets of heavy quarks [2], and collisional energy loss is expected to be the

dominant mechanism for thermalization of heavy quark jets. Since collision with a

thermal quark does not change the energy of a heavy quark substantially, one would

expect that the thermalization time of the heavy quarks is much larger than that of

the light quarks. Since most of the elliptic flow is developed early, the elliptic flow

velocity, v2, of the hadrons with heavy quarks can be expected to be much less than

that of the light hadrons.

Interesting predictions follow from these simple, weak coupling-based intuitions,

which can be checked in the heavy ion collision experiments. One can expect a mass

ordering of both flow and the nuclear suppression factor, RAA: vh
2 ≫ vD

2 ≫ vB
2

and Rh
AA ≪ RD

AA ≪ RB
AA; here h,D,B refer to the light hadrons, mesons of the

41
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D family (one charm and one light quark) and those in the B family (one bottom

and one light quark). Experimentally, on the other hand, it was found that the open

charm mesons show a large elliptic flow, vD
2 ∼ vh

2 , and a strong nuclear suppression,

RD
AA ∼ Rh

AA [3].

Since the parton densities of the medium created in experiments like RHIC and

LHC are very large, and the momentum of the heavy quark, being much larger than

the temperature, is changed very little in a single collision, successive collisions can be

treated as uncorrelated and a Langevin description of the motion of the heavy quark

in the medium has been proposed [4, 5]. Using this formalism, the energy loss can

be expressed in terms of the diffusion coefficient of the heavy quark in the medium.

The diffusion coefficient has been calculated in perturbation theory [4, 5]. It has been

found, however, that the perturbative value is too low to explain the charm quark

flow seen in RHIC [5]. A nonperturbative estimate of the diffusion coefficient will be

necessary for the applicability of the Langevin formalism to the understanding of the

heavy quark flow.

In the infinite quark mass limit, a nonperturbative definition of the diffusion co-

efficient was given in Refs. [6, 7]. In this limit, the formalism of Ref. [5] reduces to

evaluation of retarded correlator of electric fields connected by Wilson lines [6]. In

Ref. [6], this formalism was used to calculate the diffusion coefficient for the N =

4, SU(Nc → ∞) gauge theory, using the AdS/CFT correspondence. The results of

this calculation indicate a considerably large diffusion coefficient at moderately high

temperatures. On the other hand, a leading order perturbative evaluation led to a

negative value for the diffusion coefficient at such temperatures [7, 8].

Lattice QCD provides the only way of doing reliable calculations in the quark-

gluon plasma at moderately high temperatures, where perturbation theory is known

to be unreliable. The formalism outlined in Ref. [7] can be adapted to numerical

calculation on the lattice. As we outline in the next section, this involves the cal-

culation of Matsubara correlators of color electric field operators, and extracting the

low frequency part of the spectral function from it. The extraction of the spectral

function from the Matsubara correlator is, however, a very difficult problem numer-

ically. A direct inversion of the correlator is an ill-posed problem. In some cases,

Bayesian analysis techniques have been used, with varying degrees of success. Here

we will assume a form of the spectral function, which turns the problem to a standard

χ2-fitting problem.
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3.2 Formalism

To understand why the motion of a quark much heavier than the system temperature

can be described in the Langevin formalism, we note that if the kinetic energy is ∼ T ,

then the momentum, ∼
√
MT , is not changed substantially in individual collisions

with thermal gluons and quarks, which can only lead to a momentum transfer ∼ T .

Therefore, the force on the heavy quark can be written as the sum of a drag term

and a term of “white noise” form, corresponding to uncorrelated random collisions:

dpi

dt
= −ηDpi + ξi(t), 〈ξi(t)ξj(t′)〉 = κ δij δ(t− t′). (3.1)

From Eq. (3.1) the momentum diffusion coefficient, κ, can be obtained from the

correlation of the force term:

κ =
1

3

∫ ∞

−∞
dt
∑

i

〈ξi(t)ξi(0)〉. (3.2)

The drag coefficient, ηD, can be connected to the diffusion coefficient using standard

fluctuation-dissipation relations [9]:

ηD =
κ

2MT
. (3.3)

Here M is the heavy quark mass. To have a field theoretic generalization of Eq.

(3.2), one introduces [7] the conserved current for the heavy quark number density,

Jµ(~x, t) = ψ̄(~x, t)γµψ(~x, t), where ψ is the heavy quark field operator. The force

acting on the heavy quark is given by M dJ i/dt and so, Eq. (3.2) generalizes to

κ =
1

3
lim
ω→0

[

lim
M→∞

M2

T χ00

∫ ∞

−∞
dt eiω(t−t′)

∫

d3x

〈

1

2

{

dJ i(~x, t)

dt
,
dJ i(~0, t′)

dt′

}〉]

·

(3.4)

where χ00 is the quark number susceptibility and is related to the number density of

the heavy quark through

∫

d3x〈J0(~x, t) J0(~0, t)〉 = Tχ00. (3.5)

The force term and the number density term are :

M
dJ i

dt
=

{

φ†Eiφ − θ†Eiθ
}

,

J0 = φ†φ + θ†θ, (3.6)
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where φ and θ are the two-component heavy quark and antiquark field operators,

respectively, and Ei is the color electric field. In the leading order in an expansion in

1/M , only electric field contributes to the force term.

With the substitution of Eq. (3.6), the real time correlator in Eq. (3.4) can be

calculated as analytical continuation of the Matsubara correlator,

GE(τ) = −1

3

3
∑

i=1

lim
M→∞

1

Tχ00

∫

d3x
〈

{

φ†Eiφ − θ†Eiθ
}

(τ, ~x)
{

φ†Eiφ − θ†Eiθ
}

(0,~0)
〉

·

(3.7)

The spectral function, ρ(ω) is related to GE(τ) by the integral equation [9]

GE(τ) =

∫ ∞

0

dω

π
ρ(ω)

coshω(τ − 1
2T

)

sinh ω
2T

· (3.8)

The momentum diffusion coefficient, Eq. (3.4), is given by

κ = lim
ω→0

2T

ω
ρ(ω). (3.9)

In this limit, the expression (3.7) simplifies considerably. The heavy quark cor-

relators give a static color field, besides an exponential suppression factor: e.g.,

〈θa(τ, ~x)θ
†
b(0,~0)〉 = δ3(~x) Uab(τ, 0) exp(−Mτ), where Uab(τ, 0) is the timelike gauge

connection, the delta function comes because of the static nature of the heavy quark,

and there is an exponential suppression factor with the heavy quark mass. Since a

similar factor comes also from χ00, the exponents cancel and, for the infinitely heavy

quarks, one is left with the rather simple expression

GE(τ) = − 1

3L

3
∑

i=1

〈

Re Tr
[

U(β, τ) Ei(τ,~0) U(τ, 0) Ei(0,~0)
]〉

, (3.10)

where L = TrU(β, 0) is the Polyakov loop. Once again, intuitively it is easy to un-

derstand Eq. (3.10): for the infinitely heavy quarks, all that the force-force correlator

gives is the correlator of color electric fields, connected through Wilson lines, and

normalized by the Polyakov loop.

The extraction of ρ(ω) from GE(τ) using Eq. (3.8) is formidable because of the

small extent of the Euclidean time τ in the plasma phase. With little data, it is

difficult to isolate the contributions of the different ω regimes in GE(τ). Since we

in general have only O(10) data points where GE(τ) is measured, the problem of

extraction of ρ(ω) becomes a completely ill-posed problem without any further input.

For some problems, a Bayesian analysis, with prior information in the form of
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perturbative results, have been useful. In general, though, a stable application of

these techniques require both a very large number of points in the τ direction and very

accurate data for GE(τ). Moreover such methods (the Maximum Entropy Method is

one example) are often sensitive to the default model which is input from physical

intuition. For the kind of extended objects we are considering, wrapping the lattice

in the Euclidean time direction further decreases the number of independent data.

As we will discuss, typically we only reach 2-3 % accuracy with our lattices, that have

. 20 points in the time direction.

Parametrizing ρ(ω) in terms of a small number of parameters, therefore, seems to

be the simplest way to extract the low-ω behaviour of the spectral function. In our

case, the leading order perturbative form of the spectral function is ∼ a3ω
3. Also

in the ω → 0 regime, we need ρ(ω) ∼ κω to get a physical value of the diffusion

constant using Eq. (3.9). The calculation of Ref. [6] get ρ(ω) ∼ cω for the N = 4

theory. Motivated by these, we postulated a simple form for the spectral function

at small ω, ρ(ω) ∼ a1ω + a3ω
3. Of course, at large ω this form is not valid, and a

complicated form, that takes into account the effect of lattice Brillouin zones should

be considered. We restrict ourselves to the large distance regime in our fits, and

expect that the lattice distortions will not matter so our simple form will suffice to

get a first estimate of the diffusion coefficient. This also satisfies the general relation

for the spectral bosonic function : ρ(ω) = −ρ(−ω). We will discuss the possibility of

other forms in the discussion of systematics.

3.3 Algorithm and simulation parameters

A reliable estimate of κ requires an accurate computation of the correlation func-

tion G(τ) especially at large temporal separations. As is well known in the case of

Polyakov loops, accurate determination of objects like G(τ) (see Eqn. 3.10) is very

difficult for large τ . A brute force application of the standard methods (combination

of overrelaxation and Metropolis) to calculate these correlation functions does not

yield acceptable results for this problem. We use the Multilevel algorithm [10] which

is known to exponentially reduce errors on certain operators. This algorithm has

been used previously in the literature to accurately calculate the Wilson loop, corre-

lation functions of Polyakov loops as well as the glueball spectrum [10, 11, 12, 13, 14].

We will explain later how the use of this algorithm improves over the results from

standard method.

The key idea of the multilevel algorithm is to divide the lattice into several sub-

lattices. The locality of the gauge action allows the value of certain extended operators
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to be expressed as the product of the expectation values of certain other operators

over the sub-lattices. These sub-lattice expectation values are calculated by holding

the boundary links fixed. From the averaging in each of the time slices, a single

measurement of the operator of interest is obtained. The operator is then measured

N times by repeating the procedure. A variety of parameters such as number of

sublattices, number of sublattice averaging or even the use of nested sublattices can

be tuned to increase the efficiency of the algorithm.

xi → −xi

x0

xi
E

i(τ ) E
i(0)

GE(τ ) =
∑3

i=1 Re Tr− 1
6a4〈L〉

Figure 3.1: Graphical representation of the chromo-electric field correlation function.

The standard lattice form of the chromo-electric field is a (x, t) plaquette where x

is the generic spatial index [15, 16]. In Ref [7], the authors suggest another discretiza-

tion of the chromo-electric field which has only two right-angled cusps; and hence is

expected to be less ultra-violet sensitive than the standard plaquette representation.

This is obtained from a lattice representation of the spatial heavy quark current in

the non-relativistic regime, and this has been used for our calculations. A heuristic

way to understand the operator is to observe that Ei = [D0, Di] = D0Di −DiD0. On

the lattice, the D0, Di may be replaced by the gauge links in 0, i directions. Thus,

the correlation functions in Eqn. 3.10 can be best represented graphically as shown

in Fig 3.1. The graphical expression given in Fig. 3.1 can expressed in terms of a

combination of loop operators, each with a “handle”. The expression in numerator

(which we call E(τ)) can be expressed as: E(τ) = 2C(τ)−C(τ +1)−C(τ −1) where

C(τ) is a loop operator with a “handle” in the spatial direction of extent τ , and is

represented graphically in fig 3.2

τ

Figure 3.2: Graphical representation of C(τ)

For the explicit construction of the correlators using the Multilevel algorithm, let

us consider a specific example of a lattice with Nt = 8. Because of periodicity, there

are only four independent correlation functions that need to be calculated, as shown
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in Fig 3.3. For the purposes of this section, we will use the notation G(τ) = E(τ)/L,

where E(τ) is the operator with the insertion of the chromo-electric fields on two

different timeslices, a distance of τ apart and L is the Polyakov loop.
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E(3)
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U2
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U9

U10

U11 U12 U13 U14

Figure 3.3: Schematic figure explaining the calculation of E(τ) on Nt = 8 lattice
using the Multi-level algorithm

Consider the calculation of the E(3) in Fig 3.3. The electric fields are separated

by three lattice spacings in the temporal direction, with the gauge links denoted by

arrows. The lattice has been divided into 4 sublattices each of width of two lattice

spacings. Because of periodic boundary conditions the 8th time-slice co-incides with

the 0th time-slice. In terms of these links, the expression for E(3) is

E(3) = 〈Tr {(U1U2 − U3U4)U5U6(U7U8 − U9U10)U11U12U13U14}〉
= 〈Tr {[(U1U2 − U3U4)U5] [U6(U7U8 − U9U10)] [U11U12] [U13U14]}〉 (3.11)

The sublattice averaging [(U1U2 − U3U4)U5] means that this sublattice is averaged

over keeping all other links frozen. An identical procedure is followed for measuring

each of the correlation functions. The Polyakov loop L appearing in the denominator

is also measured using this procedure. Note that this is only possible because the
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action is local. With fermions put in, the non-local fermion determinant appears in

the measure and this method cannot be used because it is no longer possible to hold

any link fixed while others are updated.

Note that E(τ) used in the calculation transform exactly like L under the global Z3

transformation, and therefore vanishes in the confined phase. Without any modifica-

tion using source terms, the G(τ) as defined in Eqn. 3.10 cannot be calculated below

Tc. Our calculations using the Multilevel algorithm therefore focussed on tempera-

tures above Tc to calculate the correlation functions at seven different temperatures

varying from 1.066 Tc to 3.0 Tc on a variety of lattices with different temporal extents

and spatial volumes. In Table 3.1 we list all the lattices used and the couplings, the

number of sublattices used in the multi-level updates and the number of averaging

in each sublattice (called iupd). The table also lists the number of measurements

collected at each of these parameter values.

For most of our runs we have used 2000 sublattice averagings. This was essential

for the larger lattices with Nt = 20, 24. For smaller β, larger averaging was required

to get error-bars down to a few percent. For Nt = 12 at larger β values, we found that

even 200 sublattice averagings yielded good signals when the number of sublattices

were large. We noted that using smaller sublattice averagings often gave rise to

larger autocorrelation. For our runs, we have tuned these such that all correlators

have autocorrelation times less than 3 - 4.

It is known that the Multilevel algorithm can be especially useful to calculate

quantities that have an exponentially decaying signal-to-noise ratio. The merit of

the Multilevel lies in the fact that with proper tuning, it can maintain fixed relative

error even for observables at very large spatial or temporal extents. This was first

shown by Lüscher and Weisz [10] on the expectation values of Wilson loops. For large

Wilson loops, the signal-to-noise ratio decreases like e−σA in the confined phase with

standard algorithms, where A is the area of the loop and σ is the string tension. For

a Wilson loop of r = 6a ≃ 1fm and T = 12a, they noted that the Multilevel is more

efficient by a factor of about 3 × 105 (which was measured in terms of the computer

time to reach the same error in the same machine). This increases for loops with even

larger extents.

Let us give a quantitative estimate of the improvement in our correlation functions

with the Multilevel algorithm. For β = 6.9, Nt = 20 and Ns = 36, G(τ) was also

calculated using the standard method. The correlator for the largest τ , G(10) has

the value of 2.133(76) ×10−4 from 350 multilevel measurements. The multilevel takes

about 800 minutes to make a single measurement on an Intel Xeon CPU processor

with a speed of 2.5 GHz. For the same correlator, the standard method gives the
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Nt Ns β T/Tc # sublattice iupd # measure
12 24 6.4 1.066 3 2000 190
12 36 6.4 1.066 3 2000 200
12 48 6.4 1.066 6 200 180
16 48 6.6 1.066 4 2000 132
20 48 6.76 1.066 5 4000 170
12 48 6.42 1.125 3 2000 150
16 36 6.65 1.125 4 2000 250
16 48 6.65 1.125 4 2000 215
20 48 6.80 1.125 5 3000 150
12 48 6.47 1.2 3 2000 150
16 48 6.68 1.2 4 2000 120
20 36 6.9 1.2 5 2000 350
20 48 6.9 1.2 5 2000 96
12 24 6.65 1.5 6 200 400
12 36 6.65 1.5 6 200 260
12 48 6.65 1.5 6 200 180
16 36 6.9 1.5 4 2000 230
16 48 6.9 1.5 4 2000 200
24 48 7.192 1.5 4 2000 450
24 56 7.192 1.5 4 2000 50
24 56 7.192 1.5 4 4000 45
12 36 6.9 2.0 6 200 220
12 48 6.9 2.0 6 200 188
16 48 7.074 2.0 4 2000 132
20 48 7.255 2.0 5 2000 194
12 48 6.94 2.25 3 2000 132
16 48 7.192 2.25 4 2000 200
12 48 7.192 3.0 3 2000 210
16 48 7.457 3.0 4 2000 140

Table 3.1: Parameters of the runs used in the computation of the chromo-electric
correlation functions G(τ)

value: -3.26(2.28) ×10−3 for a runtime of about 8500 minutes on the same machine.

Since the achieved error-bar using the multilevel is a factor of 300 lesser, it would

take about 7.6 ×108 min to get same level of error using the standard method. In this

time about 9 ×105 multilevel measurements can be made. The multilevel is therefore

about a factor of 2.5 ×103 times more efficient than the standard algorithm for G(10)

at this coupling. An exactly similar comparison made for G(3) shows that the time

required to reduce the errors in the standard method to the level of 350 multilevel

measurements is sufficient to make 6 ×104 multilevel measurements, an improvement

by a factor of 200. This demonstrates the use of the Multilevel to be indispensable
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for this calculation, especially for larger τ .

3.4 Results

In this section we will discuss the structure of the correlation functions and the

theoretical inputs that we have used in order to parameterize them. We will present

a discussion on our approach to obtain renormalized values of the diffusion coefficient

from the bare fit parameters and a discussion on finite volume effects.

3.4.1 Correlation Functions

Since the electric field has mass dimension 2, we study the dimensionless combination

G(τ)/T 4 to analyze the temperature dependence at a fixed gauge coupling β arising

from different Nt. Fig 3.4 shows the correlation functions at two different β; each

for three different values of Nt. The top figure is for β = 6.9 with the Nt chosen

such that the temperature varies from 1.2 to 2 Tc; while the bottom figure is for

β = 7.192 and temperature varying from 1.5 to 3 Tc. The most remarkable result

is that the long distance part of the correlation functions fall on top of each other,

which indicates that this part captures some temperature independent continuum

physics. It is possible therefore that the dimensionless diffusion coefficient extracted

from the long distance part of the correlation functions may not have a pronounced

temperature dependence. This result is independent of the renormalization factors

since they will solely depend on the gauge coupling β, which is the same for all the

different Nt’s. Since κ has a mass dimension of 3 (Eq. 3.9), the dimensionless ratio to

consider is κ/T 3. The figures then imply that the renormalized values of κ/T 3 may

not have any pronounced temperature dependence in the aforementioned temperature

range. This point will be discussed in detail later. Further, the long distance part of

the correlation functions are much flatter than expected from only a single particle

state. The discretization effects of the finite lattice spacing is visible in the correlation

functions for small τ , but seem to decrease considerably by τT ∼ 0.25.

As discussed before, the spectral function is parameterized as ρ(ω) = a1ω+ a3ω
3.

Using Eqn. 3.8, the functional form of G(τ) that needs to be fitted with the data is

G(τ)

T 4
=

1

〈L〉N
4
t

[

a1π

N2
t

1

sin2(πτ̂/Nt)
+
a36π

3

N4
t

(

1

3 sin2(πτ̂/Nt)
+

cos2(πτ̂/Nt)

sin4(πτ̂/Nt)

)]

(3.12)

where we have explicitly written out the Polyakov loop (〈L〉) and the Nt dependence

in the correlation function. τ̂ = τ/a is the dimensionless temporal distance, where
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Figure 3.4: Comparison of correlation functions for different Nt

a is the lattice spacing. The behaviour of the LO result (ρ(ω) = a3ω
3) is not too

different from the full correlation function. Fig 3.5 shows this at β = 7.192, with

the value of a3 chosen arbitrarily. In fact, a fit using only the ω3 contribution is able

to describe the data on smaller lattices of Nt = 12, 16. Fig 3.5 shows an example

of fitting Nt = 16 lattice at 1.5 Tc with only the ω3 contribution. This leads us to
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suspect that the diffusive part is rather small, so that the few data points we have

for the smaller lattices is not enough to disentangle the contribution of a1. Therefore,

we have not quoted any estimate of a1 from these lattices. However, on finer lattices,

with lattice spacings of a = 1/(20T ) and 1/(24T ), the contribution of a diffusive part

is unambiguous, and we are able to extract values of a1, characterizing the diffusive

contribution. Even then, the ω3 gives the dominant contribution and the fitted value

of a1 is about two orders of magnitude smaller than the fitted a3, making it rather

difficult to extract even on our largest lattices. Finer lattices with more data in

the large τ region and with at least similar percentage errorbars seem essential in

determining a1 reliably to a few percent.

The results obtained by fitting the form in Eqn. 3.12 to the correlation functions

are reported in Table 3.2. All the fits were done by taking into account the correlations

existing between the different G(τ) at different τ via a covariance matrix. The errors

on the fit parameters were calculated by the standard Jackknife procedure. The

quoted values in the Table 3.2 are for the largest temporal lattices of Nt=20 and 24.

The fits were made in the range 0.3 - 0.5 to avoid the lattice discretization effects, as

we discuss later. The value of the fitted a1 was found to be rather dependent on the

range used to make the fit, and changed roughly about 30-40%. The quality of the

fits for some lattices is displayed in Fig. 3.6.

β T/Tc Nt Ns Range χ2/DOF a1 err a3 err
6.76 1.066 20 48 6-10 1.97 9.09×10−6 1.54×10−6 0.99×10−3 4.9×10−5

6.80 1.125 20 48 6-10 0.23 8.66×10−6 1.17×10−6 1.17×10−3 3.0×10−5

6.90 1.2 20 36 6-10 1.03 1.45×10−5 2.39×10−5 1.46×10−3 2.9×10−5

6.90 1.2 20 48 6-10 1.47 1.49×10−5 2.81×10−6 1.53×10−3 3.7×10−5

7.192 1.5 24 48 6-12 1.08 7.36×10−6 4.21×10−7 8.09×10−4 1.0×10−5

7.192 1.5 24 56 6-12 0.82 6.06×10−6 3.29×10−6 8.22×10−4 3.4×10−5

7.255 2.0 20 48 7-10 0.55 3.15×10−5 8.82×10−6 2.57×10−3 1.2×10−4

Table 3.2: Fitted parameters of the chromo-electric correlation functions G(τ)

Systematics of the choice of the fit function

Ideally one would like to rule out any other physically motivated fit form based on

fitting to the non-perturbatively calculated results alone. In our case, we have found

that just the diffusive part, together with two δ-function peaks in the spectral function

gives a reasonably good description of the correlation functions over almost all the

temperatures and different Nt lattices. The motivation for the δ-functions come from

the expectation that the spectral function for large-ω will be affected by the edges of

Brillouin zone, and would give rise to some non-universal structure in it. This was
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with the leading order result. (Bottom): ρ(ω) = a3ω

3 can fit the long distance
correlation function for the small Nt. This is an example of Nt = 16 at β = 6.9.

actually seen in in Ref [17], which found the existence of peaks at the edges of the

Brillouin zone in the spectral function from a lattice calculation in the Hamiltonian

formulation. Approximating the peaks as delta-functions in the spectral function, we



54 3. DIFFUSION CONSTANT OF HEAVY QUARKS IN THE GLUON PLASMA

101

102

103

104

105

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

G
(τ

)/
T

4

τT

Data

a1 ω + a3 ω3

101

102

103

104

105

 0  0.1  0.2  0.3  0.4  0.5

G
(τ

)/
T

4

τT

Data

a1 ω + a3 ω3

Figure 3.6: The fit of the correlation functions with the form in Eqn 3.12. The top
figure is for Nt=24, Ns=48, β=7.192 which corresponds to a physical temperature of
1.5 Tc, while the bottom panel is for Nt=20, Ns=48, β=6.9 at 1.2 Tc. In both cases
the numerical value of a3 is about a hundred times larger than a1.

get the following from for the correlation function G(τ):

G(τ) =
a1π

N2
t

1

sin2 (πτ/Nt)
+A1 cosh(M1(τ − 1/2T )) +A2 cosh(M2(τ − 1/2T )) (3.13)
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Since the last two terms are lattice artefacts, we expect that M1 and M2 will not

scale with temperature. While this form of the correlation function can fit almost the

whole of the correlation function, even in the low-τ region, the behaviour of M1 and

M2 are very different. While M2 does not change with Nt, we found that M1 scales.

For example, at β = 7.192, we found that M1 = 0.70, 1.02, 1.38 on Nt = 24, 16, 12

respectively which implies that M1/T ∼ 16.5 and does not change with temperature

from 1.5 Tc to 3 Tc. This is not expected for a lattice artefact.

An example of fitting the Nt=24, Ns=48 and β=7.192 result with the form in Eqn.

3.13 is shown in Fig 3.7. From the figure, it is suggestive that if the low-τ region is

indeed parameterized by 2-mass terms only then doing the fit in the range 0.3-0.5

should ensure that the result for a1 is not dominantly contaminated by discretization

effects. The value of a1 is larger by roughly a factor of 5 than the values quoted in

Table 3.2, which is because of the absence of the ω3 term. In particular, the inclusion

of the a3ω
3 term to the form in Eqn. 3.13 makes the fit rather unstable. This is

probable since we are trying to do a non-linear fit with many parameters but a few

points. We have not used the fit form in Eqn. 3.13 to quote results for a1, since we

feel it is more physical to include ω3 in the fit form, and restrict to larger-τ , such that

a1 is reasonably free from discretization effects. Moreover, the unexpected scaling of

M1 is also not very clear.

3.4.2 Renormalization

The bare correlation functions have been calculated at different Nt and for different

couplings. These need to be renormalized in order to construct a physical observable.

It is known that the Wilson loops, with a finite number of cusps are multiplicatively

renormalizable upto all orders in perturbation theory [18, 19, 20]. All these renor-

malization factors are dependent on g2 and hence on β, as is the case for T = 0.

Non-perturbative renormalization constants are not known for this electric field op-

erator. However, the renormalization can still be done by relating the value of 〈P 〉
measured in the simulation to αS at the scale µ = (3.4/a)exp(−5/6). Since this scale

is rather large, it might just be sufficient to perform the renormalization upto the

leading order by removing the self-energy corrections to the heavy quarks. For this

purpose, we have implemented the tadpole improvement on our correlation functions

[21].

Tadpole improvement replaces all links Uµ in the lattice expressions with ZLUµ

where ZL is related to the expectation of the plaquette (at T = 0) measured in a
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Figure 3.7: Attempts to parameterize the discretization effects in the correlation
function. This is for Nt=24, Ns=48, β=7.192. Note that the 2-mass contribution fits
the short distance correlators nicely.

simulation:

Z−1
L =

(

1

N
〈TrUp〉

)1/4

= (〈P 〉)1/4. (3.14)

Because ZL is measured in the simulation, it might also remove some of the non-

perturbative renormalization of the lattice operators. For our operators, the renor-

malization of the straight temporal part of the correlation functions is cancelled by

that of the Polyakov loop. The renormalized value of the correlation functions are

simply given by multiplying Z2
L with our bare correlator values, since E(τ) has two

more links than L. The Z2
L factor in our case is then just given by the inverse of the

square root of the plaquette at the respective β and is listed in Table 3.3.

Figure 3.8: The leading contribution to the cusp renormalization factor.
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Our operators also have four cusps, which can give a logarithmic divergence de-

pending on its orientation [18]. For the cusp renormalization factor ZC , the one gluon

exchange diagrams of the type shown in Fig 3.8 are responsible for the leading order

contribution in perturbation theory. It can be argued that this contribution vanishes

in the leading order. This diagram is proportional to the gluon propagator, which

in the Feynman gauge is, in turn, proportional to δµν . Since the cusp is formed by

two loop segments in mutually orthogonal directions, this factor is zero. This result

is already known in perturbative calculations of Wilson loops [23]. Thus, to leading

order, ZC = 1.

To cross-check our renormalization procedure, we use the tadpole improvement

with the cusp factors set to unity on the electric field operators used in [16]. Since

the non-perturbative renormalization constants are calculated there, a direct compar-

ison can be made. Ref. [16] use the standard plaquette representation of the electric

fields. This means that the tadpole improvement factor for this operator is 1/〈P 〉. For

β = 6.0, the tadpole improvement gives the value 1.68, while with non-perturbative

renormalization they obtain 1.62. At β = 6.3, the former gives 1.61 while the latter

obtain 1.56. This agreement of better than 4 % is very encouraging since this pro-

cedure, though naive, can capture the non-perturbative renormalization very well.

Moreover, at higher β, the agreement is expected to improve further. Therefore, we

have used the tadpole improvement renormalization factor to renormalize our final

bare values.

To cross-check these estimates, we have also obtained non-perturbative renormal-

ization factors for ZL, by computing the bare Polyakov loops LB at high temperatures

and then relating it to the non-perturbatively computed Polyakov loops LR in [22].

It is known that the Polyakov loop gets renormalized as [18]:

LR = ZNt

L LB (3.15)

where Nt is the temporal extent of the lattice. This has the advantage that any

systematic dependence on Nt is expected to be removed since this procedure was

implemented with lattices having identical Nt. These values of Z2
L are also reported

in Table 3.3. These two schemes for calculating Z2
L gives us values that vary by 30 -

40 % in the temperature range considered here.

3.4.3 Finite Volume Results

We have observed practically no volume dependence in our correlation functions. Fig

3.9 (top) shows this result for the largest Nt lattices used in the extraction of the
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β T/Tc Z2
L (Tadpole improvement) Z2

L (from 〈LR〉 matching)
6.76 1.066 1.23409 1.71484
6.80 1.125 1.23165 1.70660
6.90 1.2 1.2258 1.68374
7.192 1.5 1.21049 1.62960
7.255 2.0 1.20749 1.61831

Table 3.3: The different estimates for the factor Z2
L obtained using Tadpole improve-

ment and from matching with renormalized Polyakov loop. The agreement is typically
30-40 % within the temperature range considered.

diffusion coefficient at two different temperatures T=1.2 Tc and 1.5 Tc. At the each

temperature, the correlation functions from lattices with different spatial extents fall

on top of each other. An exactly similar result is obtained for the renormalized dimen-

sionless diffusion coefficient κ/T 3 as shown in Fig 3.9. The values of the renormalized

κ/T 3 quoted here are obtained using the tadpole improvement factor for ZL.

3.4.4 Discussion

In this section, we will discuss our results about the renormalized dimensionless dif-

fusion constant and compare its estimation with that of other methods used, namely,

perturbation theory and AdS/CFT techniques. We will also compare our results

with the values required by various models that give reasonable description to the

RHIC data [26]. To have a more direct comparison to calculations using these other

methods, we will convert our estimates of κ/T 3 to DT by simply using the Einstein

fluctuation-dissipation relation:

D =
T

MηD

=
2T 2

κ
, (3.16)

where ηD is the drag constant already encountered in Eqn. 3.3.

Fig 3.10 shows the renormalized non-perturbative estimates of DT from our com-

putation. The main values shown in red circles are obtained using the fit parameters

listed in Table 3.2 along with the tadpole improvement for the renormalization con-

stant in Table 3.3. We have also indicated the shift in the mean value due to the

change in the fit range by blue lines above and below. The primary result that

emerges out of these values is that there is no significant temperature dependence

of the dimensionless quantity DT in the temperature range from 1.066 Tc to 2 Tc.

The behaviour of the correlation functions from fig 3.4 suggest that this behaviour

may continue upto higher temperatures ∼ 3Tc. Finer lattices with more data in the
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large-τ direction will be required to confirm our expectations.

Let us now consider how the estimates obtained from perturbation theory [5] com-

pare with the non-perturbative values presented here. For very high temperatures,
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such that mD/T ≪ 1, the analytic expression for DT has been obtained [5]

DT =
36π

CFg2

[

Nc

(

ln
2T

mD

+
1

2
− γE +

ζ ′(2)

ζ(2)

)

+
Nf

2

(

ln
4T

mD

+
1

2
− γE +

ζ ′(2)

ζ(2)

)]−1

,

(3.17)

where CF = 4/3 for SU(3) gauge theory. At very high temperatures, DT diverges

as 1/α2
S. This expression however, becomes unreliable for lower temperatures of a

few Tc, and even diverges close to Tc, for the pure gauge theory. This happens

because as temperature decreases, ln 2T
mD

decreases, since mD/T increases. At some

critical value, this cancels the factor 1/2− γF + ζ′(2)
ζ(2)

= −0.647, and the denominator

vanishes. In fact, the expression for DT in Eqn. 3.17 is based on a small mD/T

expansion of Eqn. (11) of [5] and therefore becomes invalid at lower temperatures. A

numerical evaluation of the expression for DT in Eqn. (11) of [5] is indispensable if

any comparison needs to be made with our results. For this comparison, we will not

write out the complicated expression, but rather state the numerical values obtained
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for the DT values. In making this estimate, the αS is evaluated in the MS scheme at

a scale µ = 3T . First, the non-perturbative value of αS at the inverse lattice spacing

scale, µ1 = (3.4/a)exp(−5/6) is obtained from the plaquette values [21] and then the

2-loop beta function is used to flow to the scale µ = 3T to get the estimate of αS at 1.5

Tc, which is about 0.229. At this temperature, the non-perturbative estimate of the

Debye mass from lattice calculation is about 2.345 T [24]. The dimensionless diffusion

coefficient is then DT ≃ 14 [5]. This estimate is about 28 times the non-perturbative

value. A similar procedure at temperatures, 2.25 Tc and 3 Tc yield the values of DT to

be 18.47 and 21.07 respectively. It is clear therefore that the result from perturbation

theory is drastically different from the non-perturbative values that we have obtained

both in terms of absolute value and in terms of temperature dependence.

In perturbation theory, the inclusion of two light fermion flavours decrease the

value of DT by almost a factor of two in the leading order. Since at the temperatures

we are concerned with, the medium is strongly interacting, the magnitude of the

change in an non-perturbatively calculated result might be very different even if the

trend is similar.

The next-to-leading order (NLO) contribution to the diffusion constant has also

been calculated in perturbation theory. At similar temperatures, with αS ∼ 0.2, this

gives the DT ∼ 8.4/(2π) for Nf = 3 [25]. While this brings the value much closer to

our non-perturbative estimate, it is rather disconcerting since it differs about 40 %

from the leading order result. This shows that the convergence of the perturbation

theory for this observable is rather poor, and accurate predictions cannot be made

with it. Nevertheless staying with the NLO calculation, the estimate of DT comes

closer to our estimate.

This quantity has also been computed in the strong coupling limit using AdS/CFT

methods [6]. In this calculation, the expression for DT in terms of the strong coupling

αSY M is

DT ≃ 0.9

2π

(

1.5

αSY MN

)
1
2

(3.18)

To compare the estimate with perturbation theory and our results, we use N=3 and

αSY M = 0.23; which gives DT ≃ 0.2. This is less than our central value, but not

inconsistent with our results with the systematics included. However, this is about 56

times less than the corresponding value of DT using similar αS in LO perturbation

theory. It is also worthwhile to note that the parametric dependence on αS in the

results from perturbation theory and AdS/CFT are very different.

In fact, it is interesting to note that our results are in the neighbourhood of

the values favoured by the phenomenological models that try to explain the PHENIX
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results of v2 and RAA [26], shown as red lines in figure 3.10 corresponding to the values

DT = 3/2π and 3/4π. Note that the work of Ref. [5] involved the tuning of various

parameters in their model and the AdS/CFT methods [6] need to tune parameters

to make the theory similar to QCD. Ours is the first non-perturbative first principles

based calculation in quenched QCD, which gives a value of DT capable of explaining

the charm flow data of the PHENIX at RHIC. It is clearly desirable to improve on

this calculation by going to finer lattices and including light dynamical fermions.

However, the various details of the models in [26] could also accommodate a variation

of other parameters such that a variation of DT by a factor of 2 will still be in a good

agreement with the data.

3.5 Conclusion

In this chapter, we have calculated the diffusion coefficient of heavy quarks in the

gluon plasma. Using a formulation discussed in [5, 7], we have calculated the chromo-

electric field correlation functions. The low-ω limit of the spectral function corre-

sponding to this correlation function is directly related to the momentum diffusion

coefficient of the heavy quarks.

To calculate the correlation functions to a few % accuracy, we used the Multilevel

algorithm of Lüscher and Weisz. We have quantitatively compared the performance

of the standard algorithm and the Multilevel scheme and concluded that the latter

is indispensable if the standard Wilson action for the gauge action and the electric

field operators proposed in [7] are used. We have used lattices of temporal lengths of

Nt = 12 to 24, and with several volumes to check the finite volume effects in the final

results. Our study spans the temperature range from 1.066 Tc to 3 Tc.

Our results indicate that very fine lattices with spacing of at least a = 1/(20T )

are essential to obtain any estimate of the diffusion coefficient. The diffusion con-

stant is proportional to a1, the coefficient of the ω term in ρ(ω). Due to the rather

large contribution from the a3ω
3 term in ρ(ω), the former contribution is difficult to

disentangle. We have been successful in doing this for a1 on Nt =20 and 24 lattices.

Finally, we have compared our renormalized estimates of the dimensionless diffu-

sion coefficient DT , with similar estimates from perturbation theory and AdS/CFT.

We do not find any pronounced temperature dependence in this quantity in the tem-

perature ranges that we have studied. While our estimates are about a factor 2 more

than the corresponding results from AdS/CFT methods, they differ by an order of

magnitude with the leading order perturbation theory at temperatures of ∼ 2Tc.

Further, our estimates are very close to the values of this quantity favoured by phe-
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nomenological models that aim to describe the RHIC data.
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Chapter 4

Overlap operator at finite chemical

potential

4.1 Introduction

In Chapter 2, we investigated the pattern of finite temperature restoration in 2-flavour

QCD using staggered fermions. The finite temperature transition in our world is

expected to be governed by chiral symmetry, since the up and down quarks have

masses which are much smaller than the symmetry breaking scale of QCD. Pions are

thus regarded as Goldstone bosons resulting from the dynamical symmetry breaking

by the vacuum. Chiral perturbation theory and other phenomenological studies have

demonstrated the utility and consistency of such assumptions [1].

As explained in Chapter 1, it is therefore desirable to have the chiral symmetry

group of continuum QCD in the relevant fermion action that aims at studying the

thermodynamics of QCD. The Overlap fermion formulation [2] is ideal for formulating

fermion actions with the right symmetries as continuum QCD since it has an exact

chiral invariance on the lattice. A fundamental aspect of QCD is the existence of the

critical point in the (T − µB) plane, where µB is the chemical potential for baryon

number. Based on models which have symmetries common with continuum QCD,

the (T −µB) phase diagram is expected to have a critical point for two light and one

moderately heavy quarks. Since it is important to have the right flavour identification,

overlap fermions present a better choice from the staggered formulation.

Another interesting puzzle that requires a calculation using the overlap fermions

concern the pion screening masses. It is known that, at 2 Tc, the quantity 1−µ/µFFT

(where µ is the screening mass of the pion in the interacting theory and µFFT is

the corresponding value in free field theory) increases from 8 % when the quarks

67



68 4. OVERLAP OPERATOR AT FINITE CHEMICAL POTENTIAL

are quenched [3] to about 15 % when two flavours of light quarks are included (as

discussed in Chapter 2) [4]. Quenched Wilson fermion seems to perform as well

[5] as the quenched staggered. Recently, a calculation with the quenched overlap

suggests that this deviation is only a few percent [6]. It is therefore important to

check by doing dynamical calculations using the overlap if similar behaviour persists

on making the quarks dynamical. It is however, difficult since the overlap operator is

highly non-local, and dynamical simulations with overlap quarks are not yet feasible.

There are, however, other interesting questions that can be resolved analytically.

It is known that the inclusion of chemical potential µB in the standard way in local

Dirac operators such as the Wilson and the Staggered give rise to divergences in

the thermodynamical quantities ∝ a−2 unless certain conditions are satisfied. Since

the overlap operator is non-local it is unclear how such a procedure be implemented

for it. It is non-trivial to construct the conserved current operator due to its non-

locality. In this chapter, we study a proposal for the inclusion of chemical potential

in the overlap operator [7]. A modification of the overlap operator was suggested

there, such that the correct continuum action is obtained in the a→ 0 limit. We will

analytically study this proposal and demonstrate that provided the modification of

the overlap operator satisfy certain conditions, the spurious divergences do not arise

and the correct expressions for the energy density, number density and the ideal gas

equation of state (EOS) can be obtained. Interestingly, it turns out that the same

conditions will be needed here as in the case of the local Dirac operators.

4.2 Thermodynamics of the overlap operator

The overlap Dirac operator [2] has the following form for massless fermions on asym-

metric lattice with spacing a and a4 in the spatial and temporal directions:

Dov = 1 + γ5sgn(γ5DW ) , (4.1)

where sgn denotes the sign function and

DW (x, y) = (3 +
a

a4

−M)δx,y −
a

a4

[U †
4(x− 4̂)δx−4̂,y

1 + γ4

2
+

1 − γ4

2
U4(x)δx+4̂,y]

−
3
∑

i=1

[U †
i (x− î)δx−î,y

1 + γi

2
+

1 − γi

2
Ui(x)δx+î,y] (4.2)

is the standard Wilson-Dirac operator on the lattice but with a negative mass term

M ∈ (0, 2). The overlap operator satisfies the Ginsparg-Wilson relation [8] and
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has exact chiral symmetry on the lattice. The corresponding infinitesimal chiral

transformations [9] on a finite lattice for Nf = 1 are

δψ = αγ5(1 − 1

2
aDov)ψ and δψ̄ = αψ̄(1 − 1

2
aDov)γ5 , (4.3)

ψ and ψ̄ are the usual four component fermion and antifermion fields. For more than

one fermion flavour, a flavour index is needed with the corresponding modification

of the chiral transformations. Because of this invariance, which reduces to the usual

definition of chirality in the continuum limit, a fermion action that has the same

symmetries as continuum QCD can be formulated.

The expression for energy density and pressure can be obtained from the partition

function, Z = det Dov, obtained by integrating the quark-antiquark fields :

ǫ =
T 2

V

∂ lnZ(V, T )

∂T

∣

∣

∣

∣

V

, and P = T
∂ lnZ(V, T )

∂V

∣

∣

∣

∣

T

,

where the spatial volume V = N3a3 and the temperature T = (NTa4)
−1 for an

N3 ×NT lattice. Since these formulae require taking derivatives with respect to the

temperature keeping the volume constant, it is convenient to formulate the theory on

an anisotropic lattice with the spacing along the time and space directions taken to

be at and as respectively. We restrict ourselves to U = 1 here to focus on the ideal

gas limit. Noting that the sign function for a matrix can be defined in terms of its

eigenvalues, the energy density can be written as

ǫ = − 1

N3a3NT

(

∂ ln(
∏

n
λn)

∂a4

)

a

= − 2

N3a3NT

∑

λ±

(

∂ lnλ±
∂a4

)

a

where the chiral nature of the eigenvalue spectrum in the free case was used in the

last line. The eigenvalues of the free overlap operator in the momentum space can be

easily worked out [10] to be

λ± = 1 −
sgn

(

√

h2 + h2
5

)

h5 ± i
√
h2

√

h2 + h2
5

, (4.4)

where the variables h above are given by
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h5 = M −
3
∑

j=1

(1 − cos(apj)) −
a

a4

(1 − cos(a4p4))

hj = − sin(apj) where j = 1, 2, 3

h4 = − a

a4

sin(a4p4)

h2 = h2
1 + h2

2 + h2
3 + h2

4 . (4.5)

From the (anti)periodic fermion boundary conditions in the (time) space directions,

the discrete pµ’s appearing in the equations above are seen to have the following

allowed values :

apj =
2njπ

N
, nj = 0, .., (N − 1), j = 1, 2, 3 and

a4p4 =
(2n+ 1)π

NT

, n = 0, .., (NT − 1) (4.6)

Taking the appropriate derivatives with respect to a and a4, the pressure and the

energy density can be straightforwardly calculated.

4.3 Including the chemical potential

The chemical potential is usually introduced as the Lagrange multiplier to investigate

thermodynamics at constant conserved number. Constructing the relevant number

operator for the overlap Dirac fermions is not easy due to its nonlocality [11] and may

even be not unique [12]. Instead of deriving the conserved number, an inspired guess

for it such that it has the right continuum limit was made in [7]. The idea there was

to introduce it in DW as one would for the usual Wilson fermions:

Dov = 1 + γ5sgn(γ5DW (µ̂)) , (4.7)

where the chemical potential µ̂ = µa4 appears only as multiplying factors exp(µ̂)

and exp(−µ̂) to the links U4 and U †
4 respectively in eq.(4.2). This, of course, renders

γ5DW (µ) to be non-hermitian, necessitating an extension of the usual definition of

the sign function. The natural choice [7] was to use the sign of the real part of

the eigenvalues of γ5DW (µ) in the equation above. It is important to note that the

extended sign function it is not defined for purely imaginary eigenvalues. Numerical

simulations showed that [10] for an ideal gas of overlap fermions, the above way of

introducing µ does not encounter any quadratic divergences at zero temperature. Such
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divergences were known to arise [13, 14] for staggered and Wilson fermions, if µ was

introduced naively as a coefficient of the conserved number. These were eliminated by

the the choice of the exp(±µ̂) factors. A more general way to introduce the chemical

potential is to introduce functions K(µ̂) and L(µ̂) in place of the factors exp(µ̂) and

exp(−µ̂) respectively such that K(µ̂) = 1 + µ̂+O(µ̂2) and L(µ̂) = 1− µ̂+O(µ̂2). It

was shown [15] that the quadratic divergences are avoided if K(µ̂) · L(µ̂) = 1.

Here we follow that idea and introduce chemical potential in the overlap Dirac

operator through the K and L factors in DW and study the condition to eliminate

the quadratic divergences. Introducing

K(µ̂) − L(µ̂)

2
= R sinh θ,

K(µ̂) + L(µ̂)

2
= R cosh θ

the eigenvalues can be easily recalculated. They can be written in terms of the hi of

eq.(4.5) but with h4 and h5 changed to :

h5 = M −
3
∑

j=1

(1 − cos(apj)) −
a

a4

(1 −R cos(a4p4 − iθ))

h4 = − a

a4

R sin(a4p4 − iθ) . (4.8)

In the presence of a finite chemical potential, the energy density is defined as

ǫ(µ) = − 1

N3a3NT

(

∂ ln detD

∂a4

)

a,a4,µ

= − 2

N3a3NT

(

∂ ln(λ+λ−)

∂a4

)

a,a4,µ

(4.9)

For our purposes, we will assume that the sign function is unity for the finite µ

case. For µ̂ = 0, it is +1; while for large µ̂ it can become negative, depending on the

M value. These issues are important in a numerical calculation of the approach to

the continuum limit and is discussed in detail in [16, 17].

The energy density is obtained using eq.(4.9) and setting a = a4. The full expres-

sion for the energy density is rather cumbersome and it is convenient to introduce

the following compact notation:

h5 = g + cos(ω − iθ), h2 = f + sin2(ω − iθ), h2 + h2
5 = d+ 2g cos(ω − iθ),

(4.10)
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where ω = ap4 and the functions g, f and d are given by

g = M − 4 + b; b = cos(ap1) + cos(ap2) + cos(ap3); f = h2
1 + h2

2 + h2
3;

dR = f + g2 +R2. (4.11)

The functions g, f and dR only depend on the spatial momentum pj and will be

summed over. We will give explicit expressions for the thermodynamic quantities

in terms of ω in the continuum limit. For lattices with finite NT , ωn will be used

to denote the Matsubara frequencies. In terms of the functions defined above, the

expression for the energy density is:

ǫa4 =
2

N3NT

∑

pj ,n

[

1 −R cos(ωn − iθ)

dR + 2gR cos(ωn − iθ)
+

R2 sin2(ωn − iθ)(g +R cos(ωn − iθ))

(dR + 2gR cos(ωn − iθ))(f +R2 sin2(ωn − iθ))

]

×
[

g +R cos(ωn − iθ) +
√

dR + 2gR cos(ωn − iθ)
]

=
2

N3NT

∑

pj ,n

F (R,ω − iθ). (4.12)

A similar straightforward evaluation for the pressure shows that the EOS for the

ideal gas ǫ = 3P on the finite lattice also holds in the presence of a chemical potential.

Furthermore, the number density at finite chemical potential can be computed using

the definition:

n =
1

N3a3NT

(

∂ ln detD

∂µ̂

)

a4

(4.13)

In terms of h’s this can be calculated explicitly to give:

na3 =
−2i

N3NT

∑

pj ,n

[R sin (ωn − iθ) ×
(

gR cos(ωn − iθ) +R2 + f

(dR + 2gR cos(ωn − iθ))(f +R2 sin2(ωn − iθ))

)

×
(

g +R cos(ωn − iθ) +
√

dR + 2gR cos(ωn − iθ)
)]

=
−2i

N3NT

∑

pj ,n

FN(R,ωn − iθ) . (4.14)

4.3.1 T = 0 divergence cancellation

In order to obtain the condition for removing the divergences, we first calculate the

energy density at zero temperature, i.e., for the limit NT → ∞ at finite a. The

frequency sum 1
NT

Σ in eq.(4.12) gets replaced by the integral 1
2π

∫ π

−π
dω. Subtracting

the vacuum contribution corresponding to µ = 0, i.e., R = 1, θ = 0, the energy
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Figure 4.1: Contour chosen for evaluating the energy density and the number density
for nonzero of chemical potential at zero temperature. The thick line indicates the
Matsubara frequencies while the filled circles denote the poles of F (R,ω). The dashed
lines are the branch cuts due to the presence of the square root in the integrand.

density at zero temperature is given by

ǫa4 =
1

πN3

∑

pj

[
∫ π

−π

F (R,ω − iθ)dω −
∫ π

−π

F (ω)dω

]

. (4.15)

Choosing the contour shown in Figure 4.1, the expression above can be evaluated in

the complex ω-plane as

ǫa4 =
1

πN3

∑

pj

[

2πi
∑

i

Res F (R, ωi) −
∫ π

π−iθ
F (R, ω)dω −

∫ −π

π
F (R, ω)dω

−
∫ −π−iθ

−π
F (R, ω)dω −

∫ π

−π
F (ω)dω

]

. (4.16)

The second and fourth terms cancel since F is an even function which satisfies

F (π + iη) = F (−π + iη). Hence, we obtain

ǫa4 =
1

πN3

∑

pj

[

2πR3Θ

(

K(µ̂) − L(µ̂)

2
−
√

f

)

+

∫ π

−π

F (R,ω)dω −
∫ π

−π

F (ω)dω

]

,

(4.17)
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where -iR3 is the residue of the function F (R,ω) at the pole −i sinh−1(
√
f/R) and

is given by

R3 =

√
f(g +

√

f +R2 +
√

dR + 2g
√

f +R2)

2
√

f +R2(dR + 2g
√

f +R2)
× (g +

√

f +R2) . (4.18)

Noting that the number density in eq.(4.14) has the same pole structure as the energy

density, with only the residues being different in the two cases, the latter can also be

calculated in the same way to obtain,

na3 =
1

πN3

∑

pj

[

2πR4Θ

(

K(µ̂) − L(µ̂)

2
−
√

f

)

−i
∫ π

−π

FN(R,ω)dω + i

∫ π

−π

FN(ω)dω

]

,

(4.19)

where R4 is the residue of the function FN(ω) at the pole −i sinh−1(
√
f/R) given by,

R4 =
(g +

√

f +R2 +
√

dR + 2g
√

f +R2)

2
√

f +R2(dR + 2g
√

f +R2)
× (g

√

R2 + f +R2 + f) .

It is clear from both eqs.(4.17) and (4.19) that the condition R = 1 cancels the two

integrals in each of them, yielding the canonical forms of the Fermi surface. For R 6= 1,

there will in general be violations of the Fermi surface on the lattice. Moreover, in

the continuum limit a → 0, one will in general have the µ2/a2 and µ/a2-divergences

for R 6= 1 in the energy density and the number density respectively. The condition

to obtain the correct continuum values of ǫ = µ4/4π2 and n = µ3/3π2 can also be

seen to be the expected K(µ̂) − L(µ̂) = 2µ̂ + O(µ̂2). Note that the earlier work [15]

on staggered fermions employed the exact number density on the lattice which is not

the case for the overlap fermions here. That one obtains still identical conditions

in both the cases suggests that it is indeed the behaviour near the continuum limit

which dictates these conditions.

4.3.2 Energy density at T 6= 0 and µ 6= 0

In this sub-section, we outline the procedure to calculate the energy density on a

finite lattice using the techniques of contour integration. For this calculation, we

revert back to the choice K(µ̂) = exp(µ̂) and L(µ̂) = exp(−µ̂) which has R = 1

and θ = µ̂. The physical part of the energy density on the lattice is calculated by
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Figure 4.2: The contours chosen for evaluation of the ω− sum for µ̂ < sinh−1 √f
(left) and for µ̂ < sinh−1 √f (right).

subtracting off the µ̂ = 0 , T = 0 contribution, and is given by:

ǫa4 =
∑

pj

1

N3

[

2

NT

∑

n

F (ωn − iµ̂) − 1

π

∫ π

−π

F (ω)dω

]

. (4.20)

The further evaluation of the energy density using contour methods can be done,

noting that compared to the Figure 4.1, there are two major differences. Due to

the finiteness of the lattice, there are only NT Matsubara frequencies, (2n+ 1)π/NT .

Moreover, they are displaced along the imaginary axis by iµ̂ in the lower half plane

with the choice of the function 1/(exp[i(ω + iµ̂)NT ] + 1). The frequency sum can be

replaced by line integrals as,

2π

NT

∑

n

F (ωn − iµ̂) =

∫ −π−iǫ−iµ̂

π−iǫ−iµ̂

F (ω)dω

ei(ω+iµ̂)NT + 1
+

∫ π+iǫ−iµ̂

−π+iǫ−iµ̂

F (ω)dω

ei(ω+iµ̂)NT + 1
.(4.21)

Further, the choice of the contour will depend on whether the pole ω = −i sinh−1 √f
is above or below the Imω = −µ̂ line. The two cases are illustrated in fig 4.2.

Therefore the frequency sum can be split into two terms,

∑

n

F (ωn − iµ̂) =
∑

n

[F<(ωn − iµ̂) + F>(ωn − iµ̂)] , (4.22)

where F> and F< are the functions with sinh−1 √f < µ̂ (sinh−1 √f > µ̂) respectively.
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We have taken µ̂ < cosh−1 d
2g

because we expect that in the continuum limit the µ̂ to

scale as the lattice spacing whereas the second term to tend to infinity. The second

integral in eq.(4.21) can be written in terms of other line integrals:

2π

NT

∑

n

F<(ωn − iµ̂) = Θ(sinh−1
√

f − µ̂) ×
(

−2πi
∑

Imω>0

Res F (ω)

e−i(ω+iµ̂)NT + 1

+ 2πi
∑

Imω<0

Res F (ω)

ei(ω+iµ̂)NT + 1
−
∫

3

F (ω)

ei(ω+iµ̂)NT + 1
dω +

∫

4

F (ω)

e−i(ω+iµ̂)NT + 1
dω +

∫ π

−π

F (ω)dω

)

.

(4.23)

The expression can be evaluated by substituting the value of the residue of the func-

tion F (ω) at the poles ω = ±i sinh−1 √f , which is denoted as R1 (and R1 =
√

f
2
√

1+f
).

The integrals 3 and 4 are along the lines Im ω = ∓(sinh−1 √f + η). Representing

them as ǫ3µ,4µ respectively, we get

2π

NT

∑

n

F<(ωn − iµ̂) = Θ(sinh−1
√

f − µ̂) ×
(

4π R1

e(sinh−1 √f+µ̂)NT + 1
+

4π R1

e(sinh−1 √f−µ̂)NT + 1

+

∫ π

−π

F (ω)dω + ǫ3µ + ǫ4µ

)

. (4.24)

Similarly for µ̂ > sinh−1 √f the frequency sum is replaced by integrals along the

contour as shown in the right panel of Figure 4.2. There are no poles below the

Im ω = −µ̂ line, so the first integral in eq.(4.21) can be replaced by a line integral along

the line 3. Following the same steps as discussed for the above case, the frequency

sum reduces to

2π

NT

∑

n

F>(ωn − iµ̂) = Θ(µ̂− sinh−1
√

f) ×
(

4π R1

e(sinh−1 √f−µ̂)NT + 1
+

4π R1

e(sinh−1 √f+µ̂)NT + 1

+

∫ π

−π

F (ω)dω + ǫ3µ + ǫ4µ

)

. (4.25)

Finally, the energy density on the lattice is obtained from eq.(4.20) by substituting

in the eq.(4.22) the frequency sums calculated above:

ǫa4 =
2

N3

∑

pj

[ √
f√

1 + f

1

e(sinh−1 √f−µ̂)NT + 1
+

√
f√

1 + f

1

e(sinh−1 √f+µ̂)NT + 1
+ ǫ3µ + ǫ4µ] .

(4.26)

In the continuum limit the terms ǫ3µ,4µ vanish leaving only the contribution due to
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the residues of the poles. It can be shown explicitly that the expression for the lattice

energy density reduces to the well known [19] result in the continuum.

ǫ =
2

(2π)3

∫

E
∏3

j=1 dpj

1 + e
E+µ

T

+
2

(2π)3

∫

E
∏3

j=1 dpj

1 + e
E−µ

T

. (4.27)

This procedure can be straightforwardly repeated for the calculation of the number

density for the overlap fermions and consequently show that the standard continuum

is obtained.

4.4 Discussion and Summary

Investigating the thermodynamics of QCD on lattice with fermions which possess both

the chiral symmetry and the flavour symmetry relevant to our world has important

consequences for both the experimental aspects of the heavy ion collisions and the

theoretical aspects of the µ − T phase diagram. Staggered fermions used in the

bulk of the work so far are not adequate to resolve some of these issues. Overlap

fermions, while computationally more expensive, may prove better in such studies

in near future. In this chapter, we have demonstrated that a generalized version

of the action proposed for non-zero µ [7], avoids a−2 divergences in thermodynamic

quantities provided that certain conditions are met, and gives the correct expressions

for the thermodynamic quantities on the finite lattice, as well as in the continuum

limit.
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Chapter 5

XY model with a finite chemical

potential

5.1 Introduction

Understanding the phase diagram of quantum chromodynamics (QCD) as a function

of temperature T and baryon chemical potential µ is an active area of research.

Although much is known about the physics at µ = 0 from lattice QCD calculations

[1, 2], there are various proposals of what might occur at non-zero µ and small values

of T [3, 4, 5]. Due to the sign problem, which arises in all current formulations of

lattice QCD at non-zero µ, it is impossible to perform first principles calculations of

the system. Most of our knowledge of the (T, µ) phase diagram of QCD is based on

models that are motivated from universality and solved using mean field theory. In

certain regions of the phase diagram it should be possible to construct bosonic effective

field theory models that share the same symmetries, low energy physics and possibly

the phase transitions as QCD. It would be interesting to study these models from

first principles. Unfortunately, sign problems also arise in bosonic field theories in the

presence of a chemical potential when formulated in the conventional approach. For

this reason not many first principles studies of field theories with a chemical potential

exist. However, some of these sign problems are solvable today and thus allow us to

explore the physics of a chemical potential from first principles. It may be useful to

study these simpler field theories before attempting to study QCD.

One of the simplest examples of a relativistic bosonic field theory is the classical

non-linear O(2) sigma model on a cubic lattice which has been studied extensively

in the context of superfluid transitions using the efficient Wolff cluster algorithm [6].

The phase transition is between two phases: an O(2) symmetric phase and a phase

81



82 5. XY MODEL WITH A FINITE CHEMICAL POTENTIAL

where the symmetry is spontaneously broken. Close to the phase transition, the low

energy physics is described by an interacting quantum field theory of massive charged

bosons in the symmetric phase and of massless Goldstone bosons in the broken phase.

At the critical point the low energy physics is scale invariant and the critical behavior

belongs to the three dimensional XY universality class.

Since the model contains an exact O(2) global symmetry, one can also introduce a

chemical potential µ that couples to the corresponding conserved charge. This chem-

ical potential helps one study the “condensed matter” composed of the fundamental

boson present in the theory. When µ 6= 0, the action in the conventional formulation

becomes complex and Monte Carlo algorithms suffer from a sign problem exactly

like in QCD. Not surprisingly, the phase diagram of the condensed matter arising

in the O(2) non-linear sigma model has not been studied from first principles. On

the other hand non-relativistic bosonic lattice models, especially in the Hamiltonian

formulation have been studied for many years by the condensed matter community.

Here one naturally constructs the field theory with bosonic world lines and there is

no sign problem when one introduces a chemical potential. Thus, it is natural that a

world-line approach could solve the corresponding sign problem even for a relativistic

field theory. This was shown explicitly for both the linear sigma model [7] and the

O(2) non-linear sigma model [8].

In this chapter, we will present the first non-perturbative calculation of the phase

diagram of the non-linear O(2)-sigma model in three dimensions at low temperatures

in the β − µ plane, where β is the coupling and µ is the chemical potential. In order

to simulate the constrained system formulated as a world-line of bosonic particles,

we have adapted the worm algorithm for our model. The introduction of this highly

efficient Monte Carlo algorithm [9] has drastically improved our ability to simulate

constrained systems. Variants of this algorithm in the name of directed loop algorithm

[10, 11] have been used to solve a variety of models that arise in the strong coupling

limit of lattice gauge theories [12, 13, 14, 15]. The worm algorithm has also been

found to be an efficient approach to study a wider class of fermionic field theories in

the loop representation in two dimensions where fermion sign problems are absent

[16, 17, 18, 19] and weak coupling Abelian lattice gauge theory [20].
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5.2 Model and Observables

The action of the O(2) non-linear sigma model on a lattice with a finite chemical

potential that we study here is given by

S = −β
∑

x,α

{

cos(θx − θx+α − iµδα,t)
}

, (5.1)

where x is the lattice site on a three dimensional cubic lattice, α = 1, 2 represent

the spatial directions and α = t represents the temporal direction. We will use L

to represent the spatial size and Lt the temporal size and assume periodic boundary

conditions. The constant β plays the role of the coupling. The chemical potential µ

is introduced in the standard way and couples to the conserved charge of the global

O(2) symmetry [21]. When µ 6= 0 the action becomes complex and Monte Carlo

algorithms to generate configurations [θ] that contribute to the partition function

Z =

∫

[dθx]e
−S, (5.2)

suffer from a sign problem. In particular the Wolff cluster algorithm [6] is no longer

useful at non-zero chemical potential. Hence the phase diagram of the model in the

(β, µ) plane remains unexplored.

It is possible to avoid the sign problem if we rewrite the partition function in the

world-line representation [8]. Using the identity

exp {β cos θ} =
∞
∑

k=−∞
Ik(β)eikθ, (5.3)

where Ik is the modified Bessel function of the first kind, on each bond (x, α), and

performing the angular integration over θx the partition function can be rewritten as

Z =
∑

[k]

∏

x

{

Ikx,α(β)eµδα,tkx,α

}

δ
(

∑

α

(kx,α − kx−α,α)
)

, (5.4)

where the bond variables kx,α describe “world-lines” or “current” of particles moving

from lattice site x to the site x + α̂ and take integer values. A configuration of

these bond variables, denoted by [k], is thus a world-line configuration. The global

U(1) symmetry of the model is manifest in the local current conservation relation

represented by the delta function. In other words any particle that comes into the

site must leave the site due to current conservation. In this world-line formulation

the partition function is a sum over explicitly positive terms even in the presence of
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µ. Details of the “worm algorithm” that we have developed to update the world-line

configuration [k] is described in appendix A.

We focus on four observables in this work:

1. The average particle density ρ:

ρ =
1

L2
〈
∑

x∈timeslice

kx,t〉. (5.5)

The average particle number is then given by 〈N〉 = ρL2.

2. The particle number susceptibility κ:

κ =
1

L2Lt

〈
(

∑

x

kx,t

)2

〉. (5.6)

Note that κ = Lt/L
2〈N2〉.

3. The superfluid density (or particle current susceptibility) ρs:

ρs =
1

2L2Lt

〈
∑

α=1,2

(

∑

x

kx,α

)2

〉. (5.7)

The superfluid density is known to be ρs = 1/Lt〈W 2〉 where W is the spatial

winding number of particles [22]. We define 〈Ns〉 = L2ρs as the number of

particles that are in the superfluid phase in a finite system.

4. The condensate susceptibility χ:

χ =
∑

y

〈eiθxe−iθy〉. (5.8)

The first three observables are “diagonal” observables and can be measured on each

world-line configuration and then averaged. The condensate susceptibility χ on the

other hand is a “non-diagonal” observable, but it can be related to the size of each

worm update as discussed in appendix A. We discuss some tests of the algorithm in

appendix A.

At µ = 0, the model has a second order phase transition at βc = 0.45421. For

β > βc the O(2) symmetry is spontaneously broken, while for β < βc the model is in

the symmetric phase.
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5.3 Finite Size Effects

A good understanding of finite size effects is important for extracting thermodynamic

results from numerical computations. This is particularly true close to a second order

critical point where correlation lengths diverge. While developing a theory of finite

size effects, one usually assumes Lt = Lz where z is called the dynamical critical

exponent of the problem. Such a choice makes calculations natural. In a relativistic

theory since z = 1, it is natural to choose Lt = L. Most studies of the critical behavior

at β = βc and µ = 0 make use of this choice. On the other hand, in the presence

of a chemical potential, since the low energy effective theory is non-relativistic, one

expects z = 2 and Lt = L2 is a more natural choice. However, in our work we have

found that even with this choice the finite size effects close to the critical point are

non-trivial in the presence of a chemical potential. In fact observables always show

clear “wiggles” and cannot be fit to a simple power law that one expects near the

critical point. In order to demonstrate this feature, in Fig. 5.1 we plot the behavior of

the average particle density ρ as a function of µ for L = 12 and Lt = 144 at β = 0.43.

From mean field theory we expect

ρ ≈
{

c(µ− µc) µ > µc

0 µ < µc

(5.9)

close to µ = µc in the thermodynamic limit. In Fig. 5.1 we observe that ρ is indeed

zero for µ < 0.27 and begins to increase for µ & 0.27. But the increase, although

roughly linear close to µc as expected, shows clear “wiggles” when 0.27 < µ < 0.38

and only for µ > 0.38 the “wiggles” disappear. The region between 0.27 < µ < 0.38

has been enlarged in the left inset in order to enhance the observed “wiggles”. In

the right inset we fix µ = 0.32 and plot ρ as a function of L assuming Lt = L2.

Again the data shows clear oscillations whose origin may seem a bit mysterious. In

order to avoid these oscillations one has to go to much larger L at a fixed value of µ.

However, since Lt scales like L2 going to larger lattice sizes is more difficult than in a

relativistic theory. For this reason, we believe it may be useful to develop a different

type of finite size analysis.

As we will argue below, the strange finite size behavior is the result of energy

levels crossing each other due to the chemical potential. Since the particle number is

a conserved quantum number, energy levels with different particle numbers can cross

each other at critical values of the chemical potential. Similarly at a fixed chemical

potential, the changes in spatial size can also cause these energy levels to cross each

other. These level crossings lead to singularities at low temperatures (large Lt) in a
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Figure 5.1: Plot of ρ as a function of µ for β = 0.43, L = 12 and Lt = 144. The data
shows clear “wiggles” at small values of ρ which disappears for larger values. The
left inset magnifies the region of the “wiggles”. The right inset shows the plot of ρ as
function of L at µ = 0.32 assuming Lt = L2 which also shows clear non-monotonic
behavior.

finite spatial volume (fixed L). While these singularities are smoothed out at finite

Lt, they leave behind non-trivial finite size effects observed above. While it may still

be possible to develop practically useful finite size scaling relations using Lt = L2, we

find it natural to consider a finite size scaling theory for quantities as a function of

Lt and µ for a fixed value of L close to the critical values of µ where energy levels

cross each other. As we discuss below this leads to an effective quantum mechanics

problem. The finite size effects studied here have been observed earlier in the context

of quantum spin-systems in a magnetic field [10], but they were not analyzed using

the techniques we introduce below.

5.4 Effective Quantum Mechanics

At a fixed value of L for sufficiently large Lt, it must be possible to map the lattice

field theory problem to an effective quantum mechanics problem where only a few low

energy levels play an important role. Let us label these energy levels by |N, k〉 and

the energy eigenvalues by E
(N)
k , where N = 0, 1, 2, ... represents the particle number
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sector of the energy level and k represents “other” quantum numbers. The levels

and the energies depend on L and β. The partition function of the problem may be

written as

Z =
∑

k,N

e−(EN
k −µN)Lt . (5.10)

Using this effective quantum mechanical description we can in principle find the Lt

and µ dependence of various quantities. However, for the analysis to be practically

useful we need to assume that only a few energy levels are important. If we assume

that µ is close to a critical value µc where level crossing phenomena occurs, then for

large enough Lt one might expect the physics to be dominated by just two levels. In

this approximation we will derive the Lt and µ dependence of all our observables.

In a given particle number sector, we can assume E
(N)
0 < E

(N)
1 < E

(N)
2 < ...

without loss of generality. However, in this work we will also assume that E
(0)
0 <

E
(1)
0 < E

(2)
0 ... which means that it always costs energy to add a particle into the

system. While this is not necessary it is precisely the situation we encounter in this

work and simplifies our analysis. With these assumptions it is easy to argue that

close to the critical chemical potential where the particle number changes from N to

N + 1 we can approximate the partition function to be

Z ≈ e−(E
(N)
0 −µN)Lt + e−(E

(N+1)
0 −µ(N+1))Lt . (5.11)

Here we have assumed all higher energy states will be suppressed exponentially at

large Lt. It is easy to verify that µ
(N)
c ≡ E

(N+1)
0 −E(N)

0 is the critical chemical potential

where the average particle number changes from N to N + 1. Below we discuss the

Lt and µ dependence of each observable when µ ≈ µ
(N)
c .

Particle Number

We first consider the average particle number 〈N〉. When ∆
(N)
µ = µ − µ

(N)
c is small

and Lt is large we can write

〈N〉 =
N + (N + 1)e∆

(N)
µ Lt

1 + e∆
(N)
µ Lt

. (5.12)

We will demonstrate later that our data fits very well to this simple one parameter fit

and we are able to extract µ
(N)
c very accurately for all L ≤ 20 for a variety of values

of β.
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Number Susceptibility

Next we discuss the number susceptibility κ = Lt/L
2〈N2〉. We now obtain

〈N2〉 =
N2 + (N + 1)2e∆

(N)
µ Lt

1 + e∆
(N)
µ Lt

. (5.13)

The value of µ
(N)
c is the same as obtained from the average particle number. So this

observable has no new free parameters.

Superfluid Density

In the effective quantum mechanical description the superfluid density is given by

ρs =
1

Z

∫ Lt

0

dt Tr

(

e−(Lt−t) HO†e−t HO

)

, (5.14)

where

O =
1

L

∑

x2

J1(x1, x2) (5.15)

is an operator in the Hilbert space made up of the conserved current operator Ji(x1, x2)

in the direction i at the site with coordinates (x1, x2). Note the sum is over the surface

perpendicular to the direction of the current. Since it is a conserved current it does

not matter which surface one chooses. Now if we introduce a complete set of energy

eigenstates we get

ρs =
1

Z

∑

n,k

e−(E
(n)
k

−nµ)Lt

∑

n′k′

|〈n, k|O|n′k′〉|2
(

1 − e−(E
(n′)

k′
−E

(n)
k

−(n′−n)µ)Lt

)

(E
(n′)
k′ − E

(n)
k − (n′ − n)µ)

. (5.16)

First we note that 〈n, k|O|n′k′〉 ∝ δnn′ , since the current operator commutes with the

particle number operator and hence does not change the particle number. Further,

as before we assume only two low lying energy levels are important in the partition

function when µ ≈ µ
(N)
c . Then the [k, n] sum is replaced by k = 0 and n = N,N + 1.

Hence we obtain

ρs =
ρ0 + ρ1e

∆
(N)
µ Lt

(1 + e∆
(N)
µ Lt)

, (5.17)
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where

ρ0 =
∑

k′ 6=0

|〈N, 0|O|Nk′〉|2
(

1 − e−∆E
(N)

k′
Lt

)

∆E
(N)
k′

, with ∆E
(N)
k′ ≡ E

(N)
k′ − E

(N)
0 . (5.18)

and ρ1 is obtained by replacing N with N + 1 in the above expression. Note that the

sum over k′ does not contain the k′ = 0 sum because 〈N, 0|O|N0〉 = 0 since O is a

current operator and the ground state is rotationally invariant. Thus, the expression

for ρs contains two new parameters since µ
(N)
c has already been encountered before.

Condensate Susceptibility

The expression for the condensate susceptibility can also be obtained using eq.(5.16)

if the operator O is replaced by

O =
2

L

∑

x

cos(θx,t). (5.19)

The matrix element 〈n, k|O|n′k′〉 is non-zero only when n′ = n + 1 or n′ = n − 1.

When µ ≈ µ
(N)
c , the [k, n] sum is again dominated by E

(N)
0 and E

(N+1)
0 . However, in

the present case the µ dependence also enters the k′ sum. In the limit as ∆
(N)
µ → 0

and Lt → ∞ the k′ = 0 term is singular while the other terms are not. Separating

the singular term from others we find

χ = 2|〈N, 0|O|N + 1, 0〉|2 (e∆
(N)
µ Lt − 1)

∆
(N)
µ (1 + e∆

(N)
µ Lt)

+
1

(1 + e∆
(N)
µ Lt)

∑

k′ 6=0

|〈N, 0|O|N + 1, k′〉|2 (1 − e−(∆E
(N+1)

k′
−∆

(N)
µ )Lt)

(∆E
(N+1)
k′ − ∆

(N)
µ )

+
e∆

(N)
µ Lt

(1 + e∆
(N)
µ Lt)

∑

k′ 6=0

|〈N + 1, 0|O|N, k′〉|2 (1 − e−(∆E
(N)

k′
+∆

(N)
µ )Lt)

(∆E
(N)
k′ + ∆

(N)
µ )

. (5.20)

Since |∆(N)
µ | is assumed to be much smaller than all ∆E

(N)
k′ and ∆E

(N+1)
k′ , at large Lt

the exponentials in the k′ sum can be dropped. If the remaining terms are expanded

in powers of ∆
(N)
µ we find

χ =
χ0(e

∆
(N)
µ Lt − 1)/∆

(N)
µ + (χ1 + χ2∆

(N)
µ + ...) + (χ′

1 + χ′
2∆

(N)
µ + ...)e∆

(N)
µ Lt

(1 + e∆
(N)
µ Lt)

.

(5.21)
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We find that our data fits well to this expression truncated at the quadratic order in

∆
(N)
µ , which means we have seven new parameters in our fit. However, most of these

parameters are not determined reliably and contain large systematic errors. The only

parameter that can be determined reliably is χ0 and this is what we quote as a result

from our analysis.

5.5 Results

We have performed extensive calculations at β = 0.43, 0.50 and 0.20. These values

of β are chosen so that two of them are close to the critical coupling βc = 0.45421

on either side and one is far from it in the massive (disordered) phase. In this

section we present fits of our results to the effective quantum mechanics description

discussed above. As mentioned earlier, the effective description becomes useful only

in the limit of small temperatures where excitations to higher energy levels can be

neglected. Since the spacing between energy levels decreases with increase in volume,

our approach works best on small spatial volumes. However, thanks to the efficient

worm algorithm, we have been able to extract parameters of the effective quantum

mechanics up to L = 16 at β = 0.43 and β = 0.5. Although this lattice size is

small compared to normal studies of bosonic lattice field theories, it still allows us

to perform a useful study of the L dependence of the physics and draw quantitative

conclusions about the thermodynamic limit. At β = 0.2 we observe that the energy

levels are more densely packed and we are able to compute quantities only up to

L = 8.

We first consider L = 2 and vary Lt in the range 40 ≤ Lt ≤ 200 which is easy

due to the small lattice size. In Fig. 5.2 we plot the behavior of our four observables

as a function of the chemical potential at Lt = 100 and β = 0.43. Note that the

particle number increases in steps of one at critical values of µ. This means energy

per particle of the ground state in every particle number sector increases with the

number of particles. In other words the particles repel each other. Thus, small

systems containing particles of the non-linear sigma model will show the phenomena

similar to Coulomb Blockade observed in nanoscale systems [23]. By fitting the data

at L = 2 and β = 0.43, 0.50 and 0.20 we have extracted the parameters µ
(N)
c , ρ0, ρ1

and χ0 for N = 0, 1, 2 and 3. These are tabulated in Tab. 5.1. In order to show the

goodness of our fits, in Fig. 5.3 we plot the behavior of 〈N〉 and χ for values of µ

close to the transition between the N = 0 and N = 1 sector for different values of

Lt at β = 0.43. The solid lines represent the fit functions using the parameter values

given in table 5.1. Note that all the computed values of 〈N〉 shown in the left plot of
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Figure 5.2: The four observables as a function of µ up to four particle excitation.
The data shown is for L = 2, Lt = 100 and β = 0.43. The solid lines are fits to the
effective quantum mechanical description.

Fig. 5.3 can be fit with just one parameter namely µ
(N)
c .

We have repeated the above analysis at larger values of L. We find the physics

remains qualitatively similar to the L = 2 case. In particular the average particle

number jumps by one at critical values of µ. In Fig. 5.4 we show the average particle

number as a function of µ at different values of L at β = 0.43 and β = 0.50. The

effective quantum mechanics description continues to fit all our data well as long as µ

is close to the critical values and Lt is sufficiently large. We plot our four observables

near µ
(0)
c at L = 16 and β = 0.43 in Fig. 5.5 to support the statement. We note that

as β becomes smaller, µ
(0)
c becomes larger while µ

(1)
c − µ

(0)
c becomes smaller. This is

the reason it becomes difficult to match the data to an effective quantum mechanics

description at small β without going to very large Lt.
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N µ
(N)
c ρ0 ρ1 χ0 χ2/DOF

β = 0.43
0 0.82444(3) 0.2114(2) 0.2713(2) 2.349(4) 1.23 1.43 0.70 0.58
1 1.22462(2) 0.2715(2) 0.2983(2) 2.817(4) 0.52 0.50 1.04 0.81
2 1.51567(2) 0.298(1) 0.312(1) 3.013(4) 0.73 0.70 1.20 1.28
3 1.74436(2) 0.313(1) 0.321(1) 3.121(4) 1.02 1.02 0.78 1.14

β = 0.50
0 0.63275(3) 0.288(1) 0.336(1) 2.63(1) 0.58 0.56 1.33 0.68
1 1.05865(2) 0.339(1) 0.362(1) 2.957(9) 0.72 0.69 0.71 1.47
2 1.35787(2) 0.364(1) 0.376(1) 3.116(8) 0.89 0.85 1.37 0.94
3 1.58951(2) 0.377(1) 0.386(1) 3.212(8) 0.57 0.54 1.07 1.00

β = 0.20
0 1.9141(1) 0.0414(2) 0.0884(2) 1.458(9) 0.55 0.52 0.47 0.81
1 2.12263(9) 0.0884(2) 0.1106(3) 2.14(1) 0.41 0.40 1.38 0.98
2 2.33075(8) 0.1109(2) 0.1178(3) 2.40(1) 0.43 0.34 1.02 1.67
3 2.52196(8) 0.1186(3) 0.1150(2) 2.48(1) 0.56 0.52 1.36 1.17

Table 5.1: Parameters of effective quantum mechanics that describes the data for the
L = 2 lattice at β = 0.43.
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Figure 5.3: The average particle number and the condensate susceptibility as a func-
tion of µ near the transition between N = 0 and N = 1 at L = 2 and β = 0.43 for
different values of Lt. The solid lines show the fit of data to the effective quantum
mechanics description discussed in the text.

5.6 Thermodynamic Limit

Using the results of the previous section it is tempting to extrapolate to the ther-

modynamic limit. However, in order to accomplish this task it is important to know

how the effective quantum mechanical parameters depend on L. This dependence

is non-universal in general and close to a critical point will depend on the nature

of the phase transition. Assuming the phase transition is second order, close to the
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Figure 5.4: The average particle number as a function of µ for at β = 0.43 (left)
β = 0.50 (right) for different values of L. When β = 0.43 the data shown is for
Lt = 100 at L = 2−−8, Lt = 200 at L = 12 and Lt = 300 at L = 16. When β = 0.50
the data shown is for Lt = 100 at L = 2−−6, Lt = 160 at L = 8, Lt = 200 at L = 12
and Lt = 300 at L = 16.

critical chemical potential where the density can be made arbitrarily small, we expect

universal features to emerge. For example, when the particles have a purely repulsive

interaction, the ground state energy of N particles is always less than the correspond-

ing energy of N + 1 particles [24]. Based on the results of the previous section this

scenario seems to be valid in the current model. Indeed the particle number always

increases by one as we increase µ at every fixed value of L. The superfluid density

ρs also behaves like ρ. Thus, we conclude that at µ = µ
(0)
c in the thermodynamic

limit, there is a second order transition to a superfluid phase. Based on this, below

we discuss the extrapolations to the thermodynamic limit.

First we consider β = 0.43 where the low energy physics contains massive bosons

with repulsive interactions. Then, the quantity µ
(0)
c is simply the mass of the particle

M(L) at a finite L. This mass can be obtained by fitting the the temporal two-point

correlation function

G(t) =
∑

x⊥,y⊥

〈

eiθx⊥e−iθy⊥

〉

, (5.22)

computed at µ = 0, to the form G(t) ∼ exp(−M(L)t) for values of t ≪ Lt/2.

In the definition of G(t), y⊥ and x⊥ represent lattice sites at temporal slices 0 and t

respectively. We have computed M(L) using this method and indeed we find excellent

agreement with µ
(0)
c at all the three values of β. This means the true mass of the

particle must be

M = lim
L→∞

µ(0)
c . (5.23)
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Figure 5.5: The four observables as a function of µ near the transition between N = 0
and N = 1 at L = 16 and β = 0.43 at two different values of Lt. The solid lines show
the fit of data to the effective quantum mechanics description discussed in the text.

We can reverse this argument and obtain µ
(0)
c in the thermodynamic limit by simply

measuring the mass of the particle at µ = 0. Of course this result is not general and

is valid only in the present study where there is clear evidence that the particles repel

each other. In order to extract M in the massive phase (β < βc) we can use Lüscher’s

formula [25] extended to two spatial dimensions,

µ0
c ≈M +M1e

−m̃L. (5.24)

At β = 0.43 we find that µ
(0)
c fits well to this form and gives M = 0.29680(4),

M1 = 0.59(2) and m̃ = 0.393(4) with a small χ2/DOF . The data and the fit are

shown in the left plot of Fig. 5.6.

The spatial size dependence of the energy ofN particles in three spatial dimensions
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Figure 5.6: The finite size scaling of the N-particle energy levels as a function of the
spatial lattice size L at β = 0.43 (left, massive phase) and β = 0.50 (right,superfluid
phase).

has been calculated using models of quantum mechanics [26, 27]. Recently, this

dependence was also computed using effective field theory [28]. In the special case of

two particles the problem was also solved in a general massive quantum field theory

in three spatial dimensions [29]. All these studies indicate that the ground state

energy of N particles satisfies the relation E
(N)
0 − E

(0)
0 ∝ N(N + 1)/L3. For N ≥ 1,

remember that µ
(N)
c is the difference in the ground state energies of N + 1 particles

and N particles. Extending the known results to two spatial dimensions and making

the assumption that the particle density in the thermodynamic limit close to the

critical point is of the form ρ ∼ c(µ − µ
(0)
c ) at leading order in the superfluid phase,

we expect

µ(N)
c (L) = µ(0)

c +
(N + 1)

cL2
(5.25)

for sufficiently large L and N . Figure 5.6 shows that our data is described reasonably

well by this equation. In the left plot of Fig. 5.6 we show the values of µ
(N)
c (L)

obtained from the fits. The solid lines show the dependence of µ
(N)
c (L) on L as

described by eq. (5.25) with c ≈ 0.18, 0.16 and 0.15 at N = 1, 2 and 3 respectively.

Clearly, for large values of L the solid lines pass through the data. The value of c

changes slightly since N is small. Unfortunately a fit of our data to eq. (5.25) yields a

large χ2/DOF . We believe this is due to the fact that our data has very small errors

and hence is sensitive to higher order corrections which we do not know analytically

at the moment in two spatial dimensions.

When β = 0.5 we are in the superfluid phase and the U(1) particle number
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symmetry is spontaneously broken. One then expects the low energy spectrum at

finite volumes to be governed by O(2) chiral perturbation theory. Based on this we

again expect µ
(N)
c (L) to be described by eq. (5.25) but with µ

(0)
c = 0. While our

data is again consistent with these expectations (see right plot of Fig. 5.6), without

keeping higher order 1/L corrections, the fits again give a large χ2/DOF . The solid

lines in Fig. 5.6 describe eq. (5.25) with c = 0.33, 0.22, 0.2, 0.2 for N = 0, 1, 2, 3.

5.7 Phase Diagram

0 0.1 0.2 0.3 0.4 0.5
β

0

1

2

3

4

µ

Normal

Superfluid

(Super)Solid ?

Figure 5.7: The phase diagram in the β vs. µ plane. The circles show the value of
µ

(0)
c as a function of β given in table 5.2. The solid line that connects these points

forms the phase boundary between the normal phase and the superfluid phase. This
transition is second order. Since the particles repel each other we speculate that
at higher densities a first order transition (dashed line) may separate the superfluid
phase from a solid or a super-solid phase.

The phase diagram of the O(2) non-linear sigma model is an interesting research

topic in itself. While the complete phase diagram requires more work, our results

above allow us to compute the location of the transition line between the normal

phase and the superfluid phase. In particular the value of µ
(0)
c as a function of β

determines this line. Based on the evidence at β = 0.43 and 0.20 we predict that

µ
(0)
c = M for all values of β < βc. The coordinates of the transition line are tabulated

in Tab. 5.2 and shown on the phase diagram in Fig. 5.7. We expect this transition

to be second order in the mean field universality class with logarithmic corrections
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except at µ = 0 where it is governed by the 3d XY universality class. Thus, when

β < βc and (βc − β)/βc ≪ 1 we must have µ0
c ∝ [(βc − β)/βc]

ν where ν ≈ 0.671 [30].

β 0.43 0.40 0.35 0.30 0.25 0.2 0.15 0.10 0.07 0.04

µ
(0)
c 0.29678(3) 0.530(4) 0.859(2) 1.172(7) 1.505(9) 1.85801(3) 2.267(3) 2.783(3) 3.210(3) 3.829(4)

Table 5.2: The values of µ
(0)
c obtained by assuming that it is equal to the L → ∞

limit of M(L) at µ = 0 as discussed in the text.

In principle there could be other interesting phases at larger values of µ which

we cannot rule out based on the current work. Since we have seen the particles have

a repulsive interaction, an interesting possibility is the existence of a solid phase or

a super-solid phase [31]. However, there are stringent constraints for super-solids to

arise [32, 33] and we do not know if these rule out such a phase in the current model. In

any case if a transition to a solid phase exists, it will most likely be first order similar

to the solid-liquid phase transitions in materials and will occur at densities where

the lattice structure may become important. These transitions can also be studied

efficiently with the worm algorithm. We postpone these studies for the future, but

have speculated the possibility of a solid phase in Fig. 5.7.

5.8 Summary and Discussion

In this chapter, we have explored the O(2) non-linear sigma model in the presence of a

chemical potential and showed that interesting finite size effects naturally arise due to

the level crossing phenomena. Understanding these effects was shown to be important

to extract the thermodynamic limit and thus uncover the (β, µ) phase diagram. Our

studies should be useful for future studies since the finite size effects we uncover is a

universal feature. In fact, a very similar structure in the number density of quarks

was obtained in 2-colour QCD at very low temperatures and for finite quark chemical

potential [34]. Since 2-colour QCD does not have a sign problem it can be readily

simulated using the standard methods.

Our work also provides accurate results that can be used to compare with results

from other methods that try to address the sign problem. The most encouraging of

these methods is commonly known in literature as the complex Langevin method.

This method [35, 36], based on the techniques of stochastic quantization [37] does

not require importance sampling. The configurations that dominantly contribute

to the partition function are obtained by integrating complex Langevin equation.

This method is being explored as a general solution to the sign problem. However

this method often suffers from instabilities and convergence problems. While the
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instabilities can be corrected [38], it might converge to the wrong result as has been

demonstrated for the XY model at finite µ [39].
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Chapter 6

Conclusion and Summary

Recent experimental results from RHIC indicate the formation of a thermalized

medium with large collective flow and very low viscosity. These findings are in-

dicative of the strongly interacting nature of the QGP at temperatures close to the

quark-hadron transition temperature. At these temperatures, the QCD coupling is

rather large, and perturbative studies are not suitable for studying the strongly cou-

pled QGP, and non-perturbative studies are called for. At present, lattice QCD is

the only viable and successful non-perturbative technique for studying such a system.

Moreover, numerical simulations of LQCD have the advantage that almost parameter

free predictions for the theory can be obtained from first principles. This approach has

been very successful in obtaining detailed information about the nature, composition

and thermodynamics of QCD. In this thesis, we have used Monte-Carlo techniques

to obtain non-perturbative information about strongly interacting matter at finite

temperature and density.

Spatial correlation functions are used to study the screening of a static charge

by the medium. The long distance behaviour of these correlation functions give

information about the large scale composition of the medium. The structure of the

correlation functions related by symmetry transformations indicate the breaking or

the restoration the corresponding symmetry of the medium as the temperature is

varied. In this thesis, I have used the screening correlators of various mesons to study

the pattern of chiral symmetry restoration in 2-flavour QCD as the temperature is

raised across the quark-hadron transition. The zero temperature pion mass was kept

fixed at mπ ∼ 230 MeV, while the lattice spacing was a = 1/6T and the temperature

was varied from 0.89 Tc in the hadronic phase to 1.92 Tc in the plasma phase.

Our results demonstrate that the screening masses, obtained as the inverse of the

correlation lengths in the various quantum number channels become identical by Tc

in the Vector (V) and the Axial-Vector (AV) channels. In the Pseudo-Scalar and the

101
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Scalar channels such a symmetry restoration is seen only at temperatures of around

1.33 Tc. The late restoration of chiral symmetry in the PS/S channels was further

investigated by changing the valence quark mass. The correlation functions and the

screening masses are sensitive to this change in the PS/S channel, whereas the V/AV

channel remain unaffected. Moreover the V and the AV screening masses become

consistent with the free-field value at temperatures above Tc. In contrast, we find

that even at the highest temperatures of our study, at ∼ 2 Tc, the S and the PS

screening masses are about ∼ 20% away from their free field values. An investigation

of the finite volume effects in the hadronic phase shows the stability of the mesonic

states.

Using linear response theory to relate quantities calculated using lattice QCD,

certain transport coefficients can be computed and compared against experimental

estimates. One such quantity is the thermalization of heavy quarks, which have been

recently inferred for the charm quark by the PHENIX experiment at RHIC. The

prevailing puzzle regarding the results is that both the heavy and the light quarks

appear to thermalize at similar rates. This is quite in contrast to the wisdom from

perturbation theory which states that the thermalization time of heavy quarks should

be suppressed by a factor ∼ T/M with respect to that of light quarks, where T is

the temperature of the medium and M is the mass of the heavy quark. For charm

quarks at RHIC experiment, this factor is about 4.5. The strongly interacting nature

of the plasma might be responsible for this disagreement. This thesis investigates a

formulation of the problem where the heavy quark is treated as a Brownian particle

undergoing random walk because of being constantly subjected to collisions by the

quasi-particles of the plasma. It has been shown that the diffusion coefficient can

be obtained from the long distance behaviour of the chromo-electric-field correlation

functions in Euclidean time. We have calculated these correlation functions non-

perturbatively for the quenched theory for infinitely massive quarks. We have used

the multilevel algorithm to obtain an estimation of the correlation function to within

errors of a few percent. With our parameterization the large-τ part of the correlation

functions, we conclude that lattices of at least a ∼ 1/20T are needed to identify the

diffusive part. An estimation of the diffusion constant from our largest lattices (Nt =

20, 24) is roughly in the right ballpark of the values inferred from the experimental

results at RHIC for charm quarks.

An important issue in the study of finite temperature symmetry restoration is the

use of fermions with the right flavour symmetry group as in continuum QCD. The

latter is believed to exhibit the restoration of SU(2) × SU(2) flavour symmetry in

the limit of vanishing quark mass. The staggered quarks dominantly used in these
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studies only have U(1) × U(1) chiral symmetry. Moreover the search for the critical

end point (CEP) in real world QCD with two light quarks and one moderately heavy

quark crucially depends on the use of fermions having the correct flavour symmetry

in the action. These reasons favour the use of fermions with exact chiral symmetry

on the lattice, such as the overlap fermions. However, the use of overlap fermions in

numerical simulations is very expensive due to their non-local nature. In this thesis,

we have analytically studied the thermodynamics of free overlap quarks at finite quark

chemical potential.

Typically the chemical potential is introduced as the Lagrange multiplier of some

conserved charge. This is non-trivial for the case of the overlap fermions due to

it’s non-locality. Instead, an inspired guess was used to motivate the inclusion of the

chemical potential in the overlap operator. This form has the correct continuum limit.

We studied this approach analytically and showed that this does indeed yield the

correct continuum form of the expressions for the thermodynamic quantities provided

certain conditions are imposed on the functions which encode the dependence of the

chemical potential in the overlap operator. These conditions are identical to those

worked out more than two decades back for the local Wilson and Staggered fermions

to avoid spurious µ dependent divergences in the continuum limit in the expressions

for thermodynamic quantities. For the overlap fermions, these conditions serve the

same purpose and are essential for recovering the proper Fermi surface on the lattice.

This indicates that it is the behaviour of the Dirac operator in the continuum limit

that governs these conditions.

A major hindrance in the numerical computation of physical quantities from first

principles at finite chemical potential is the sign problem. At finite values of the quark

chemical potential, the fermion determinant which is a part of the Boltzmann weight

for doing Monte-Carlo integration, becomes complex. The Monte-Carlo calculations

can then no longer be performed and the theory is said to have a sign problem.

Several methods are in use to circumvent the sign problem in QCD. One approach to

solve this problem aims at reformulating the theory having a sign problem in terms of

other degrees of freedom. If the new degrees of freedom are cleverly chosen, the sign

problem can be eliminated in the reformulated theory. However, since this choice is

highly non-trivial, this method is rather restrictive. This procedure is demonstrated

here for the non-linear O(2)-sigma model, commonly known as the XY model in the

literature.

The XY model has a similar sign problem as that of QCD when finite quark

chemical potential is included. Employing the global U(1) symmetry of the model,

the action can be formulated in terms of the corresponding Noether currents. In
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terms of these current variables, the action is explicitly positive definite and the sign

problem is successfully eliminated.

The reformulated model can be efficiently simulated using the Worm algorithm.

In this thesis, we have investigated the phase diagram for the model at finite µ and

at low temperatures. Our studies reveal the existence of non-trivial finite size effects

in the number density and susceptibility as a function of µ. We have been able to

account for these effects by taking into account the phenomenon of level-crossing of

the low-lying eigenvalues as the chemical potential is tuned. Our results give evidence

of a repulsive interaction between the particles. Accounting for these finite size effects

was essential to obtain the phase boundary between the symmetric and the broken

phase.



Appendix A

Algorithmic details for the XY

model

A.1 The worm algorithm

The worm algorithm for the partition function described by eq. 5.4 can easily be

constructed using ideas from [1, 2, 3]. Here we outline the essential steps of the

update for completeness. Each worm update is as follows

1. We pick a random point x on the lattice. We will also call this site xfirst. We

set a counter c = 0.

2. We pick at random one of 2d neighbors x+ α̂, α = ±1,±2, ...,±d of the site x.

3. Let k be the current on the bond connecting x and x+ α. If α is positive then

with probability
Ik+1(β)eµδα,t

Ik(β)

we change k to k + 1 and move to the neighboring site x + α̂. If α is negative

then with probability
Ik−1(β)e−µδα,t

Ik(β)

we change k to k − 1 and move to the neighboring site x + α̂. Otherwise we

stay at site x.

4. We set c = c+1. If x = xfirst we stop and complete one worm update. Otherwise

we go to step 2 and repeat the above steps.

It turns out that χ is given by the average of c after many worm updates. The

other observables are measured on each world-line configuration and averaged over
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β χ χMC ρ ρMC κ κMC ρs ρMC
s

µ = 0.0
0.1 1.2207 1.2206(1) 0 2(2) × 10−5 0.01005 0.01001(4) 0.01005 0.01008(4)
0.2 1.4831 1.4830(2) 0 −5(4) × 10−5 0.04064 0.04063(8) 0.04064 0.04076(8)
0.5 2.3838 2.3835(4) 0 1(9) × 10−5 0.2526 0.2527(2) 0.2526 0.2526(2)
1.0 3.2730 3.2733(4) 0 2(2) × 10−4 0.7796 0.7796(4) 0.7796 0.7794(4)
5.0 3.8728 3.8733(3) 0 1(1) × 10−3 4.809 4.806(4) 4.809 4.813(4)

µ = 0.5
0.1 1.2362 1.2361(1) 0.00590 0.00592(2) 0.01559 0.01560(5) 0.01007 0.01013(4)
0.2 1.5188 1.5188(2) 0.02374 0.02378(5) 0.0640 0.0640(1) 0.04100 0.04105(7)
0.5 2.4692 2.4693(4) 0.1429 0.1430(1) 0.4341 0.4344(3) 0.2581 0.2581(2)
1.0 3.3245 3.3247(4) 0.4190 0.4193(2) 1.6553 1.6564(10) 0.7867 0.7861(4)

µ = 1.0
0.1 1.2861 1.2861(2) 0.01809 0.01812(4) 0.03851 0.03857(8) 0.01018 0.01024(4)
0.2 1.6316 1.6317(2) 0.07160 0.07162(8) 0.1637 0.1638(2) 0.04241 0.04242(8)
0.5 2.6899 2.6900(4) 0.3865 0.3868(2) 1.2530 1.2539(8) 0.2747 0.2748(2)
1.0 3.4317 3.4317(4) 1.0053 1.0055(3) 5.487 5.488(3) 0.8032 0.8033(4)

Table A.1: Checks of the observables with exact solution on 2 × 2 lattices.

the ensemble generated by the worm algorithm.

A.2 Tests of the Algorithm

We have verified our algorithm and code by both solving the model exactly on a 2×2

lattice as well as comparing with the available results in the literature for µ = 0 in

three dimensions. In this section we describe some of these tests. First, we compare

the results of the various observables computed using the directed path algorithm

with the exact results on a 2×2 lattice. The comparison is shown in Table A.1. Since

space and time are symmetric we expect ρs = κ at µ = 0. Our results reflect this

fact.

Extending the code from two dimensions to three dimensions is trivial and the

chance for mistakes is rather small. However, we have tested the code at least at µ = 0

using the results from previous work. Here we compare results for χ obtained using

the worm algorithm with that obtained using the microcanonical improved Metropolis

(MM) algorithm and the available results in the literature using the cluster method

[4]. The comparison is shown in Table A.2. The reason for us to choose β = 0.45421

is because this is known to be the critical value of the coupling where the theory

undergoes a phase transition from a normal phase to a superfluid phase. At the

critical coupling we expect χ ∝ Lγ/ν . A fit of our data to this form yields the value

of γ/ν = 1.99 as expected from [4], and is shown in figure A.1.
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Figure A.1: Plot of χ vs L at β = βc.

β L Worm MM Cluster
0.45421 4 19.17(3) 19.24(13) 19.15(5)
0.45421 8 77.8(2) 76.9(5) 77.9(3)
0.45421 16 310(1) 313(2) 313(2)
0.45421 32 1221(18) 1228(7) 1226(13)
0.45421 48 2713(67) 2750(27) 2719(68)

0.01 8 1.0304(2) 1.03(46) -
0.1 8 1.3976(9) 1.40(6) -
1.0 8 387.2(3) 387.12(3) -

Table A.2: Comparison of the condensate susceptibility χ with results from the worm
algorithm, the Metropolis+Microcanonical(MM) update and Wolff Cluster update on
L3 lattices at different values of L and β.
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