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Synopsis

The study of symmetries has proved to be very useful in our comprehension

of Nature. Knowledge of symmetries combined with the framework of Quan-

tum Field Theories (QFT) has led to a deep understanding of processes at very

small length scales (or equivalently very high energies). However a description

of nature at even smaller length scales (at or bellow the Plank-scale) is yet ill

understood, the framework of String Theory being a prominent step in that di-

rection. QFTs with a new kind of symmetry namely supersymmetry (a symmetry

between bosons and fermions) has attracted attention due to several positive fea-

tures. It is believed that at low or high energies such nontrivial supersymmetric

QFTs has an enhanced superconformal symmetry. This is due to the presence of

a IR/UV superconformal fixed point into which these theories flow under renor-

malization group evolution. Such an enhanced symmetry is characterized by scale

invariance. The Hilbert space of such superconformal field theories would bear

a representation of the superconformal conformal algebra (SCA). In our present

work we study the SCA in 3 space-time dimensions.

Superconformal algebras (like conformal algebras) has certain special repre-

sentation which are called BPS or short representations. As the name suggests

they have fewer states compared to generic long representations. They occur

at special values of energies which is determined by the rest of the charges. At

energies infinitesimally away from these special values we have representations

with discontinuously larger number of states. Thus if we consider a slow varia-

tion of a parameter of the theory (keeping the symmetries intact) under which the

spectrum evolves continuously, it is impossible for a single short representation to

evolve into a long representation. Therefore naively the number of such short rep-

resentations should not change under such continuous evolution of the spectrum.

However it is possible for more than one short representations to combine into a



long representation. Thus by studying such combination of short representations

into long representations it is possible to construct all the protected quantities

that can be inferred from the Superconformal algebra alone. Then we go further

to construct a single quantity (similar to the Witten index) which captures all

these protected information. In this thesis we present the construction of this

Witten index for d = 3.

Thus under ordinary circumstances the Witten index constructed here is the

most general protected quantity. However with some extra dynamical input from

the theory it may be possible to extract more information about supersymmetric

states. Also the protection of the index is not always guaranteed. For instance if

we have a theory with a continuous spectrum then the arguments for the protec-

tion of the index fail and the index is no longer protected.

Further we go on to compute our index over the world volume theory of N M2

branes (in the large N limit) and compare it with the partition function computed

over supersymmetric states. The growth in the density of states for the index

was much slower (S ∼ E
2
3 ) compared to that for the actual partition function

(computed over the supersymmetric states) (S ∼ E
5
6 ). The behavior of the

partion function was same as a six dimensional gas of photons. The reason for this

is that there is four supersymmetric scalars and one supersymmetric derivative

on the world volume of M2 branes. We also compute the index over the world

volume theory of a single M2 brane. Even in this case we find that the partition

function grows much slowly for the index compared to the partition function. The

partition function grows exponentially with temperature while the index grows

only as a power law. Also we compute our index for the recently constructed

Chern-Simons theories in the large N limit. We find that with c (≥ 3) matter

fields in the adjoint representation the index undergoes a phase transition. Also

unlike the partition function due to large cancellations between supersymmetric

states the index remains well defined at strict infinite temperature. Also if we

consider Nf matter fields in the fundamental representation of U(Nc), we find

that in the Veneziano limit (Nc → ∞ with c =
Nf

Nc
fixed) with c ≥ 3 the index

undergoes a phase transition.

This thesis is primarily based on [1]. Also for the discussion of conformal and

superconformal algebra primary reference has been made to [5].
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Chapter 1

Introduction

1.1 Introduction

Supersymmetric fixed points of the renormalization group equations are believed

to be always either free or superconformally invariant. Thus the IR/UV behavior

of any supersymmetric field theory, if nontrivial, is governed by a superconformal

fixed point. Consequently, the study of superconformal dynamics has a special

place in the study of supersymmetric field theories.

In radial quantization, the Hilbert space of any unitary superconformal field

theory may be decomposed into a direct sum over irreducible unitary, lowest en-

ergy representation of the superconformal algebra. Such representations have

been classified in every dimension (see [2, 3, 4, 5, 7] and references therein); the

list of these representations turn out to include a special set of BPS represen-

tations. These representations are called ‘short’ because they have fewer states

than generic representations (we explain this more precisely below); they also

have the property that the energies of all states they host are determined by the

other conserved charges that label the representation.

Consider any fixed line of superconformal field theories labeled by some con-

tinuous ‘coupling constant’ λ. Suppose that, at any given value of λ, the Hilbert

space of the theory possesses some states that transform in short representations

of the superconformal algebra. Under an infinitesimal variation of λ the energies

of the corresponding states can only change if some of these representations jump

from being short to long. However short representation always contain fewer

1



1.1 Introduction

states than long representations with (almost) the same quantum numbers. As

a consequence, the jump of a single BPS representation from short to long is

inconsistent with the continuity of the spectrum of the theory as a function of

λ. Indeed such jumps are consistent with continuity only when they occur simul-

taneously for a group of short representations that have the property that their

state content is identical to the content of a long representation. Such a bunch of

BPS representations can continuously be transmuted into a long representation,

after which the energies of its constituent states can be renormalized.

Consequently, a detailed study of all possible ways in which short represen-

tations can combine up into long representations permits the the classification

of superconformal indices for superconformal field theories.1 In this thesis we

perform this study for superconformal algebras in d = 3 and use our results to

provide a complete classification of all superconformal indices in this dimensions.

We also provide a trace formula that, when evaluated in a superconformal field

theory, may be used to extract all these superconformal indices. This is the ana-

logue of the trace formula described in [8] for the Witten index. Thus the Witten

index we define in this thesis constitutes the most general superconformal index

in d = 3.2

We then proceed to compute our superconformal Witten index for specific

superconformal field theories. We first perform this computation for the super-

conformal field theories on the world volume of N M2 branes, at N = 1 (using

field theory) and at N = ∞ (using the dual supergravity description). We find

that our index has significant cancellations compared to the simple partition func-

tion over supersymmetric states. In each case, the density of states in the index

grows slower in comparison to the supersymmetric entropy. We also compute our

index for some of the Chern Simons superconformal field theories recently ana-

lyzed by Gaiotto and Yin [12]; and find that, in some cases, this index undergoes

a large N phase transition as a function of chemical potentials.

1 By a superconformal index we mean any function of the spectrum that is forced by the
superconformal algebra to remain constant under continuous variations of the spectrum.

2The corresponding results are known in d = 4, 5, 6 [1, 9]. In 2 dimensions the analogue
of the indices we will study here is the famous ‘elliptic genus’ [10, 11] while superconformal
algebras do not exist in d > 6.

2



1.1 Introduction

Finally, we wish to mention a subtlety that we have avoided in our discussion

above. Indices may fail to be protected if the spectrum of the theory contains

a continuum [8, 13] or is singular for some parameters. Lately, this issue has

attracted interest in the context of 2 dimensional conformal field theories and we

direct the reader to [15, 16, 17] for some recent discussions.

This thesis is organized as follows. In chapter 2 we study conformal and

superconformal algebras in general and consider the d = 3 superconformal algebra

in detail. In chapter 3 we exhaustively construct all possible protected quantities

(i.e. the vector space of indices) that can be inferred from the d = 3 SCA alone.

In chapter 4 we define the Witten index and demonstrate that that it captures

all the information present in the entire vector space of indices. In chapter 5

we evaluate the witten index over M theory multi-gravitons in AdS4 ⊗ S7. In

Chapter 6 we again evaluate our index for some recently studied Chern-Simons

matter theories. Finally we conclude by a discussion of the future applications of

our index.

3



Chapter 2

The Algebra

Before engaging in a detailed discussion of the superconformal algebra, let us

briefly discuss the conformal algbra in arbitrary dimensions. This will help us

to understand the essential features of restrictions imposed by unitarity in a

comaparitively simpler setting.

2.1 The conformal algebra

The generators of the conformal algebra in d space-time dimensions with lorenzian

signature comprises of d(d−1)
2

Lorentz generators (Mµν), d momntum Pµ, d special

conformal generators and a dilatationD. which satisfy the following commutation

relations,

[Mµν ,Mαβ] = (−i) (ηµβMνα + ηναMµβ − ηµαMνβ − ηνβMµα)

[Mµν , Pα] = (−i) (ηναPµ − ηµαPν)

[D,Mµν ] = 0

[Mµν , Kα] = (−i) (ηναKµ − ηµαKν)

[D,Pµ] = −iPµ
[D,Kµ] = −i(−Kµ)

[Pµ, Kν ] = (−i) (2ηµνD + 2Mµν)

(2.1)

The algebra generated by the above genetators is isomorphic to the SO(d, 2)

algebra. If Sab are the generators of the SO(d, 2) algebra (where a, b runs form

4



2.1 The conformal algebra

−1 to d, the −1 and 0 being associated with the −1 in the metric) then the

isomorphism with the conformal algebra is realized by,

Sµν =Mµν

S−1d =D

Sµ−1 =
1

2
[Pµ +Kµ]

Sµd =
1

2
[Pµ −Kµ]

(2.2)

where the greek indices runs froms 0 to d. In a QFT on d dimensionsal Minkowski

space-time it might be possible to define suitable action of the conformal killing

vectors (tensors) on the fields1 so as to obtain a conformal field theory (CFT).

Then the Hilbert space of such a theory will consists of a representation (reducible

or irreducible) of this SO(d, 2) conformal algebra. So we would be interested in

unitary representations of the SO(d, 2) algebra and hence the generators are

hermitian operators in such representations. Now we consider a Wick rotation of

this CFT. We then quantize this Wick rotated theory radially (i.e. we consider

the concentric spheres centred at the origin as constant time surfaces). The

resultant Euclidian QFT has invariance under the Eucledian conformal algebra

SO(d + 1, 1). The generators of the Eucledian conformal algebra (distnguished

from the corresponding generators of the Minkowski version by a prime) are

related to that of SO(d, 2) by the following relations,

M ′
µν = Sµν

D′ = (i)S−10

P ′
µ = Sµ−1 + iSµ0

K ′
µ = Sµ−1 − iSµ 0

(2.3)

Now since we want all the Sab to be hermitian therefore from (2.3) it follows

that (due to the presence of the is) the primed generators are not all hermitian.

1the conformal generators in (2.1) may be represented by the differential operators Mµν =
−i(xµ∂ν−xν∂µ), Pµ = −i∂µ, Kµ = i(2xµx.∂−x2∂µ) and H = x.∂ which constitutes the killing
vectors corresponding to infinitesimal conformal transformations

5



2.1 The conformal algebra

In fact they obey the following conjugation relations,

M ′† =M ′

D′† =−D′

P ′† =K ′

K ′† =P ′.

(2.4)

In order to understand these hermiticity relations physically we note that the

surfaces of constant time are spheres and thus the M ′ operators remain hermi-

tian. However the constant x surfaces are not constant time surfaces. Hence the

P ′ operators corresponding to x translations are not hermitian. Also the scale

transformaitions operator D′ is the Eucledian hamiltonian and is therefore natu-

rally anti-hermitian. Thus for our purpose of studying Hilbert space of CFTs we

may consider unitary representations of SO(d, 2) or eqivalently study the corre-

sponding non-unitary representations of SO(d+ 1, 1).

We would like to study the restrictions imposed by unitarity on the eigenvalues

of scaling dimension D in the Lorenzian theory. However it turns out that such

a study ( and also the study of the Hilbert space of CFTs) is more convenient

in the Eucledian theory. Thus for most of our purposes we consider the primed

generators. We study the restrictions on eigenvalues of D′ to be interpreted as the

scaling dimension of an operator only after a Eucledian continuation. For future

reference we note that the P ′ and K ′ operators are eigenstates of D′ with eigen

value +1 and −1 respectively. This can be seen by working out the commutators

between these operators using their defination and (2.1).

The structure of unitary representations

The unitary representation of the conformal algebra SO(d, 2) consists of a direct

sum of representations of the maximal compact sub-algebra SO(d)⊗SO(2). The

SO(d) is generated by the M ′ generators while the SO(2) part is generated by

the D′. Thus we can write,

RSO(d,2) =
∑
⊕

RS0(d)⊗SO(2). (2.5)

6



2.1 The conformal algebra

For physically acceptable representations of the conformal algebra there is a lower

bound on the scaling dimension of operators (eigen values of D′, the Hamiltonian)

which we denote by ε0. A representation of the conformal algebra is said to be

irreducible if only one irreducible representation of SO(d) (denoted by highest

weights h1, h2, . . . , h[ d
2
] in a conveniently chosen basis) has ε0 as the eigen value of

D′. These states with the lowest scaling dimension is said to be the primary states

of the representation. As noted earlier K ′ has scaling dimension −1. Therefore

as ε0 is the lowest scaling dimension all the primary states are annihilated by

K ′. All the other states in the representation are obtained by the action of P ′

on the primary states. As the scaling dimension of P ′ is +1 hence that of all

the states in the representation are of the form ε0 + n with n being a positive

integer. We call the states with scaling dimension ε0 + n to be the nth level

states. Here we recall that P ′ s also transform in a representation of SO(d)

namely the vector representation. So these higher level states (characterised by

higher values of scaling dimension) are simply obtained by the tensor product of

vector of SO(d) with the SO(d) representations present in one lower level. Thus

a unitary infinite dimensional irreducible representation of the conformal algebra

is completely specified by the lowest scaling dimension ε0 and the SO(d) highest

weights h1, h2, . . . , h[ d
2
] with this scaling dimension.

The restrictions imposed by unitarity

To uderstand the restrictions imposed by unitarity let us consider a irreducible

representation of the conformal algebra with lowest scaling dimension ε0 and the

SO(d) representation (Rp) with this scaling dimension is denoted by the highest

weight h1, h2, . . . , h[ d
2
]. Let us denote the primary states in this representation of

SO(d) by |s1, s2, . . . , s[ d
2
]〉 (which we may write as |{s}〉) where s1, s2, . . . , s[ d

2
] are

the weights of these states.

Now as explained earlier the states at level 1 is obtained by the action of P ′
µ

on the primary states |{s}〉 which ammounts to taking a tensor product of the

vector with Rp (we denote the level one states by |S(1)
µ⊗{s}〉). All these states have

scaling dimension ε0 + 1. Then the norm-matrix at level 1 (i.e. the matrix of

7



2.1 The conformal algebra

inner product of all the states at level one) is given by,

Aν⊗{t}, µ⊗{s} =〈T (1)
µ⊗{t}|S

(1)
µ⊗{s}〉

=〈{t}|K ′
ν P

′
µ|{s}〉

(2.6)

where we have used the fact that K ′
ν is the hermitian conjugate of P ′

µ. Now uitar-

ity demands that there are no negetive norm1 states in the entire representation

and hence the matrix A should not have any negetive eigenvalues.

Since K ′
ν annihilates all the primary states hence we can write,

Aν⊗{t}, µ⊗{s} = 〈{t}| [K ′
ν , P

′
µ] |{s}〉 (2.7)

Using (2.1) and the defination of the primed operators we can easily work out

this commutaion. Further using the fact D′ = (−i)ε0 for all the primary states

the above expression for matrix A reduce to,

Aν⊗{t}, µ⊗{s} = 2 〈{t}|ε0 + (−i)Mµν |{s}〉 (2.8)

Now the non-negetivity of the eigen values of A as demanded by unitarity,

implies that ε0 must be greater than the highest eigen value of the matrix B given

by,

Bν⊗{t}, µ⊗{s} = −〈{t}| (−i)Mµν |{s}〉. (2.9)

This is the restriction imposed on the lowest scaling dimension by unitarity. These

restrictics may be calculated explicitly. However since they are not directly re-

lated to our purpose therefore we do not present it here. For further details we

refer the reader to [5].

We note that unitarity puts a lower bound on the lowest scaling dimension.

This is consistent with our expectation on physical grounds. Recal we had already

assumed this while discussing the structure of unitary representation. Here we

1There may be zero norm states in the representation. It turns out to be consistent to delete
these states and the states obtained from them by the action of P ′, from the representation
(becasuse they do not mix with the rest of the states under conformal transformation). Such
representations are called short representations and they occur when the unitarity bound is
saturated.

8



2.2 The Superconformal Algebra

have shown how the unitarity at level one puts restrictions on ε0. However it is

possible that restrictions on ε0 from similar calculation at some higher level is

more stingent than that obtained at level one. In other words the lower bound on

ε0 demanding positivity of a norm-matrix at some higher level is lower than that

at level one. In such a case the condition obtained at level one is necessary but

not sufficient for unitarity. We should be careful to take such cases into account.

2.2 The Superconformal Algebra

The superconformal algebra has been discussed in detail by several authors [5, 6].

Here we present only a relevent and brief discussion. As the name suggests su-

perconformal algebra is an extension of the conformal algebra where in addition

to the bosonic generators (of the conformal algebra) we have fermionic genera-

tors Q and S as the supersymmetry generators and the special superconformal

generators respectively. As demanded by the spin statistic theorem, the Qs being

fermionic objects transform in the spinor of SO(d− 1, 1) while together with the

Ss they form the spinor of SO(d, 2) (the conformal group).

This is possible because the spinors of SO(d, 2) and SO(d−1, 1) have identical

reality properties. If γµ, γd+1
1 are the SO(d−1, 1) gamma matrixes then in terms

of these matrices the gamma matrices of SO(d, 2) are given by,

Γµ =

(
γµ 0
0 −γµ

)
Γ−1 =

(
0 −I
I 0

)
Γd =

(
0 I
I 0

)
Γd+1 =

(
γd+1 0

0 −γd+1

)
2

(2.10)

Now recal that in case of the conformal algebra it was convenient to define

primed (non-hermitian) operators that obeyed the commutaion of the Eucledian

conformal algebra. These operators found physical interpretation in the Wick

1γd+1 exists only in even dimensions
2here again the Γd+1 exists independantly only if d is even.

9



2.2 The Superconformal Algebra

rotated CFT. Similarly it would be convenient to define such primed versions of

the Q and S that have similar physical interpretation. Thus we define,

Q′ =
1√
2
(Q− iγ0S)

S ′ =
1√
2
(Q+ iγ0S)

(2.11)

The commutation of Q′ and S ′ with other (primed) generators of the (Eucle-

dian) conformal algebra is given by,

[M ′
pq, Q

′
α] =(i/4)[Γp,Γq]

β
αQ

′
β

[M ′
pq, S

′
α̃] =(i/4)[Γ̃p, Γ̃q]

β̃
α̃Q

′
β̃

[D′, Q′
α] =(−i/2)Q′

α

[D′, S ′α̃] =(−i/2)− S ′α̃

[P ′
p, Q

′
α] =0

[K ′
p, S

′
α̃] =0

[P ′
p, S

′
α̃] =− (Γ̃pγ0)

β
α̃Qβ

[K ′
p, Q

′
α] = + (Γpγ0)

β̃
αSβ̃

(2.12)

Where the Γ and the Γ̃ are defined as follows,

Γi = γi, Γd = −iγ0, Γ̃i = γi, Γ̃d = iγ0. (2.13)

Now in order to complete the (anti)commutation relation for superconformal

algebra we also need to specify that between Q′ and S ′. Often we would be

interested in extended supersymmetry and therefore take into consideration the

R-symmetry generators (which we denote by R say). Now unlike ordinary super-

symmetry algebra (where the R-symmetry generators decouple from the rest of

the generators) in case of supersonformal algebra the R-symmetry generators en-

ters nontrivially. Infact it enters the Q′ and S ′ anti-commutator which1 is central

to our discussion of the unitary representations of superconformal algebra (SCA).

1just like P ′, K ′ commutator for the conformal algebra

10



2.2 The Superconformal Algebra

Table 2.1: R-Symmetry algebra in various dimension in which SCA exists

Space-time dimension Conformal Algegra R-Symmetry Algebra

3 SO(3, 1) SO(n)

4 SO(4, 2) U(n)

5 SO(5, 2) SU(2)

6 SO(6, 2) Sp(n)

Now given the QQ and RQ (anti)commutators, certain Jacobi identitities must

be satisfied (from which other (anti)commutators like SK, SR, SP etc may also

be derived). Now these Jacobi identities require certain relations between the

gamma matrices to be satisfied. This is true only in lower space-time dimensions.

In fact these constrains turns out to be so restrictive that SCA exixts only in

d ≤ 6. Now a SCA must be a classical Lie super algebra (CLSA). By studying

how SCA fits into the structure of CLSA, it is also possible to understand why

SCA does not exists in higher dimensions. For further discussions on this refer

to appendix D.

The possible R-symmetry algebra in various dimensions is summarized in

table:2.2. Note that the R-symmetry and the reality properties of spinors is

different in different dimentions.

d=3: The case of our present interest

In this case the Qs and Ss are in the spinor of SO(2, 1). As we know this

representation is a real representaiton.1 Since Q and S are real hence from (2.11)

it follows that

Q′† = S ′ ; S ′† = Q′ (2.14)

In case of three dimensions the R-Symmetry algebra is SO(n). Therefore other

than spinor index (denoted by greek letters α, β etc), the Q and S bear a SO(n)

1 We can choose a basis in which all the γ matrices are hermtian except γ0 which is anitiher-
mitian. The charge conjugation matrix must satisfy C−1γC = −γT , which clearly is satisfied
by γ0

11



2.2 The Superconformal Algebra

index (remember the Q and S are charged under R-symmetry algebra) which we

denote by roman indices i, j etc. Then the commutation relations involving the

R-symmetry generators is given by

[Iij, Imn] =(−i)[Iinδjm + Ijmδij − Iimδjn − Ijnδim]

[Iij, Qm] =(−i)[Qiδjm −Qjδim]

[Iij, Q
′
m] =(−i)[Q′

iδjm −Q′
jδim]

[Iij, Sm] =(−i)[Siδjm − Sjδim]

[Iij, S
′
m] =(−i)[S ′iδjm − S ′jδim]

[Iij,Mpq] =0

(2.15)

Note that the first equation is simply the commutation relation of the SO(n)

algebra. Now the anticommutation relations involving the susy generators Qα,i

and the special supconformal generators Sα,i is given by

{Qiα, Qjβ} = ( 6PC)αβδij

{Siα, Sjβ} = (K/C)αβδij

{Qiα, Sjβ} =
δij
2

[(MµνΓµΓνC)αβ + 2DCαβ]− CαβIij

(2.16)

In terms of the primed odd generators the equations (2.16) reduce to

{Q′
iα, Q

′
jβ} = ( 6P ′C)αβδij

{S ′iα̃, S ′jβ̃} = (K̃/
′
C)α̃β̃δij

{Q′
iα, S

′
jβ̃
} = i

δij
2

[(M ′
µνΓµΓνC)αβ̃ + 2D′δαβ̃]− (i)δαβ̃Iij

(2.17)

The last of the relation is very crucial to our analysis of restrictions imposed

by unitarity. Note that this relation involves the R-symmetry generators. Thus

unlike ordinary supersymmetry the R-symmetry does not entirely decouple from

the rest of the algebra in case of SCA. This feature is commonto all the SCA

irrespective of the space time dimensions. Note here the primed P and K are

to be interpreted as the eucledian version of the momentun and superconformal

generators as described in the preveous section.

12



2.3 The unitary representations of the d = 3 superconformal algebra

Structure of unitary representations of SCA

The Unitary irreducible representation of a superconformal algebra can be written

as the direct sum of irreducible representations of the its conformal subalgebra

(SO(d, 2)). Here of course the maximal compact part of the bosonic subalgebra

is SO(2) ⊗ SO(d) ⊗ R − symmetry. In this case there is one more additional

subtlety; besides the bosonic or even generators we have to take into account the

odd generators. The primary states are specified by the highest weight state of

this compact bosonic subalgebra. These states are annihilated by the K ′ and

S ′ oprerators; for an irrep of the SCA these primary states are irreps of this

compact subalgera. Now just as P ′ acts on these states to build the conformal

tower, they may also be acted upon by the Q′s. However unlike the P ′s the Q′s

being fermionic generate only a finite number of states by acting on the primary

states. Let us refer to these states as the Q-generated states. Since the Q′s are

charged under this maximal compact subalgebra thefore these Q-generated states

are obtained by taking a tensor product of the representation borne by the Q′s

and that of the primary states (and states derived form them). Here we must

be careful to account for the fact that Q′s squares to zero. Now each of these

Q-generated states may be taken to be a conformal primary and we can build

on them the conformal tower by acting with the P ′s. Just like conformal algera

a representation of the superconformal algebra can also have zero norm or null

states. Again here it is consistent to delete these states(and states derived from

them) from the representation as they do not mix with the non-null states under

any superconformal transformation.

In all the subsequent discussions we omit the prime for Q, S, P and K; when-

ever we refer to these operators we actually refer to their primed counterparts.

2.3 The unitary representations of the d = 3 su-

perconformal algebra

The bosonic subalgebra of the d = 3 superconformal algebra is SO(3, 2)×SO(n)

(the conformal algebra times the R symmetry algebra). The anticommuting

13



2.3 The unitary representations of the d = 3 superconformal algebra

generators in this algebra may be divided into the generators of supersymme-

try (Q) and the generators of superconformal symmetries (S). Supersymme-

try generators transform in the vector representation of the R-symmetry group

SO(n),1 have charge half under dilatations (the SO(2) factor of the compact

SO(3)× SO(2) ∈ SO(3, 2)) and are spinors under the SO(3) factor of the same

decomposition. Superconformal generators Sµi = (Qi
µ)
† transform in the spinor

representation of SO(3), have scaling dimension (dilatation charge) (−1
2
), and

also transform in the vector representation of the R-symmetry group. In our

notation for supersymmetry generators i is an SO(3) spinor index while µ is an

R symmetry vector index.

We pause to remind the reader of the structure of the commutation relations

and irreducible unitary representations of the d = 3 superconformal algebra (see

[5] and references therein ). As usual, the anticommutator between two supersym-

metries is proportional to momentum times an R symmetry delta function, and

the anticommutator between two superconformal generators is obtained by tak-

ing the Hermitian conjugate of these relations. The most interesting relationship

in the algebra is the anticommutator between Q and S. Schematically

{Sµi , Qj
ν} ∼ δµνT

j
i − δjiM

µ
ν

Here T ji are the U(2) ∼ SO(3) × SO(2) generators and Mµ
ν are the SO(n) gen-

erators.

Irreducible unitary lowest energy representations of this algebra possess a

distinguished set of lowest energy states called primary states. Primary states

have the lowest value of ε0 – the eigenvalue of the dilatation (or energy) operator –

of all states in their representation. They transform in irreducible representation

of SO(3)× SO(n), and are annihilated by all special superconformal generators

and special conformal generators.2

Primary states are special because all other states in the unitary (always

infinite dimensional) representation may be obtained by acting on the primary

1In the literature on the worldvolume theory of the M2 brane, the supercharges are taken
to transform in a spinor of SO(8). This is consistent with the statement above, because for
n = 8, the vector and spinor representations are related by a triality flip and a change of basis
takes one to the other.

2i.e. all generators of negative scaling dimension.
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2.3 The unitary representations of the d = 3 superconformal algebra

with the generators of supersymmetry and momentum. For a primary with energy

ε0, a state obtained by the action of k different Q s on the primary has energy

ε0 + k
2
, and is said to be a state at the kth level in the representation. The energy,

SO(3) highest weight (denoted by j = 0, 1
2
, 1 . . .) and the R-symmetry highest

weights (h1, h2 . . . h[n/2])
1 of primary states form a complete set of labels for the

entire representation in question.

Any irreducible representation of the superconformal algebra may be decom-

posed into a finite number of distinct irreducible representations of the conformal

algebra. The latter are labeled by their own primary states, which have a defi-

nite lowest energy and transform in a given irreducible representation of SO(3).

The state content of an irreducible representation of the superconformal alge-

bra is completely specified by the quantum numbers of its constituent conformal

primaries.

As we have mentioned in the introduction, the superconformal algebra pos-

sesses special short or BPS representations which we will now explore in more

detail. Consider a representation of the algebra, whose primary transforms in

the spin j representation of SO(3) and in the SO(n) representation labeled by

highest weights {hi} i = 1, · · · ,
[
n
2

]
. We normalize primary states to have unit

norm. The superconformal algebra – plus the Hermiticity relation (Qi
µ)
† = Sµi –

completely determines the inner products between any two states in the represen-

tation. All states in an unitary representation must have positive norm: however

this requirement is not algebraically automatic, and, in fact imposes a nontrivial

restriction on the quantum numbers of primary states. This restriction takes the

form ε0 ≥ f(j, hi) as we will now explain.2

Let us first consider descendant states, at level one, of a representation whose

primary has SO(3) and SO(n) quantum numbers j, (h1 . . . h[n/2]). It is easy to

compute the norm of all such states by using the commutation relations of the

algebra. As long as j 6= 0 it turns out that the level one states with lowest norm

transform in the spin j − 1
2

representation of the conformal group and in the

1hi are eigenvalues under rotations in orthogonal 2 planes in Rn. Thus, for instance,
{hi} = (1, 0, 0, ..0) in the vector representation

2These techniques have been used in the investigation of unitarity bounds for conformal
and superconformal algebras in [2, 3, 4, 5, 18, 19].
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2.3 The unitary representations of the d = 3 superconformal algebra

(h1 + 1, {hi}) i = 2, · · · ,
[
n
2

]
representation of SO(n) [5]. The highest weight

state in this representation may be written explicitly as (see [19])

|Zn1〉 = A−
1 |h.w〉 ≡

(
Q
− 1

2
1 −Q

1
2
1 J−

(
1

2Jz

))
|h.w〉 (2.18)

where J− denotes the spin lowering operator of SO(3) and Q
± 1

2
1 are supersymme-

try operators with j = ±1
2

and (h1, h2, . . . h[n/2]) = (1, 0, . . . , 0). Here |h.w〉
is a highest weight state with energy ε0, SU(2) charge j and SO(n) charge

(h1, h2, . . . , h[n/2]). The norm of this state is easily computed and is given by,

〈Zn1|Zn1〉 =

(
1 +

1

2j

)
(ε0 − j − h1 − 1) (2.19)

It follows that the non negativity of norms of states at level one (and so the

unitarity of the representation) requires that the charges of the primary should

satisfy

ε0 ≥ j + h1 + 1 (2.20)

For j 6= 0 this inequality turns out to be the necessary and sufficient condition

for a representation to be unitary.

When the primary saturates the bound (2.20) the representation possess zero

norm states: however it turns out to be consistent to define a truncated represen-

tation by simply deleting all zero norm states. This procedure yields a physically

acceptable representation whose quantum numbers saturate (2.20). This trun-

cated representation is unitary (has only positive norms) but has fewer states

than the generic representation, and so is said to be ‘short’ or BPS.

The set of zero norm states we had to delete, in order to obtain the BPS

representation described above, themselves transform in a representation of the

superconformal algebra. This representation is labeled by the primary state |Zn1〉
(see (2.18)).

Let us now turn to the special case j = 0. In this case |Zn1〉 is ill defined and

does not exist; no states with its quantum numbers occur at level one. The states

of lowest norm at level one transform in the spin half SO(3) representation, and

have SO(n) highest weights h′1 = h1 + 1, {hi} i = 2, · · · , n
2
. The highest weight

state in this representation is |Zn2〉 = A+
1 |h.w.〉 ≡ Q

1
2
1 |h.w〉. The norm of this
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2.3 The unitary representations of the d = 3 superconformal algebra

state is (ε0−h1). Unitarity thus imposes the constraint ε0 ≥ h1. However, in this

case, this condition is necessary but not sufficient to ensure unitarity, as we now

explain.

As we have remarked above, the state |Zn1〉 = A−
1 |h.w〉 is ill defined when

j = 0. However |s2〉 =
(
A+

1 A
−
1

)
|h.w〉 = Q

1
2
1Q

− 1
2

1 |h.w〉 is well defined even in this

situation (when j = 0). The norm of this state is easily computed and is given

by,1

〈s2|s2〉 = (ε0 + j − h1)(ε0 − j − h1 − 1). (2.21)

It follows that, at j = 0, the positivity of norm of all states requires either that

ε0 ≥ h1+1 or that ε0 = h1. This turns out to be the complete set of necessary and

sufficient conditions for the existence of unitary representations. Representations

with j = 0 and ε0 = h1 + 1 or ε0 = h1 are both short. The representation at

ε0 = h1 is an isolated short representation since there is no representation in the

energy gap h1 ≤ ε0 ≤ (h1 + 1); its first zero norm state occurs at level one. The

first zero norm state in the j = 0 representation at ε0 = h1 + 1 occurs at level 2

and is given by |s2〉.
In summary, short representations occur when the highest weights of the pri-

mary state satisfy one of the following conditions [5].

ε0 =j + h1 + 1 when j ≥ 0,

ε0 =h1 when j = 0.
(2.22)

The last condition gives an isolated short representation.

1When j 6= 0, the norm of |s2〉 had to be proportional to (ε0 − j − h1 − 1) simply because
the norm of |s2〉 must vanish whenever |Zn1〉 is of zero norm. The algebra that leads to this
result is correct even at j = 0 (i.e. when |Zn1〉 is ill defined).
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Chapter 3

The constuction of all possible

indices using the d=3 SCA

In this chapter we study the way in which short representation combine into long

representation of d = 3 SCA. Then we proceed to construct all possible protected

quantities (i.e. indices) that can be inferred from the algebra alone.

3.1 Null Vectors and Character Decomposition

of a Long Representation at the Unitarity

Threshold

As we have explained in the previous subsection, short representations of the

d = 3 superconformal algebra are of two sorts. The energy of a ‘regular’ short

representation is given by ε0 = j + h1 + 1. The null states of this representation

transform in an irreducible representation of the algebra. When j 6= 0 the highest

weights of the primary at the head of this null irreducible representation is given

in terms of the highest weights of the representation itself by ε′0 = ε0 + 1
2
, j′ =

j − 1
2
, h′1 = h1 + 1, h′i = hi. Note that ε′0 − j′ − h′1 − 1 = ε0 − j − h1 − 1 = 0,

so that the null states also transform in a regular short representation. As the

union of the ordinary and null states of such a short representation is identical

to the state content of a long representation at the edge of the unitarity bound,

18



3.2 Indices

we conclude that

lim
δ→0

χ[j+h1+1+δ, j, h1, hj] = χ[j+h1+1, j, h1, hj]+χ[j+h1+3/2, j− 1

2
, h1+1, hj]

(3.1)

where χ[ε0, j, hi] denotes the supercharacter of the irreducible representation with

energy ε0, SO(3) highest weight j and SO(n) highest weights {hi}. Note that

the χ s appearing on the RHS of (3.1) are the supercharacters corresponding to

short representations.

On the other hand when j = 0 the null states of the regular short repre-

sentation occur at level 2 and are labelled by a primary with highest weights

ε′0 = ε0 + 1, j′ = 0, h′1 = h1 + 2, h′i = hi. Note in particular that j′ = 0 and

ε′0 − h′1 = ε0 − h1 − 1 = 0. It follows that the null states of this representation

transform in an isolated short representation, and we conclude

lim
δ→0

χ[h1 +1+ δ, j = 0, h1, hj] = χ[h1 +1, j = 0, h1, hj]+χ[h1 +2, j = 0, h1 +2, hj]

(3.2)

Recall that isolated short representations are separated from all other repre-

sentations with the same SO(3) and SO(n) quantum numbers by a gap in energy.

As a consequence it is not possible to ‘approach’ such representations with long

representations; consequently we have no equivalent of (3.2) at energies equal to

h1 + δ.

For use below we define some notation. We will use c(j, hi) (with i =

1, 2, . . . , [n
2
]) to denote a regular short representation with SO(3) and SO(n)

highest weights j, hi respectively and ε0 = j + h1 + 1 (when j ≥ 0). We will also

use the symbol c(−1
2
, h1, hj) (with h1 ≥ h2 − 1) to denote the isolated short rep-

resentation with SO(3) quantum number 0, SO(n) quantum numbers h1 + 1, hj

(here j = 2, 3, . . . , [n
2
]) respectively and ε0 = h1 + 1. The utility of this notation

will become apparent below.

3.2 Indices

The state content of any unitary superconformal quantum field theory may be

decomposed into a sum of an (in general infinite number of) irreducible repre-

sentations of the superconformal algebra. This state content is completely de-
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3.2 Indices

termined by specifying the number of times any given representation occurs in

this decomposition. Consider any linear combination of the multiplicities of short

representations. If this linear combination evaluates to zero on every collection

of representations that appears on the RHS of each of (3.1) and (3.2) (for all val-

ues of parameters), it is said to be an index. It follows from this definition that

indices are unaffected by all possible pairing up of short representations into long

representations, and so are invariant under any deformation of superconformal

Hilbert space under which the spectrum evolves continuously. We now proceed

to list these indices.

1. The simplest indices are simply given by the multiplicities of representations

in the spectrum that never appear on the RHS of (3.2) and (3.1) (for any

values of the quantum numbers of the long representations on the LHS of

those equations). All such representations are easy to list; they are SO(3)

singlet isolated representations whose SO(n) quantum number h1−|h2| ≤ 1

where h1 and h2 are both either integers or half integers, and h1 ≥ |h2| ≥ 0.

2. We can also construct indices from linear combinations of the multiplicities

of representations that do appear on the RHS of (3.2) and (3.1). The

complete list of such linear combinations is given by

IM,{hj} =

M−|h2|∑
p=−1

(−1)p+1n{c(p
2
,M − p, hj}, (3.3)

where n[R] denotes the multiplicities of representations of type R and the

index label M is the value of h1 + 2j for every regular short representation

that appears in the sum above. Thus M ≥ |h2| and both M and h2 are

either integers or half-integers.Also the set {hj} must satisfy the condition

h2 ≥ h3..... ≥ |h[n
2
]| where all the hi are either integers or all are half-

integers.
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Chapter 4

The constuction of the Witten

index

In this chapter we shall present a trace formula for the Witten index and demon-

state that it is the most general index that can be inferred from the algebra

alone.

4.1 Minimally BPS states: distinguished super-

charge and commuting superalgebra

We will now describe states that are annihilated by at least one supercharge and

its conjugate. Consider the special supercharge Q with charges (j = −1
2
, h1 =

1, hi = 0, ε0 = 1
2
). Let S = Q†; it is easily verified that

{S,Q} = ∆ = ε0 − (h1 + j) (4.1)

Below we will be interested in a partition function over states annihilated by Q.

Clearly all such states transform in irreducible representations of that subalgebra

of the superconformal algebra that commutes with Q,S and hence ∆. This

subalgebra is easily determined to be a real form of the supergroup D(n−2
2
, 1) or

B(n−3
2
, 1), depending on whether n is even or odd. We follow the same notation

as [5].
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4.2 A Trace formula for the general index and its Character
Decomposition

The bosonic subgroup of this commuting superalgebra is SO(2, 1)× SO(n−
2). The usual Cartan charge of SO(2, 1) (the SO(2) rotation) and the Cartan

charges of SO(n − 2) are given in terms of the Cartan elements of the parent

superconformal algebra by

E = ε0 + j, Hi = hi+1

(
with i = 1, 2, . . . , [

n− 2

2
]

)
. (4.2)

4.2 A Trace formula for the general index and

its Character Decomposition

Let us define the Witten index

IW = TrR[(−1)F exp(−ζ∆ +G)], (4.3)

where the trace is evaluated over any Hilbert space R that hosts a representation

(not necessarily irreducible) of the superconformal algebra. Here F is the Fermion

number operator; by the spin statistics theorem F = 2j in any quantum field

theory. G is any element of the subalgebra that commutes with {S,Q,∆}; by

a similarity transformation, G may be rotated into a linear combination of the

Cartan generators of the subalgebra.

The Witten index (A.7) receives contributions only from states that are anni-

hilated by both Q and S (all other states yield contributions that cancel in pairs)

and have ∆ = 0. So, it is independent of ζ. The usual arguments (as given in

appendix A and also see [8]) ensure that IW is an index; consequently it must be

possible to expand IW as a linear sum over the indices defined in the previous

section. In fact it is easy to check that for any representation A(reducible or

irreducible),

IW (A) =
∑
M,{hi}

IM,{hi}χsub(M+2, hi)+
∑

{hj},h1−|h2|=0,1

n{c(−1

2
, h1−1, hi)}χsub(h1, hi).

(4.4)

where χsub(E,Hi) (with i = 1, 2, . . . , [n−2
2

]) is the supercharacter of the sub-

algebra1 with E and Hi being the highest weights of a representation of the

1The supercharacter of a representation R is defined as χsub(R) = trR(−1)F tr eµ·H, where
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4.2 A Trace formula for the general index and its Character
Decomposition

subalgebra in the convention defined by (4.2). In the first term on the RHS of

(4.4) the sum runs over all the values of M, {hj} for which IM,{hj} is defined (see

below (3.3)). In the second term the sum runs over all the values of the set {hj}
such that h2 ≥ h3..... ≥ |h[n

2
]|. In order to obtain (4.5) we have used

IW (c(j, h1, hj)) = (−1)2j+1χsub(2j + h1 + 2, hi) (4.5)

IW (c(j = −1

2
, h1, hj)) = χsub(h1 + 1, hj) (4.6)

Equation (4.5) asserts that the set of ∆ = 0 states (the only states that contribute

to the Witten index) in any short irreducible representation of the superconfor-

mal algebra transform in a single irreducible representation of the commuting

subalgebra. In the case of regular short representations, the primary of the full

representation has ∆ = 1. The primary of the subalgebra is obtained by acting on

the primary of the full representation with a supercharge with quantum numbers

(j = 1
2
, h1 = 1, hi = 0, ε0 = 1

2
,∆ = −1). On the other hand the highest weight

of an isolated superconformal short primary itself has ∆ = 0, and so is also a

primary of the commuting sub super algebra. Equation (4.4) follows immediately

from these facts.

Note that every index that appears in the list of subsection 2.3 appears as the

coefficient of a distinct subalgebra supercharacter in (4.4). As supercharacters

of distinct irreducible representations are linearly independent, it follows that

knowledge of IW is sufficient to reconstruct all superconformal indices of the

algebra. In this sense (4.4) is the most general index that is possible to construct

from the superconformal algebra alone.

µ ·H is some linear combination of the Cartan generators specified by a chemical potential
vector µ. F is defined to anticommute with Q and commute with the bosonic part of the
algebra. The highest weight state is always taken to have F = 0.
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Chapter 5

The index for the M2 brane

In this chapter we compute our index over the worldvolume theory of N M2

branes in the large N limit using the M theory graviton spectrum in AdS4 × S7.

Then we go onto compute the same quantity for the worldvolume theory of a

single M2 brane.

5.1 The index over M theory multi gravitons in

AdS4 × S7

We will now compute the Witten index defined above in specific examples of

three dimensional superconformal field theories. In this subsection we focus on

the world volume theory of the M2 brane in the large N limit. The corresponding

theory has supersymmetries and 16 superconformal symmetries. The bosonic

subgroup of the relevant superconformal algebra is SO(3, 2)×SO(8). We take the

supercharges to transform in the vector representation of SO(8); this convention

is related to the one used in much of literature on this theory by a triality flip.

In the strict large N limit, the index over the M2 brane conformal field theory

is simply the index over the Fock space of supergravitons for M theory on AdS4×
S7 [20, 21]. In order to compute this quantity we first compute the index over

single graviton states; the index over multi gravitons is given by the appropriate

Bose- Fermi exponentiation (sometimes called the plethystic exponential).1

1The index we will calculate is sensitive to 1
16 BPS states. However, the 1

8 BPS partition
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5.1 The index over M theory multi gravitons in AdS4 × S7

Single particle supergravitons in AdS4 × S7 transform in an infinite class of

representations of the superconformal algebra. The primaries for this spectrum

have charges (see [23, 24]) (ε0 = n
2
,j = 0,h1 = n

2
,h2 = n

2
, h3 = n

2
,h4 = −n

2
)

(h1, h2, h3 and h4 denote SO(8) highest weights in the orthogonal basis; recall Qs

here are taken to transform in the vector rather than the spinor of SO(8)) where

n runs from 1 to ∞ (we are working with the ‘U(N) theory; n = 1 would be

omitted for the SU(N) theory).

It is not difficult to decompose each of these irreducible representations of the

superconformal algebra into representations of the conformal algebra, and thereby

compute the partition function and the index over each of these representations.

The necessary decompositions were performed in [23], and we have verified their

results independently by means a procedure described in appendix B. The results

are listed in Table 5.1 below.1

It is now a simple matter to compute the index over single gravitons. The

Witten index for the nth graviton representation (Rn) is given by

IWRn
= Tr∆=0

[
(−1)Fxε0+jyH1

1 yH2
2 yH3

3

]
=
∑
q

(−1)2jqx(ε0+j)qχ
SO(6)
q (y1, y2, y3)

1− x2
,

(5.1)

where q runs over all conformal representations with ∆ = 0 that appear in the

decomposition of Rn in table 5.1. H1, H2, H3 are the Cartan charges of SO(6)

in the ‘orthogonal’ basis that we always use in this paper. χSO(6), the SO(6)

character, may be computed using the Weyl character formula. The full index

over single gravitons is

Isp =
∞∑
n=2

IWRn
+ IWR1

, (5.2)

function has been calculated, even at finite N , in [22]
1Some of the conformal representations obtained in this decomposition are short (as con-

formal representations) when n is either 1 or 2; the negative contributions in table 1 represent
the charges of the null states, which physically are operators set to zero by the equations of
motion. See [25]
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5.1 The index over M theory multi gravitons in AdS4 × S7

Table 5.1: d=3 graviton spectrum

range of n ε0[SO(2)] SO(3) SO(8)[orth.(Qs in vector)] ∆ contribution

n ≥ 1 n
2

0 (n
2
, n

2
, n

2
, −n

2
) 0 +

n ≥ 1 n+1
2

1
2

(n
2
, n

2
, n

2
, −(n−2)

2
) 0 +

n ≥ 2 n+2
2

1 (n
2
, n

2
, (n−2)

2
, −(n−2)

2
) 0 +

n ≥ 2 n+3
2

3
2

(n
2
, (n−2)

2
, (n−2)

2
, −(n−2)

2
) 0 +

n ≥ 2 n+4
2

2 ( (n−2)
2
, (n−2)

2
, (n−2)

2
, −(n−2)

2
) 1 +

n ≥ 2 n+2
2

0 (n
2
, n

2
, n

2
, −(n−4)

2
) 1 +

n ≥ 3 n+3
2

1
2

(n
2
, n

2
, (n−2)

2
, −(n−4)

2
) 1 +

n ≥ 3 n+4
2

1 (n
2
, (n−2)

2
, (n−2)

2
, −(n−4)

2
) 1 +

n ≥ 3 n+5
2

3
2

( (n−2)
2
, (n−2)

2
, (n−2)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+5
2

1
2

(n
2
, (n−2)

2
, (n−4)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+7
2

1
2

( (n−2)
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 4 +

n ≥ 4 n+6
2

1 ( (n−2)
2
, (n−2)

2
, (n−4)

2
, −(n−4)

2
) 3 +

n ≥ 4 n+4
2

0 (n
2
, n

2
, (n−4)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+6
2

0 (n
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 3 +

n ≥ 4 n+8
2

0 ( (n−4)
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 6 +

n = 1 2 1
2

(1
2
, 1

2
, 1

2
, 1

2
) 1 −

n = 1 5
2

0 (1
2
, 1

2
, 1

2
,−1

2
) 2 −

n = 2 3 0 (1, 1, 0, 0) 2 −
n = 2 7

2
1
2

(1, 0, 0, 0) 2 −
n = 2 4 1 (0, 0, 0, 0) 3 −

26



5.1 The index over M theory multi gravitons in AdS4 × S7

After some algebra we find

Isp =
[
− x

(
x2 − 1

)
y1y2y

2
3 +

√
x
√
y1
√
y2

(
x3 − y2 + y1

(
x3y2 − 1

))
y

3/2
3

− x
(
x2 − 1

)
(y1 + y2) (y1y2 + 1) y3 +

√
x
√
y1
√
y2

(
y2x

3 + y1

(
x3 − y2

)
− 1
)

√
y3 − x

(
x2 − 1

)
y1y2

]
/
[ (
x2 − 1

) (√
x
√
y1
√
y2 −

√
y3

)
(√

x
√
y1
√
y3 −

√
y2

) (√
x
√
y2
√
y3 −

√
y1

) (√
x−√y1

√
y2
√
y3

) ]
(5.3)

The index over the Fock-space of gravitons may now be obtained from the

above single particle index using

Ifock = exp

(∑
n

1

n
Isp(x

n, yn1 , y
n
2 , y

n
3 )

)
. (5.4)

In order to get a feel for this result, let us set yi = 1. The single graviton

index reduces to

Isp =
2
√
x (2x+

√
x+ 2)

(
√
x− 1)

2
(x+ 1)

(5.5)

In the high energy limit, x ≡ e−β → 1, this expression simplifies to Isp ≈ 20
β2 In

this limit the expression for the full Witten index Ifock in (5.4) reduces to,

Ifock ≈ exp
20ζ(3)

β2
(5.6)

It follows that the thermodynamic expectation value of ε0 + j (which we denote

by Eind
av ) is given by

Eind
av = −∂ ln Ifock

∂β
=

40ζ(3)

β3
. (5.7)

The index ‘entropy’ defined by

Ifock =

∫
dy exp{(−βy) + Sind(y)}, (5.8)

evaluates to

Sind(E) =
60ζ(3)

(40ζ(3))
2
3

E
2
3 . (5.9)
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5.1 The index over M theory multi gravitons in AdS4 × S7

It is instructive to compare this result with the relation between entropy and

E computed from the supersymmetric partition function, obtained by summing

over all supersymmetric states with no (−1)F – once again in the gravity approx-

imation. The single particle partition function evaluated on the ∆ = 0 states

with all the other chemical potentials except the one corresponding to E = ε0 + j

set to zero is given by,

Zsp(x) = tr∆=0x
E =

2
√
x(x+ 1)

(
x5/2 − 2x2 + 2x3/2 + 2x− 3

√
x+ 2

)
(
√
x− 1)

4
(x2 − 1)

, (5.10)

where once again x ≡ e−β, with β being the chemical potential corresponding to

E = ε0 + j. The bosonic and fermionic contributions to the partition function in

(5.10) are respectively given by,

Zbose
sp (x) = tr∆=0 bosonsx

E =
−
(
−x4 + 4x7/2 − 6x3 + x2 − 4x3/2 + 6x− 4

√
x
)

(1−
√
x)

5
(
√
x+ 1) (x+ 1)

(5.11)

Zfermi
sp (x) = tr∆=0 fermionsx

E =
−
(
−x4 + x2 − 4x3/2

)
(1−

√
x)

5
(
√
x+ 1) (x+ 1)

(5.12)

To obtain the index on the Fock space, we need to multi-particle the partition

function above with the correct Bose-Fermi statistics. This leads to

Zfock = exp
∑
n

Zbose
sp (xn) + (−1)n+1Zfermi

sp (xn)

n
. (5.13)

We find, that for β << 1

lnZfock =
63ζ(6)

β5
, (5.14)

and a calculation similar to the one done above yields

S(E) =
378ζ(6)

(315ζ(6))
5
6

E
5
6 . (5.15)

which is the growth of states with energy of a six dimensional gas, an answer that

could have been predicted on qualitative grounds. Recall that the theory of the

worldvolume of the M2 brane has 4 supersymmetric transverse fluctuations and

one supersymmetric derivative. Bosonic supersymmetric gravitons are in one to
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5.2 The index on the worldvolume theory of a single M2 brane

one correspondence with ‘words’ formed by acting on symmetric combinations of

these scalars with an arbitrary number of derivatives. Consequently, supersym-

metric gravitons are labelled by 5 integers ni, nd (the number of occurrences of

each of these four scalars i = 1 . . . 4 and the derivative nd) and the energy of these

gravitons is E = 1
2
(
∑

i ni) + nd. This is the same as the formula for the energy

of massless photons in a five spatial dimensional rectangular box, four of whose

sides are of length two and whose remaining side is of unit length, explaining the

effective six dimensional growth.

We conclude that the growth of states in the effective index entropy is slower

than the growth of supersymmetric states in the system; this is a consequence of

partial Bose-Fermi cancellations (due to the (−1)F ).

5.2 The index on the worldvolume theory of a

single M2 brane

We will now compute our index over the worldvolume theory of a singleM2 brane.

For this free theory, the single particle state content is just the representation

corresponding to n = 1 in Table 5.1 of the previous subsection. This means

that it corresponds to the representation of the d = 3 superconformal group with

the primary having charges ε0 = 1
2
, j = 0 and SO(8) highest weights (in the

convention described above) [1
2
, 1

2
, 1

2
,−1

2
].

For the reader’s convenience, we reproduce the conformal multiplets that ap-

pear in this representation in the Table below. Physically, these multiplets corre-

spond to the 8 transverse scalars, their fermionic superpartners and the equations

of motion for each of these fields.1

letter ε0 j [h1, h2, h3, h4] ∆ = ε0 − j − h1

φa 1
2

0 [1
2
, 1

2
, 1

2
,−1

2
] 0

ψa 1 1
2

[1
2
, 1

2
, 1

2
, 1

2
] 0

∂/ψa = 0 2 1
2

[1
2
, 1

2
, 1

2
, 1

2
] 1

∂2φa = 0 5
2

0 [1
2
, 1

2
, 1

2
,−1

2
] 2

(5.16)

1Please see [26, 27] and references therein for more details on this worldvolume theory and
[40] for some recent work.
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5.2 The index on the worldvolume theory of a single M2 brane

The index over these states is

Isp
M2

(x, yi) = Tr
[
(−1)Fxε0+jyH1

1 yH2
2 yH3

3

]
=
x

1
2 (1 + y1y2 + y1y3 + y2y3)− x

3
2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1− x2)

(5.17)

For simplicity, let us set yi → 1. Then, we find

Isp
M2

(x, yi = 1) =
4x

1
2

1 + x
(5.18)

Multiparticling this index, to get the index over the Fock space on the M2 brane,

we find that

IM2(x, yi = 1) = exp
∑
n≥1

IM2(x
n, yi = 1)

n

=

(∏
n≥0

1− x2n+ 3
2

1− x2n+ 1
2

)4 (5.19)

At high temperatures x ≡ e−β → 1, the index grows as

IM2 |x→1,yi=1 =

(
β

2

)−2

(5.20)

The single particle supersymmetric partition function, obtained by summing

over all ∆ = 0 single particle states with no (−1)F is,

Zsusy,sp
M2

(x, yi) = Tr∆=0

[
xε0+jyH1

1 yH2
2 yH3

3

]
=
x

1
2 (1 + y1y2 + y1y3 + y2y3) + x

3
2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1− x2)

(5.21)

Setting yi → 1,

Zsusy,sp
M2

(x, yi = 1) =
4x

1
2

1− x
(5.22)

with individual contributions from bosons and fermions being

Zsusy,sp,bose
M2

(x) = tr∆=0 bosonsx
E =

4x
1
2

(1− x2)

Zsusy,sp,fermi
M2

(x) = tr∆=0 fermionsx
E =

4x
3
2

(1− x2)

(5.23)
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5.2 The index on the worldvolume theory of a single M2 brane

Finally, multi-particling this partition function with the appropriate bose-fermi

statistics, we find that

ZM2(x, yi = 1) =

(∏
n≥0

1 + x2n+ 3
2

1− x2n+ 1
2

)4

(5.24)

At high temperatures x→ 1, the supersymmetric partition function grows as

ZM2(x→ 1, yi = 1) ≈ exp

{
π2

2β

}
(5.25)

Note, that this partition function grows significantly faster at high temperatures

than the index (5.19).
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Chapter 6

The index for d=3

Chern-Simons’s matter theories

In this chapter, we will calculate the Witten index described above for a class

of the superconformal Chern Simons matter theories recently studied by Gaiotto

and Yin [12]. The theories studied by these authors are three dimensional Chern

Simons gauge theories coupled to matter fields; we will focus on examples that

enjoy invariance under a superalgebra consisting of 4 Qs and 4 Ss (i.e. the R

symmetry of these theories is SO(2)). The matter fields, which may thought of as

dimensionally reduced d = 4 chiral multiplets, carry the only propagating degrees

of freedom. The general constructions of Gaiotto and Yin allow the possibility of

nonzero superpotentials with a coupling α that flows in the infra-red to a fixed

point of order 1
k

where k is the level of the Chern Simons theory. In our analysis

below we will focus on the limit of large k. In this limit, the theory is ‘free’ and

moreover we may treat 1
k

as a continuous parameter. The arguments above then

indicate index that we compute below for the free theory will be invariant under

small deformations of 1
k
.

Consider this free conformal 3 dimensional theory on S2. We are interested in

calculating the letter partition function (i.e. the single particle partition function)

for the propagating fields which comprise a complex scalar φ and its fermionic

superpartner ψ. This may be done by enumerating all operators, linear in these

fields, modulo those operators that are set to zero by the equations of motion.

We will be interested in keeping track of several charges: the energy ε0, SO(3)
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angular momentum j, SO(2) R-charge h and ∆ = ε0 − h− j of our states. The

following table (which lists these charges) is useful for that purpose

letter ε0 j h ∆ = ε0 − j − h
φ 1

2
0 1

2
0

φ∗ 1
2

0 −1
2

1
ψ 1 1

2
−1
2

1
ψ∗ 1 1

2
1
2

0
∂µ 1 {±1, 0} 0 {0, 2, 1}

∂µσ
µψ = 0 2 1

2
−1
2

2
∂µσ

µψ∗ = 0 2 1
2

1
2

1
∂2φ = 0 5

2
0 1

2
2

∂2φ∗ = 0 5
2

0 −1
2

3

(6.1)

The last four lines, with equations of motion count with minus signs in the parti-

tion function. The list above comprises two separate irreducible representations

of the superconformal algebra. φ, ψ and derivatives on these letters make up one

representation. The other representation consists of the conjugate fields.

Let the partition functions over these two representations be denoted by z1

and z2. We find

z1[x, y, t] = trφ,ψ,...(x
2ε0y2jth) =

t
1
2x(1 + x2) + t

−1
2 x2(y + 1/y)

(1− x2y2)(1− x2/y2)

z2[x, y, t] = trφ∗,ψ∗,...(x
2ε0y2jt2h) =

t
−1
2 x(1 + x2) + t

1
2x2(y + 1/y)

(1− x2y2)(1− x2/y2)

(6.2)

The index (A.7) over single particle states is obtained by setting t→ 1/x, y → −1

I1[x] = z1[x,−1, 1/x] = tr((−1)F (x)2ε0−h) =
x

1
2

1− x2

I2[x] = z2[x,−1, 1/x] = tr((−1)Fx2ε0−h) =
−x 3

2

1− x2

I[x] = I1[x] + I2[x] =
x

1
2

1 + x

(6.3)

In terms of these quantities, the index of the full theory is given by[28, 29]

IW =

∫
DU exp

[
∞∑
n=1

∑
m

I(xn)

n
TrRm(Un)

]
(6.4)
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6.1 Adjoint Matter

where m run over the chiral multiplets of the theory, which are taken to transform

in the Rm representation of U(N), and TrRm is the trace of the group element in

the Rth
m representation of U(N).

In the large N limit the integral over U in (6.4) may be converted into an inte-

gral over the eigenvalue distribution of U , ρ(θ), which, in turn, may be computed

via saddle points.1 The Fourier coefficients of this eigenvalue density function are

given by:

ρn =

∫ π

−π
ρ(θ) cos(nθ) (6.5)

6.1 Adjoint Matter

In order to get a feel for this formula, we specialize to a particular choice of

matter field content. We consider a theory with c matter fields all in the adjoint

representation. In the large N limit the index is given by

I(x) = Trcoloursinglets(−1)Fx2ε0−h

=

∫
dρn exp

(
−N2

∞∑
n=1

1

n
(1− cI[xn])ρ2

n

)
(6.6)

The behaviour of this index as a function of x is dramatically different for c ≤ 2

and c ≥ 3. In order to see this note that at any given value of x, the saddle point

occurs at ρ(θ) = 1
2π

i.e ρ0 = 1, ρn = 0, n > 0 provided that[28, 29]

1− cI[xn] > 0,∀n (6.7)

In this case the saddle point contribution to the index vanishes; the leading

contribution to the integral is then from the Gaussian fluctuations about this

saddle point. Under these conditions the logarithm of the index or the ’free-

energy’ 2 is then of order 1 in the 1
N

expansion.

It is easy to check that (6.7) is satisfied at all values of x (which must lie

between zero and one in order for (A.7) to be well defined) when c ≤ 2. On the

1 Note that Nρ(θ)dθ gives the number of eigenvalues between eiθ and ei(θ+dθ) and∫ π

−π
ρ(θ)dθ = 1, ρ(θ) ≥ 0
2We use this term somewhat loosely, since we are referring here to an index and not a

partition function
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6.2 Fundamental Matter

other hand, if c ≥ 3 this condition is only met for

x <

(
1

2

(
c−

√
c2 − 4

))2

(6.8)

At this value of x the coefficient of ρ2
1 in (6.6) switches sign and the saddle point

above with a uniform eigenvalue distribution is no longer valid. The new saddle

point that dominates this integral above this value of x, has a Gross-Witten type

gap in the eigenvalue distribution. The index undergoes a large N first order

phase transition at the critical temperature listed in (6.8). At and above this

temperature the ’free-energy’ is of order N2.

Note that I(1) = 1
2
. It follows that the index is well defined even at strictly

infinite temperature This is unlike the logarithm of the actual partition function

of the same theory, whose x → 1 limit scales like N2/(1 − x)2 as x → 1 (for

all values of c) reflecting the T 2 dependence of a 2+1 dimensional field theory.

This difference between the high temperature limits of the index and the par-

tition function reflects the large cancellations of supersymmetric states in their

contribution to the index.

6.2 Fundamental Matter

As another special example, let us consider a theory whose Nf matter fields all

transform in the fundamental representation of U(N). We take the Veneziano

limit: Nc →∞, c =
Nf

Nc
fixed. The index for the theory is now given by

I(x) = Trcoloursinglets(−1)Fx2ε0−h

=

∫
dρn exp(−N2

∞∑
n=1

(ρn − cI[xn])2 − c2I[xn]2

n
)

(6.9)

At low temperatures the integral in (6.9) is dominated by the saddle point

ρn = cI(xn) (6.10)

As the temperature is raised the integral in (6.9) undergoes a Gross-Witten type

phase transition when c is large enough. This is easiest to appreciate in the limit

c � 1. In this limit ρ1 = 1
2

in the low temperature phase when at x ≈ 1
4c2

,
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6.2 Fundamental Matter

and ρn = 1
2ncn−1 � 1. At approximately this value of x the low temperature

eigenvalue distribution ρ(θ) formally turns negative at θ = π. This is physically

unacceptable (as an eigenvalue density is, by definition, intrinsically positive).

In actual fact the system undergoes a phase transition at this value of x. At

large c this phase transition is very similar to the one described by Gross and

Witen in [30] and in a more closely related context by [31]. The high temperature

eigenvalue distribution is ‘gapped’ i.e. it has support on only a subset (centered

about zero) of the interval (−π, π).

For this phase transition to occur, we need c ≥ 3. To arrive at this result, we

notice that the distribution (6.10) implies

lim
x→1−

ρ(π) = lim
x→1−

ρ(−π) =
1

π

(
1

2
− c

4

)
(6.11)

So, for c ≥ 3, ρ(π) would always turn negative for some value of x. Beyond this

temperature the saddle point (6.10) is no longer valid.
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Chapter 7

Discussions

In this thesis we have presented formulae for the most general superconformal

index for superconformal algebras in 3 dimensions. This is done following the

analogous construction of an index for four dimensional conformal field theories

presented in [9]. Similar construction for 5 and 6 dimensions may be found in [1].

We hope that our work will find eventual use in the study of the space of

superconformal field theories in 3 dimensions. It has recently become clear that

the space of superconformal field theories in four dimensions is much richer than

previously suspected [33]. The space of superconformal field theories in d = 3

may be equally intricate, although this question has been less studied. As our

index is constant on any connected component in the space of superconformal

field theories, it may play a useful role in the study of this space.

In this thesis we have also demonstrated that the most general superconformal

index is captured by a simple trace formula. This observation may turn out to

be useful as traces may easily be reformulated as path integrals, which in turn

can sometimes be evaluated, using either perturbative techniques or localization

arguments.

Aharony, Bergman, Jaffiers and Maldacena (ABJM) have recently proposed

that a class of d = 3, U(N) ⊗ U(N) N=6 superconformal Chern Simons field

theories (at level k) admit a dual description in terms of M theory compactified

on AdS4 ⊗ S7/Zk [40]. This theory has the discrete parameters N and k which

can take integral values. Now in the ’t Hooft’s limit (N → ∞ with λ = N/k

fixed) λ = N/k effectively becomes a continuous parameter. Then in this ’tHooft
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scaling limit it is possible to verify the ABJM proposal (see [41] for more details)

by computing the index, constructed in this thesis, at λ = 0 using the field

description (by evaluating a path integral using techniques of [14]) and at large λ

using the spectrum of gravitons in AdS4⊗S7/Zk. The result at large λ may also

be obtained by taking a particular limit (see [41]) of the index computed over

the graviton spectrum in AdS4 ⊗ S7 presented in chapter 5. This amounts to a

direct and important application of the index constructed in this thesis. It would

be interesting to study this proposed equivalence away from this ’t Hooft scaling

limit at finite k (specially for k = 1, 2 where enhanced symmetries are expected).

Again the index computed in this thesis might be useful in such a study.
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Appendix A

Arguments for Witten Index to
be a protected quantity

In all the dimensions we have chosen a special Q. Also we have S such that

Q† = S. Then we defined a quantity ∆ through the following relations,

{S,Q} = ∆. (A.1)

Now consider a unitary representation(R) of the concerned superconformal

algebra. We then consider the various subspaces(R∆) of this representation char-

acterized by their value under ∆.

All ∆ 6= 0 subspaces can be split into a direct sum of two subspaces one which

is annihilated by Q (but not by S; we denote it by RQ
∆) and the other annihilated

by S(but not by Q; we denote it by RS
∆).

proof

States in a ∆ 6= 0 subspace can be of four kind; two of these are states that lie in

RS
∆ and RQ

∆. The other two cases include states that are annihilated by both Q

and S, and states that are annihilated by neither of them.

Let us consider a state |ψ〉 such that it satisfies simultaneously,

Q|ψ〉 6=0,

S|ψ〉 6=0,

∆|ψ〉 =∆0|ψ〉, with ∆0 6= 0.

(A.2)
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However the states SQ|ψ〉 and QS|ψ〉 clearly belong to RS
∆ and RQ

∆ respec-

tively.

But,

∆|ψ〉 = SQ|ψ〉+QS|ψ〉, (A.3)

which implies,

|ψ〉 =
1

∆0

(SQ|ψ〉+QS|ψ〉) , (A.4)

which clearly shows that whenever |ψ〉 satisfies (A.2) it can be written as a linear

combination of states in RS
∆ and RQ

∆.

Now if possible let there exist a state |ψ〉 such that it satisfies simultaneously

all the following conditions,

Q|ψ〉 =0,

S|ψ〉 =0,

∆|ψ〉 =∆0|ψ〉, with ∆0 6= 0.

(A.5)

Then since,

∆|ψ〉 = (SQ+QS)|ψ〉, (A.6)

the above scenario (i.e. (A.5)) is clearly impossible.

Thefore a basis in RS
∆ and RQ

∆ spans the entire ∆ = ∆0 subspace. QED

We note that for ∆ 6= 0 there is a one-one correspondence between the states

in RQ
∆ and RS

∆ with S providing the map (and Q
∆0

proving the inverse map).

Now we define a quantity,

IW = TrR[(−1)F exp(−ζ∆ +G)], (A.7)

whereG is any element of the subalgebra that commutes with the set {Q,S,∆}.
Then for ∆ 6= 0 the states in R∆ do not contribute to IW as the contributions

from RS
∆ and RQ

∆ cancel. Thus IW receives contribution only from the ∆ = 0

subspace and hence it is independent of ζ. Since long representations do not con-

tain ∆ = 0 states therefore IW evaluated over long representations is zero. Then

by continuity we conclude IW must evaluate to zero on any combination of short

representations that combine to form a long representation. Thus we conclude

IW is a protected quantity i.e. an index.
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Appendix B

The Racah Speiser Algorithm

In this appendix, we describe the Racah-Speiser algorithm, that may be used

to determine the state content of the supergraviton representations described in

Tables 5.1 . This appendix is out of the main line of this paper, since this state

content may also be found in [23, 24, 32]

First, we remind the reader how irreducible representations of Lie Algebras,

and affine Lie Algebras may be constructed using Verma modules [34, 35]. A nice

description that is particularly applicable to our situation is provided in [36].

One starts by decomposing the algebra (G) as :

G = G+ ⊕H ⊕ G− (B.1)

where G+(G−) corresponds to the positive (negative) roots of G and H is the

Cartan subalgebra.

To construct the Verma module V corresponding to a lowest weight |Ω〉, one

considers the linear space made up of the states P (G+)|Ω〉 where P is any poly-

nomial of the positive generators.

One may calculate the character of this module,

χV(µ) = trVe
µ·H (B.2)

where µ is a vector in the dual space of H. The Weyl group W of the algebra

has a natural action on H and this induces a natural action on µ. Finally, to

obtain the character of the irreducibe representation R(Ω), one symmetrizes χV
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with respect to W.

χR(Ω) =
∑
w∈W

χV(w(µ)). (B.3)

One may now read off the list of states in R using χR(Ω).

Let us elucidate the method above by constructing the character of a repre-

sentation of SU(2) of weight j. If J± denote the raising and lowering operators

and J3 be the Cartan, then the Verma module corresponding to a lowest weight

state of weight | − j〉 is spanned by the states (J+)l| − j〉 with l = 0, 1, 2, . . .. The

character for this Verma module is given by,

(χV)j(x) = trxJ3 =
∞∑
l=0

x−j+l =
x−j+1

1− x
, (B.4)

The Weyl group of SU(2) is Z2 which has two elements. One is just the identity.

The other takes x → x−1. So the character of the irreducible representation

corresponding to the highest weight j is given by

χj(x) =
xj+1

x− 1
+

x−j−1

x−1 − 1
=
xj+

1
2 − x−j−

1
2

x
1
2 − x−

1
2

. (B.5)

The corresponding theory for superalgebras is not as well known but was

developed following the work of Kac [37]. Its application to the 4 dimensional

superconformal algebra may be found in [19, 36]. Here, although we do not have

a proof of this algorithm from first principles, we have followed the natural gen-

eralization of the procedure described in [19, 38, 39] for superconformal algebras

in d = 4.

Starting with a lowest weight state one acts on this state with all the ‘raising’

operators of the algebra(which includes the supersymmetry generators). Then,

one discards null states and all their descendants as explained in the sections

above. This process results in a Verma module.

The character of this Verma module is particularly easy to construct. Al-

though the exact structure of null vectors may be quite complicated, the charges

characterizing the null state (which is all that is important for the character)

are always obtained by adding the charges of a particular supercharge (or com-

bination of supercharges) to the charges of the primary. So, the character of the
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Verma module may be obtained by counting all possible actions of supercharges

except for the specific combinations that lead to null states or their descendants.

One now symmetrizes this character over the Weyl group of the maximal

compact subgroup to obtain the character of the irreducible representation corre-

sponding to our highest weight.
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Appendix C

Charges

In this appendix, explicitly list the charges of the supersymmetry generators in

the worldvolume theory of theM2 andM5 branes and also for the superconformal

algebra in d = 5. For the M2 brane, we have 16 supersymmetry generators ‘Q’.

We use the notation [ε0, j, h1, h2, h3, h4], where ε0 is the energy, j the SO(3) charge

and h1, h2, h3, h4 are the SO(8) charges in the orthogonal basis (with a choice of

Cartans in which the Qs are in the vector). With this notation, the Qs have

charges

Q1 = [
1

2
,
1

2
, 1, 0, 0, 0] ; Q2 = [

1

2
,
1

2
,−1, 0, 0, 0],

Q3 = [
1

2
,
1

2
, 0, 1, 0, 0] ; Q4 = [

1

2
,
1

2
, 0,−1, 0, 0],

Q5 = [
1

2
,
1

2
, 0, 0, 1, 0] ; Q6 = [

1

2
,
1

2
, 0, 0,−1, 0],

Q7 = [
1

2
,
1

2
, 0, 0, 0, 1] ; Q8 = [

1

2
,
1

2
, 0, 0, 0,−1],

Q9 = [
1

2
,−1

2
, 1, 0, 0, 0] ; Q10 = [

1

2
,−1

2
,−1, 0, 0, 0],

Q11 = [
1

2
,−1

2
, 0, 1, 0, 0] ; Q12 = [

1

2
,−1

2
, 0,−1, 0, 0],

Q13 = [
1

2
,−1

2
, 0, 0, 1, 0] ; Q14 = [

1

2
,−1

2
, 0, 0,−1, 0],

Q15 = [
1

2
,−1

2
, 0, 0, 0, 1] ; Q16 = [

1

2
,−1

2
, 0, 0, 0,−1].

, (C.1)
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Appendix D

Classical Lie Super Algebras and
Super Conformal Algebras

The simple finite dimensional Lie super Algebra consists of an even part G0 and

an odd part G1. If G1 bears a reducible represenaion (type-I) or irreducible

representation (type-II) of G0 then the Lie Super algebra is said to be classical.

The type-I Classical Lie Super Algebras can be classified as shown in table

D.1. Note that the even part (G0) of the algebra consists of ordinary semisiple

algebras.

Table D.1: Classification of type-II classial lie super algebra
The Classical Lie Super The even part Representaion of

Algebra (G0 +G1) (G0) G0 on G1

B(m,n) Bm + Cn vector ⊗ vector
D(m,n) Dm + Cn vector ⊗ vector
D(2, 1, α) A1 + A1 + A1 vector ⊗ vector ⊗ vector
F (4) B3 + A1 spinor ⊗ vector
G(3) G2 + A1 spinor ⊗ vector
Q(n) An adjoint

The more common notation for the ordinary lie algebras are tabulated in table

D.2.

For type-I Classial Lie Super Algebras(CLSA) the representation of G0 on

G1 is reducible. However G1 consists of two pieces G1̄ and G−1̄ such that they

individually bear irreps of G0. For basic type-I CLSA these two representations
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Table D.2: Common notations for ordinary lie algebras
Cartan Notation common Notation

An SU(n+ 1)
Bn SO(2n+ 1)
Cn Sp(n)
Dn SO(2n)

are contragradient of each other (i.e. weights are negetive of each other). The

classification of type-I Classical Lie Super Alegbra is given in table D.3.

The Classical Lie Super The even part Representaion of
Algebra (G0 +G1) (G0) G0 on G1

A(m,n) Am + An+ C vector ⊗ vector ⊗ C
A(m,m) Am + Am vector ⊗ vector
C(n) Cn−1+ C vector ⊗ C

P (n) An Anti-Symmetric tensor
(on G1̄ An is represented
as the symmetric tensor)

Table D.3: Classification of type-II classial lie super algebra

Note that the P (n) type of CLSA is not a basic type-I. This is because in this

case the representation of An on G1̄ is not contragradient to that on G−1̄. Also

in table D.3 the C denotes the algebra of Complex numbers and C denotes its

one dimensional representation.

Having enlisted the classification of CLSA we now discuss how the SCA that

we have discussed in chapter2 fits into this classification. Here we will find that the

requirement that SCA must be one of these CLSA turns out to be very restrictive.

In fact this criterion makes it impossible for SCAs to occur in dimensions greater

than six.

As we have seen in a super conformal algebra the conformal algebra SO(d, 2)

is represented spinorially on the odd generators by the spin statistics theorem.

Among the CLSA the ones which have SO(d + 2) (whic we loosely take to be

SO(d+2)) as a subalgebra in the even sector are B(m,n), D(m,n) and F (4) (refer

to table D.1). However for the first two the SO(d, 2) is represented vectorically
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on the odd part. Hence they do not serve our purpose. F (4) on the other hand

has SO(7) (∼ SO(5, 2)) represented as spinors on the odd part. Thus F (4) serves

as the super conformal algebra in five space-time dimensions. Here the other part

of the bosonic subalgebra namely SU(2) (A1) serves as the R-symmetry group

and the fermionic generators lie in the vector of this SU(2).

Futher certain isomorphism between algebras makes it possile to have SCA

in lower dimensions. SO(5) (∼ SO(3, 2)) is isomorphic to Sp(2) or C2. Hence

B(m,2) and D(m,2) are SCA in three dimensions with R-symmetry identified to be

SO(2m) or SO(2m+ 1). Again the SO(6) (∼ SO(4, 2)) is isomorphic to SU(4).

The vector of SU(4) is the spinor of SO(6); hence A(3,m) is the SCA in four

dimensions. Here the R-symmetry have to be An + C (∼ U(n)). Finally SO(8)

(∼ SO(6, 2)) have triality due to whic the vector and the spinor representatins

are identical. Hence B(4,n) with this triality transformation can serve as the SCA

in six dimensions. Here the R-symmetry is then Cn (or Sp(n)).

The SCA in any higher dimension does not fit into this classification. Which

is consistent with the fact that if we try to write down SCA in seven or higher

dimensins then the Jacobi identities arising from the prescribed commutaitoin

relations are not satisfied.
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