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Synopsis

Introduction

Quantum Chromodynamics (QCD) is the part of the standard model of particle physics

which describes the strong interaction between quarks which is mediated by gluons. Since

the long distance behaviour of QCD is not amenable to perturbative calculations, one has

to resort to alternatives to calculate, for example, the spectrum of hadrons or to study

the confinement-deconfinement cross-over (at temperature Tc) known to exist in very hot

hadronic matter. Lattice QCD [1–3] offers a first principles numerical computation of the

properties of hadronic matter.

a

x + µ̂

x

Uµ(x)

Figure 1: Space-time is discretized with the
lattice spacing as a. The gauge-link, Uµ(x),
lives on the link connecting the lattice site,
x, to x+µ̂. The smallest Wilson loop, trace
of which is the plaquette, is shown in red.

x x + µ̂

=

Uµ(x)Ūµ(x)

(1− ǫ) +ǫ
4

Figure 2: Construction of APE smeared
link. The APE smeared link (blue) is
constructed as a weighted sum of the
original thin-link and the neighbouring
paths (staples in this case) connecting
the same two points. The resulting link
is projected to SU(3).

QCD is a non-abelian quantum field theory with the symmetry group as SU(3). Like

any generic quantum field theory, QCD needs to be regulated and lattice QCD provides

iii



iv SYNOPSIS

an ultra-violet (UV) regulator through the discretisation of space-time, as shown schemat-

ically in Figure 1. The lattice spacing, a, acts as a UV regulator. The gluon fields are

introduced through the SU(3) gauge-links, Uµ(x), which live on the links connecting the

lattice sites x to x + µ̂. In the continuum, the Grassmann-valued quark fields can be

written in a component-wise manner as ψα,i(x), where the spin index, α, runs from 1 to

4, and the colour index, i, runs from 1 to 3. Naively introducing such quark fields at all

the lattice sites automatically produces 16 different copies of itself called the doublers. A

partial solution to the fermion doubling problem is offered by staggered quarks [4]. In this

formulation, the staggered fields, χi(x), which have a single spin component, live on all

lattice sites. The quark fields are constructed at even lattice sites, x, using the staggered

fields on the 16 corners of the hypercube at x. Since 4 components are required for a Dirac

fermion, this construction leads to 4 copies of each quark, called the tastes. Thus, the

quark fields are given by ψα,t,i(x), where the taste index, t, runs from 1 to 4. The pion,

which consists of one up and one down quark, now has 16 copies of itself called its taste

partners. The staggered pion operators [5] are written as ψ
α,t
(x)γαα

′

5 Γtt′ψα′,t′(x), where

the matrix γ5 determines the pseudoscalar nature of the pion and Γ, which acts in the

taste space of quarks, are products of the γ-matrices which determine the tastes of the

pion taste partners.

Gauge invariant pure-gauge observables are constructed by taking the trace of products

of gauge-links along closed loops (called Wilson loops). The trace of the smallest Wilson

loop constructed out of four such link matrices is called a plaquette. The gluon part

of the QCD action is proportional to the sum of plaquettes at all lattice sites, with the

proportionality constant being a coupling, β/3. The staggered quark action can be written

as

Sf =
∑

x,y

3
∑

i,j=1

χi(x)Dij
x,y(U)χ

j(y), (1)

with the Dirac operator, D, being a function of gauge links. In free field theory, Sf has an

SU(4) taste symmetry. However, in the presence of gauge fields (at a finite lattice spacing),

the taste symmetry is broken. As a consequence, only one of the pion taste partner (with

Γ = γ5) is the Goldstone boson while the others are heavier and non-degenerate. We

measure the extent of this taste breaking through the taste splitting, δmΓ, defined as the
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difference between the mass of a taste partner, Γ, and the Goldstone pion i.e.,

δmΓ ≡ mΓ −mγ5 . (2)

In the continuum limit, the taste symmetry is restored and the taste splittings vanish.

Qualitatively, the reason for taste breaking is the following. The different tastes of the

quark field, ψt(x), are different combinations of the staggered fields, χ, on a hypercube.

Thus, in the presence of gauge fields, the different tastes experience different Uµ(x). There-

fore, we expect rapidly fluctuating gauge fields to increase the taste breaking. Gauge-link

smearing is an algorithm to suppress such UV fluctuations in the gauge field. The algo-

rithm is to replace Uµ(x) with a gauge covariant average over paths, Uµ(x), connecting

x to x + µ̂. Various smearing schemes differ in the paths that are included and in their

weightage. We use four different smearing schemes, namely, APE [6], Stout [7], HYP [8],

and HEX [9]. We show the construction of APE smeared link in Figure 2. The weightage

given to the neighbouring paths over the original thin-link is determined by the smearing

parameter, ǫ. In a fully dynamical simulation, one replaces the thin-links occurring in the

quark action with smeared links i.e., the improved Dirac operator is D(U). Our studies

are partially quenched and we use thin-links in the fermion action, while using smeared

links whenever D occurs in the construction of operators, whose expectation values are to

be determined. Thus, we improve the valence quarks while using unimproved sea quarks.

In this thesis, we show that the lattice corrections to measurements made with smear-

ing, factorize into a smearing dependent part and a lattice spacing dependent part to a

very good approximation. Such a factorization is exact for the plaquette calculated at the

tree level in perturbation theory. This also occurs in the case of pion taste splittings in

the confined phase (studied at T = 0) i.e.,

δmΓ = f(ǫ)gΓ(a). (3)

This is the reason smearing offers a computational advantage (provided the value of f is

less than one). We discuss this in the next section.

We find smearing to perform better in reducing the taste breaking in the deconfined

phase than in the confined phase. An improvement by a factor f(ǫ) in taste at T = 0 causes

a factor f 2(ǫ) improvement in taste in the deconfined phase (as we show in a later section).

With the taste breaking in the deconfined phase reduced by an order of magnitude with
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optimal HYP smearing, we expect our measurements of physical quantities (in particular,

the hadronic screening masses) in the deconfined phase to be nearer to the continuum

after HYP-improvement.

Screening masses are the inverse screening lengths in the equilibrated QCD medium

and they are measured from the spatial correlators of different quantum channels [10]. In

the deconfined phase, weak coupling calculations [11, 12] predict that the screening masses

approach the free field theory (FFT) value, µFFT, as

µ = µFFT + αS∆ with ∆ > 0, (4)

where αS is the strong coupling constant at a momentum scale of 2πT . Results with

Wilson quarks [13] gave results that are closer to the FFT, though they differed in detail

from weak coupling prediction. On the other hand, the staggered screening masses of the

pseudoscalar (PS) and scalar (S) in the past studies with no gauge link smearing were

found to lie much below µFFT at high temperatures. Improving the taste symmetry with

optimal HYP-smeared valence quarks, we find the PS/S screening masses also to lie close

to their lattice FFT value, for T > 1.5Tc. Also, they approach the lattice FFT value

from above, as predicted. We find that the effect of taste breaking is to make the smallest

eigenvalue of the Dirac operator to increase slowly above Tc, thereby affecting all screening

phenomena.

Studies on Smearing

First, we demonstrate that smearing works by suppressing the UV more than the IR.

For this, we divide the Brillouin zone of plaquettes into UV and IR regions, and we

quantitatively study how smearing suppresses the power in the two regions differently.

In this way, we are able to identify the optimal value of ǫ where the UV is maximally

suppressed for each of the smearing schemes. We observe a similar effect on the extremal

eigenvalues of D, which we take as the UV and IR in the quark sector.

We find that the effect of UV suppression and the effect of finite lattice spacing fac-

torize. For the plaquette, P , such a factorization is exact perturbatively at the tree level,

where we find

1− P =
2

β
w(ǫ), (5)
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Figure 4: Universality in taste splitting as seen when plotted as a function of plaquette
value at a fine lattice spacing of 0.17 fm. The data falls on a universal curve described by
a power-law x2/3. This is true at both coarse and fine lattices.
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where the coupling, β, determines the lattice spacing, and the factor w is purely smearing

dependent. Deviations from such a factorization shows up non-perturbatively due to a fine

measurement of the plaquette, but they are less than a percent. A similar factorization

occurs in the case of pion taste splittings, δmΓ. Taste splitting with improved actions

has been studied before [14–16], however in this thesis, we make a systematic study of

it, by treating the smearing parameter as an independent variable. Doing so, we find the

splitting to factorize as

δmΓ(ǫ, a) = f(ǫ)gΓ(a), (6)

for a taste and lattice spacing dependent factor gΓ, and a purely smearing dependent

factor, f , defined such that f = 1 at ǫ = 0. An evidence for such a factorization is shown

in Figure 3, where we plot the pion taste splittings at a lattice spacing, a = 0.17 fm,

against a taste splitting at a = 0.34 fm, such that both of them are measured using the

same smearing schemes and the same values of ǫ. The linear dependence seen universally

across the different smearing schemes and smearing parameter values is possible only if

there is such a factorization. Through this study, we understand that gauge-link smearing

offers a computational advantage by making the taste splittings nearer to zero at a finite

a due to the factor f , while their dependence on a remain the same. This also means that

approaching the continuum limit is mandatory even with smearing, just as in the case of

thin-links.

We find an interesting connection between the effect of smearing in the quark and gluon

sectors. Even though the pion taste splittings are smearing scheme and taste channel

dependent, it shows a behaviour which is universal across the different smearing schemes

when plotted as a function of the plaquette value. This result is shown in Figure 4. The

universal dependence on plaquette is of the form

δmΓ(ǫ, a)

gΓ(a)
≈ A(1− P )2/3, (7)

for a constant A which is universal for all the pion taste partners at a given β. The

exponent is also universal and takes the value 2/3. However, this universal behaviour

breaks down for very large values of ǫ.



ix

Application of Smearing to Finite Temperature

A major part of this thesis concerns the applications of smearing to finite temperature

QCD, with the main emphasis on hadronic screening correlators and masses. The screen-

ing masses are important after the advent of relativistic heavy ion collisions as they de-

termine the finite volume effects in a fireball. They are also interesting from a theoretical

standpoint as they address the nature of the deconfined phase of QCD.

As shortly discussed in the introduction, the screening masses presented a confused pic-

ture in the deconfined phase: most computations were performed with staggered quarks

[10, 17–20], and these indicated that there are strong deviations from weak-coupling pre-

diction (see eq. (4)). On the other hand, computations with Wilson quarks gave results

that are closer to the free field theory [13]. Since, the continuum limit of the screening

masses from all quark formulations have to agree, the observed effect can only be a lattice

artifact. From our study of smearing, we expect that the lattice corrections to staggered

screening masses, µ, in the deconfined phase to behave as

µ = µcont − k(ǫ)a2, (8)

with a smearing dependent factor, k(ǫ), which is reduced with smearing. This motivates

us to study staggered screening masses with optimal gauge-link smearing to obtain mea-

surements nearer to the continuum at finite lattice spacings.

Unexpectedly, we find an even more convincing reason to use gauge-link smearing for

the problem. In Figure 5, we show the taste splitting, δµΓ, at T = 2Tc as a function of the

corresponding taste splitting, δmΓ, at T = 0 for the taste Γ = γiγ5. The different points

correspond to the optimal ǫ in different smearing schemes. From the figure, we find that

the two taste splittings are related quadratically:

δµΓ

T
∝ (aδmΓ)

2. (9)

We explain this observation as due to complete or almost complete restoration of taste

symmetry in the limit of vanishing quark mass. If smearing decreases δmΓ by a factor

f(ǫ), then it decreases the splitting in the deconfined phase by f 2(ǫ). Thus, smearing

works more effectively in the deconfined phase than in the confined phase.

Using optimal HYP-improved staggered valence quark, we determine the pseudoscalar
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Figure 5: Super-linear improvement of taste splitting in deconfined phase compared to the
confined phase. The taste splitting aδmΓ at T = 0 is plotted against the splitting of the
corresponding screening masses, aδµΓ, at 2Tc, both at same lattice spacing and Γ = γiγ5.
The line y = 100x2, is superposed to indicate the slope.

(PS), scalar (S), vector (V), axialvector (AV) and nucleon (N) screening masses in the

temperature range from 0.92Tc to 2Tc. Our result for the hadron screening spectrum with

optimum HYP smearing, as a function of temperature is shown in Figure 6. The most

important result in this thesis, is the PS/S screening masses lying close to the lattice FFT

value at high temperatures. The blue and green bands are predictions from perturbative

calculations [11, 12]. Both the calculations predict that irrespective of quantum number,

all the meson screening masses have to approach the FFT value from above. Our result,

given about 15% uncertainty due to scheme dependence at a finite cut-off, indeed shows

a similar behaviour and a close agreement with the weak coupling predictions. This

behaviour remains robust when the Goldstone pion mass is decreased from 240 MeV to

190 MeV. With the results for PS screening mass at 2Tc from two different lattice spacings,

we roughly estimate using eq. (8) that the slope, k(ǫ), with optimal HYP is about 5 times

smaller than that with the thin-link.

The rapid approach to behaviour similar to weak-coupling theory has implications for

the spectrum of the staggered Dirac operator. It was shown in an earlier study with thin-

link quarks that a gap developed in the massless staggered eigenvalue spectrum a little
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above Tc, and that the hot phase contained localized Dirac eigenvectors [21]. In this thesis,

we study the gap by measuring the smallest eigenvalue of the massless staggered Dirac

operator, λ0. As can be seen in in Figure 7, with reduced taste breaking, it rises very

rapidly between Tc and 1.06Tc. Whereas, with no improvement, λ0 rises at significantly

higher temperature, thereby affecting all screening phenomena in the deconfined phase.
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Chapter 1

Introduction

1.1 Quarks and Hadrons

Science has come a long way from philosophizing about the nature of building blocks of

matter to a point where we could test the nature of such fundamental particles exper-

imentally. Combined theoretical and experimental efforts have culminated in the now

well-tested standard model of particle physics which describes the interactions between

different fundamental particles [22]. Quantum Chromodynamics (QCD) is the part of the

standard model which describes the strong interaction between the quarks mediated by

gluons. Bulk of the visible matter in the universe is made of neutrons and protons. These

particles along with a plethora of others such as π, K, ρ, Ω etc., classified as hadrons,

are tightly bound systems of quarks and gluons confined within a few femtometers. It

is an intriguing observation that the final states detected in collision experiments are

always hadrons, and never quarks and gluons separately. The evidence for quarks and

gluons rather comes indirectly when hadrons are probed through deep inelastic scattering

of electrons, an experiment which is analogous to the Rutherford gold-foil experiment [23].

These experiments suggested that the constituents of hadrons behaved like free particles

[24]. These aspects are unique to the QCD part of the standard model — the long distance

behaviour being described in terms of hadrons while the short distance behaviour being

in terms of free quarks and gluons.

When a bulk of such hadronic matter is heated to high temperaratures or compressed

to high densities, its behaviour changes. In fact, quarks and gluons get deconfined in a

phase called quark gluon plasma (QGP) [25]. Both experimental and theoretical efforts

1



2 1. INTRODUCTION

are underway to understand the properties of hadronic medium under extreme conditions.

Our current theoretical understanding of the phases of hadronic matter from first

principles is through the technique of lattice QCD, which is computational in nature.

Lattice QCD discretizes space-time into a four dimensional lattice. Effects of such a

discretization remain in any computation doable on a computer. Finding algorithms to

reduce such lattice artifacts is an important and still evolving sub-field of lattice QCD.

This thesis is an exploration of one such method called gauge-link smearing. We show

that smearing is indispensable in the study of static correlation lengths in a hot hadronic

medium.

We first briefly review the methods of lattice QCD. This involves a discussion on

staggered fermions and taste symmetry breaking which forms a central theme in this

thesis. Then we remind the reader about different aspects of the phase diagram of QCD.

Through this, we introduce the reader to screening lengths in the plasma, and to the

problem thereby.

1.2 A Brief Introduction to Lattice QCD

1.2.1 QCD in the continuum

The standard model of particle physics is formulated as a renormalizable quantum field

theory based on the principle of gauge-invariance i.e., the physics should not be dependent

of certain local transformations on the fields. The QCD part of the standard model is

by itself a stand-alone QFT invariant under SU (3) color gauge transformations — Each

flavour of quark is described by a fermion field ψa(x) with the color components a = 1, 2, 3,

and the gluons are described by SU (3) algebra-valued bosonic fields Aµ(x), such that they

transform under a local SU (3) transformation Ω(x) as

ψ′(x) = Ω(x)ψ(x) and Aµ(x) = Ω−1(x)Aµ(x)Ω(x) + i

(

∂

∂x
Ω(x)

)

Ω†(x). (1.1)

Henceforth in this thesis, we consider only the degenerate light up and down quarks each of

bare massm i.e., the number of flavours Nf = 2. The dynamics of these fields are governed

by the action SQCD which has to be invariant under the above gauge-transformation. It
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turns out that the action is the simplest of many such possibilities, and it is given by

SQCD = Squark + Sglue, (1.2)

with the quark part of the action being

Squark =

Nf
∑

f=1

∫

d4xψf (x) [γµDµ +m]ψf (x) with Dµ = ∂µ + iAµ, (1.3)

and the gluon part of action as

Sglue =
1

2g2

∫

d4xTr (FµνFµν) with Fµν = −i[Dµ, Dν ]. (1.4)

The operator γµDµ +m is called the Dirac operator. Any regularization of QCD should

not break gauge symmetry, and one such method is the lattice regularization which is

discussed next.

Using this action, one could calculate the expectation values of different operators at

a temperature T = 0 or T > 0 using the path integral of QCD. At T > 0, the temporal

direction has to be of a finite extent 1/T , with a periodic boundary condition for gluons,

and an anti-periodic boundary condition for quarks. This ensures that quarks follow

Fermi-Dirac statistics [26].

1.2.2 Gauge-fields on Lattice

A gauge-invariant way to regularize QCD is through discretization of space-time into a 4d

lattice with a lattice spacing a, and the fields being “gauge-links” and quark fields [27].

The lattice spacing acts as the UV regulator for the path integrals. The temporal extent

of the lattice is Nt in lattice units, and for simplicity, we take the lattice to have Ns lattice

sites along all the spatial directions. It is a common practice to refer to such a lattice as

an Nt ×N3
s lattice.

The gauge-links Ux,µ are 3×3 SU (3) matrices which live on the links connecting lattice

sites x to x+ µ̂. The quark fields ψ(x) live on lattice sites. We defer a discussion on quarks

on lattice to the next subsection. The boundary conditions depend on the temperature

T . If T = 0, then periodic boundary condition is imposed on all four directions for both
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a

x + µ̂

x

Uµ(x)

Figure 1.1: Space-time is discretized with the lattice spacing as a. The gauge-link, Uµ(x),
lives on the link connecting the lattice site, x, to x + µ̂. The smallest Wilson loop, trace
of which is the plaquette, is shown in red.

quarks and gauge-links. For a finite temperature calculation, the temporal direction is

anti-periodic for quarks, and the temperature is related to the lattice spacing through

T =
1

Nta
. (1.5)

Under a gauge-transformation Ω(x), the gauge-links transform as

U ′
µ(x) = Ω(x)Ux,µΩ

†(x+ µ̂). (1.6)

These gauge-links are the gauge-transporters which ensure that ψ(x) and Ux,µψ(x + µ̂)

transform identically under gauge-transformations. With this identification, for small

enough lattice spacing a, Ux,µ ≈ exp (igaAµ(x)). Due to the above transformation prop-

erty, gauge-invariant pure-gluonic quantities can be constructed by taking the trace of

products of gauge-links along closed loops. The simplest such object is the plaquette

Pµν(x) = ReTr
[

Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν

]

. (1.7)

This is shown as the red loop in Figure 1.1. The simplest action for the gauge-field is
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therefore proportional to the plaquette

Sg =
β

6

∑

x,µ>ν

[1− Pµν(x)] . (1.8)

Not surprisingly, in the limit a → 0, the above action reduces to the gluon action in eq.

(1.4). This leads to the identification β = 6/g2. The above form of the gauge-link action

is called the Wilson action. At finite lattice spacings, Sg differs from eq. (1.4) by O(a2).

Due to asymptotic freedom, the bare coupling g decreases when the lattice spacing

a is decreased, while maintaining constant physics. This offers a handle on tuning the

lattice spacing by changing the value of the inverse coupling β — larger the value of β,

smaller the lattice spacing is. This also means that at a given Nt, one can tune to higher

temperatures by increasing the value of β.

1.2.3 Tastes of Staggered Quark

We noted in the last subsection that the quark fields ψ(x) live on lattice sites x. Component-

wise, the quark fields are of the form ψa
f (x), where a is the color index, and f is the flavour.

The lattice Dirac operator D could be constructed using a discretized version of the gauge-

covariant derivative ∂µ + iAµ,

∆µ ≡ 1

2

[

Ux,µδx+µ̂,y − U †
x−µ̂,µδx−µ̂,y

]

. (1.9)

Doing so, the naive fermion action is

Snaive =

Nf
∑

f=1

∑

x,y

ψ
a

f (x)D
ab
x,yψ

b
f (y) where Dxy =

1

2

∑

µ

γµ∆µ +mδx,y. (1.10)

This immediately leads to 16 copies of each flavour of quark, also called the doublers, or

tastes . This can be seen easily by taking the case of zero quark mass in free field theory

i.e., by setting all the gauge-links to identity. In this case, the Fourier transform of the

Dirac operator is diagonal, and the quark propagator is

D−1(k) =

∑

µ γµ sin(kµ)
∑

µ sin
2(kµ)

. (1.11)
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p + ζπ

p

ζπ

q

q + ζπ

Figure 1.2: A taste mixing process. Two quarks, one at a low momentum mode around
k = 0 and another around k = ζπ, interact via an ultra-violet gluon of momentum ζπ,
and exchange taste.

In addition to the pole at k = 0 which corresponds to the quark we introduced, there are

15 additional poles at the corners ζπ of the Brillouin zone, where ζµ = 0 or 1. This is

the infamous fermion doubling problem. As discussed in [28], it is also possible to see this

fermion doubling by constructing interpolating fields Ψζ(x) for the 16 tastes whose low

momentum modes are around k = ζπ.

Staggered fermion formulation [2, 4, 28] is a clever way of reducing the number of tastes

from 16 to 4 by noting that the transformation ψ(x) → ψ′(x) =
(

∏

µ γ
xµ
µ

)

ψ(x) makes the

Dirac operator diagonal in spin space:

Dxy =
1

2

∑

µ

ηµ

[

Ux,µδx+µ̂,y − U †
x−µ̂,µδx−µ̂,y

]

+mδx,y where ηµ(x) = (−1)x1+...xµ−1 .

(1.12)

Except for one of the spin component χ in ψ′, the rest of the components are set to zero.

This procedure reduces the number of tastes from 16 to 4 (refer [28]). The interpolating

fields constructed out of the staggered fields within a hypercube are of the form Ψα,t(x),

where α is the usual spin index while t is the taste index ranging from 1 to 4. These are

the four tastes of staggered quark.

As long as there is no mixing between the different tastes, it is simple to remove them

by taking the 1/4-th root of detD1. This is the case in the absence of gauge-fields, where

one has an exact SU(4) taste symmetry. However, in the presence of gauge-links, it is

possible for a quark with a given taste to interact with a hard gluon of momentum ≈ ζπ,

1detD is obtained by integrating the Grassmann valued fields in the path integral.
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and remain a low momentum quark, but of a different taste. One such process is shown

in Figure 1.2. This leads to the O(αsa
2) taste breaking effects. This is an important

technical aspect that we study in this thesis.

There are other formulations of quarks on a lattice which tackle the problem of fermion

doubling differently eg., Wilson quarks and overlap quarks [3]. But these formulations do

not suffer from taste breaking artifacts.

1.2.4 Staggered Hadron Spectroscopy

The spectrum of staggered hadrons [5, 29, 30] is complicated due to the extra taste degree

of freedom. Pion, for example, has a valence up quark and a down quark. Since each

flavour has four different tastes, there are 16 different taste partners for a pion. In general,

the staggered meson operators are of the form Ψ
α′,t′

(x)Γt′t
T Γα′α

D Ψα,t(x), where ΓD and ΓT

are products of the Dirac gamma matrices, and they act in the spin and taste space

respectively. For a pion ΓD = γ5. When expressed in terms of the staggered fields χ,

meson operators are of the form

Ol(x) = φl(x)χ(x)∇χ(x), (1.13)

where φl(x) are phases which determine the quantum channel l, and ∇ are products of

gauge-covariant lattice derivative operators ∆i along directions i in a time slice. Local

mesons are those which have ∇ = 1, or equivalently as those with ΓD = ΓT . If ∇ involves

only a single derivative ∆i, the meson is said to be one-link separated. Similar such

definitions for two-link and three-link separated mesons. We refer the reader to [29] for

a detailed list of staggered phases for the taste partners of mesons. The masses ml of

the hadrons are determined by the exponential decay of the zero momentum correlation

functions

Cl(t− to) =
∑

x

〈Ol (x, t)Ol (xo, to)〉
lim |t−to|→∞−−−−−−−→ e−ml(t−to) (1.14)

for sufficiently large t − to, with summation over x in the time-slice containing t. We

have been cavalier with regard to the presence of staggered even-odd oscillations and the

presence of periodic boundary condition. We come back to the discussion on how to

extract masses of staggered hadrons in the next subsection.

In free field theory (FFT), all the taste partners of a meson are degenerate due to taste
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symmetry. When interactions are turned on, the taste symmetry is explicitly broken, and

thereby the masses of the taste partners get split. It is the local pion with ΓD = ΓT = γ5

which is the pseudo-Goldstone boson at finite lattice spacing, while the other pion taste

partners remain heavier. We use this fact to measure the degree of taste breaking. We

define the pion taste splitting δmΓ as the difference between the mass mΓ of a pion taste

partner with ΓT = Γ, and the mass mγ5 of the Goldstone pion:

δmΓ = mΓ −mγ5 . (1.15)

These splittings vanish in the case of FFT as well as in the continuum, where taste

symmetry is restored.

Quark Sources

Extended quark sources help to improve the overlap with the hadronic states — we use

wall [31] and Wuppertal [32] quark sources, while using point sink in our zero temperature

studies. The extended quark fields X are constructed out of the original fields, χ, as

Xa(x) =
∑

t-slice

Sab
x,yχ

b(y), (1.16)

where the super-scripts are color indices. The choice of the smearing kernel Sab
x,y determines

the quark source. For a wall source, Sab
x,y = δab for all y lying in the same time-slice as x

and with all its coordinates even. Otherwise Sab
x,y = 0 2. We gauge-fix the configurations

to the Coulomb gauge [33] before using Wall source. The Wuppertal source is constructed

in order to remove the rapid fluctuations in quark fields. The smeared quark field is

X = exp(σ2∇)χ(x), where ∇ is the gauge covariant 3d Laplacian

∇xy ≡ −6δxy +
3
∑

±µ=1

V (n)
x,µ δx,y−µ. (1.17)

The matrices V
(n)
x,µ are the n-level 3d-APE smeared links (i.e., the APE smearing involves

only the staples lying within the time-slice). Taking exp(σ2∇) = limN→∞(1 + σ2∇/N)N ,

2We discuss the modification for wall source at finite temperature when we discuss about screening
masses later in this chapter
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Wuppertal smearing is implemented by N successive application of the kernel

Sx,y = δxy + κ∇xy (1.18)

to a point source. The parameter κ is σ2/N .

Extracting Masses by Fit

This subsection deals with the determination of the ground state screening masses through

fit to the respective correlators. The correlator Cγ for a a meson γ has contributions also

from its parity partner γ′ which occurs as a contribution which oscillates in sign between

even and odd separations. When the ground state screening masses in the oscillating and

non-oscillating components of a meson screening correlator, it can be parametrized as

Cfit

γ (t) = Aγ cosh

[

mγ

(

Nt

2
− t

)]

+ (−1)tA′
γ cosh

[

m′
γ

(

Nt

2
− t

)]

. (1.19)

The alternating component is absent for the Goldstone pion (PS) and its local time taste

partners. Following [5], the nucleon correlator is parametrized as

Cfit

N
(t) = AN

{

exp

[

mN

(

Nt

2
− t

)]

+ (−1)t exp

[

−mN

(

Nt

2
− t

)]}

+ A′
N

{

(−1)t exp

[

m′
N

(

Nt

2
− t

)]

+ exp

[

−m′
N

(

Nt

2
− t

)]}

.

(1.20)

We extract the masses, mγ, mN , and the remaining parameters from the measured corre-

lators, Cγ(z), by fitting to the above forms over z lying in a range [zmin, zmax]. The number

of data points being fitted in this range, nfit = zmax − zmin +1, are at least 3 in the case of

pseudoscalar, while it is at least 5 for all other channels. This is to ensure that there is at

least one degree of freedom in the fit. The best fit parameters are obtained by minimizing

[10]

χ2 = ∆TΣ−1∆, (1.21)

where ∆ is a nfit-tuple with the elements

∆z = Cγ(z)− Cfit

γ (z). (1.22)
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The covariance between the measurements at two different z are taken care of by using

the nfit × nfit-dimensional covariance matrix, Σ, whose estimator is given by

Σz,z′ =
1

N(N − 1)

N
∑

i=1

[

C(i)(z)− C(z)
] [

C(i)(z′)− C(z′)
]

, (1.23)

where C(i) is the correlator measured on the i-th configuration.

1.2.5 Continuum Limit and Improved Operators

In the end of a lattice computation, it is mandatory to take the a→ 0 limit, while keeping

the ratios of physical quantities, such as mπ/mρ, constant in order to make contact with

experiments. This process goes by the name of “taking the continuum limit”. In a typical

lattice QCD simulation, the continuum limit is taken by repeating the calculations at dif-

ferent values of lattice spacing on the same line of constant physics. One then extrapolates

to the continuum by knowing how the physical quantity scales with a (for small enough

a). Even though the whole process sounds simple, it is computationally expensive — the

inversion of Dirac operator through iterative methods, such as the conjugate gradient,

takes more iterations to converge at smaller lattice spacings. Also, there is an increase in

the auto-correlation times encountered in the generation of gauge-configurations through

Monte Carlo methods. In addition to that, if one uses approximate algorithms such as the

R-algorithm [34], our studies (discussed in Appendix A) suggest that one has to push the

parameters of the algorithm towards more expensive parts of the parameter space. Thus,

it is essential to reduce the computational cost by reducing the lattice spacing corrections

to observables on the lattice.

There are two important techniques available for reducing lattice artifacts — Gauge-

link smearing and Symanzik improvement [35]. Symanzik improved lattice operators are

constructed by adding irrelevant operators, whose coefficients are tuned to cancel the lat-

tice spacing corrections to a desired order eg., the Clover term [36] in the case of Wilson

quarks, and the “p4 improvement” for staggered quarks [37]. On the other hand, Gauge-

link smearing is motivated as a method to improve lattice measurements by suppressing

the ultra-violet fluctuations in the gauge-field, since they are sensitive to the non-zero

lattice spacing. Its algorithm, roughly, is to replace the links, Uµ(x), with a gauge covari-

ant average over paths, Vµ(x), connecting x to x + µ̂. While Symanzik improvement is
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A

µB/Tc

T/Tc

B
E

Hadronic

QGP

Figure 1.3: A schematic phase diagram of QCD. The deconfinement transition is believed
to be first-order along the solid line which ends in the critical end-point E. Beyond E,
it is a cross-over, which is indicated by the dashed line. Region close to µB = 0 axis is
accessible to lattice QCD.

firmly footed on Renormalization Group, the method of gauge-link smearing needs to be

understood in a greater detail, even though the motivation is clear.

In Chapter 3, we discuss our studies on the effects of gauge-link smearing on the

ultra-violet modes in the gauge-fields, and their effect on taste breaking at zero and finite

temperature.

1.3 Aspects of Hot and Dense QCD

1.3.1 Phase Diagram

The phase diagram of QCD as a function of baryon density and temperature is still being

understood theoretically and experimentally. For a recent short review on this topic, reader

can refer to [38]. The property of asymptotic freedom of QCD means that the quarks are

weakly interacting at short distance scales or at high momentum transfer. Thus, at very
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temperature when the typical momentum is of O(T ), the quarks are weakly interacting.

The other extreme of large baryon density, the interaction again becomes weak. This

leads to the existence of quark-gluon plasma at high temperatures and densities, where

the quarks and gluons get deconfined. The properties of this phase of matter is being

probed through ultra-relativistic collision of heavy ions at Relativistic Heavy Ion Collider

at BNL and the ALICE experiment at LHC.

Instead of baryon-density, it is customary to use baryon chemical potential µB which

in terms of quark chemical potentials µu and µd is 3(µu + µd)/2
3. The schematic of a

simple version of the phase diagram is shown in Figure 1.3. There are two different phases

in the diagram — confined or the hadronic phase, and the deconfined or the QGP phase.

The transition from one phase to the other is first-order along the solid line as expected

from effective field theories.

From lattice QCD simulations [39], it is now well established that there is a cross-over

between the two phases at µB = 0 (denoted by B). These are determined by the positions

of peaks of the susceptibilities of the Wilson line L and chiral condensate 〈ψψ〉. They are

defined as

L =
1

3
ReTr

Nt
∏

t=1

Ux,t̂ and χL = 〈L2〉 − 〈L〉2, (1.24)

and

〈ψψ〉 = T

V

∂

∂m
lnZ and χM =

∂

∂m
〈ψψ〉, (1.25)

where Z is the partition function, and V is the spatial volume of the lattice. In the studies

of [40] and [41], L and 〈ψψ〉 were renormalized. The currently accepted values of the cross-

over temperature Tc from 〈ψψ〉 is about 155 MeV while that from L is about 170 MeV.

It is interesting to note that, until recently, there seemed to be a disagreement between

the values of Tc obtained by HotQCD collaboration which used p4-staggered quarks, and

the one obtained by Budapest-Wuppertal-Marseilles (BMW) collaboration which used a

version of gauge-link smearing called stout. The issue was resolved when it was found

that the p4-staggered results suffered from larger lattice artifacts than the one with stout

smearing. The agreement was further seen, when HotQCD collaboration used HISQ ac-

tions which combine a variant of gauge-link smearing with Symanzik improvement[42].

This was an early indication that taste breaking effects might play an important role in

3We are working with two light flavours of quarks.
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certain aspects of finite temperature studies using staggered quarks.

It is believed that the first order line ends at a critical end-point E. Finding the position

of such a critical point is of current challenge to both experiments and lattice QCD. There

have been many attempts at finding the critical end-point on lattice [43–45]. The state-of-

the-art prediciton on the position of the critical end-point from the Taylor series method

[46] is that TE ≈ 0.94Tc and µE ≈ 1.8Tc [47].

1.3.2 Screening in Equilibrated Medium

Screening of a test charge by the medium is a well known phenomenon that one comes

across in an electrical plasma. In the case of hadronic medium, the response of the medium

to the introduction of sources of different hadronic quantum numbers could be studied [10].

Screening of a quantum number l is studied using the correlation between a source and sink

Ol at two space-like separated points in an equilibrated medium. On a lattice, screening

correlators are measured along one of the spatial directions (z in our case)

Cl(z − zo) =
∑

x
⊥

eiφt
〈

O†
l

(

x⊥, z
)

Ol

(

x⊥
o
, zo
)

〉

, (1.26)

where x⊥ are the coordinates in the z-slice at z. For mesons, the phase φ = 0. But for a

nucleon, φ = π/Nt since it is the lowest frequency it can be projected to in the temporal

direction. At large separations, the screening correlators decay exponentially 4.

Cl(z − zo) ∼ e−µl(z−zo), (1.27)

and the exponent µl is the screening mass in the hadronic channel l. At T = 0, these

screening masses are identical to the masses of the respective hadrons. At finite tem-

perature, this is not true. However, the screening correlators are related to the spectral

function at finite temperature. In the confined phase, the screening masses are dominated

by the peaks in the spectral function at bound states of quarks and gluons. While for

an ideal gas of quarks and gluons, the screening mass depends only the temperature as

2πT for mesons and 3πT for baryons. This cross-over between the two kinds of behaviour

provides a probe to the presence of interactions in the medium.

4The effect of periodicity of lattice and parity partners are taken care of in the actual calculation by
making use of eq. (1.19) and eq. (1.20) after the replacements Ns → Nt and t → z.
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Screening masses also control finite volume effects at finite temperature in equilibrium.

Studies of the final state of fireballs produced in heavy-ion collisions indicate that they

are near equilibrium. So the study of screening masses a little below the QCD cross

over temperature, near the freeze out, should improve our understanding of experimental

conditions. In addition, the vector screening masses below Tc should be of direct relevance

to the study of mass spectra of dileptons and photons.

In this thesis, we study the screening masses µγ of the local mesons γ: the scalar (S),

the spatial and temporal polarizations of vector (Vs and Vt), and the spatial and temporal

polarizations of axial-vector (AVs and AVt). We also determine the screening mass of the

nucleon, µN . We use wall source at finite temperature to improve the overlap with the

ground-state, as well as to suppress the oscillating contribution from the parity partner.

Wall Source and Free Field Theory

The presence of anti-periodicity in the time direction requires a minor modification of the

kernel, S, for the wall source — the smallest momentum to which the quark field can be

projected to is the lowest Matsubara frequency π/Nt. Incorporating this modification, S

for the wall source at finite temperature is

Sab
xy = exp(iπy · t̂/Nt)δab (1.28)

if y belongs to the same z-slice as that of x, and all the coordinate components of y are

even. Otherwise, Sab
xy = 0.

We use wall source for two reasons. Firstly, it offers a noise reduction by suppressing

the staggered oscillations. Secondly, it removes the higher momentum components of the

quark field. This lets us to extract a precise value of free field theory (FFT) value of

screening masses on the lattice, unlike the case of point-source where a plateau in effective

masses does not exist in FFT. This value of the FFT screening mass for a meson is given

by [17]

aµFFT = 2 sinh−1
√

(am)2 + sin2(π/Nt). (1.29)

For a nucleon, it is 3/2 of the above value. We computed quantities in FFT by numerical

inversion of the fermion matrix on a trivial gauge configuration (all links being the unit

matrix). These quark propagators were then subjected to exactly the same analysis as
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Figure 1.4: Wall source used on free field theory configurations show no finite volume
effects (left) and show controlled finite lattice spacing effects (right).

in the interacting theory. Doing so, the effective mass of PS at z, obtained by fitting eq.

(1.19) over the four consecutive z-slices, is shown as a function of z and Nt in the left panel

of Figure 1.4. Finite volume effects are removed in the projection to the lowest Matsubara

frequency. In the right panel, one can see the expected FFT behaviour in all the meson

channels.

1.3.3 Screening Correlators and Restoration of Symmetries

Restoration of the spontaneously broken chiral symmetry, SUV (2) → SUL(2) ⊗ SUR(2),

implies a degeneracy between the vector and axial vector correlators (with both of them

being isovectors). An approximate restoration of UA(1) will lead to a degeneracy between

the scalar and pseudoscalar correlators (again both of them are isovectors). On a lattice,

the continuum symmetries are broken and one has to address this symmetry restoration

in terms of the symmetries of the transfer matrix, T, for staggered fermions [48].

At finite temperature, T involves translation across z-slices. The symmetry of T is

the rest frame group, RF , which is obtained by the breaking of cylindrical symmetry of

the z-slice due to lattice discretization 5. However, the different correlators, Cγ(z), which

are of the form Tr
[

TNs−zOγ(z)T
zOγ(0)

]

belong to the different irreps of the point group

of the z-slice, which is a subgroup of RF . The irrep is decided by the symmetries of Oγ .

5The actual symmetry being broken is C ⊗ Z2(I) ⊗ UB(1), where C is the cylindrical symmetry and
Z2(I) is the inversion
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At finite temperature, the point group is the discrete group Dh
4 . This group has 16 irreps

in six conjugacy classes [49]. The local mesons we study in this chapter — PS, S, V and

AV, they all belong to the same one dimensional irrep A+
1 .

In FFT, the point group symmetry is the symmetry of T, and all the four correlators

are degenerate. However, in an interacting theory, this may not be true. Since the A+
1 to

which PS and S belong to, descend from the same irrep of RF , they have to be degenerate

(provided the spontaneously broken symmetries are restored). Similarly, V and AV have

to be degenerate. We characterize such pairwise degeneracy using the negative parity

projections

C−V = CV − (−1)zCAV and C−S = CS − (−1)zCPS, (1.30)

which vanish when symmetries are restored. In the same spirit, the positive projections

C+V and C+S are obtained by adding the two correlators in the right hand sides of the

above expressions, instead of finding the difference. These remove the staggered oscilla-

tions and project onto a parity partner.

One interprets any deviation between the two pairs of A+
1 as due to the presence of

interactions. This interpretation using the earlier studies provided a confusing picture.

The V/AV correlators were found to be close to FFT by 2Tc indicating weakly interacting

quarks, in which case the splitting between V/AV and S/PS correlators should be very

small. However, the S/PS correlators were found to deviate from FFT by more than 20%

[20] at these temperatures. This could be true if the symmetries of the deconfined phase

were the same as in the confined phase, and the V/AV correlators do not differ from the

zero temperature ones. In this thesis, we study this problem after improving the valence

quarks.

1.4 A Problem with Staggered Screening Masses

Due to asymptotic freedom, one would expect that the quarks are weakly interacting

at temperatures higher than the cross-over temperature Tc. Due to the presence of an

additional mass scale temperature T , the infra-red behaviour of a naive perturbation

theory around the T = 0 vacuum, at high temperatures is different from the one at T = 0.

Dimensional reduction (DR) [50] and Hard thermal loop (HTL) [51] are better techniques

of doing such weak-coupling expansions.
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2013 [54], overlap 2008 [55], p4 stag [19] and quen. stag. 1988 [56]). Note that the
staggered results do not agree with results from other quark actions. The disagreement is
large in the case of PS/S.

There are three different scales in the QCD plasma: g2T ≪ gT ≪ T . Dimensional

reduction is an effective theory obtained by integrating out degrees of freedom from the

hard scale T down to soft scale g2T . On the other hand, HTL improves the perturbation

theory by instead expanding around a vacuum of non-interacting dressed quarks and

gluons. Though the results from these weak-coupling calculations have to agree with

those from lattice, it is a priori not known at what temperatures they begin to agree.

However, the fermionic part of the pressure, as well as its derivatives with respect to

chemical potentials, the quark number susceptibilities (QNS), seem to admit reasonably

accurate weak-coupling descriptions at temperatures of 2Tc or above [50, 52, 53].

However, even among static fermionic quantities, screening masses (the inverses of

screening lengths) present a confused picture. In the deconfined phase, both HTL and

DR calculations [11, 12] predict that the screening masses approach the free field theory

(FFT) value, µFFT, as

µ = µFFT + αS∆ with ∆ > 0, (1.31)

where αS is the strong coupling constant at a momentum scale of 2πT . Most computa-

tions were performed with staggered quarks, and these seemed to indicate that there are
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strong deviations from the above weak coupling prediction [10, 17–20] especially in the

pseudoscalar/scalar channel. On the other hand, computations with Wilson quarks give

results which are closer to free field theory [13], although they deviate in detail from pre-

dictions of weak coupling theory [11, 12]. Since the same pattern is visible in the quenched

theory [54] (refer Figure 1.5), we can attribute the major part of the discrepancy to valence

quark artifacts.

In this thesis, we examine this question systematically using staggered sea quarks

and gauge-link smeared staggered valence quarks. Indeed, we see that smeared valence

quarks provide a significant improvement. Using these we find that a weak coupling

expansion does work quantitatively for the description of fermionic screening masses at

finite temperature. In addition, our results may constrain models of thermal effects on

hadrons below and close to the QCD cross over.

A significant technical component of this work is the exploration of the cause of im-

provement in lattice measurements when smeared gauge fields are introduced into the

staggered quark propagators [6–9]. Smeared operators have been explored extensively in

the literature earlier [14–16]. Here we explore optimization of smearing parameters by

direct observation of the effects on UV and IR modes separately.



Chapter 2

Simulations and Setting of Scale

2.1 Set N, O and P

In this thesis, the thermal ensembles consist ofNt×N3
s lattices with 2 flavours of dynamical

staggered sea quarks, with anti-periodic boundary condition in the temporal direction for

quarks. We used three different ensembles for our studies at finite temperature: set N, O

and P. The set N consists of lattices with Nt = 4 and bare quark mass of am = 0.015.

This set was newly generated, and we discuss its scale setting in the rest of this chapter.

The pion mass for this ensemble (found using the mass of rho meson) is about 190 MeV.

The set O [45] also has Nt = 4, but a heavier bare quark mass am = 0.025. Both the sets

O and P [57] have the same pion mass of about 240 MeV, but the set P has a finer lattice

spacing with Nt = 6. The bare quark mass on this lattice is am = 0.0125. The spatial

extent in set O and P were both Ns = 24 at all temperatures. In each of the ensembles,

we used about 50 independent configurations at all β for the measurement of correlators.

For the configuration generation for set N, we used the standard staggered fermion

action, and Wilson gauge action for the simulation using R-algorithm. We tuned the

parameters of the algorithm, the molecular dynamics step size ∆t and the number of

steps in a trajectory NMD, by finding the largest ∆ whose plaquette values were consistent

∆t → 0 limit. We refer the reader to Appendix A for details on this tuning. We merely

state here that the runs were made with an MD step size ∆t = 0.01. The number

of MD time steps in the trajectory was scaled with the linear dimension of the lattice:

NMD = 100(Ns/8) on anNt×N3
s lattice. The simulations were started from a configuration

consisting of all unit link matrices. During thermalization, we used larger values of ∆t

19
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β T = 0, 164 4× 163 4× 243

am P T/Tc am τ N am τ N
5.25 0.0165 0.4790 (3) 0.92 (1) 0.0165 19 65
5.26 0.0160 0.4827 (4) 0.96 (1) 0.0160 31 51
5.27 0.0153 0.4860 (5) 0.98 (1) 0.015 72 48
5.2746 0.015 0.4873 (4) 1.00
5.275 0.015 0.4873 (5) 1.01 (1) 0.015 328 76
5.28 0.0146 0.4887 (6) 1.02 (1) 0.015 65 62
5.29 1.06 (1) 0.015 21 49
5.3 0.0138 0.4957 (7) 1.10 (1) 0.0138 8 59
5.335 1.20 (1) 0.0125 7 75
5.34 0.0115 0.5100 (2) 1.29 (3) 0.0115 6 50
5.38 0.01 0.5243 (1) 1.51 (5) 0.01 6 57
5.48 0.0075 0.5480 (2) 2.03 (9) 0.0075 3 79

Table 2.1: The number of independent configurations, N , obtained with the coupling, β,
the bare quark mass, am, and the auto-correlation time, τ , for that simulation. Also given
are the plaquette value, P , measured at T = 0, and the temperature, T/Tc, inferred from
it.

(0.04 at the beginning), and switched gradually to ∆t = 0.01. In this way, we found the

configurations to thermalize within 300 trajectories. We discarded the first 300 trajectories

for thermalization at all temperatures. The auto-correlation time remained stable when

this thermalization cut was further increased to 500 trajectories.

We generated configurations on four sets of spatial volumes: Ns = 8, 12, 16 and 24.

The lattices with Ns = 8 and 12 were used only for bracketing the location of the cross-

over coupling βc. The details on finding βc are given in the next section. The bare quark

masses in Ns = 16 and 24 simulations, were tuned such that m/Tc was kept fixed at

0.06 at all temperatures. The number of auto-correlation time separated configurations

at each β in these lattices were about 50. The temperature scale, T/Tc, was set using the

T = 0 plaquette values which were determined on 164 lattice. The physical scale was set

by determining the light hadron masses at T = 0. These are discussed in the subsequent

sections in this appendix. Details of configurations that we generated on Ns = 16 and 24

lattices are tabulated in Table 2.1.
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2.2 Determination of Cross-over Coupling βc through

Reweighting

This section deals with the determination of cross over coupling βc using multi-histogram

reweighting [58]. Reweighting is a method used to interpolate or extrapolate observables

based on Monte-Carlo measurements of the observables at a few simulation points. This

method is especially useful near the critical point as an actual simulation near it would be

very expensive due to critical slowing down. In the next subsection, we briefly outline this

method. Then, we present the details on our determination of the cross over coupling.

2.2.1 Multi-histogram Reweighting

Let the partition function for a system be

Z(β) =
∑

S

g(S) exp (−βS) , (2.1)

with β being the coupling, and g(S) is the density of states with the action, S. Taking the

simple example of single histogram reweighting, let us assume that the system is simulated

at a coupling β1, with the total number of independent configurations being n1. During

the simulation, the histogram {N1(S)} of S from the n1 configurations are also stored.

For a Monte-Carlo simulation, the histogram is distributed according to eq. (2.1). From

this, one gets an estimator of g(S)

g(S) = Z(β1)
N1(S)

n1

exp (β1S) . (2.2)

Using the above estimator for the density of states, the expectation value of an observable

O can be extrapolated to another coupling β as

〈O〉β =

∑

S O(S)g(S) exp (−βS)
∑

S g(S) exp (−βS)
=

∑

S O(S)N1(S) exp (δβ1S)
∑

S N1(S) exp (δβ1S)
, (2.3)

where δβ1 = β1 − β. Instead of a histogram, one can store the list of S obtained during

the simulation. In which case, N1(S) = 1 for each of the S in the list.

Extending to a multi-histogram reweighting, one has R different simulation points at
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β1, . . . , βi . . . , βR. In each of the simulation points, one has the histogram of S: {N (i)}.
Using the histogram from βi, the density of states can be estimated from eq. (2.2) as

g(i)(S). One can combine the R such estimates to get a new estimator

g(S) =
R
∑

i

pig
(i)(S) with

∑

i

pi = 1. (2.4)

The values of pi are chosen to minimize the error in g(S). For the calculation beyond

this point, we refer the reader to [58]. For this method to work, there must be sufficient

overlap between the different histograms in the region of interpolation (or extrapolation)

so that all the g(i)(S) are not equal to zero. Finally, we quote the final working formula

when R = 2 (two histogram method):

〈O〉β =
2
∑

r=1

∑nr

i=1O
(r)
i P

(r)
i

∑nr

i=1 P
(r)
i

with P
(r)
i ≡ exp(−βS(r)

i )

n1ζ exp(−β1S(r)
i ) + n2 exp(−β2S(r)

i )
, (2.5)

where {S(r)
i } is a list of nr independent values of the action from the simulation point

at βr. {O(r)} is the corresponding list of measurements of the observable. The constant

ζ = Z(β1)/Z(β2) is determined by numerically solving the above equation for the condition

〈1〉β1
= 1.

2.2.2 βc from Susceptibilities

We determined the cross-over coupling, βc, by positions of the peaks of different suscepti-

bilities. The width of the cross-over, ∆βc, is defined to be the full width at half maximum

(FWHM) of the same susceptibilities. We measured the unrenormalized Wilson line sus-

ceptibility, χL, the bare chiral susceptibility, χM, and the fourth order QNS, χ22 and χ40,

at various values of β in the crossover region. We also measured a renormalized quantity

related to the chiral susceptibility [59],

m2
rχ

r
M

T 4
=
m2

T 4
(χM(T )− χM(0)) . (2.6)

mr and χr
M are the renormalized quark mass and chiral susceptibilities respectively. We

determined χM(0) on 164 lattice at the same values of β as the finite temperature ones
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Figure 2.1: The probability distribution of the Wilson action S (which is the plaquette
value). The color code is black:β = 5.27, blue: 5.275, red: 5.28 and magenta: 5.29.
The histograms from β = 5.275 and 5.28 (shown in bold) were used for multi-histogram
reweighting due to their long overlapping tails.

(refer Table 2.1).

To determine βc accurately, we interpolated the data for susceptibilities using multihis-

togram reweighting [58] in the cross over region. In Figure 2.1, we show the histogram of

the Wilson action, S, (which is the plaquette value) at various β on Ns = 16 lattice. The

histograms of S are very different at the two extreme values of β. The change takes place

over a very narrow range, where the histograms have long overlapping tails. We choose a

pair of couplings in this range for multi-histogram reweighting; we choose β = 5.275 and

5.28 in the case shown. The results for χL and χM are shown in Figure 2.2. The data

points are measurements at various simulation points. The 1-σ error band from multi-

histogram reweighting is also shown. The error band is obtained by bootstrap sampling of

the histograms. From the reweighted curves for each of the bootstrap samples, we deter-

mined the peak values along with their statistical errors, and tested the hypothesis that

no volume dependence is seen in the peak of each of the susceptibilities for Ns ≥ 12. We

find that the χ2 values for this hypothesis to be 0.57, 1.16, 0.77 and 1.07 for χM, χL, χ22

and χ40 respectively. This is consistent with the fact that there is a cross over. However,

we do not pursue this direction any further, and take it as a well established fact.



24 2. SIMULATIONS AND SETTING OF SCALE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5.26  5.27  5.28  5.29  5.3

χ L

β

Ns=8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5.26  5.27  5.28  5.29  5.3

χ L

β

Ns=12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5.26  5.27  5.28  5.29  5.3

χ L

β

Ns=16

 0

 2

 4

 6

 8

 10

 12

 5.26  5.27  5.28  5.29  5.3

χ M

β

Ns=8

 0

 2

 4

 6

 8

 10

 12

 5.26  5.27  5.28  5.29  5.3

χ M

β

Ns=12

 0

 2

 4

 6

 8

 10

 12

 5.26  5.27  5.28  5.29  5.3

χ M

β

Ns=16

Figure 2.2: Dependence of the chiral susceptibility, χM , and the Wilson line susceptibility,
χL, on coupling, β, and spatial extent, Ns. The variation with β for χM (top three panels)
and χL (bottom three panels) are given for Ns = 8, 12 and 16 from left to right in that
order. The cross-over coupling, βc, is determined through the location of the peaks of the
susceptibilities. The width of the cross-over, ∆βc is determined from the full-width at half
the maximum.

We determined the means and errors in the position of the peak of reweighted curves

for each susceptibility and its FWHM, so obtaining βc and ∆βc [60]. We found βc and

∆βc for each of the susceptibilities on the three different lattice volumes. The results are

shown in Figure 2.3. Since we found very little volume dependence in βc, we made a fit

to a constant, independent of volume. The values of βc so determined are displayed in

Table 2.2. In Figure 2.3 we also show the volume dependence of ∆βc. This decreases with

the volume, and gives some indication of saturating, within errors, close to our largest

lattice. So we take ∆βc obtained on Ns = 16, as our best estimate. These estimates are

also listed in Table 2.2. We find that the variation in βc with different susceptibilities

occur well within the width of the cross over measured from each indicator separately. In

fact, the four estimates of βc are consistent with each other within 68% confidence limits.

Combining all four measurements, we quote βc = 5.2744(7) and ∆βc ≈ 0.006.

In Figure 2.4, we show the temperature dependence for the renormalized quantity

m2
rχ

r
M/T

4. The figure shows that with this cutoff, the deconfining and chiral cross overs
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βc ∆βc
χM 5.2747(6) 0.009(2)
χL 5.2743(5) 0.006(1)
χ22 5.2741(5) 0.006(1)
χ40 5.2743(6) 0.007(1)

Table 2.2: βc and ∆βc as determined from different susceptibilities. ∆βc is much larger
than the statistical error in βc.
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in QCD coincide; m2
rχ

r
M/T

4 peaks between 0.98 and 1.02Tc.

2.3 Setting of Scale using Hadron Masses

All the measurements made on the lattice are in units of lattice spacing. In order to

express the quantities in physical units, we determined the pion, rho and nucleon masses

with T = 0 computations. We determined the hadron masses at βc for set N (βc = 5.2746)

and set O (βc = 5.2875) on 164 lattices. In addition, we also determined the masses on a

244 lattice with a fine lattice spacing at β = 5.53 with a bare quark mass of am = 0.0125.

An earlier hadron mass measurements for set O was done on a 83 × 24 lattice [61]. Here

we redo the analysis using a larger lattice and using extended quark sources.

For set N, the quark mass being comparatively lighter, it presented the problem of

noisy hadron correlators. We were able to tackle the this problem by using extended

quark sources — we used wall [31] and Wuppertal [32] quark sources, while using point

sink (refer Section 1.2.4).

By trial and error, we found Wuppertal smearing (refer eq. (1.18)) with N = 2 and

κ = 0.11 to work better than with other values. The RMS radius of the quark source with

this choice of parameters is
√
3σ ≈ 0.8 fm, which is about the charge radius of the proton.
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am β amρ mπ/mρ mN/mρ

0.015 5.2746 1.31(8) 0.25(2) 1.34(9)
0.025 5.2875 1.3(1) 0.32(3) 1.2(2)
0.0125 5.53 0.64(5) 0.50(4) 1.8(2)

Table 2.3: Hadron mass measurements for set N at βc (top row), set O at βc (middle row),
and a fine lattice with half the lattice spacing as set N and O.

Perhaps, this explains why this choice works. The noise in rho and nucleon correlators were

further reduced when 10-level 3d-APE smeared links (with smearing parameter ǫ = 0.6)

is used in the Laplacian.

With the source at t = 0, the effective mass for the pion at a time-slice t is determined

by fitting the correlator using a single mass fit (eq. (1.19) with no parity partner) over

two successive time-slices, t and t + 1. In order to account for the staggered oscillations

in the rho and nucleon correlators, the effective masses at t are determined by fitting the

correlator using eq. (1.19) and eq. (1.20) over the four consecutive time-slices respectively.

The results for the effective masses of the hadrons are shown in Figure 2.5. The panels

on the left are for the wall source, and the ones on the right are for the Wuppertal

source. With wall source, we still could not determine the nucleon mass. With Wuppertal

smearing, we were able to determine all the masses.

We tabulate the masses of hadrons for all the three zero temperature ensembles in

Table 2.3. By using mρ = 770 MeV, the lattice spacing at βc for set N is about 0.32 fm.

The pion mass for set N configurations is about 190 MeV, while the nucleon is about

1000 MeV. The cross over temperature from both the confinement-deconfinement and

deconfinement order parameters is about 150 MeV.

2.4 The Temperature Scale

We determined the temperature scale by determining the plaquette values, P , at T = 0

on 164 lattices, for the same set of values of β as at finite T [62]. Using the plaquette

values, we used three different renormalization schemes (namely E-scheme [63], V-scheme

[64] and MS-scheme) in order to determine the renormalized coupling α at the scale of

the lattice spacing a. With the assumption that a is small enough to use the 2-loop QCD
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2.4. THE TEMPERATURE SCALE 29

β ma E V MS m/Tc
T/Tc T/Tc T/Tc

5.25 0.0165 0.9276(28) 0.9147(34) 0.9187(32) 0.0606
5.255 0.0162 0.9450(20) 0.9353(23) 0.9383(22) 0.0608
5.26 0.0160 0.9628(18) 0.9563(21) 0.9584(20) 0.0613
5.27 0.0153 0.9905(20) 0.9889(23) 0.9894(22) 0.0606
5.2746 0.0150 1.0000(18) 1.0000(21) 1.0000(20) 0.0600
5.275 0.0150 1.0096(30) 1.0113(36) 1.0107(34) 0.0606
5.28 0.0146 1.0194(29) 1.0227(34) 1.0216(33) 0.0597
5.3 0.0138 1.0915(26) 1.1067(30) 1.1018(29) 0.0608
5.3406 0.0115 1.2590(24) 1.3007(28) 1.2866(27) 0.0592
5.367 0.0104 1.3818(56) 1.4422(62) 1.4213(60) 0.0591
5.381 0.0100 1.4699(17) 1.5435(19) 1.5176(18) 0.0607
5.42 0.0088 1.6229(26) 1.7194(29) 1.6848(28) 0.0593
5.483 0.0075 1.9432(28) 2.0870(30) 2.0337(29) 0.0610
5.56 0.0063 2.2739(29) 2.4667(31) 2.3935(31) 0.0603

Table 2.4: Temperature scale set using three different schemes (E, V and M̄S). βc is taken
to be 5.2746. ma is the bare mass given in lattice units for a given β. The error due to
scheme dependence of T/Tc is about 0.01 for all β which is greater than the statistical
error. m/Tc ≈ 0.06 for all β.

β-function, the lattice spacing is related to α through

aΛ = kR(1/4πβ0α) where R2(x) = exp(−x)x(β1/β2

0
), (2.7)

where Λ is the QCD scale parameter determined in a particular scheme. k is a renor-

malization scheme dependent constant. β0 and β1 are the scheme independent first and

second coefficients in the β-function. From the plaquette values at β and βc, we found the

temperature scale T/Tc = ac/a. We determined both T/Tc and ma self consistently such

that m/Tc ∼ 0.06. The temperature scale set by the above procedure is given in Table

2.4. As it can be seen, the scheme dependence is more than that of statistical error at this

lattice spacing. Therefore, we quote the error from scheme dependence for T/Tc in Table

2.1.
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Chapter 3

Studies on Gauge-link Smearing

3.1 Introduction

Gauge-link smearing is based on the wisdom that the average of random variates fluctuate

less than the variates themselves. The gauge-link smeared links are constructed by replac-

ing the original unsmeared link (henceforth called thin-links) connecting two points, with

a gauge-covariant average of different paths connecting the same two points. The choice

one makes by choosing a smearing scheme is the set of paths that are being included, and

the weightage given to each of them.

A qualitative reasoning as to why gauge-link smearing should be useful to ameliorate

taste breaking, is useful at this point. The different tastes of the quark field, ψt(x), are

different combinations of the staggered fields, χ, on a hypercube. Thus, in the presence

of gauge fields, the different tastes experience different gauge-links within the hypercube.

Therefore, a rapidly fluctuating gauge field is expected to increase taste breaking. Given

the motivation of gauge-link smearing as a tool to suppress the UV fluctuations, this

chapter is therefore mainly on the aspects of smearing in the context of staggered quarks.

The chapter is organized as follows. In Section 3.3, we demonstrate that gauge-link

smearing suppresses UV more than IR in both the quark and glue sectors. Then, we

understand the effect of smearing on the mean value of plaquette using tree-level weak-

coupling expansion in Section 3.4. After that, we present our results on the factorization of

pion-taste splitting into a smearing dependent factor and a lattice spacing dependent factor

in Section 3.5. This explains how smearing helps to obtain results closer to their continuum

values, but at finite lattice spacings. We show that by improving taste symmetry through

31
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gauge-link smearing at zero temperature, one obtains a quadratic taste improvement in

the deconfined phase.

3.2 Constructions of Smearing

In the following subsections, we briefly outline the constructions of four gauge-link smear-

ing schemes — APE [6], Stout [7], HYP [8], and HEX [9].

3.2.1 APE

APE smearing is the oldest, and also the simplest construction of smeared links[6]. The

gauge-covariant average is taken only over the paths which form the staple around the

link. The exact construction of APE smeared link, Vx,µ, is

Vx,µ = Pr
[

(1− ǫ)Ux,µ +
ǫ

6
Cx,µ

]

, (3.1)

where the staple, Cx,µ, is given by

Cx,µ =
4
∑

±ν 6=µ

Ux,νUx+ν̂,µU
†
x+µ̂,ν . (3.2)

The real coefficient ǫ is a tunable parameter, and it determines the weightage given to

the neighbouring staples over the original thin-link. Henceforth, ǫ is called the smearing

parameter in this thesis. Tuning this coefficient to its optimal value is one of the goals

in this study. As the sum of SU(3) matrices do not in general lie in SU(3), the resulting

averaged link is projected to SU(3) as indicated by Pr[. . .]. The choice for the projection

is not unique; we use the method of polar decomposition [65] of arbitrary matrices. A

pictorial representation of the construction of APE is shown in Figure 3.1.

3.2.2 Stout

Stout smearing was proposed in [7] as a method of smearing which avoids the problem of

projection to SU(3). For this, one constructs a traceless anti-hermitean matrix out of the

products of neighbouring links, which form the plaquettes hinged on the original thin-link,
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x x + µ̂

=

Uµ(x)Ūµ(x)

(1− ǫ) +ǫ
4

Figure 3.1: Construction of APE smeared link in 3d. The APE smeared link (blue)
is constructed as a weighted sum of the original thin-link and the neighbouring paths
(staples in this case) connecting the same two points. The resulting link is projected to
SU(3).

and then exponentiate it to get a matrix which lies in SU(3). The Stout smeared link is

obtained by multiplying this with the thin-link. The construction is given by

Vx,µ = exp
(

ǫ
[

Cx,µU
†
x,µ

]

TA

)

Ux,µ, (3.3)

where [. . .]TA is the traceless anti-hermitean part of its argument. Again, a tunable smear-

ing parameter, ǫ, controls the weightage given to the neighbouring links.

3.2.3 Hypercubic schemes

It is possible to iterate APE or stout smearing nlev successive times. But, it has the

disadvantage of making the construction of smeared links non-local; an nlev-APE smeared

link involves the thin-links that are nlev lattice spacings apart. Hypercubic smearing

schemes are constructed to overcome this problem of locality. HYP [8] is the hypercubic

version for APE, and HEX [9]is based in Stout. A single level of HEX has three nested

sub-levels constructed such that the smeared links at the n-th sub-level, V (n), are built

only out of the thin-links that are within a hypercube. The final HEX smeared links, V
(3)
µ
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obtained in the third sub-level, are given by

Sub-level 1: V (1)
x,µ;νρ = exp

(ǫ1
2

[

C(1)
x,µ;νρU

†
x,µ

]

TA

)

Ux,µ, C(1)
x,µ;νρ =

∑

±σ 6=µνρ

[

Ux,σUx+σ,µU
†
x+µ,σ

]

Sub-level 2: V (2)
x,µ;ν = exp

(ǫ2
4

[

C(2)
x,µ;νU

†
x,µ

]

TA

)

Ux,µ, C(2)
x,µ;ν =

∑

±σ 6=µν

[

V (1)
x,σ;µνV

(1)
x+σ,µ;σνV

(1)†
x+µ,σ;µν

]

Sub-level 3: V (3)
x,µ = exp

(ǫ3
6

[

C(3)
x,µU

†
x,µ

]

TA

)

Ux,µ, C(3)
x,µ =

∑

±σ 6=µ

[

V (2)
x,σ;µV

(2)
x+σ,µ;σV

(2)†
x+µ,σ;µ

]

,

(3.4)

where C(n) are staples constructed out of the smeared links in the (n− 1)-th sub-level. In

this thesis, we take ǫ1 = ǫ2 = ǫ3 for the sake of simplicity. HYP smeared links are similarly

constructed, based on APE, as

Sub-level 1: V (1)
x,µ;νρ = Pr

[

(1− ǫ1)Ux,µ +
ǫ1
2
C(1)

x,µ;νρ

]

Sub-level 2: V (2)
x,µ;ν = Pr

[

(1− ǫ2)Ux,µ +
ǫ2
4
C(2)

x,µ;ν

]

Sub-level 3: V (3)
x,µ = Pr

[

(1− ǫ3)Ux,µ +
ǫ3
6
C(3)

x,µ

]

.

(3.5)

The plethora of directional indices seen in the above definitions, means a memory re-

quirement which is twelve times more than that for thin-links, merely used as work-space.

We developed a memory optimized implementation of HEX, which reduces the memory

requirement for work-space by more than 50%. We discuss this in Appendix B.

3.3 Suppression of UV

The effectiveness of smearing in suppressing the UV has been studied earlier [8] indirectly,

by constructing the histogram of plaquettes, and noting the effect of smearing on atypically

small plaquette values. In this section, we present a direct method of studying how

smearing affects UV and IR modes in both the gauge and quark sectors. Through this, we

learn how the suppression in UV and IR are different, and also obtain different estimates

of the optimum values of ǫ. For this part of the study, we use one level of smearing for all

the schemes.
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3.3.1 Gluon Sector

In order to study the rapid space-time variations of gauge-field, configuration by config-

uration, we need to suitably choose a quantity which is local, and gauge-invariant. The

simplest such pure-gauge observable is the plaquette; the definition of plaquette we use in

this study is

P (x) ≡
4
∑

µ=1

ReTr
(

Cx,µU
†
x,µ

)

. (3.6)

We study the effects of gauge link smearing on the high frequency modes of the gauge

field by constructing the power spectrum, E(k), of plaquettes:

P (k) =
∑

x

exp (ik · x)P (x) and E(k) = |P (k)|2. (3.7)

The mode numbers kµ = π(2ℓµ+ζµ)/Nµ, Nµ is the size of the lattice in the direction µ, the

integers 0 ≤ ℓµ < Nµ, and ζµ = 0 for periodic boundary conditions and 1 for anti-periodic.

Periodic or anti-periodic boundary conditions imply that the independent modes are those

with ℓµ inside the Brillouin hypercube whose body diagonal, BD, joins the corners (0,0,0,0)

and (Nx/2, Ny/2, Nz/2, Nt/2). We use this power spectrum to find how smearing affects

the UV and IR modes. As shown in Figure 3.2, we separate the IR and UV using the

hyperplanes perpendicular to BD. All modes within the Brillouin zone closer to the origin

than a hyperplane σIR are called IR modes; conversely all modes within the Brillouin zone

closer to the far corner than the plane σUV are called UV modes. Everything else is a

generic mode— neither IR, nor UV. Quantitatively, if n̂ is a unit vector along BD, then

the mode k = (k1, k2, k3, k4) is classified as UV or IR based on whether

k · n̂ < 2πf or k · n̂ > 2π(1− f) (3.8)

respectively. The fraction, f , of the total length of BD where σIR intercepts BD, is arbitrary

and less than 1. We check that our results do not depend on the choice of f .

We monitor how the total power in IR and UV regions behave with smearing. We

define the suppression of power in the IR and UV as a function of ǫ

QUV =
EUV (ǫ)

EUV (0)
, and QIR =

EIR(ǫ)

EIR(0)
, (3.9)
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σIR

(π, π, π)

(0,0,0)

UV

σUV

IR

Figure 3.2: Defining UV and IR. The cube represents a three dimensional Brillouin zone
for illustration. The body diagonal connects the origin to the opposite corner of the cube.
The modes between the origin and the plane σIR, which is perpendicular to the body
diagonal, are defined as IR modes. Similarly, the modes between σUV and the farthest
corner are defined as UV. The rest of the modes are generic. The distances of the planes
from the origin are arbitrary.
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Figure 3.3: Suppression of power in UV and IR plotted as a function of smearing parame-
ter, ǫ, and different smearing schemes. The top panel is on a coarse lattice at β = 5.2875,
while the bottom panel is in a finer lattice with β = 5.53. UV is more suppressed than
the IR at small values of ǫ. Optimal values of ǫ are the ones which suppresses the UV the
most.

where EUV (ǫ) is the power summed over all modes in the UV for a fixed value of ǫ, and

EIR(ǫ) is a similar quantity obtained by summing over all modes in the IR. If Q is less

than 1, then smearing is successful is suppressing the modes.

We investigated Q numerically with thermalized configurations at T = 0 using β =

5.2875 and β = 5.53 (corresponding to lattice spacings of 0.34 and 0.17 fm as discussed in

Section 2.3) on 164 and 244 lattices respectively. Periodic boundary conditions were used

so that all ζµ = 0. We used fast Fourier transforms [66] to determine the power spectrum

on 164 lattices, while using brute-force to determine the Fourier transform on 244 lattice.

The variation of QX with ǫ is shown in the top two panels of Figure 3.3. First focusing on

the top panel, one sees that the slope of the curve for QUV always starts off larger than

that for QIR. Also, the slope of the latter seems to be close to zero. This shows that

smearing can be used to modify the UV without modifying the IR. One can use this to

seek an optimum value of ǫ, such that QUV is as small as possible. From the bottom panel,

we find that there is a change in the overall suppression of power in the IR and UV, but

the change in the optimum ǫ is not large even when the lattice spacing is halved. The

optimum values of ǫ move down slightly. This movement is compatible with the intuition
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Figure 3.4: QUV as a function of ǫ and the distance, f , of the plane, σUV, from the farthest
corner of the Brillouin zone. The minimum of QUV seems to not depend on the distance
f .

that finer lattices require less improvement. One could argue that there are more UV

modes on finer lattices, and therefore more smearing would be required. The fallacy lies

in the fact that the increasing number of UV modes leads to divergences which are taken

care of by renormalization. The contribution from the UV modes to the lattice corrections

to renormalized quantities should reduce, since these lattice corrections are irrelevant, in

the sense of renormalization group.

Since the definitions of IR and UV are arbitrary, one needs to check whether the results

are sensitive to this definition. We place the planes σIR and σUV at a fraction f of the

length of the diagonal (with 0 < f < 0.5, so that no mode is simultaneously in the IR and

UV) from the nearest corner, and varied f . The result for QUV is shown in Figure 3.4.

The colour code is such that QUV decreases when we go from yellow to blue. We find that

the optimum ǫ is insensitive to f . The results on the optimum values of ǫ for different

smearing schemes are collected in Table 3.1.

3.3.2 Quark Sector

Having shown that, for a range of ǫ, UV is suppressed more than IR in the glue sector,

we now study the corresponding behaviour in the quark sector. For this, we choose the

maximum and minimum eigenvalues of D†D, λmax and λmin respectively, as proxies for UV

and IR (refer eq. (1.12) for the definition of massive staggered Dirac operator D). This is
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justified, given the dimension of the eigenvalues of D to be that of energy.

We determine the eigenvalues ofD†D using the Lanczos algorithm [67]. It is an iterative

method for tridiagonalizing positive definite hermitian matrices:

T = Q†
(

D†D
)

Q, (3.10)

where T is tridiagonal, and Q is unitary. The k-th step of the algorithm computes a

tridiagonal matrix, Tk, which is the k × k sub-matrix of T . The extremal eigenvalues of

Tk rapidly converges towards the extremal eigenvalues of D†D, as shown using Kaniel-

Paige convergence theory[67]. Therefore, it is a suitable method for us to determine the

extremal eigenvalues of D†D. We construct Tk and determine its extremal eigenvalues

using the Lapack subroutine dstevx. The stopping criterion for the algorithm is that the

extremal eigenvalues do not change by more than δ for 5 successive Lanczos iterations; we

take δ = 10−8. With this value for δ, we find the extremal eigenvalues to converge within

k = 2000 steps.

In Figure 3.5, we show the behaviour of the extremal eigenvalues as a function of ǫ for

all the four smearing schemes. The top panel is for the coarser lattice with β = 5.2875,

and the bottom panel is for the finer lattice having β = 5.53 (which has half the lattice

spacing as that at β = 5.2875). We find that smearing reduces λmax when small values

of ǫ are used. The maximum reduction occurs at values of ǫ which are very close to that

of the optimal values obtained in the gauge sector. Unlike in the gauge-sector, this effect

remains intact when the lattice spacing is halved. Within our precision of determination

of λmin, which is δ = 10−8, we do not see any changes due to smearing. The values of

optimal ǫ, as determined from the maximum reduction in λmax, are also tabulated in Table

3.1.

Smearing also provides a computational advantage by reducing the effort to invert

the Dirac operator — an operation which is ubiquitous in lattice QCD. It is required, for

example, in the Hybrid Monte Carlo algorithms [68] and for constructing quark propagator.

Since the typical size of the Dirac operator is O(106 × 106), one typically uses iterative

methods such as the conjugate gradient (CG) [67]. It converts the problem of finding the

vector x =
(

D†D
)−1

b into a problem of finding the minimum of the parabola

y =
1

2
x†
(

D†D
)

x− x†b, (3.11)
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Figure 3.5: The extremal eigenvalues of the massive Dirac operator as a function of ǫ. The
top panel is at β = 5.2875, while the bottom one at β = 5.53. The maximum eigenvalue
is reduced to the minimum at values of ǫ which are close to the optimum values obtained
from the gauge sector. The changes in minimum eigenvalue are much smaller than the
bare quark mass.

which is easy to check by equating ∇y = 0. The convergence of the solution, x, is

monitored through the residue

δCG =
√
r†r, (3.12)

where r = b−D†Dx. At the minimum (equivalently, after a complete inversion), δCG = 0.

However, in an actual computation, one stops the CG iterations after the residue is less

than a tolerance. We call the number of CG iterations taken for δCG < 10−5 as NCG [45].

Interestingly, conjugate gradient inversion is also optimized at similar values of ǫ. In

Figure 3.7, we show NCG in a representative configuration drawn from thermalized en-

sembles at β = 5.53. In all the cases, there is about 30% reduction in NCG. Note that

the performance of the APE and HYP smeared operators are very similar to each other,

just as before. The behavior of the Stout and HEX smearing are also similar, but quite

different from the previous pair. Again, the lattice spacing and pion mass make little

difference to the optimization. These results on CG are intimately linked to the results on

the extremal eigenvalues. In fact, an upper bound on NCG, denoted as Nmax

CG , is related to

the condition number

κ ≡ λmax

λmin

, (3.13)
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Figure 3.6: Computational advantage offered by smearing by a reduction in the number
of CG iterations.

as [67, 69]

Nmax

CG =
1

2

√
κ ln

(

2δ−1
CG

)

. (3.14)

In the top panel of Figure 3.7, we plot Nmax

CG as a function of ǫ for HEX. We also show the

data points from simulation for comparison. We find that the data points always lie below

the upper bound as expected. However, the value of the upper bound itself changes with ǫ,

with a minimum value at ǫ = 0.15. Similar behaviours are seen for all the other smearing

schemes. We study how NCG is reduced in relation to its upper bound, in the bottom

panel of Figure 3.7. Without smearing, CG takes about 12% lesser number of steps than

the upper bound. With optimal smearing, we find that it takes about 23% less number of

iterations than the upper bound with hypercubic schemes, while it is about 19% for APE

and Stout. Thus, the effect of smearing is two fold — it reduces the condition number

which in turn reduces the upper bound on NCG, and it reduces the NCG further below

this upper bound than in the case of thin-links. Also, as seen in Figure 3.5, the reduction

in κ is because of the reduction in λmax.

We collect the results on optimal values of ǫ, as determined from the maximum reduc-

tion in QUV , λmax and NCG, in Table 3.1.
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Figure 3.7: Improvement with respect to theoretical maximum. On the top plot, the solid
line is the expected upper bound on NCG, given the condition number of D†D at ǫ. The
points are the actual data. On the bottom panel, the ratio of NCG to the upper bound
Nmax

CG is shown as a function of ǫ for various smearing schemes.

Scheme a = 0.34fm a = 0.17fm
QUV NCG λmax QUV NCG λmax

APE 0.71 0.65 0.62 0.70 0.65 0.60
HYP 0.65 0.60 0.56 0.65 0.55 0.55
Stout 0.19 0.15 0.16 0.18 0.15 0.14
HEX 0.20 0.15 0.17 0.17 0.15 0.14

Table 3.1: Table of optimum values of smearing parameter, ǫ, obtained through different
methods. It is interesting to note that the optimal values obtained through the different
methods are close to each other.
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3.4 Understanding throughWeak-coupling Expansions

In this section, we try to understand the behaviour of plaquette with smearing, using tree

level lattice perturbation theory. We follow the calculation done in [70] and [9]. First,

we compute the gauge-link smeared plaquette. Using this, we study the behaviour of

plaquette with smearing parameter. This gives us an understanding of what values of ǫ

can be deemed safe to use.

In a lattice perturbation theory with smeared links [70], one deals with the “familiar”

gauge-fields A
(n)
µ (x + µ̂/2) that are associated with the mid-points of links. These are

3×3 traceless Hermitean matrices belonging to the algebra of SU (3), and they are related

to the n-level smeared gauge-links as U
(n)
x,µ ≈ exp

(

iagA
(n)
µ (x+ µ̂/2)

)

. For the tree-level

calculation, we expand U
(n)
x,µ to O(g2):

U (n)
x,µ ≈ 1 + igaA(n)

µ (x+ µ̂/2)− g2a2

2
A(n)

µ

2
(x+ µ̂/2) +O(g3a3). (3.15)

The unitarity of gauge-links is lost in such a truncation of the exponential, and it could

lead to values of plaquette which are larger than 1 in the case of repeated smearing.

Expanding both sides of eq. (3.3) to O(g), one obtains a recursive formula

A(n)
µ (x) =

∑

ν,y

[ω(y)δµν + ωµν(y)]A
(n−1)
ν (x+ y), (3.16)

where
ω(y) = δy,0 + ǫ

∑

ρ̂

(δy,ρ̂ − 2δy,0 + δy,−ρ̂) and

ωµν = ǫ
[

δy,−µ̂/2+ν̂/2 − δy,−µ̂/2−ν̂/2 − δy,µ̂/2+ν̂/2 + δy,µ̂/2−ν̂/2

]

.

(3.17)

Let ω̃ and ω̃µν be the Fourier transforms of ω(y) and ωµν(y) respectively. They are given

by

ω̃(k) = 1− ǫk̂2 and ω̃µν(k) = ǫk̂µk̂ν , (3.18)

with k̂µ = 2 sin(kµ/2). Then, one can write eq. (3.16) in terms of the Fourier transforms

Ã(n) of gauge-fields as

Ã(n)
µ (k) =

∑

ν

[ω̃(k)δµν + ω̃µν(k)] Ã
(n−1)
ν (k). (3.19)
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By rewriting the above equation in terms of the transverse and longitudinal parts, and

then using the recursive formula so obtained, one finally gets an expression in terms of

the Fourier transform of thin links

Ã(n)
µ (k) =

[

ω̃n(k)

(

δµν −
k̂µk̂ν

k̂2

)

+
k̂µk̂ν

k̂2

]

A(0)
ν (k). (3.20)

Thus, only the transverse part is successively affected, while the longitudinal part remain-

ing unaffected. As interpreted in [70], this is because the gauge-link smearing algorithms

are gauge-covariant, and the longitudinal part being fixed by the gauge.

The plaquette, P (n), after n-levels of smearing is

P (n) =
1

3NP

∑

x

∑

µ 6=ν

ReTr
〈

U (n)
x,µU

(n)
x+µ̂,νU

(n)†
x+ν̂,µU

(n)†
x,ν

〉

, (3.21)

where the thermal expectation, 〈. . .〉, is taken with respect to the Wilson gauge action

constructed out of thin-links. NP is the number of plaquette in the lattice. Using eq.

(3.15) and considering only up to O(g2), one is left with different contractions of the form
〈

Tr
[

A
(n)
µ (x)A

(n)
µ (x+ µ̂)

]〉

and
〈

Tr
[

A
(n)
µ (x)A

(n)
µ (x)

]〉

. We reduce these contractions to

that among Ã
(0)
µ (k) using eq. (3.20), after Fourier transformation. These contractions

are greatly simplified using the lattice gluon propagator in Feynman gauge, which is

〈Ã(0)
µ (k)Ã

(0)
ν (k)〉 = δµν/k̂

2. Terms such as
〈

Tr
[

A
(n)
µ (x)A

(n)
ν (x)

]〉

do not enter the cal-

culation due to this choice of gauge. Through such simplifications, eq. (3.21) becomes

P (n) = 1− 2

β
w(n)(ǫ) where w(n)(ǫ) =

∫ π

−π

d4k

(2π)4
ω̃2n(k). (3.22)

The integral in w(n) is evaluated over the entire Brillouin zone.

Using the above result, we study how the mean value of plaquette, after a level of

stout smearing, behaves as a function of ǫ. For n = 1, the expression for w(1) is simply a

quadratic in ǫ: w(1) = 1− 16ǫ+ 72ǫ2. This weak coupling result (at β = 10) is compared

with results from simulations at β = 5.2746 and 5.53 in Figure 3.8. It is interesting to find

the tree-level calculation to have the same features as seen in the non-perturbative results;

for small values of ǫ, the value of plaquette increases with ǫ and reaches a maximum at

ǫ = ǫmax. The value of ǫmax in the non-perturbative results is about 0.15, while it is 0.11
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Figure 3.8: The behaviour of mean value of plaquette as a function of ǫ. The result
from tree-level weak-coupling calculation is compared with the results at β = 5.53 and
β = 5.2746, and it is found to describe the ǫ dependence of plaquette qualitatively. The
value of ǫ where the plaquette value turns over is ǫmax. At large values of ǫ, there is a
reversal of the ordering of plaquette with lattice spacing.

for the perturbative result. With thin-links, value of plaquette increases towards 1 with

increase in the value of β. While this ordering of plaquette values with β is preserved

for ǫ < ǫmax, the ordering reverses for values larger than ǫmax. Hence, above ǫmax, the

behaviour seems to be disconnected from the behaviour expected without smearing.

A way to understand the behaviour with ǫ, is by considering eq. (3.16). It can be written

qualitatively as A(1) ∼ A(0)+ ǫA(0), with A(0) being a place-holder for the unsmeared fields

as well as numerical factors excluding ǫ. We call the first term in the right hand side as the

unsmeared part and the second term linear in ǫ as the smeared part. The constant term

in w(1)(ǫ) comes from Wick contractions between unsmeared parts, and the term linear in

ǫ comes from the contractions between smeared and unsmeared parts. This linear term

leads to an increase in the value of plaquette. However, the term quadratic in ǫ is from

contractions only among smeared parts. When this term starts dominating, the plaquette

value starts decreasing again indicating that this is a result of over-smearing.
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3.5 Factorization of Taste Splitting

In the previous sections, we showed quantitatively that smearing indeed suppresses UV.

In this section we study the effect of this UV suppression on the pion taste splittings, δmΓ

(refer eq. (1.15) for the definition). Pion taste spectrum has been studied before [14–16]

as a function of lattice spacing and due to the reduction in bare quark mass. However, we

study the taste spectrum by treating the smearing parameter as one of the variables. This

enables us to find an interesting feature of factorization of taste splitting into a purely

lattice spacing dependent factor and a smearing dependent factor.

3.5.1 At T = 0

We studied the pion taste spectrum, δmΓ, at T = 0 with the couplings β = 5.2746 and

5.53. The lattice spacing at β = 5.53 is about half the lattice spacing at 5.2746. We used

164 lattice at β = 5.2746 and 244 lattice at 5.53. Using these lattices, we investigated the

behaviour of the local-time pions, namely, Γ = γ5, γiγ5, γiγ4 and γ4 [5, 29]. The non-local

time pions occur as parity partners of local time scalar mesons, which we found hard to

get a good signal for. We used point quark source and sink. For each configuration, we

determined the quark propagators by placing the quark source at the 27 corners of a 3d

cube in a time-slice. These are required to construct all the local time pion correlators,

as outlined in Section 1.2.4. Our measurements of the pion taste spectrum at the two

values of β were partially quenched — the configurations were generated using dynamical

standard staggered sea quark action, but the valence quarks were improved using different

smeared links in the quark propagators. A caveat is that we did not tune the valence

quark mass at different various values of ǫ so as to keep the mass of the pseudo-Goldstone

pion constant.

In Figure 3.9, we show the results for the pion taste spectrum on the finer lattice at

β = 5.53. The different panels show the spectrum as a function of ǫ for different smearing

schemes. We find that the pion splitting is indeed substantially reduced near the values of

ǫ where the UV is optimally reduced. Among the four smearing schemes, HYP smearing

seems to perform the best — the taste splittings near the optimal ǫ is reduced by a factor

of 5. The ordering of splittings, δmγ4 ≥ δmγ4γi ≥ δmγ5γi , as expected from staggered

chiral perturbation theory [71] is maintained at all the values of ǫ that we investigated.

The taste splittings are functions of lattice spacing, smearing scheme (and its smearing
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parameter). For ǫ < ǫmax, we find evidence that the dependence on lattice spacing and

smearing factorize:

δmΓ = f(ǫ)gΓ(a), (3.23)

with a suitable normalization f(0) = 1. The factor f(ǫ) is both smearing scheme and

smearing parameter dependent. With the above normalization, the factor gΓ(a) is the taste

splitting with thin-links. We arrive at the conclusion in eq. (3.23) by plotting the taste

splittings, aδmΓ, at β = 5.53 as a function of the taste splitting, aδmγiγ5 , at β = 5.2746.

The taste splittings at the two lattice spacings were determined using the same set of

smearing schemes and smearing parameter values. From the plot, we find that irrespective

of smearing schemes, the data fall on universal straight lines. This implies the factorization

in eq. (3.23). The slopes being different for different taste splittings implies that gΓ(a)

indeed depends on the taste Γ. We test these observations quantitatively by fitting a

straight line, y = cx, to data from each Γ and smearing schemes. The best fit values of c,
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Γ = γiγ5 Γ = γiγ4 Γ = γ4
Scheme c χ2/DOF c χ2/DOF c χ2/DOF
HYP 0.09(1) 0.17/5 0.14(1) 0.3/5 0.19(2) 0.3/5
APE 0.10(2) 0.1/4 0.15(3) 0.2/4 0.21(3) 0.1/4
HEX 0.11(3) 0.03/2 0.15(3) 0.2/2 0.21(4) 0.1/2
ST 0.09(2) 0.13/1 0.15(2) 0.1/1 0.22(3) 0.4/1

Table 3.2: Testing of hypothesis that aδmΓ(β = 5.53) versus aδmγiγ5(β = 5.2746), for a
given Γ, is described by y = cx for all smearing schemes. For each Γ, the best fit values of
c are tabulated. Note that the values of c for a given Γ are all consistent with each other.

and χ2/DOF for the fit are tabulated in Table 3.2. The values of χ2/DOF are less than 2

for all cases. For each Γ, we find that the values of c are consistent with each other within

errors. Thus, the effects of smearing and lattice spacing factorize completely.

This gives a better understanding of smearing — gauge-link smearing offers a com-

putational advantage by making taste splittings nearer to zero at finite a, while their

dependences on a remain the same.

3.5.2 At T > Tc

Temperature scale with partial quenching

In order to see if there is a shift in the value of cross-over coupling βc due to gauge-link

smearing, we determined βc using the peak positions of partially quenched Wilson line

susceptibility, χL, and the unrenormalized chiral susceptibility, χM . The result on the

cross-over temperatures with various optimal smearing schemes, in terms of Tc without

smearing, is shown in Figure 3.11. Smearing seems to have no effect on Tc as determined

from χL. However, the Tc determined from χM seems to slightly shift to smaller values

with smearing, but such variations are statistically insignificant. Therefore, we use the

same temperature scale as obtained without smearing, for our partially quenched studies.

Super-linear improvement

More information can be extracted from the taste-splitting of the screening masses at finite

T ,

δµΓ = µΓ − µγ5 . (3.24)
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Figure 3.11: Effect of smearing on the cross-over. The width of cross-over is the range
of x-axis. No significant change in Tc from the confining-deconfining and the chiral order
parameters is seen. This also means that in our partially quenched studies we can use the
same temperature scale as set for the thin-links.

The only previous study of this kind was reported in [20]. In Figure 3.12, we show δµγiγ5

as a function of aδmγiγ5 . In making this comparison we held the lattice spacing fixed, with

one set of measurements at T = 0, one at T = 2Tc in set O and a third at T = 1.33Tc in

set P. We find
δµγiγ5

T
∝ (aδmγiγ5)

2, (3.25)

over the range of values we obtained. This removes the ambiguity remarked upon in

[20] about the T dependence of taste splitting in the deconfined phase. This super-linear

dependences between the taste splittings at T = 0 and T > Tc is seen with other sets of

taste splittings as well. This means that, if taste splitting is improved by the factor f(ǫ)

at T = 0, this leads to an f 2(ǫ) improvement in the deconfined phase.

One can argue for this on general grounds. A hadron mass, M , can be written as

Ma = f(aΛMS,ma, ǫ), where we treat ǫ as a generic label for all the parameters which

control smearing. A screening mass, µ, can be written as µ/T = g(aΛMS,ma, ǫ,Nt), since

Nt = 1/(aT ), or as aµ = g′(aΛMS,ma, ǫ,Nt). For data taken at fixed cutoff, aΛMS, we

need not show this parameter explicitly. Although we work at fixed ma, it is profitable to

consider the dependence on this variable. A series expansion in ma near the chiral limit
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fined phase as a function of the corresponding taste splitting, δmΓ, at T = 0 for the taste
Γ = γiγ5. The different points correspond to the optimal ǫ in different smearing schemes.
From the figure, we find that the two taste splittings are related quadratically.

would yield different dependence for the Goldstone pion mass

amγ5 = α1

√
ma+O (ma)3/2 , and aM = γ0 + γ1ma+O (ma)2 , (3.26)

where M is any other mass scale, and the coefficients depend on ǫ. As a result,

aδmΓ = γ0 − α1

√
ma+ γ1ma and δµΓ/T = γ′0 + γ′1ma. (3.27)

If taste symmetry were recovered in the chiral limit by tuning ǫ, then one might argue

that γ0 = γ′0 = 0 and hence aδµΓ ∝ (aδmΓ)
2. This would also mean that all pion tastes

are forced to be Goldstones, with an expansion starting at order
√
ma. Chiral logarithms,

which we have neglected here, could become important at smaller masses and spoil this

scaling.

Even if smearing achieves a more limited goal of significantly decreasing δmΓ at fi-

nite ma without actually recovering taste symmetry completely, one might still recover

quadratic scaling. All that is needed is that γ0 and γ′0 become much smaller than the



52 3. STUDIES ON GAUGE-LINK SMEARING

actual T = 0 taste splitting in the problem. In general one would have

δµΓ/T − γ′0 ∝ (aδmΓ − γ0)
2. (3.28)

The data in Figure 3.12 shows that γ′0 and γ0, are small compared to aδmπ. This quantifies

how well smearing works. The fact that it seems to work better at finite temperature than

at T = 0 with fixed values of aΛMS and ma possibly indicates that the Dirac eigenvalue

spectrum is simpler. We shall return to this point later.

The main conclusions from these studies of smearing are the following. Optimising the

suppression of UV modes automatically improves taste symmetry in the hadron spectrum

at T = 0, as long as the smearing dependent factor, f(ǫ), is less than 1. This leads to an

f 2(ǫ) improvement in taste symmetry in the hot phase of QCD. In order to gain most from

such an improvement, one should then choose the best possible smearing scheme. With

partial quenching, as here, this would mean working with the optimized HYP scheme;

with dynamical smeared quarks it would mean working with the optimized HEX scheme.



Chapter 4

Screening Masses with Improved

Valence Quarks

This chapter deals with finite temperature staggered lattice QCD with reduced taste break-

ing. The main emphasis is on the measurement of hadronic screening masses in the decon-

fined phase. In Section 4.2, we show results pertaining to chiral symmetry restoration in

the deconfined phase. In particular, we show that there is an increased degeneracy among

mesonic screening correlators as expected from such a restoration. Section 4.3 deals with

the spectrum of screening masses using various smearing schemes. In particular, we find

that the mesonic screening masses approach the free field theory from above, as predicted

by weak-coupling theory. We also demonstrate that an improvement in taste plays a more

important role than just decreasing O(a2) taste breaking lattice artifacts. In Section 4.4,

we understand the reason for such drastic changes in the long distance behaviour of stag-

gered lattice QCD with taste improvement, as due to a slow increase with temperature in

the lowest eigenvalue of the unimproved Dirac operator, in the cross-over region.

4.1 Methods

We used set N, O and P in this study. For improving the valence quarks, we used optimal

HYP, HEX, Stout and APE smeared links during the construction of quark propagators.

We used one level smeared links so that to maintain locality. We used wall source for

determining the quark propagators. For this, we gauge-fixed the configurations in Coulomb

53
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Figure 4.1: Left panel: Confidence intervals for the fit parameters for PS at 1.06Tc. The
black points are the scatter of bootstrap values of the fit parameters. χ2
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gauge.

We determined the hadronic screening masses by fit, as described in Section 1.2.4.

The statistical errors on fit parameters were determined through bootstrap sampling [72].

This helps to avoid the assumption that the distributions of fit parameters are Gaussian.

This is important given that the functions being fit (eq. (1.19) and eq. (1.20)) are highly

non-linear. Indeed, in many cases there were deviations from a Gaussian behaviour. In

the left panel of Figure 4.1, we show the scatter plot for the best fit values of APS and µPS

in each of the bootstrap samples at T = 1.06Tc. The minimum value of χ2 is χ2
min

. The

blue solid curve is parametrized by χ2 = χ2
min

+ 1. In the case of a Gaussian distribution,

the curve would be an ellipse and its projection onto the screening mass axis would give

the 68% confidence interval for µPS. However, even by eye, the curves are not ellipses.

Also, the curve χ2
min

+ 1 encloses 45(2)% of the scatter, while the expected fraction from
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χ2-distribution with 2 degrees of freedom is 39.3%. In the right panel of Figure 4.1, we

compare the bootstrap histogram of χ2
min

with the expected χ2-distribution for 4 degrees

of freedom in this particular fit. The two of them should agree in the case of Gaussian dis-

tribution, while deviations between the two are clearly seen. This justifies the superiority

of bootstrap over a naive estimation of confidence intervals using the covariance matrix

for the fit parameters. The band in the left panel, shows the 68% confidence interval for

µPS as estimated from the scatter.

The fit range was varied such that zmax was never more than two sites from the middle

of the lattice, zmin was never less than two sites from the source. Among the fits satisfying

χ2/DOF < 2, we chose as the reported estimate of the parameter and its error to be that

which was consistent with the smallest µ within 2σ and had the smallest error.

4.2 Chiral Symmetry Restoration through Improved

Screening Correlators

In Section 1.3.3, we discussed how chiral symmetry restoration in the high temperature

phase of QCD is easily seen in hadronic correlation functions. Here we present our results

on the correlation functions using optimal HYP-improved valence quarks.

In Figure 4.2, the HYP-improved hadronic screening correlators below and above Tc

are shown. Below Tc, the local meson correlators: S, PS, V, and AV are quite distinct, but

above Tc they collapse into one (see Figure 4.2). A pairwise degeneracy of the S/PS and

V/AV shows chiral symmetry restoration (as discussed in the last subsection), and has

been demonstrated earlier as well with thin-link staggered valence quarks. However, we

now find the two pairs of A+
1 irreps to be nearly degenerate at high temperature. This is

visible only after smearing and it is a new observation. This occurs in all the data sets: N,

O, and P. The confusion that was mentioned in the last subsection, seems to be resolved

with improved taste.

Pairwise degeneracy arising from chiral symmetry restoration is most easily seen in

the vanishing of C(−S), C(−Vt) and C(−Vs) at high temperature [18]. On examining these

combinations, it turns out that the degeneracy for T > Tc becomes clearer with smearing.

For example, C(−Vt)(z = 1/T ) is (6 ± 8) × 10−3 at Tc with thin-link valence quarks,

but becomes (0 ± 2) × 10−3 when optimal HYP smeared valence quarks are used. The
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improvement is most remarkable in the S/PS sector, where we found C(−S)(z = 1/T ) =

−3.3 ± 0.1 at Tc using thin-link valence, but −0.57 ± 0.04 using optimal HYP smeared

valence. At larger T all the negative chiral projections vanished.

It was seen earlier [18] that C(−Vs) for T ≥ Tc vanished when z > 1/T , but remained

non-zero at short distances. In Figure 4.3 we show this effect at Tc and also, that it

vanishes at 2Tc. A more detailed view of the temperature dependence is exhibited by

showing how C(−Vs)(z = 1/T ) changes with T . Below Tc the correlator does not vanish,

but the spatial structure seems to have entirely disappeared for T > 1.05Tc. This gives

one definition of the width of the chiral crossover; it is larger than the one implied by ∆βc

(see Section 2.2.2).

C(+Vs) is close to the FFT prediction with either thin-link or smeared valence quarks.

With thin-link staggered valence quarks, we see that C(+S) is different from FFT, as

previously observed. However, on smearing, they become compatible with FFT (see Figure

4.4). This is a more detailed understanding of why the meson screening correlators are

nearly degenerate in Figure 4.2.

4.3 Screening Masses with Improved Taste Symme-

try

We determined the screening masses of local mesons and the nucleon using optimal smear-

ing. We did the computation with optimal value of ǫ in each of the four smearing schemes.

In the next subsection, we analyse how taste breaking is an important issue to be dealt

with in the study of staggered screening masses. In the second subsection, we show the

temperature dependence of the screening masses using optimal HYP, where we find a good

agreement between meson screening masses in the deconfined phase and the weak-coupling

prediction.

4.3.1 Effect of Taste Breaking

In this subsection, we show that the lattice artifacts from taste breaking play a greater role

in screening masses than the lattice artifacts that arise from lattice discretization alone.

In Figure 4.5, we show the screening masses of PS, V and the nucleon at 2Tc as a

function of the taste splitting, δmγiγ5 . We chose the partner with taste structure γ5γi as
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aδmγiγ5 at 2Tc in set O. The screening mass of the nucleon has been multiplied by 2/3
in order to compress the vertical scale. Each set of screening masses varies linearly with
a measure of the pion taste splitting, aδmγiγ5 . The universal behaviour seen across all
smearing schemes means that the variation in screening masses due to smearing is an
effect of reduction in taste splitting, and not an artifact of smearing.
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an indicator of taste splitting since it is relatively easy to measure. The taste splittings

at T = 0 and the screening masses were both determined at the same value of β(= 5.53).

The reduction in taste splitting arises due to gauge-link smearing. The various data points

correspond to smearing schemes at optimal values of ǫ (except the data point from APE

at ǫ = 0.15 which is non-optimal). We find that they depend on the smearing parameter

ǫ essentially only through the taste splitting, δmΓ. This shows that the changes in the

screening masses are due to reduction in taste breaking, and not a smearing artifact.

Figure 4.5 shows the nearly linear dependence of µ/T on δmΓa. This linear dependence

on taste splitting, along with the factorization which we observed in eq. (3.23) implies a

behaviour

µ(a) = µo + h(a) + λf(ǫ)gΓ
(

αSa
2
)

, (4.1)

where the constant λ is the slope. We have written the y-intercept in Figure 4.5 as µo+h(a),

where µo is the continuum value of µ, and h(a) is the lattice artifact that remains after

the removal of taste-breaking. We have made the argument of gΓ as αSa
2 to indicate that

this term arises due to taste breaking, and it vanishes in FFT. Both h and gΓ vanish in the

continuum limit, but the difference is that h arises from lattice discretization and persists

even in FFT. This lattice artifact cannot be altered by gauge-link smearing. In the case

of FFT, µo+h(a) would be given by eq. (1.29). Thus, the lattice artifacts contributing to

the screening mass split into a purely discretization effect (h), and a purely taste breaking

effect (gΓ) which can be suppressed by smearing through the factor f .

For the sake of illustration, let us assume that for small a, h(a) ∝ a2 and gΓ ∝ αSa
2.

With these lattice artifacts, the schematic dependence of µ on both a and ǫ is shown in

Figure 4.6. Without smearing, the slope for the continuum limit is much steeper than the

one with optimal smearing. Therefore the results with optimal smearing are expected to

be nearer to the continuum even at finite lattice spacing.

Next, we show that the taste breaking artifact contributes largely to the lattice cor-

rection in screening mass than the discretization effect from h. In Figure 4.7, we show

the temperature dependence of µPS from three different cases. The blue and the red

data points are the optimal HYP-smeared and unsmeared results from set P respectively.

Since they are from the same lattice spacing, a comparison between the two shows the

contribution from the taste breaking part gΓ. The black data points are optimal HYP

smeared results from set O. Since the taste breaking artifacts are suppressed by a factor
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Figure 4.6: Schematic of lattice spacing, a, and smearing parameter, ǫ, dependence of
screening mass. At a given value of a, the value of screening mass is closest to the
continuum value at optimal ǫ.
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6 through optimal smearing, a comparison of these data points with the blue ones show

the contribution from discretization artifact h. Above Tc, the shift seen between smeared

and unsmeared results is much larger than due to h. This implies that the taste breaking

lattice artifacts dominate screening masses in the deconfined phase. The above observa-

tions, along with results from Section 3.5, clearly indicate HYP smearing to be the best

choice for the study of staggered screening masses.

Below Tc, the screening masses shift to a lower value with decrease in taste breaking.

This could be due to improper tuning of valence quark masses. However, the fact that the

smeared results at Nt = 4 and 6 fall on top of each other seems to indicate that merely

reducing the bare quark mass from 0.025 to 0.025(2/3) offers a correct tuning. This is

not true in the unsmeared case, where such a tuning leads to a pion which is heavier than

expected at finer lattice spacing.

4.3.2 Comparison with Weak-coupling Prediction

The results for the screening masses as functions of T are shown in Figure 4.8 for all three

data sets with optimal HYP smearing. Also shown are the values expected in FFT on

lattices with the same size (refer eq. (1.29)). The analysis of correlation functions obtained

with these smeared valence quarks shows that the screening masses in all channels approach

FFT at high T . The most striking new feature of this data is that this approach is from

above, in conformity with the predictions of [11]. Similar results are obtained with optimal

HEX smeared quarks.

We have shown in Figure 4.5 that there is a remaining uncertainty of around 15%

in the determination of the S/PS screening mass. This comes from the residual taste

symmetry breaking at the best optimization of the screening parameters possible at this

lattice spacing. Reduction of this uncertainty requires going to finer lattices.

From the discussions in Section 1.4, the weak coupling prediction for the meson-like

screening masses is

µ = µFFT +
4

3
αS[1 + 2E0]T. (4.2)

Here αS is the 2-loop QCD coupling evaluated in the MS scheme at the scale 2πT . E0 =

0.3824 for two flavours of quarks in a dimensional reduction (DR) scheme [11]. A hard

thermal loop (HTL) re-summation which neglects soft gluon contributions to the vertex

yields E0 = 0 [12]. These weak-coupling predictions are also shown in Figure 4.8. The
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uncertainty bands are obtained by varying the momentum scale for the determination of

αS from πT to 4πT , and also from the uncertainty in Tc/ΛMS = 0.49(2) [62].

Since there is no computation with weak coupling on a lattice, the effect of finite lattice

spacing on E0 cannot be estimated. Therefore, we use the continuum value of E0 in our

calculations. We take care of the leading O(a2) correction by replacing the continuum FFT

value of 2πT with the lattice value in eq. (1.29). Our approximation is justified because

any leading O(a2) correction to E0 will only contribute as an O(αSa
2) correction to µ.

But, as we have seen, gauge-link smearing greatly reduces this O(αSa
2) lattice corrections.

As one can see, both the weak-coupling predictions are close to the observed screening

masses. Very little difference in screening masses is seen above 1.5Tc between set N and

O. This means that we commit less error by using the same value of bare quark mass for

both the valence and sea quarks. The agreement with weak coupling is seen in both the

lattice spacings of set O and P. We defer our speculations about the continuum limit to

the discussions.

In addition, we also find the nucleon to approach FFT from above, which is not a

prediction from weak coupling calculations.

4.4 Smallest Eigenvalue of Dirac Operator

The rapid approach to behaviour similar to weak-coupling theory has implications for the

spectrum of the staggered Dirac operator. It was shown earlier in a study of set O with

thin-link quarks that a gap developed in the massless staggered eigenvalue spectrum a

little above Tc, and that the hot phase contained localized Dirac eigenvectors [21]. We

determined the lowest eigenvalue using Lanczos algorithm. We refer the reader to Section

3.3.2 for details.

4.4.1 Spectral Gap with Improved Taste

Here, we studied the spectral gap by measuring the smallest eigenvalue of the massless

staggered Dirac operator, λ0. The ensemble average, 〈λ0〉, at a given temperature was

generally seen to be within a factor of four of the minimum over the ensemble. In view of

this, we report 〈λ0〉.
As can be seen in Figure 4.9, it climbs by two orders of magnitude between Tc and
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Figure 4.10: The ensemble minimum of the smallest eigenvalue of the massless staggered
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small eigenvalues are seen even till 1.2Tc.

1.06Tc for the smeared Dirac operator. For the thin-link operator, 〈λ0〉 rises at significantly
higher temperature. One sees some volume dependence in the result. This was studied

extensively in [21], where it was found that the volume dependence becomes negligible

when the spatial size, L, is of the order of 1/〈λ0〉. For LT = 4, this would be at 〈λ0〉 ≃ 0.25,

which seems to happen at 1.5Tc.

It is also of interest to note that a〈λ0〉 becomes comparable to am at T = Tc with

optimum HYP smearing. With thin-link quarks this crossing is delayed to T/Tc ≃ 1.5,

thus affecting all screening phenomena.

4.4.2 Existence of Atypical Configurations

Atypical configurations with very small eigenvalues have been linked to topological con-

figurations by observations with overlap [73] or HISQ quarks in [74]. This is interesting

to a study of axial U(1) symmetry at finite temperature.

We characterize the occurrence of extremely small eigenvalues by finding the smallest

eigenvalue in N,N/2, N/4, . . . randomly sampled configurations (where N is the total
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number of configurations). Smallest such sample where such extremely small eigenvalues

are found characterizes the rare event. In both the sets N and P, even at 1.2Tc, we spotted

one configuration out of the 50 for which λ0 was two orders of magnitude below 〈λ0〉. The
result for set P is shown in Figure 4.10. This implies the existence of a small fraction

of atypical configurations in the thermal ensemble. However, this requires a much larger

statistical sample, and we therefore leave it to the future.
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Chapter 5

Conclusions

Several properties of quarks at experimentally accessible temperatures above Tc seem to

be explained in weak coupling QCD. However, one which showed puzzling departures from

weak-coupling predictions was screening masses from hadronic excitations. In quenched

computations it was seen that the results depended strongly on the kind of valence quark

used [54]. With this clue in hand we performed computations with dynamical staggered

sea quarks and improved valence quarks in three sets of computations, one new (set N, see

Table 2.1) and two older, (sets O [45] and P [57]). Studies with staggered valence quarks

were reported earlier with set P [18].

A part of this work was the optimization of the valence quarks. We used four popular

versions of fat-link staggered quarks. We optimized the smearing parameter, ǫ, in each

case by observing changes to the power spectrum of the plaquette (see Figure 3.3) and

the largest and smallest eigenvalues of the Dirac operator (see Figure 3.5). The optimum

ǫ was chosen so that the UV was suppressed as much as possible without changing the IR

behaviour in both cases. This also improved the performance of the conjugate gradient

algorithm used for the inversion of the Dirac operator. Such a tuning was done at T = 0.

We measured the spectrum of local-time taste partners of pion as a function of smearing

parameter in the four different schemes at two different lattice spacings. Through this

study, we learnt that taste splitting factorizes into a smearing dependent part f(ǫ) and

a lattice spacing dependent part g(a). As long as f(ǫ) is less than 1, smearing offers a

computational advantage. This factor reduces the taste splitting by about a factor of 6 in

the case of optimal HYP at our finest lattice spacing. Such a factorization is also seen in

the taste splitting of pseudoscalar screening masses in the deconfined phase. However, we

69
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Figure 5.1: Comparison of screening masses with different quark actions at 1.5Tc. Results
for dynamical calculations are shown in the left panel, while quenched calculations in
the right. The left panel now includes our results on Nt = 6 with optimum HYP (red
diamonds). The right panel now includes the continuum extrapolated result from the
quenched staggered calculation [75] (aqua circles). The panels also include the older
results: Clover 2013 [54], overlap 2008 [55], p4 stag [19], std. stag 2011 [18] and quen.
stag. 1988 [56].

found that the smearing dependent factor to behave as f 2(ǫ). Thus, an improvement in

taste at T = 0 is found to cause a super-linear improvement at T > Tc (see Figure 3.12).

Smearing causes systematic changes in finite temperature properties of interest. We

found that the screening mass in the hot phase increases systematically as taste symmetry

breaking is reduced at T = 0 (see Figure 4.5). Since recovery of taste symmetry has been

used as the main indicator of the reduction of UV effects, it is natural in this study to use

optimized HYP smearing in order to best reduce lattice artifacts.

On doing this we find that the screening correlator recovers the degeneracies that a

theory of weakly coupled fermions would predict (see Figure 4.2). This happens very

close to, and above, Tc (see Figure 4.3). The correlators themselves are also close to

the predictions of a free fermion field theory (see Figure 4.4). Consistent with this, the

screening masses at high temperature are found to be close to weak-coupling theory (see

Figure 4.8) in all the three sets N, O and P — meson screening masses approach free field

theory from above. We could find by comparisons between screening masses, found with

and without smearing at two different lattice spacings, that the taste breaking artifact in

screening masses are more dominant than the purely discretization artifacts.
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The updated version of Figure 1.5 with results on screening masses at 1.5Tc from

studies after the year 2013, are given in Figure 5.1. This now includes our partially

quenched results on Nt = 6 with HYP smearing (shown as open red diamonds), and the

quenched results from [75], where both the continuum and thermodynamic limits are taken

(shown as the unfilled aqua circles). Only in the continuum and thermodynamic limit, the

unimproved staggered results are seen to be in rough agreement with results from other

quark actions. Our result on the other hand suggests that by taking care of taste breaking,

one can obtain results which are closer to the continuum even at finite lattice spacings.

We also see that the smallest eigenvalue of the optimally HYP smeared massless stag-

gered Dirac operator shows a rapid jump from extremely small values in the mean below Tc

to fairly large values above (see Figure 4.9). The behaviour of the thin-link staggered op-

erator is qualitatively similar, although quantitatively slower to change, thereby affecting

all screening phenomena. Since the smallest eigenvalue of the massless smeared operator

is comparable to the bare mass already at T = Tc, the limit of physical renormalized mass

becomes easy to take in the high temperature phase. There is evidence for a very small

fraction of completely atypical configurations in the hot phase (see Figure 4.10). A study

of the topology of these gauge configurations lies outside the scope of this thesis.
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Appendix A

Tuning R-algorithm

A.1 Reversibility of the Algorithm

A standard method for dynamical simulation of QCD is by simulating an equivalent micro-

canonical ensemble of a fictitious classical system [76]. A trajectory in hybrid molecular

dynamic evolution consists of an initial refreshment of momenta Πx,µ conjugate to Ux,µ,

followed by classical evolution of gauge fields and the conjugate momenta through the

molecular dynamics time, τ , (called MD time) according to a fictitious Hamiltonian, H.

The momenta are evolved such that H is conserved. But in an actual simulation, a

trajectory of length Ttraj is discretized into NMD time steps each of size ∆t.

R-algorithm [34] is one of the hybrid molecular dynamics methods [3]. At finite values

of ∆t, R-algorithm is only approximate, as there is no Metropolis accept-reject step [3, 77]

at the end of a trajectory, unlike the case of Hybrid Monte Carlo [68]. This introduces

∆t-corrections to measured quantities, and these are reduced to O(∆t2) in R-algorithm.

This means that approximations at the same order could be made in the algorithm.

Exact reversibility of the algorithm is one of the requirements to maintain detailed

balance. Since R-algorithm is accurate only to O(∆t2), the implementation of leap-frog

integrator used in R-algorithm is reversible only to O(∆t2). This is in addition to re-

versibility violations that arise due to rounding errors and stopping criterion for conjugate

gradient (which are the only factors contributing if HMC is used [78]).

We study the violation of MD time reversibility by evolving the gauge-links Ux,µ

through a trajectory with NMD time steps, each of size ∆t. At the end of the trajec-

tory, we reverse the momenta, Πx,µ → −Πx,µ, and the links are made to retrace the
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trajectory in reverse [78]. The gauge-links obtained after this to-and-fro MD evolution is

called U ′
x,µ. At the end, we measure the overlap between U and U ′ using

ρ = 1− 1

12Vlat

∑

x,µ

|Tr
(

U †
x,µU

′
x,µ

)

|. (A.1)

With perfect reversibility, ρ would be zero.

A.2 Tuning with Plaquette

As noted earlier, R-algorithm is approximate due the absence of Metropolis accept-reject

step in order to correct for the finite step size errors. Therefore, the values of NMD and

∆t have to be tuned so that different measured quantities are consistent with the values

obtained in the ∆t → 0 limit. A quantity which is well measured on the lattice is the

plaquette, making it suitable for tuning the algorithm. In Figure A.1, we show the spatial

plaquette, Ps, as a function of NMD. The data are taken from simulations on 4 × 83

lattice at β = 5.25, with the bare quark mass am = 0.015. In all the runs, the trajectory

length, Ttraj, was fixed as 1 in MD time units. We optimized the algorithm by finding the

largest possible value of ∆t, whose plaquette value is consistent with the value obtained

on the smallest value of ∆t used. We found ∆t = 0.01 to satisfy this criterion, and we

chose this to be the optimum value to be used in our configuration generation of the finite

temperature ensemble with am = 0.015, called set N and discussed in Chapter 2.

Changes due to an update of a gauge-link, propagate to other parts of the lattice

ballistically [79] (as opposed to, say, being diffusive). Therefore, in order to maintain a

fixed auto-correlation time in simulations across different lattice sizes, one needs to increase

the length of the trajectory (i.e., increase NMD) in proportion to the linear dimension of

the lattice. Which means, for the set N, we use NMD = 100(Ns/8), where Ns is the spatial

extent of the lattice. But, not all values of NMD are acceptable for a given value of ∆t.

In Figure A.2, we show the Monte Carlo history of Ps for the case of β = 5.275 in set

N on 4 × 243 lattice. We used ∆t = 0.01 as before, while changing NMD to larger values

than NMD = 300. The runs with NMD = 500, 600 and 700 were started from the same

thermalized configuration. It is easily seen that the run time histories are different as one

goes to larger values of NMD. This means that the O(∆t2) errors are getting amplified by

the increase in NMD. Thus, one has to be judicious in the choice of the pair (∆t, NMD).
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Figure A.1: Plot of spatial plaquette at β = 5.25 on 4 × 83 lattice, as a function of the
number of MD time steps, NMD, keeping a fixed length of trajectory, Ttraj = 1.

This is explored in detail in the next section.

A.3 Reversibility as a Criterion for Tuning

We find that ρ offers a quick way of tuning the algorithm, instead of running actual simu-

lations to choose the pair of parameters by trial and error. Since an exact time reversibility

is required for an exact algorithm, any measure of deviations from it should serve to tune

the algorithm. Also, the violation in time reversibility in R-algorithm is O(∆t2) like the

∆t-corrections to measurements, making it a good proxy for actual measurements.

In Figure A.3, we show ρ as a function of the pair (∆t, NMD). The bare quark mass

decreases as we go from black, blue and green points, in that order. The difference

between the green and blue data sets lie only in the lattice size used in the study. We

arbitrarily chose a tolerance in ρ to be ρc = 0.001, which is shown as the magenta line.

We chose this value because the typical statistical errors in plaquette encountered in our

finite temperature simulations were of that order, and thereby requiring the algorithm to

be accurate only to that significant digit. For a given am, the values of NMD that can be

used to maintain ρ to be less than ρc, becomes smaller with increase in ∆t. For the set
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N which has ∆t = 0.01, the largest value of NMD that can be used seems to be around

200. This explains why the run-time histories in Figure A.2, with NMD > 300 are very

different. When the quark mass is decreased, the value of ∆t that can be used for a given

value of Ttraj, becomes smaller. This means an additional increase in the computational

effort when simulating at smaller quark mass using R-algorithm.

By making a detailed scan of different sets of (∆t, NMD) at am = 0.008, we were able

to divide the parameter space into allowed and disallowed regions (based on whether ρ

is less than or greater than ρc respectively). Ten different configurations were used for

this purpose. The data points are from actual simulations — the magenta points had

plaquette values which differed from the values at (0.002, 100) by less than the statistical

error, while the black point differed by more than 1-σ. The blue band is the error band

for finding ρ = ρc. From the plot we find that ρ = ρc clearly separates the parameter

space into two, consistent with what we observe from actual simulation. This boundary

between the allowed and disallowed regions seems to be described by

(∆t)2NMD = A (A.2)

with the value of A = 0.0074 in this particular case. This means that the O(∆t2) dis-

cretization errors get accumulated with every MD time step in a trajectory. This again

reiterates the observation that not all values of NMD are allowed for a given ∆t.

The value of the coefficient A in eq. (A.2), indeed depends on the value of ρc which is

chosen. In Figure A.5, we plot ρ as a function of NMD for different fixed values of ∆t. Over

a wide range of Ttraj, which is not very large, ρ seems to scale with NMD as ρ ∝ Nγ
MD,

where γ ≈ 1.38. Along with eq. (A.2), this scaling implies (∆t)2NMD ∝ ρ1/γ .
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to different ∆t. The lines describe the power-law ρ ∝ Nγ

MD for different ∆t. The value of
the exponent γ ≈ 1.38 in all the cases.



Appendix B

Memory Optimized Implementation

of HEX

A code implementation of eq. (3.4) requires arrays Uµ and Vµ;ν to store thin-links and

the subsequent smeared links in various sub-levels respectively. Each of these arrays store

3× 3 matrices at all lattice points and hence each of them is of size 9Vlat. Since each step

consists of updates done at all lattice points, we do not show the position indices of these

arrays. In addition to them, we require arrays Wi for 1 ≤ i ≤ Nw. These are required in

order to provide work space to enable updating the same array Vµ;ν with smeared links,

when going from one sub-level to the next. Each of these arrays are again of size 9Vlat.

The problem is to minimize Nw. The first sub-level is easy to implement as it requires only

thin-links and the Vµ;ν are empty to begin with. This step does not require any working

arrays.

The smeared links, V
(1)
σ;µν , used in the second sub-level can also be written as V

(1)
σ;η ,

where η is the direction orthogonal to σ, µ and ν. With this observation, it is clear that

both V
(1)
σ;µν and V

(2)
σ;η can be stored in the same array of the form Vσ;η. The brute force

implementation of this sub-level would require Nw = 12, as two copies of V are required:

one to store V (1) and the other for V (2).

A graphical representation of an algorithm to compute the second sub-level, so that

Nw is reduced to 7, is given in Figure B.1. The vertices (µ, ν) stand for the arrays Vµ;ν .

Two vertices (µ, ν) and (ρ, η) are adjacent, if eq. (3.4) for V
(2)
µ;ν involves V

(1)
ρ;η . If this is

true, then by observation, V
(2)
ρ;η also involves V

(1)
µ;ν and hence this graph is not directed.

At the beginning of the second sub-level, (µ, ν) contains V
(1)
µ;ν at all lattice points. (µ, ν)
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cannot be updated with V
(2)
µ,ν until the V

(2)
ρ;η corresponding to all the adjacent vertices have

been computed. The way to proceed becomes clear through the circular embedding of

the graph. The algorithm is detailed in the caption of Figure B.1. Here, we give a walk-

through of the first two steps as follows. In the first step, we arbitrarily pick a vertex —

we choose (1, 2) in this example. The calculation of V
(2)
3;4 , V

(2)
1;4 , V

(2)
4;3 and V

(2)
1;3 requires V

(1)
1;2 .

Therefore, we first find V (2) for these adjacent vertices and store them in the working

arrays W1,W2,W3 and W4. Now, we are free to update (1, 2) with V
(2)
1;2 . This requires

V
(1)
3;4 , V

(1)
1;4 , V

(1)
4;3 and V

(1)
1;3 , which still remain untouched in the adjacent vertices. This is

the reason for the specific order of these updates described in the figure. Once (1, 2) is

updated, no other vertex requires it and it gets disconnected from the graph. The second

step proceeds similarly with respect to the vertex (3, 4). However, at the end of the second

step, (3, 4) is updated to V
(2)
3,4 , which was stored in W1 during step 1. The rest of the steps

of this algorithm proceed by repeating this procedure for a specific sequence of vertices,

as shown in Figure B.1, such that only 7 working arrays are required at any point of

the algorithm. The total memory cost for the working space in terms of array size is

63Vlat compared to 108Vlat in the brute-force method. This cost can be further reduced

by appealing to unitarity: only two rows of Wi at each lattice point are required. This

reduces the memory cost further to 42Vlat.

The third sub-level is again straight-forward. Only 4 working arrays are needed to

compute V
(3)
µ (due to the 4 values of µ).
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Figure B.1: Graphical illustration of memory optimized algorithm for the second sub-level of hypercubic schemes.
The vertices (µ, ν) are the 9Vlat sized arrays, Vµ;ν , which stores 3 × 3 matrices at each lattice point. Two vertices,

(µ, ν) and (ρ, η), are connected by an edge (i.e., adjacent) if the construction of V
(2)
µ;ν depends on V

(1)
ρ;η (see eq. (3.4)),

in which case V
(2)
ρ;η also depends on V

(1)
µ;ν . There are 7 working arrays, Wi, which are indicated near some vertices and

each of them are of size 9Vlat. The algorithm proceeds from step 1 to 6 as shown in the figure. At the beginning of
step 1, (µ, ν) contains V

(1)
µ;ν at all lattice points. In each step, the red colored arrays are the ones which are relevant

and the blue ones are dormant. Each step consists of the following operations. A short arrow with nothing at its

tail, → Wi or → (µ, ν) , indicates that V
(2)
µ;ν is computed using V

(1)
ρ;η contained in the vertices adjacent to (µ, ν) and

stored in the array it points to. Wi → (µ, ν) means that data is copied from Wi to Vµ;ν . Solid or dashed red vertices

indicate the order of these operations: the operations at the solid red vertices are done before the dashed ones, and
amongst the solid vertices there is no hierarchy. Once Vµ;ν is updated with V

(2)
µ;ν , the vertex and the edges attached

to it are removed from the successive steps.
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